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1. Introduction. | We consider the problem of approximation for a
given bounded linear operator on a fixed Hilbert space by positive opera-
tors where positivety means non-negative semi-definite. Study of this
problem was initiated by P. R. Halmos [4], who proved that the distance
of an operator to the set of all positive operators is completely determined.
The results proved by him can be formulated as follows.

Let A be a bounded linear operator on a Hilbert space % . Put A=
B+iC where B and C denote the real part Re A and the imaginary part
Im A of A respectively.

(1) Put
5 =inf {||A—P|}: P20}.
Then .
| o= inf {r=0: = C" B+(r*~CY 20}.
(2) Define another norm || || by
Al =|(Re AF+(m AF[.
Then .
S lalsiai=|al
and
§=inf {|A—P||: P=0}.
(3) Put-
2(4)={Pz0: | A—P|| =0}
and
#,(4)={P20:[|A~P|=3}.

Then both #(A) and 2,(A) are convex sets and #(A)S2,(A). The op-
erators in 2(A) and #,(A) are called positive approximants and positive
near-approximants respectively.
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(4) The operator P, defined by
P,=B+(@—-C?

is maximum in both 2(A) and 2,(A), that is, Pe#(A) and PP, for
any operator P in 2,(A).

In the present paper we consider the problem raised by R. Bouldin
[2], that is, a necessary and sufficient condition for that .£(A4) coincides
with #,(A) in the case A is a normal operator. Since both #(A4) and
2,(A) are weakly compact convex sets, these sets are the convex closures
of respective extremal points. By this result we show that the set of all
extremal points of #(A) is either finite or uncountable in the case A is a
normal operator.

In this paper operators are bounded linear operators on a complex
Hilbert space .#". Put B=Re A and C=Im A for a given operator A.
B, and B_ denote the positive and the negative parts of a Hermitian oper-
ator B respectively. Ran(A) denotes the range of an operator A. A|.
denotes the restriction of A on an A-reducing subspace .£. {A}’ and {A}"”
denote the commutant and the double commutant of A respectively. The
dimension of a subspace - £ is denoted by dim 4. -#! denotes the or-
thogonal complement of 4. N- denotes the closure of a set 4.

2. Positive approximants and positive near approximants. Put
& y=Ran(P) NRan(*—C?%",
then Ran(F,—P)~ is included in %, for any operaotr P in .#,(A) since
(B—PP+(C?<¢* and 0<P<P, In the case A is a normal operator, &,
is an A-reducing subspace, hence %, is a reducing subspace for each op-
erator P in 2, (A).

THEOREM 2.1. Let A be a normal operator. If the operator (Im A)|s,
is non-scalar, then there exists a positive operator P such that

(a) P¢g#(A) and Pe»,(A),

(b) Plg, does not commute with (Im A)|g,.

Proor. Obviously Clg, is scalar if dim %, is zero or one. Hence it
can be assumed that dim .&,=2. Let E(s) denote the spectral measure
of A. o¢(A) and ¢,(A) denote the spectrum and the point spectrum of A
respectively. Put

F,,={z: |z|=6, Re zéO}U{z : [Im z|=5}

and
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o (A)=0(A)-T,.

Obviously <& y=Ran(E(¢'(4)7)) holds. Suppose C|z, is non-scalar. Im ¢
denotes {Im z:z€g} for a set ¢ included in ¢(A). The set Im ¢’'(A) con-
tains more than two points. There exist non-empty and sufficiently small
closed sets g, and g, included in ¢'(A) such that

(1) both e, and o, are connected sets,

(ii) both ¢, and o, have positive distances from the set I,

(iii) Im o;NIm g;=¢.
By condition (i), Im o¢; is either a one point set or a closed interval for
1=1, 2. '

(1) Im o; is a closed interval,

(2) o, is a segment paralell to the real axis,

(8) @; is a one point set {A;} (then A€a,(4)).
Put A;=Ran(E(s;)) for i=1,2. In the case condition (1) it can be as-
sumed that ¢,(C|.,)=¢ and moreover dim .A; is countably infinite. In
fact if dim A, is uncountable, then choose a subspace .A'; instead of A,
where A’; is the minimal C-reducing subspace generated by a non-zero
vector in ;. dim A, is countably infinite and the set Im ¢(C|.,,) con-
tains more than two points and connected since ¢,(C|.,,)=¢. Similarly in
the case condition (2) it can be assumed that o,(B|.,)=¢ and dim £; is
countably infinite. In the case condition (3) it can be assumed that dim
M;=1. The proof is reduced to the following cases.

Case. 1. Both ¢, and o, satisfy condition (1). Put Im ¢;=[a;, B;] for
i=1,2. Without loss of generality, it can be moreover assumed that

(1-1) 0<a;<B; or a;<B;<0 for i=1,2,

(1-2) Bi—a;=&>0 for i=1,2,

(1-3) all numbers |a|, ||, |8i| and |B,| are distinct.
Put a;=p8; and b;=a; if 0<a;<B;, and put a;=|a;| and b,=|8;| if &;<B;<0
for 1=1,2, then a,=||C|.,| and b;=inf {||C|.,z| : xz€A,, |[x|| =1} for i=
1,2. Put M= M, D M, where the symbol @ means orthogonal direct sum.
The operators B|., C|. and P,|, can be represented as matrices of opera-
tors on M= M DM,

0 G 0
B¢d= ' ’ .Al=
| [0 Bz] ¢ [0 Cz]

2| _[Bl+(52—C§) 0 ]
e 0 B+(@—Cit|’

and

N
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By condition (ii) there exists a positive number &, such that for i=1, 2,

Bi+(0*—C% =¢, and (5*—ChE=e,.
Put

a;(s)= {z :2€0;, a;—s<|Im zlgai}

for each positive number s such that 0<s<¢. Choose a unitary operator
U mapping A, onto A, such that

U (Ran(E(e,()))) = Ran (E(c, s))

for each s. Define a positive operator Q, on £ for each real number z
such that 0<z<¢, by

(2 —C)t —ey+ ¢ tU
e |

tU* (02— C2)t —e, +

Moreover define a positive operator P, on % for each ¢ such that £ is
a P,-reducing subspace for each ¢,

P|,=Q+B|, and P| . =PF)|,..

Then
(A=P)| L ={-@—C+iC)| .
is a saclar multiple of a unitary operator on 4  with norm & while
(A=P)|, = —Q.+iC|,.
Define the operators D, and F; for i=1,2 by
D, =(3*—Cii—eo+1,

and
= 0+ £+ (e — 1 —2 (eg—12) (P — CE .
Then
F (DU + UDZ)]
2 2 _ 1
2+(cl.) [t(U*Dl +DUY  F
and

(=Q+iC|, ) (—Q.+iC|,)
Bl [t(U*D1 + D,U*—iU*C, +iC,U¥) F, '
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Obviously both [[(Q,?+(C|.F| and ||—Q.+iC|.|* are continuous functions
with respect to z Since

I— Q. +iCLPZ (Qf +(CLYI
= max{|R| |FI

hence
| —Q., +iClL /P = Q. ) +(Clf
= ot + el .

It can be shown that for each ¢
HQeP+(ClfIF< || — Qi +iClall -

In fact any unit vector x in £ can be represented as x=cos § x; @D sin d z;
where x;€#,; and ||z;|]|=1 for i=1,2, and 0§0§%. Then
({(QF +(CleP} z, x) = cos?6 (Evzi, 1) +sin’0 (E,z, 22)
+ 2t sin @ cos 6 Re {(Dl Uxzx,, x,)+(UD, z,, xl)} .

Since a;=||Cl|.,| and &;=inf {||Cl., x| : xz€ A;, |z =1}, it holds that for
each ¢ such that 0<¢<Z¢, and for i=1,2

D)l = (=2 —ep+12

and
IFi| =&+ £2—2(e—2) (*—ad} .
Put ,
X;=||F|| for ¢=1,2
and
. Y = 2¢(|[Di]| + | D)) -
Then
({(Qr+(CleF} . z)
< sup [Xl cos’f+ X, sin®f + Ysin0c0s0:0§0§—g—}
= sup{—l——(X +X)+—1—(X -—-X)cos2l9+L Ysin20'0<0<—ﬂ—}
2 1 2 2 1 2 2 . =V = 2
- lxaexpel {(XI—X2)2+ YZ}’ .
Hence

1
2

0+ CLA S 5 U X+ (K X7+ v
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Put

Z=2t[{@—a) + (- —20+2t) +(@—a)] .
Choose a sequence {x,};-; of unit vectors in £ as follows:
x, = c0s 0 Zy,,y D sin 0 x5,
where x;, € E(M,), |x;m|=1 (n=1, 2, --+) for =1, 2, § is a constant such

that ogag%,

}‘152 {Cz Lon)— Az xZ(n)} =0,

and
Zyy=2Uxy,y (n=1,2,---) where z is a complex number such that

2t —aft +(—aff —26+ 2 +i(m—a) 2 =Z.
It is easy that

lim {C1 xl(n)_dl .rl(,,)} = O .

n—o0

Then
lim ||(—Q,+iCl.) z.|°

= hng [C0520 (Fl Z1i(n)s xl('n)) + Sin20 (FZ Za(n)s xZ(n))

+ 2t sin § cos 0 Re {((D,U+ UD,+iCU—iUGC,) Ty, i)} ]

= X, cos?’0+ X, sin?6+Z sinfcos b . ‘
Hence

“ —Qt + iCI,,,HZ
= sup {X1 cos’f+ X, sin?0+Z sin @ cos @ : 0§0.§~§—}

1
2
.

1 1
= 2 (Xi+X)+ 5 {(Xl —XoP+ ZZ}
Obviously for sufficiently small ¢, Z is larger than Y. Hence for each ¢

such that 0<¢Ze,,

Q. +(CLFIF< | — Qe +Cl.l -

Since ||—Q,+:C|.||<dé for sufficiently small ¢ and |[(Q,)2+(C|,,)2||%>6 for ¢
sufficiently near ¢, there exists a positive number 2, such that £<e,

Q.+ (CLPIE =6 and |—Q,,+iCl.l>3.
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Then
IA—P,li=0d and ||[A—F,[[>4.

Hence P, is contained in .2,(A) but not in #(A). CGU is not equal to
UG, since ¢(C|.)*0a(Cl., hence P, does not commute wit Clg,.

Other cases can be similarly proved.

Case II. ¢, satisfies condition (1) or (2) and o, satisfies condition (2).
Since Cl|., is scalar, by choosing an arbitrary unitary operator U in the
proof of Case I, the proof can be shown similarly as Case I

Case III. ¢, and o, satisfy condition (1) and condition (3) respectively.
Choose an isometric operator V such that there exists a positive number
s, less than ¢ but sufficiently near ¢ and

V() S Ran (g, (o))

instead of a unitary operator U in the proof of Case I, and define a po-
sitive operator F; in the proof of Case I by

Fo= o+ 2VV* 4 (ey—£f—2(e,— 1) (3*— C}E .
Case IV. ¢, and o, satisfy condition (2) and condition (3) respectively.

An isometric operator V in the proof of Case III can be chosen arbitrarily.

Case V. Both ¢, and g, satisfy condition (3). Since dim £,=dim
M,=1, the proof is obvious. The proof is completed.

We show a sufficient and necessary condition for that .Z(A) coincides

with #,(A) as corollary of [Theorem 2. 1.

COROLLARY 2.2. Let A be a normal operator. The following con-
ditions are equivalent :

(a) 2(A)={Im 4},

(b) (Im A)g,=aL,, where Iz, is the identity operator on %,
and 2 is a real number.

(¢) o(A);F,,U{z:Im z—-——-l},

(d) 2(A)=2,(A)

Proor. The implications (b)&= (c), (b)=>(a) and (b)=>(d) are obvious
since A—P is a normal operator for any P in 2,(A). By the proof of
Theorem 2.1 the implication (d)=>(b) holds, and moreover for sufficiently
small positive number ¢ there exists a positive operator P, in Z(A) such

that P,|,, does not commute with Cl|,. Hence the implication (a)=(b)
holds.

COROLLARY 2.3. Let A be a normal operator. The following con-
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ditions are equivalent :
(a) #(A)s{4f,
(b) Alg, =4l,, where 2 is a complex number.
(d) o(A)cI,u{a).
ProoF. The implications (b)<=>(c) and (b)&>(a) are obvious. .
(a)=>(b): #(A)S{C) holds since .#(A)<S {A}, hence C|,, is scalar.
Moreover #(A)S {B} holds. Suppose Bl|z, is non-scalar. Choose two
non-trivial orthogonal subspace #;, and A, included in &, such that A,

is the range of a spectral projection of B for ¢=1,2, and there exists a
positive number ¢, such that for =1, 2

{B_y+C?

diéBZ_SZ .

Define a positive operator P, on % for sufficiently small positive number
t such that the subspace M=, @ M, is a P,-reducing subspace, P;|.=
P\ . and P,|. is represented as matrix of operators on M=M4 D A,:

t tU
Pl,.= + B, |.
L= e 5 |+

where U is a partially isometric operator mapping £, into #;,. For suf-
ficiently small ¢,

[(A—=P)|ull = (A —P) |l =0

since Cl|g, is scalar. Hence P, is contained in #(A) and does not com-
mute with B. This contradicts to condition (a). The proof is completed.

3. The extremal points of #(A). In this section we consider a
condition for that exp(#(A)) is a finite set where ext(#(A)) denotes the
set of all extremal points of Z(A).

THEOREM 3.1. Let A be a normal operator. The following condi-

tions are equivalent :
”n

a) 2A)c{4})’,
b) ext(.#(A)) consists of at most countable operators,

c) ext(#(A)) consists of at most two operators,

e) P is a linear combination of (Re A), and P, for any operator P

(
(
(
(
(
in 2 (A).
ProoF. The implications (c)=>(d)=>(e) hold by the result in [1]. More-
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over, the implications (¢)=(a) and (c)&=>(b) hold obviously.

(a)=>(d): Since £(A)={A4}’, #£(A)S{A} holds. By [Corollary 2.3
Alg, is scalar. If dim & (=2 holds, then by the proof of [Corollary 2.3
there exist a subspace £ included in %, such that dim £=2 and a
positive operator P in #(A) such that £ is a P-reducing subspace and
P|, is non-scalar. This is a contradiction.

(b)=>(d): Suppose ext(#Z(A)) is at most countable and dim & =2.
For any closed subspace £ included in %, such that £ is the range of
a spectral projection of A, there exists a positive operator P, in .Z(A) such
that P, differs from P, P|.,.=PF).. and Ran(P,—P) S 4. If P, is not
contained in ext(.#(A)), there exist two operators P, and P; in ext(#(A))
and a positive number 4 such that 0<21<1,

P, =2P,+(1—2)P; and P,#F,.

Since P,—P,=1(P,—P)+(1—2)(P,—P,) and all operators P,—P,, P,—P, and
P,—P, are positive, by Douglas’ theorem

Ran ( O—Pl)% = Ran(Po—Pz)%
holds. Hence

M 2Ran (P,—P,)" 2 Ran(FP,—PF,)".

By choosing P, instead of P, it can be assumed that Peext(#(A4)). If
any operator P in ext(.#(A)) is commuting with all spectral projections of
A, then #(A)S{A}. This contradicts to dim & ,=2 by the proof of the
implication (a)=>(d). Hence there exist two non-trivial orthogonal subspace
M, and A, included in &, such that £, is the range of a spectral projec-
tion G; of A for i=1, 2, and a positive operator P in ext(.#(A)) such that
P does not commute with both G, and G,, and

Ran(P,—P)" S M, D M, .

For any unitary operator U commuting with A, U*PUecext(#(A)) holds.
Choose a unitary operator U, commiting with A such that Uj|,. is defined
as matrix of operators on M= M, D A, :

1 0
U”I"":l:o ei@]

UaL«l = -I-A‘L .

and

Put

Pl [Pu Pm]
Py Py
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as matrix of operators on M =M, D M,.
Then

P, P,
e"P 1 Py,
Obviously {Uy PU,: 0<60< 2z} is uncountable, this contradicts to condition
(b). Hence dim % ,<1. The proof is completed.

(Us PU,)|.. = [ ] and (U} PU,)|.L = P,..L.
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