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1. Introduction. | We consider the problem of approximation for a
given bounded linear operator on a fixed Hilbert space by positive opera-
tors where positivety means non-negative semi-definite. Study of this
problem was initiated by P. R. Halmos [4], who proved that the distance
of an operator to the set of all positive operators is completely determined.
The results proved by him can be formulated as follows.
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(1) Put
\delta=i^{1}\mathfrak{h}f\{||A-P||’. : P\geqq 0\}

Thm

\delta=idf|\{r\geqq 0:r^{2}\geqq C^{2} , B+(r^{2}-C^{2})^{\frac{1}{2}}\geqq 0\}
‘

(2) Define another norm ||| ||| by

Thm

||||||A1_{I}||=||({\rm Re} A)^{2}+({\rm Im} A)^{2}||^{\frac{1}{2}}

\frac{1}{2}||A||\leqq|||A|||I_{b}\leqq|_{1}^{1}A||

and |

| \delta=\inf\{|||A-P||| : P\geqq 0\}

(3) Put |

|\mathscr{P}(A)=\{P\geqq 0 : ||A-P||=\delta\}

and
\varphi_{n}(A)=|\{P\geqq 0 : |||A-P|||=\delta\} .

Then both \mathscr{B}(A) and p_{n}(A) are convex sets and \mathscr{P}(A)\subseteqq \mathscr{P}_{n}(A) . The op-
erators in \mathscr{P}(A) and {?}_{n}(A) are called positive approximants and positive
near-approximants respectively.
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(4) The operator P_{0} defined by

P_{0}=B+(\delta^{2}-C^{2})^{\frac{1}{2}}

is maximum in both \mathscr{P}(A) and \mathscr{P}_{n}(A), that is, P_{0}\in \mathscr{P}(A) and P\leqq P_{0} for
any operator P in \mathscr{P}_{n}(A) .

In the present paper we consider the problem raised by R. Bouldin
[2], that is, a necessary and sufficient condition for that \mathscr{P}(A) coincides
with \mathscr{P}_{n}(A) in the case A is a normal operator. Since both \mathscr{P}(A) and
\mathscr{P}_{n}(A) are weakly compact convex sets, these sets are the convex closures
of respective extremal points. By this result we show that the set of all
extremal points of \mathscr{F}(A) is either finite or uncountable in the case A is a
normal operator.

In this paper operators are bounded linear operators on a complex
Hilbert space e\mathscr{K} . Put B={\rm Re} A and C={\rm Im} A for a given operator A.
B_{+} and B_{-} denote the positive and the negative parts of a Hermitian oper-
ator B respectively. Ran (A) denotes the range of an operator A. A|_{d}

denotes the restriction of A on an A-reducing subspace.\Lambda . \{A\}’ and \{A\}’

denote the commutant and the double commutant of A respectively. The
dimension of a subspace.\Lambda^{\cdot} is denoted by dim -

\Lambda . \sim{?}^{\perp} denotes the or-
thogonal complement of e\mathscr{M} . N^{-} denotes the closure of a set r

2. Positive approximants and positive near approximants. Put
-\mathscr{B}_{0}’=Ran(P_{0})^{-}\cap Ran(\delta^{2}-C^{2})^{-} ,

then Ran (P_{0}-P)^{-} is included in \mathscr{A}_{0} for any operaotr P in .\mathscr{P}_{n}(A) since
(B-P)^{2}+C^{2}\leqq\delta^{2} and 0\leqq P\leqq P_{0} . In the case A is a normal operator, {?}_{0}

is an A-reducing subspace, hence \mathscr{A}_{0}^{c} is a reducing subspace for each op-
erator P in \mathscr{P}_{n}(A) .

THEOREM 2. 1. Let A be a normal operator. If the operator (Im A) |_{\mathscr{H}_{0}}

is non-scalar, then there exists a positive operator P such that
(a) P\not\in \mathscr{P}(A) and P\in \mathscr{P}_{n}(A) ,
(b) P|_{\mathscr{H}_{0}} does not commute with (Im A) |_{\mathscr{H}_{0}} .
PROOF. Obviously C|_{\mathscr{H}_{0}} is scalar if dim \mathscr{F}_{0}’ is zero or one. Hence it

can be assumed that dim {?}_{0}\geqq 2 . Let E(\sigma) denote the spectral measure
of A. \sigma(A) and \sigma_{p}(A) denote the spectrum and the point spectrum of A
respectively. Put

\Gamma_{\delta}=\{z:|z|=\delta , Re z\leqq 0\}\cup\{z:|{\rm Im} z|=\delta\}

and
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\sigma’(A)=\sigma(A)-\Gamma_{\delta}\tau

Obviously \mathscr{F}_{0}=Ran(E(\sigma’(A)^{-})) holds. Suppose C|_{\mathscr{H}_{0}} is non-scalar. Im \sigma

denotes {Im z:z\in\sigma} for a set \sigma included in \sigma(A) . The set Im \sigma’(A) con-
tains more than two points. There exist non-empty and sufficiently small
closed sets \sigma_{1} and \sigma_{2} included in \sigma’(A) such that

(i) both \sigma_{1} and \sigma_{2} are connected sets,
(ii) both \sigma_{1} and \sigma_{2} have positive distances from the set \Gamma_{\delta} ,
(iii) Im \sigma_{1}\cap{\rm Im}\sigma_{2}=\phi.

By condition (i), Im \sigma_{i} is either a one point set or a closed interval for
i=1,2.

(1) Im \sigma_{i} is a closed interval,
(2) \sigma_{i} is a segment paralell to the real axis,
(3) \sigma_{i} is a one point set \{\lambda_{i}\} {then \lambda_{i}\in\sigma_{p}(A)) .

Put .\mathscr{M}_{i}=Ran(E(\sigma_{i})) for i=1,2. In the case condition (1) it can be as-
sumed that \sigma_{p}(C|_{\alpha_{i}})=\phi and moreover dim ,\mathscr{M}_{i} is countably infinite. In
fact if dim \mathscr{M}_{i} is uncountable, then choose a subspace .\Lambda_{i}’

’ instead of \dot{.}\chi_{i}

where .\mathscr{M}_{i}’ is the minimal C-reducing subspace generated by a non-zero
vector in \mathscr{M}_{i} . dim \backslash \dot{\mathscr{M}}_{i}’ is countably infinite and the set Im \sigma(C|,\alpha_{i}’) con-
tains more than two points and connected since \sigma_{p}(C|_{\mu\ell’}i)=\phi. Similarly in
the case condition (2) it can be assumed that \sigma_{p}(B|_{d}i)=\phi and dim c\mathscr{M}_{i} is
countably infinite. In the case condition (3) it can be assumed that dim
c\mathscr{M}_{i}=1 . The proof is reduced to the following cases.

Case. I. Both \sigma_{1} and \sigma_{2} satisfy condition (1). Put Im \sigma_{i}=[\alpha_{i}, \beta_{i}] for
i=1,2. Without loss of generality, it can be moreover assumed that

(1-1) 0<\alpha_{i}<\beta_{i} or \alpha_{i}<\beta_{i}<0 for i=1,2,
(1-2) \beta_{i}-\alpha_{i}=\epsilon_{1}>0 for i=1,2,
(1-3) all numbers |\alpha_{1}| , |\alpha_{2}| , |\beta_{1}| and |\beta_{2}| are distinct.

Put a_{i}=\beta_{i} and b_{i}=\alpha_{i} if 0<\alpha_{i}<\beta_{i} , and put a_{i}=|\alpha_{i}| and b_{i}=|\beta_{i}| if \alpha_{i}<\beta_{i}<0

for i=1,2, then a_{i}=||C|_{\sqrt}\alpha_{i}|| and b_{i}= \inf\{||C|J\ell_{i}x|| : x\in’arrow{?}_{i}, ||x||=1\} for i=
1,2. Put .\mathscr{M}=\mathscr{M}_{1}\oplus d_{2} where the symbol \oplus means orthogonal direct sum.
The operators B|,l

’
C|_{A} and P_{0}|,

’ can be represented as matrices of opera-
tors on .ae =d_{1}\oplus \mathscr{M}_{2} :

B|_{\alpha}\sim=\{\begin{array}{ll}B_{1} 00 B_{2}\end{array}\} , C|_{A}=\{\begin{array}{ll}C_{1} 00 C_{2}\end{array}\}

and

P_{0}|_{A}=\{\begin{array}{ll}B_{1}+(\delta^{2}-C_{1}^{2})^{\frac{1}{2}} 00 B_{2}+(\delta^{2}-C_{2}^{2})^{\frac{1}{2}}\end{array}\}
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By condition (ii) there exists a positive number \epsilon_{0} such that for i=1,2,

B_{i}+(\delta^{2}-C_{i}^{2})^{\neq}\geqq\epsilon_{0} and (\delta^{2}-C_{i}^{2})^{z}\geqq\epsilon_{0}1 .
Put

\sigma_{i}(s)=\{z:z\in\sigma_{i} , a_{i}-s\leqq|{\rm Im} z|\leqq a_{i}\}

for each positive number s such that 0<s\leqq\epsilon_{1} . Choose a unitary operator
U mapping d_{2} onto \circ \mathscr{M}_{1} such that

U(Ran(E(\sigma_{2}(s))))=Ran(E(\sigma_{1}(s)))

for each s. Define a positive operator Q_{t} on c\mathscr{M} for each real number t
such that 0<t\leqq\epsilon_{0} by

Q_{t}=\{\begin{array}{ll}(\delta^{2}-C_{1}^{2})^{\neq}-\epsilon_{0}+t tUtU^{*} (\delta^{2}-C_{2}^{2})^{\tau}-\epsilon_{0}+t1\end{array}\}

Moreover define a positive operator P_{t} on \mathscr{A} for each t such that \mathscr{A} is
a P_{t}-reducing subspace for each t,

P_{t}|_{\alpha}\vee=Q_{t}+B|_{A} and P_{t}|_{\nu}\kappa^{1}=P_{0}|_{l},\perp

Then
(A-P_{t})|_{\vee}\ell^{\perp}=\{-(\delta^{2}-C^{2})^{\frac{1}{2}}+iC\}|_{\nearrow\perp}

is a saclar multiple of a unitary operator on d^{L} with norm \delta while

(A-P_{t})|_{\nu}\ell=-Q_{t}+iC|_{J}\ell .
Define the operators D_{i} and F_{i} for i=1,2 by

D_{i}=(\delta^{2}-C_{t}^{2})^{\frac{1}{2}}-\epsilon_{0}+t ,
and

F_{i}=D_{i}^{2}+t^{2}+C_{i}^{2}

=\delta^{2}+t^{2}+(\epsilon_{0}-t)^{2}-2(\epsilon_{0}-t)(\delta^{2}-C_{i}^{2})^{\frac{1}{2}}

Then

Q_{t}^{2}+(C|_{\alpha}’)^{2}=\{\begin{array}{ll}F_{1} t(D_{1}U+UD_{2})t(U^{*}D_{1}+D_{2}U^{*}) F_{2}\end{array}\}

and
(-Q_{t}+iC|_{{}_{\nu}C})^{*}(-Q_{t}+iC|_{d})

=\{\begin{array}{ll}F_{1} t(D_{1}U+UD_{2}+iC_{1}U-iUD_{2}) t(U^{*}D_{1}+D_{2}U^{*}-iU^{*}C_{1}+iC_{2}U^{*}) F_{2}\end{array}\}
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Obviously both ||(Q_{t})^{2}+(C|_{A})^{2}|| and ||-Q_{t}+iC|_{A}||^{2} are continuous functions
with respect to t. Since

||-Q_{t}+iC|_{\ell}y||^{2}\geqq||(Q_{t})^{2}+(C|_{x})^{2}||

\geqq \max\{||F_{1}||^{2}, ||F_{2}||^{2}\}

hence
||-Q_{\epsilon_{0}}+iC|_{\alpha}||^{2}\geqq||(Q.0)^{2}+(C|_{A})^{2}||

\geqq \delta^{2}+\epsilon_{0}^{2} .
It can be shown that for each t

||(Q_{t})^{2}+(C|_{A})^{2}||^{\frac{1}{2}}<||-Q_{t}+iC|_{A}||

In fact any unit vector x in c\mathscr{M} can be represented as x=\cos\theta x_{1}\oplus\sin\theta x_{2}

where x_{i}\in d_{t} and ||x_{l},||=1 for i=1,2, and 0 \leqq\theta\leqq\frac{\pi}{2} . Then

( \{(Q_{t})^{2}+(C|_{A})^{2}\}x, x)=\cos^{2}\theta(E_{1}x_{1}, x_{1})+\sin^{2}\theta(E_{2}x, x_{2})

+2t sin \theta cos \theta Re \{(D_{1}Ux_{2}, x_{1})+(UD_{2}x_{2}, x_{1})\}

Since a_{i}=||C|_{A_{i}}|| and b_{i}= \inf\{||C|_{A_{i}}x|| : x\in.A_{i}, ||x||=1\} , it holds that for
each t such that 0<t\leqq\epsilon_{0} and for i=1,2

||D_{i}||=(\delta^{2}-b_{i}^{2})^{\frac{1}{2}}-\epsilon_{0}+t

and
||F_{i}||=\delta^{2}+t^{2}-2(\epsilon_{0}-t)(\delta^{2}-a_{i}^{2})^{\frac{1}{2}}

Put
X_{i}=||F_{i}|| for i=1,2

and
Y=2t(||D_{1}||+||D_{2}||) .

Then
(\{(Q_{t})^{2}+(C|_{x})^{2}\}x, x)

\leqq \sup\{X_{1}\cos^{2}\theta+X_{2}\sin^{2}\theta+Y sin \theta cos \theta:0\leqq\theta\leqq\frac{\pi}{2}\}

= \sup\{\frac{1}{2}(X_{1}+X_{2})+\frac{1}{2}(X_{1}-X_{2}) cos 2 \theta+\frac{1}{2}Y sin 2 \theta:0\leqq\theta\leqq\frac{\pi}{2}\}

= \frac{1}{2}(X_{1}+X_{2})^{2}+\frac{1}{2}\{(X_{1}-X_{2})^{2}+Y^{2}\}^{1}z

Hence
||(Q_{t})^{2}+(C|_{A})^{2}|| \leqq\frac{1}{2}(X_{1}+X_{2})^{2}+\frac{1}{2}\{(X_{1}-X_{2})^{2}+Y^{2}\}^{\frac{1}{2}}
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Put
Z=2t[\{(\delta^{2}-a_{1}^{2})^{\frac{1}{2}}+(\delta^{2}-a_{2}^{2})^{\frac{1}{2}}-2\epsilon_{0}+2t\}^{2}+(a_{1}-a_{2})^{2}]^{\frac{1}{2}}

Choose a sequence \{x_{n}\}_{n=1}^{\infty} of unit vectors in d as follows:
x_{n}=\cos\theta x_{1(n)}\oplus\sin\theta x_{2(n)}

where x_{i(n)}\in E(\mathscr{M}_{i}), ||x_{i(n)}||=1(n=1,2, \cdots) for i=1,2, \theta is a constant such

that 0 \leqq\theta\leqq\frac{\pi}{2} ,

\lim_{uarrow\infty}\{C_{2}x_{2(n)}-a_{2}x_{2(n)}\}=0 ,

and
x_{1(n)}=zUx_{2(n)}(n=1,2, \cdots) where z is a complex number such that

2t\{(\delta^{2}-a_{1}^{2})^{z}+1(\delta^{2}-a_{2}^{2})^{\frac{1}{2}}-2\epsilon_{0}+2t+i(a_{1}-a_{2})\}z=Z .

It is easy that

\lim_{narrow\infty}\{C_{1}x_{1(n)}-a_{1}x_{1(n)}\}=0 .

Then
\lim_{narrow\infty}||(-Q_{t}+iC|_{A})x_{n}||^{2}

= \lim_{narrow 8}[\cos^{2}\theta(F_{1}x_{1(n)}, x_{1(n)})+\sin^{2}\theta(F_{2}x_{2(n)}, x_{2(n)})

+2t sin \theta cos \theta Re \{((D_{1}U+UD_{2}+iC_{1}U-ib^{7}C_{2})x_{2(n)}, x_{1(n)})\}]

=X_{1}\cos^{2}\theta+X_{2}\sin^{2}\theta+Z sin \theta cos \theta .
Hence

||-Q_{t}+iC|_{A}||^{2}

\geqq\sup\{X_{1}\cos\theta 2+X_{2}\sin^{2}\theta+Z sin \theta cos \theta:0\leqq\theta\leqq\frac{\pi}{2}\}

= \frac{1}{2}(X_{1}+X_{2})+\frac{1}{2}\{(X_{1}-X_{2})^{2}+Z^{2}\}^{\frac{1}{2}}

Obviously for sufficiently small \epsilon_{1} , Z is larger than Y. Hence for each t
such that 0<t\leqq\epsilon_{0} ,

||(Q_{t})^{2}+(C|_{A})^{2}||^{\frac{1}{2}}<||-Q_{t}+iC|_{A}||

Since ||-Q_{t}+iC|_{A}||<\delta for sufficiently small t and ||(Q_{t})^{2}+(C|_{x})^{2}||^{\frac{1}{2}}>\delta for t

sufficiently near \epsilon_{0}, there exists a positive number t_{0} such that t_{0}<\epsilon_{0},

||(Q_{t_{0}})^{2}+(C|_{\chi})^{2}||^{\frac{1}{2}}=\delta and ||-Q_{t_{0}}+iC|_{t},||>\delta
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Then
|||A-P_{t_{0^{1}}}^{1}||=\delta and ||A-P_{t_{0}}||>\delta

Hence P_{t_{0}} is contained in \frac{-}{}P_{n}(A) but not in \mathscr{P}(A) . C_{1}U is not equal to
UC_{2} since \sigma(C|_{A_{1}})\neq\sigma(C|_{A_{2}}) hence P_{t_{0}} does not commute wit C|_{e}P_{0} .

Other cases can be similarly proved.
Case II. \sigma_{1} satisfies condition (1) or (2) and \sigma_{2} satisfies condition (2).

Since C|_{A_{2}} is scalar, by choosing an arbitrary unitary operator U in the
proof of Case I, the proof can be shown similarly as Case I.

Case III. \sigma_{1} and \sigma_{2} satisfy condition (1) and condition (3) respectively.
Choose an isometric operator V such that there exists a positive number
s_{0} less than \epsilon but sufficiently near \epsilon_{1} and

V(d_{2})\subset= Ran (\sigma_{1}(s_{0}))

instead of a unitary operator U in the proof of Case I, and define a p0-

sitive operator F_{1} in the proof of Case I by
F_{1}=\sigma^{2}+t^{2}VV^{*}+(\epsilon_{0}-t)^{2}-2(\epsilon_{0}-t)(\delta^{2}-C_{1}^{2})^{\frac{1}{2}}

Case IV. \sigma_{1} and \sigma_{2} satisfy condition (2) and condition (3) respectively.
An isometric operator V in the proof of Case III can be chosen arbitrarily.

Case V. Both \sigma_{1} and \sigma_{2} satisfy condition (3). Since dim d_{1}=\dim

d_{2}=1 , the proof is obvious. The proof is completed.
We show a sufficient and necessary condition for that \mathscr{P} (A) coincides

with \mathscr{P}_{n}(A) as corollary of Theorem 2. 1.
COROLLARY 2. 2. Let A be a normal operator. The following con-

ditions are equivalent :

(a) \mathscr{B}(A)\overline{\equiv}\{{\rm Im} A\}’’-

(b) (Im A)_{\mathscr{H}_{0}}=\lambda I_{\mathscr{H}_{0}} where I_{\mathscr{H}_{0}} is the identity operator on \mathscr{A}_{0}^{-}

and \lambda is a red number.
(c) \sigma(A)\subset\Gamma_{\delta}=\cup\{z : Im z=\lambda\} ,

(d) \mathscr{P}(A)=\mathscr{B}_{n}(A) .
PROOF. The implications (b)arrow=(c), (b)\Rightarrow(a) and (b)\Rightarrow(d) are obvious

since A-P is a normal operator for any P in \mathscr{P}_{n}(A) . By the proof of
Theorem 2. 1 the implication (d)\Rightarrow(b) holds, and moreover for sufficiently
small positive number t there exists a positive operator P_{t} in \mathscr{P}(A) such
that P_{t}|_{\mathscr{H}_{0}} does not commute with C|_{\mathscr{H}_{0}} . Hence the implication (a)\Rightarrow(b)

holds.
COROLLARY 2. 3. Let A be a normal operator. The following con-
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ditions are equivalmt :

(a) \mathscr{P}(A)\subseteqq\{A\}’ ,

(b) A|_{\mathscr{H}_{0}}=\lambda I_{\mathscr{H}_{0}} where \lambda is a complex number.
(d) \sigma(A)\subseteqq\Gamma_{\delta}\cup\{\lambda\}

PROOF. The implications (b) e(c) and (b) e(a) are obvious.
(a)\Rightarrow(b) : \mathscr{P}(A)\subseteq--\{C\}’ holds since \mathscr{P}(A)\overline{\equiv}\{A\}’ , hence C|_{\mathscr{H}_{0}} is scalar.

Moreover \mathscr{P}(A)\subset=\{B\}’ holds. Suppose B|_{\mathscr{H}_{0}} is non-scalar. Choose two
non-trivial orthogonal subspace e\mathscr{M}_{1} and cA_{2} included in \mathscr{A}_{0}’ such that tX_{t}

is the range of a spectral projection of B for i=1,2, and there exists a
positive number \epsilon_{2} such that for i=1,2

\{(B_{-})^{2}+C^{2}\}|_{\alpha_{i}}\leqq\delta^{2}-\epsilon_{2} .

Define a positive operator P_{t} on c\mathscr{K} for sufficiently small positive number
t such that the subspace \mathscr{M}=d_{1}\oplus \mathscr{M}_{2} is a P_{t}Prreducing subspace, P_{t}|_{A}=

P_{0}|_{A} and P_{t}|_{A} is represented as matrix of operators on c\mathscr{M}=-\cdot X_{1}\oplus d_{2} :

P_{t}|_{d}=\{\begin{array}{ll}t tUtU^{*} t\end{array}\} +B_{+}|_{\alpha}\vee

where U is a partially isometric operator mapping d_{2} into d_{1} . For suf-
ficiently small t,

||(A-P_{t})|_{A}||=|||(A-P_{t})|_{A}|||\leqq\delta

since C|_{\mathscr{H}_{0}} is scalar. Hence P_{t} is contained in \mathscr{P}(A) and does not com-
mute with B. This contradicts to condition (a). The proof is completed.

3. The extremal points of \mathscr{P}(A) . In this section we consider a
condition for that exp (\mathscr{P}(A)) is a finite set where ext(\mathscr{P}(A)) denotes the
set of all extremal points of \mathscr{P}(A) .

THEOREM 3. 1. Let A be a normal operator. The following condi-
tions are equivalmt :

(a) \mathscr{P}(A)\subseteqq\{A\}’’.
(b) ext (\mathscr{P}(A)) consists of at most countable operators,
(c) ext (\mathscr{P}(A)) consists of at most two operators,
(d) dim \mathscr{A}_{0}’\leqq 1 ,
(e) P is a linear combination of (Re A)_{+} and P_{0} for any operator P

in \mathscr{P}(A).
PROOF. The implications (c)\Rightarrow(d)\Rightarrow(e) hold by the result in [1]. More-
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over, the implications (e)\Rightarrow(a) and (c)\Leftrightarrow(b) hold obviously.
(a)\Rightarrow(d) : Since \mathscr{P}(A)\subseteqq\{A\}’,\cdot \mathscr{P}(A)\subseteqq\{A\}’ holds. By Corollary 2. 3

A|_{\mathscr{H}_{0}} is scalar. If dim \mathscr{A}_{0}\geqq 2 holds, then by the proof of Corollary 2. 3
there exist a subspace d included in \mathscr{B}_{0}’ such that dim d\geqq 2 and a
positive operator P in \mathscr{P}(A) such that \mathscr{M} is a P-reducing subspace and
P|_{A} is non-scalar. This is a contradiction.

(b)\Rightarrow(d) : Suppose ext (\mathscr{P}(A)) is at most countable and dim \mathscr{F}\geqq 2 .
For any closed subspace {?} included in {?}_{0} such that eX is the range of
a spectral projection of A, there exists a positive operator P_{1} in \mathscr{P}(A) such
that P_{1} differs from P_{0}, P_{1}|_{A}\perp=P_{0}|_{A}\perp and Ran (P_{0}-P_{1})^{-}\underline{\subseteq}_{L}\mathscr{M} . If P_{1} is not
contained in ext (,P (A)), there exist two operators P_{2} and P_{3} in ext (\mathscr{P}(A))

and a positive number \lambda such that 0<\lambda<1 ,

P_{1}=\lambda P_{2}+(1-\lambda)P_{3} and P_{2}\neq P_{0} .
Since P_{0}-P_{1}=\lambda(P_{0}-P_{1})+(1-\lambda)(P_{0}-P_{3}) and all operators P_{0}-P_{1} , P_{0}-P_{2} and
P_{0}-P_{3} are positive, by Douglas’ theorem [3]

Ran (P_{0}-P_{1})^{\frac{1}{2}}

– Ran (P_{0}-P_{2})^{\frac{1}{2}}

holds. Hence
\mathscr{M}\underline{\supseteq} Ran (P_{0}-P_{1})^{-}\underline{\supseteq.}

- Ran (P_{0}-P_{2})^{-}

By choosing P_{2} instead of P_{1} , it can be assumed that P_{1}\in ext(\mathscr{P}(A)) . If
any operator P in ext (\mathscr{P}(A)) is commuting with all spectral projections of
A, then \mathscr{P}(A)\subseteqq\{A\rangle’ . This contradicts to dim .\mathscr{N}_{0}\geqq 2 by the proof of the
implication (a)\Rightarrow(d) . Hence there exist two non-trivial orthogonal subspace
eX_{1} and d_{2} included in c\mathscr{B}_{0}’ such that d_{i} is the range of a spectral projec-
tion G_{i} of A for i=1,2, and a positive operator P in ext (\mathscr{P}(A)) such that
P does not commute with both G_{1} and G_{2} , and

Ran (P_{0}-P)^{-}\subseteqq_{\zeta}X_{1}\oplus d_{2\langle}

For any unitary operator U commuting with A, U^{*}PU\in ext (\mathscr{P} (A)) holds.
Choose a unitary operator U_{\theta} commiting with A such that U_{\theta}|_{A} is defined
as matrix of operators on d=_{f}\mathscr{M}_{1}\oplus\prime X_{2} :

U_{\theta}|_{A}=\{\begin{array}{ll}1 00 e^{i\theta}\end{array}\}

and
U_{\theta}|_{A}\perp=I_{A}\perp

Put
P|_{A}=\{\begin{array}{ll}P_{11} P_{12}P_{12}^{*} P_{22}\end{array}\}
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as matrix of operators on {?}=.\mathscr{M}_{1}\oplus_{t}\mathscr{M}_{2}\tau

Then

(U_{\theta}^{*}PU_{\theta})|_{A}=\{\begin{array}{ll}P_{11} e^{i\theta}P_{12}e^{-i\theta}P_{12}^{*} P_{22}\end{array}\} and (U_{\theta}^{*}PU_{\theta})|_{A}\perp=P_{0}|_{u^{1}}

Obviously \{U_{\theta}^{*}PU_{\theta} : 0\leqq\theta<2\pi\} is uncountable, this contradicts to condition
(b). Hence dim {?}_{0}\leqq 1 . The proof is completed.
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