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Introduction

In [3] Kobayashi gave the following interesting statement: let M be a
complex manifold on which a complex lie group acts transitively, then M
can not be hyperbolic. The method of the proof and the fact that the
complex line C, which is a typical, non-taut, non-tight and non-hyperbolic
space, plays an essential role in the proof suggested to us to consider the
same circumstances from our point of view. Our aim is to show that the
set of holomorphic mappings H(C, M) can neither be normal nor equicon-
tinuous. For this purpose we introduce the property (P) instead of “tw0-
fold assigning” property. The property (P) is in a sense a localization of
“tw0-fold assigning property”. The property (P) was already introduced
in [4] and made it possible to improve Wu’s theorem, cf. Lemma 4.1, [4].
In this paper the property (P) and the notion of exact range, see Definition
2.3, which is laso a localization of the notion introduced in [4], will prove
themselves effective for our purpose.

The purpose of \S 3 is to make some remarks on Kobayashi’s statement
cited above.

\S 1. Preliminaries.
Through this paper complex manifolds are all assumed connected and

second countable. For two complex manifolds M and N we denote by
H(M, N) the space of all holomorphic mappings of M to N. The space
H(M, N) can be topologized by s0-called compact-0pen topology. Since by
assumption M and N are second countable, H(M, N) is also second counta-
ble, and the compactness of a subset of H(M, N) is verified by its sequential
compactness. By the same assumption the complex manifold N is met-
rizable and we can construct a distance function d_{N} on N which metrizes
N, cf. Kelley [1]. So we can speak of the convergence of a sequence of
H(M, N) making use of the distance function d_{N} .

A sequence \{f_{i}\}\subset H(M, N) converges compact-uniformly in M if and
only if it converges uniformly on every compact subset of M. The com-
pact-uniform limit of a sequence of H(M, N) belongs to H(M, N). A sequ-
ence \{f‘\}\subset H(M, N) is said to be compactly divergent if and only if for
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any compact subset K in M and for any compact subset L in N there
exists a number i_{0} such that f_{i}(K)\cap L=\phi for all i\geqq i_{0} .

By definition a subet F of H(M, N) is called normal if and only if
every sequence of F contains a subsequence which is either relatively com-
pact in H(M, N) or compactly divergent. Let d_{N} be a distance function
on N. A subset F of H(M, N) is called equicontinuous if and only if for
any positive number \epsilon and any point x\in M there exists a neighborhood U
of x such that y\in U implies d_{N}(f(x), f(y))<\epsilon for all f\in F.

DEFINITION 1. 1. A complex manifold N is called taut if and only
iffor every complex manifold M the space of holomorphic mappings H(M, N)
is normal. A complex manifold N with distance function d_{N} , which metrizes
N, is called tight if and only if H(M, N) is equicontinuous.

\S 2. The exact range of complex manifold.
In [4] the author considered the tw0-fold assinging families of hol0-

morphic mappings and obtained several interesting results, see Theorem
2. 2 and Theorem 2. 4.

A tw0-fold assigning families of holomorphic mapping is defined as
follows. Let M and N be complex manifolds. A subset F of H(M, N) is
called twO-fold assigning if and only if for any two different points p,
q\in M and for any two different points P, Q\in N there exists an f\in F such
that f(p)=P and f(q)=Q.

Combining Theorem 2. 2 and Theorem 2. 4 in [4] we can state the
following

THEOREM 2. 1. Let M and N be complex manifolds and let F be a
subset of H(M. N). If F is twO-fold assigning, then F can neither be normal
nor equicontinuous.

The equicontinuity of a set of mappings is a local character. Also the
normality is essentially a local character. Let M and N be complex mani-
folds and F a subset of H(M, N). Let us say that F is normal at a point
x\in M if there exists a neighborhood U of x in which F is normal. Then,
it is easily verified that F is normal if and only if F is normal at every
point of M. With those remark we can replace the condition “twO-fold
assigning” \neg\ln Therem 2. 1 by weaker condition which we shall call proper-
ty (P),
(P): there exist a sequence \{x‘\} of M converging to a point x_{0}\in M, a
sequence { f_{i}\rangle of F and two different points P, Q\in N such that f_{i}(x_{i})=P

and f‘(x_{0})=Q .
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We have
PROPOSITION 2. 2. Let M and N be complex manifolds. If a subset

F of H(M, N) possesses property (P), then it can neither be normal nor
equicontinuous and hence N can neither be taut nor tight.

PROOF. By assumption there exists a sequence \{x_{i}\} of M converging
to a point x_{0}\in M, a sequence \{f_{i}\} of F and two different points P, Q\in N

such that f.\cdot.(x_{l})=P and f_{i}(x_{0})=Q.
First let us assume that F is normal. Then we can choose a sub-

sequence of { f_{i}\rangle which is either compact-uniformly convergent or compactly
divergent in M. We shall show that the sequence \{f_{i}\} does not contain
any compactly divergent subsequence. Let K be a compact neighborhood
of x_{0} . Then there exists an i_{0} such that x_{i}\in K for all i\geqq i_{0} . Put L=
\{P, Q\} . Then obviously L is compact in L and f_{i}(K)\cap L\supset\{f_{i}(x_{u},\}\cup(f_{i}(x_{0})\}=

\{P, Q\}\neq\phi, for all i\geqq i_{0} . Thus, the sequence \{f_{i}\} can not contain any com-
pactly divergent subsequence. \{f_{i}\} therefore should contain a compact-
uniformly convergent subsequence, say { f_{f}\rangle . Since we topologized H(M, N)
by compact-0pen topology, the limit f_{0} of the subsequence \{f_{j}\} belongs to
H(M, N). Let us choose a subsequence { x_{f}\rangle of \{x_{i}\} corresponding to the
choice of \{f_{f}\} .

Since f_{f}arrow f_{0} and x_{f}arrow x_{0} as jarrow\infty , we have f_{f}(x_{f})arrow f_{0}(x_{0}) as jarrow\infty . On
the other hand, by the choice of original \{f_{i}\} , f_{j}(x_{j})=P and f_{f}(x_{0})=Q.
Thus P=Q, which contradicts the assumption that P and Q are different.
Hence, F can not be normal.

Secondly, let us assume that F is equicontinuous. Then by definition
for any positive number \epsilon there exists a neighbornood V of x_{0} such that
x\in V implies d(f(x), f(x_{0}))<\epsilon for all f\in F, where d is the distance function
metrizing N. Since x_{\ell}arrow x_{0} as iarrow\infty , we can find an i_{0} such that x‘\in V for
all i\geqq i_{0} . Specializing f to the element of \{f_{i}\} we have d(f_{i}(x_{i}), f‘(x_{0}))<\epsilon

for all i\geqq i_{0} . Let us choose \epsilon so that \epsilon<d(P, Q) . Then, by the choice of
the sequences \{f‘\} and \{x_{i}\} that f_{i}(x_{i})=P and f_{t}(x_{0})=Q, we have d(f_{i}(x_{i}),
f_{i}(x_{0}))=d(P, Q)<\epsilon<d(P, Q) . Thus F can not be equicontinuous.

In [4] we introduced the notion of exact range of complex manifold
which is defined as follows. A complex manifold N is called an exact range
of complex manifold M if and only if for any two different points P, Q of
N there exists an f\in H(M, N) such that f(M) contains both P and Q .
This definition of exact range is too strong for the qurpose of the present
paper. So we introduce here another definition.

DEFINITION2.3. A cmplex manifold N is called the exact range of
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complex manifold M if and only if for any point P of N there exists a
neighborhood U such that for every Q\in U there exists an f\in H(M, N) satis-
fying f(M)\ni P, Q.

Property (P) introduced above and Definition 2. 3 are the localizations
of tw0-fold assigning property and the notion of exact range in [4], re-
spectively.

Under Definition 2. 3 we can prove Theorem 4. 5 in [4] anew. Namely
we have

THEOREM 2. 4. Let M be a complex manifold and the group Aut(M)
of autmorphisms of M act twO-fold transitively on M. If a complex
manifold N is the exact range of M, then N can neither be taut nor tight,
and there is non-constant holomorphic mapping from N to neither a taut

manifold nor a tight rnanifold.
PROOF. First we shall show that the space H(M, N) possesses the

property (P). Since N is the exact range of M, there exist an f\in H(M, N)

and two different points P, Q\in N such that f(M)\in P, Q. We can choose
two different points p, q of M so that f(p)=P and f(q)=Q.

Now, choose a sequence \{x_{n}\} of M converging to a point x_{0}\in M. Since
Aut (M) acts tw0-fold transitively on M we can find a sequence \{\sigma_{n}\} of Aut
(M) such that \sigma_{n}(x_{0})=p and \sigma_{n}(x_{n})=q .

Thus, the sequence of holomorphic mappings \{f\circ\sigma_{n}\} possesses the prop-
erty (P) and hence H(M,N) also does. Then by Proposition 2. 2 N can
neither be taut nor tight.

Now, for the proof of the second half let us assume that there exist
a taut or tight manifold L and a non-constant holomorphic mapping g of
N to L. Then, since g is non-constant, it is possible to choose a point P
of N such that for any neighborhood U of P there is a point Q satisfying
g(P)\neq g(Q) . Since by assumption N is the exact range of M the set
feH(M, N)=\{g\circ f:f\in H(M, N)\} possesses the property (P). According to
Proposition 2. 2 again L can neither be taut nor tight. This is a contra-
diction. Thus, g should be constant.

The following proposition is almost trivial, but implies very interesting
consequence.

PROPOSITION 2.5. An exact range of the complex number space C^{n} is
the\backslash exact ra.nge of the complex number plane C.

COROLLARY 2, 6 (Wu [5]). Any holomorphic mapping of C^{n} to a tight
or taut complex manifold is coJlstant.

.PROOF. It is_{\backslash } obvious that Aut\zeta C) acts t_{\iota}wQ-fold transitively on C. \cdot On
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the other hand C^{n} is the exact range of C^{7l} itself. Then by Proposition
2. 5 Corollary 2. 6 holds. More directly, it suffices to notice that C^{n} is the
exact range of C.

In general any complex manifold is its exact range. Therefore, the
fact that Aut(C) is tw0-fold transitive implies classical Liouville’s theorem
on bounded holomorphic function.

\S 3. The exact ranges of the complex number plane C

In [3] Kobayashi gave the following proposition, see Example 3, p. 49:

PROPOSITION 3. 1. If M is a complex manifold on which a complex
Lie group acts transitively, then M can not hyperbolic.

The purpose of this section is to observe this proposition from our set-
ting and make a remark which seems fundamental.

PROPOSITION 3. 2. Let M be a complex manifold on which a complex
Lie group L acts trasitively. Then M is the exact range of the complex
line C.

PROOF. The idea of proof is wholly due to Kobayashi. Since L acts
transitively on M, to any point p\in M we can choose a neighborhood U_{p}

such that for any point q\in U_{p} there exists a complex 1-parameter subgroup
L_{p} of L such that its orbit contains p and q.

This means that there exists a holomorphic mapping f_{q} of complex
line C to M such that f_{q}(C)\in p, q. Thus M is an exact range of C. Then
Theorem 2. 4 applies.

The following statement is a direct consequence of Theorem 2. 4.

COROLLARY 3. 3. Let M be a complex manifold on which a complex
Lie group L acts transitively. Then M can neither be taut nor tight. Any
holomorphic mapping of M to either taut or tight manifold is constant.

By the results in Kiernan, [2] the first half of Corrollary 3. 3 is equiva-
lent to Proposition 3. 1.

Now, we want to make a remark on Proposition 3. 2. Any complex
Lie group L acts transitively on itself by left ranslation. Then we can
apply Proposition 3. 2 to every complex Lie group regarded as a complex
manifold. We obtain trivially.

THEOREM 3. 4. Any complex Lie group can neither be taut nor tight.
Any holomorphic mapping from a complex Lie group to either a taut or
tight manifold is constant.

In Theorem 3. 4. the structure of “complex Lie group” is important.
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We shall give in the following an example of tight complex manifold on
which a structure of real Lie group can be defined and furthermore its left
translation is holomorphic.

Let D be the unit disk on the complex number plane C. We define
the group operation in D as follows: for two element \alpha, z\in D the product
\alpha\cdot z is given by

(G) \alpha\cdot z=\frac{(1-\alpha)z+(1-\overline{\alpha})\alpha}{(1-\alpha)\overline{a}z+(1-\overline{a}’)}1

From (G) we see that the left translation l_{\alpha}(z)=\alpha\cdot z is a meromorphic
function. Since |l_{\alpha}(z)|<1 , l_{\alpha}(z) is bounded and therefore is holomorphic.
On the other hand D is a typical tight manifold.

Now, we want to improve Proposition 3. 1 by the aid of Theorem 3. 4.
For that we give precise definition of the action of a complex Lie group
on a complex monifold. By definition a complex Lie group L acts on a
complex manifold M if (1) there exists a group homomorphism \rho from L
to Aut (M), and (2) the mapping \Phi:L\cross M- M, define by \Phi(l, x)=\rho[l](x)

the operation of the automorphism \rho[l]\in Aut(M) on x\in M, is holomorphic.
PROPOSITION 3. 5. Let a connected complex Lie group L act on a

complex manifold M. If M is taut or tight, then the action of L on M is
trivial.

PROOF. Let \Phi(l, x)=\rho[l](x) be the action of L on M. Put f_{\alpha}(l)=

\rho[l](\alpha) for any \alpha\in M . Then f_{\alpha} is a holomorphic mapping of L to M.
Since M is taut or tight and L is connected, Theorem 3. 4 implies that f_{\alpha}

is constant, say f_{\alpha}(l)=\beta , \beta\in M. If l is the identity of L, then \rho[l] is also
the identity of Aut (M). Hence \beta=\alpha . This means that \rho is trivial. The
proof is completed.

Department of Mathematics,
Kumamoto University

References

[1] J. L. KELLEY: General topology, Van Nostrand, Princeton, N. J., 1965.
[2] P. KIERNAN: On the relations between taut, tight and hyperbolic manifolds, Bull.

Amer. Math. Soc., 76 (1970), 49-51.
[3] S. KOBAYASHI: Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dek-

ker, N. Y., 1970.
[4] S. SATO: TwO-fold assigning families of holomorphic mappings, Kumamoto J.

Sci. (Math.), 9 (1973), 63-73.



On the exact ranges ef complex manifolds 7

[5] H. WU: Normal families of holomorphic mappings, Acta Math., 119 (1967) 193-
233‘

(Received November 19, 1973)


	Introduction
	\S 1. Preliminaries.
	\S 2. The exact range ...
	THEOREM 2. ...
	THEOREM 2. ...

	\S 3. The exact ranges ...
	THEOREM 3. ...

	References

