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\S 1. Introduction

Let $N$ be a $n$ dimensional differentiable manifold. We consider a

differentiable bundle $E(N)$ over $N$ with projection $\pi$ and the bundle $E^{r}(N)$

of $r$-jets of local sections of $E(N)$ . Let $\Omega$ be an open set of $E^{r}(N)$ . Then
we let $\Gamma_{\Omega}E$ be the space of $C^{r}$ sections, $s:Narrow E(N)$ such that $j^{r}s(N)$ is
contained in $\Omega$ equipped with $C^{r}$ topology. We let $\Gamma_{\Omega}E^{r}$ be the space of
continuous sections : $Narrow E^{r}(N)$ whose image is contained in $\Omega$ , equipped with
compact-0pen topology (An element of $\Gamma_{\Omega}E$ or $\Gamma_{\Omega}E^{r}$ will be called $\Omega$-regular).

Then there is anatural map $j^{r}$ : $\Gamma_{\Omega}Earrow\Gamma_{\Omega}E^{r}$ . We discuss how the map $j^{r}$ is
close to aweak homotopy equivalence. This is related with the integrability
of sections of $E^{r}(N)$ up to homotopy.

THEOREM. Let $\Omega$ and $\Omega’$ be open sets in $E^{r}(N)$ with $\Omega\supseteqq\Omega’$ . Let
$\Omega-\Omega’$ is a finite union of regular submanifolds of $\Omega$ with codimensions
greater than $n+\sigma$ .
(i) If $j^{r}$ : $\Gamma_{\Omega},Earrow\Gamma_{\Omega},E^{r}$ is a $\tau$-homotopy equivalence, then $j^{r}$ : $\Gamma_{\rho}Earrow\Gamma_{\rho}E^{r}$ is
$a \min(\tau, \sigma)$ -homotopy equivalence.
(ii) If $j^{r}$ : $\Gamma_{\Omega}Earrow\Gamma_{\Omega}E^{r}$ induces the isomorphisms of $i$ dimensional homotopy
groups $(0\leqq i\leqq\tau)$ , then $j^{r}$ : $\Gamma_{\Omega’}E\mapsto\Gamma_{\rho\prime}E^{r}$ induces the isomorphisms of $i$ dimen-
siortal homotopy groups $(0 \leqq\tau\leqq\min(\tau, \sigma)-1))$ .

A $j$-homotopy equivalence means the isomorphisms of $i$ dimensional
homotopy groups $(0\leqq i<j)$ and asurjection of $j$ dimensional homotopy groups.

This theorem is ageneralization of Transversality lemma due to A.
du Plessis in [5] which is the case of differentiable maps of the above the0-
rem. The apphcations of the theorem are given in \S 4 to the cace of
Thom-Boardman singularities ([2, 7, 9]). The proof is based on the transver-
sality arguments.

All manifolds should be paracompact and Hausdorff.

\S 2. Avariant of Thorn’s transversality theorem

In this section we will show avariant of Thorn’s transversality theorem.
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This is ageneralization to the case of differentiable bundles $E(N)$ of Morlet’s
transversality theorem ([8]) which says that the case of product bundles of
the following theorem is valid. Let $\Gamma E$ be the space of $C^{\infty}$ sections of $E(N)$

over $N$ with $C^{\infty}$ topology.
THEOREM 2. 1. Let $\Sigma$ be a regular differentiable submanifold of $E^{r}(N)$ .

Let $\Sigma(N)$ be the space of $C^{\infty}$ sections, $s:Narrow E(N)$ whose $r$-jet, $j^{r}s:Narrow E^{r}(N)$

is transverse on J. Then $\Sigma(N)$ is represented as the intersections of countable
open dense sets of $FE$.

PROOF. At first we choose acountable covering of $\Sigma$ by open subsets
$\Sigma_{1}$ , $\Sigma_{2}$ , $\cdots$ such that each $\Sigma_{i}$ satisfies
(i) the closure $\overline{\Sigma}_{i}$ of $\Sigma_{i}$ in $E^{r}(N)$ is contained in $\Sigma$ ,
(ii) $\overline{\Sigma}_{i}$ is compact,
(iii) there exists an open neighbourhood $U_{i}$ in $N$ where $E(N)|_{U_{l}}$ is trivial and
atrivialixation, $t:E(N)|_{U_{i}}arrow U_{i}\cross P$ as follows. This induces adiffeomorphism
$t^{r}$ : $E^{r}(N)|_{U_{b}}.\mapsto J^{r}(U_{i}, P)$ which is composed with aprojection $\pi_{P}$ : $J^{r}(U_{i}, P)arrow P$.
Then there exists an open chart $V_{i}$ of $P$ such that $\pi_{P}\circ t^{r}(-\Sigma_{i})-$ is contained
in $V_{i}$ ,
(iv) the closure $\overline{U}_{i}$ of $U_{i}$ is compact.

Let $\Sigma_{i}(N)$ be the space of $C^{\infty}$ sections of $\Gamma E$, whose $r$-jets are transverse
on $\Sigma_{i}$ . Then it is clear that $\Sigma(N)$ is the intersection of all $\Sigma_{i}(N)$ . Now
we show that $\Sigma_{i}(N)$ is represented as the intersection of countable open
dense sets. We let $r_{i}$ : $\Gamma Earrow\Gamma(E|_{U_{i}})$ be the restriction map of $C^{\infty}$ sections
of $E(N)$ . Let $\Sigma(U_{i})$ be the space of $C^{\infty}$ sections of $E(N)|_{U_{i}}$ whose r-jects
are transverse on $\Sigma_{i}$ .

Then $r_{i}^{-1}(\Sigma(U_{i}))=\Sigma_{i}(N)$ . By the Morlet’s transversality theorem $\Sigma(U_{i})$

is represented as the intersection of countable open dense sets. Hence it is
enough to show that $\Sigma_{i}(N)$ is dense in $FE$.

Let $s$ be an element of $FE$. We show that there exists asequence
$\{s_{1}\}$ in $\Sigma_{i}(N)$ which converges to $s$ . We choose achart, $\eta:V_{i}arrow R^{p}$ and
differentiable functions $\rho;Narrow[0,1]$ and $\rho’$ : $Parrow[0,1]$ such that

$\rho=/1$ on aneibourhood of $\pi(\Sigma_{i}-)$ in $U_{i}$ ,
$|$

$0$ off $U_{i}$

$\rho’=\{$
1on aneibourhood of $\pi_{P}\circ t^{r}(\Sigma_{i}-)$ in $V_{i}$,
0off $V_{i}$ .

This choice of $\rho$ and $\rho’$ is possible since $\overline{\Sigma}_{i}$ is compact. By Morlet’s
transversality theorem $\Sigma(U_{i})$ is dense in $\Gamma(E|_{U_{i}})$ . Hence there exists ase-
quence $\{g_{l}\}$ of $\Sigma(U_{i})$ which converges to $s|_{U_{i}}$ in the fine $C^{\infty}$ Whitney topology.
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Now we define the sequence $\{s_{l}\}$ as follows

$s_{l}(x)=$ $s(x)$ if $x\in$ $U_{i}$ or $s(x)\not\in V_{i;}$

$\eta_{i}^{-1}[\eta_{i}(s(x))+\rho(x)\rho’(g_{1}x))\rho’(s(x))[\eta_{i}(g_{1}(x))-\eta_{i}(s(x))]$ .
if otherwise .

This definition is possible if $l$ is sufficiently large. It is clear that the se-
quence $\{s_{l}\}$ converges to $s$ . The rest of the proof is to show that $s_{l}$ ’s are
contained on $\Sigma_{i}(N)$ for sufficiently large I. In fact there exists alarge num-
ber $a$ such that if $j^{r}s_{l}(x_{0})\in\overline{\Sigma}_{i}$ and $l>a$ , then $\rho(x_{0})=1$ , $\rho’(s(x_{0}))=1$ and
$\rho’(g_{l}(x_{0}))=1$ . For, let $\epsilon$ be apositive number smaller than ahalf of the
distance of the subset of $V_{i}$ where $\rho’$ is smaller than 1 and the subset
$\pi_{P}\circ t^{r}(\Sigma_{i}-)$ . Then $a$ is defined to be an integer such that $|\eta_{i}(g_{l}(x))-\eta_{i}(s(x))|$

is smaller than $\epsilon$ for $l>a$ . Since $j^{r}s_{l}(x_{0})\in\overline{\Sigma}_{i}$ means that $s_{l}(x_{0})(=\pi_{P}\circ j^{r}s_{l}(x_{0}))$

is in $\pi_{P}\circ t^{r}(\Sigma_{t}-)$ , by the definition of $s_{l}(x)|s_{l}(x_{0})-s(x_{0})|$ and $|g_{l}(x_{0})-s_{l}(x_{0})|$ are
smaller than $e$ . Hence $\rho’(s(x_{0}))=\rho’(g_{l}(x_{0}))=1$ for $l>a$ . Since $j^{r}s_{l}(x_{0})\in\Sigma^{-_{i}}$.
means $x_{0}\in\pi_{N}(\Sigma_{i}-)$ , we get $\rho(x_{0})=1$ . Therefore if $j^{r}s_{l}(x_{0})\in\overline{\Sigma}_{i}$ and $l>a$ , then
$s_{l}(x)=g_{l}(x)$ near $x_{0}$ . Hence $s_{l}(x)$ is transverse on $\Sigma_{i}$ for $l>a$ . Q. E. D.

REMARK 2. 2. $\Gamma E$ is aBaire space: We consider the space $C^{\infty}(N, E(N))$

of differentiate maps of $N$ into $E(N)$ . It is well known that $C^{\infty}(N, E(N))$

is acomplete metric space. Then it is clear that $\Gamma E$ is aclosed set of
$C^{\infty}(N, E(N))$ , hence, acomplete metric space which is aBaire space.

By the above remark we have the following

COROLLARY 2. 3. $\Sigma(N)$ is dense in $FE$,

COROLLARY 2. 4. Let $\Omega$ be an open set of $E^{r}(N)$ and $\Sigma$, the regular

submanifold of $\Omega$ with $co\dim\Sigma>\dim$ N. Let $W$ be a closed subset of $N$.
Let $s$ be a $C^{\infty}$ section of $E(N)$ such that $j^{r}s(N)\subset\Omega$ and $j^{r}s(W)\cap\Sigma=\phi$. Then
there exists a homotopy of sections, $S:Iarrow\Gamma E$ such that $S(0)=s$, $S(t)|_{W}=$

$s|_{1Y}$ for any $t$ and $j^{r}S(1)\cap\Sigma=\phi$ .
PROOF. Let $U$ be an open small neibourhood of $W$ in $N$ such that

$j^{r}s(x)\not\in\Sigma$ for $x\in U$. Then we only needs the deformation of $s$ off $U$ such
that we let $s$ be transverse on J. This is possible by the similar arguments
as the proof of Theorem 2. 1. Q. E. D.

\S 3. Elimination of the singularity $\Sigma$

Let $\Omega$ and $\Omega’$ be open sets in $E^{r}(N)$ with $\Omega_{--}^{-}-\Omega’-\cdot$ Let $\Sigma=\Omega-\Omega’$ and
$\Sigma$ be afinite union of regular submanifolds of $\Omega$ with codimensions greater
than $n+\sigma$. Then we have the following
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PROPOSITION 3. 1. Let $\Omega$ , $\Omega’$ and $\Sigma$ be as above. Then
(i) the natural inclusion : $\Gamma_{\Omega’}Earrow\Gamma_{\rho}E$ is a $\sigma$-homotopy equivalence,
(ii) the natural inclusion : $\Gamma_{\Omega’}E^{r}arrow\Gamma_{\Omega}E^{r}$ is a $\sigma$-homotopy equivalence.

We need some notations for the proof. Let $X$ be adifferentiate mani-
fold. Let $p$ and $f$ be base points of $X$ and $Y$. Then $\swarrow^{_{0}},(X, Y)$ denotes
the space of continuous maps preserving base point with compact-0pen t0-
pology. Acontinuous map $\alpha:Xarrow\Gamma_{\Omega}E$ is called $C^{r}$ differentiable if its as-
sociated section, $\alpha’$ : $X\cross Narrow X\cross E(N)$ defined by $\alpha(x, n)=(x, \alpha(x)(n))$ is dif-
ferentiable of class $C^{r}$ . Let $\mathscr{F}_{0}^{r}(X, \Gamma_{\Omega}E)$ denote the space of $C^{r}$ differentiable
maps of $\mathscr{F}_{0}(X, \Gamma_{\Omega}E)$ . Then we have the following lemma. This follows
from the differentiate approximation theorem of continuous maps.

LEMMA 3. 2. The canonical inclusion $\epsilon _{0}^{r}\sigma,(X, \Gamma_{\rho}E)\mapsto*\mathscr{F}_{0}(X, \Gamma_{\rho}E)$ induces
a bijection of the sets of their connected components.

Next we define amap $\pi:(E_{X})^{r}(X\cross N)arrow X\cross E^{r}(N)$ where $E_{X}=X\cross E$.
Let $\alpha$ be a $r$-jet, $j^{r}s$ of alocal section $s:X\cross Narrow X\cross E$ defined near $(x, y)$ .
Then we put $\pi(\alpha)=(x,(j^{r}s(x))(y))$ . Let $\Omega_{X}$ be the pull back $\pi^{-1}(\Omega)$ of an
open set $\Omega$ of $E^{r}(N)$ . Then we can consider $\Gamma_{o_{X}}(E_{X})$ and the natural map
$\Gamma_{1?_{X}}(E_{X})arrow \mathscr{F}r(X, \Gamma_{\Omega}E)$ which is acontinuous bijection.

PROOF 0F PROPOSITION 3. 1. We shall begin with proving that the map
$\pi_{0}(\Gamma_{\Omega’}E)arrow\pi_{0}(\Gamma_{\Omega}E)$ is surjective when 040. Let $s$ be an element of $\Gamma_{\rho}E$.
Then it follows from Corollary 2. 4that there is apath, $S:Iarrow\Gamma_{\rho}E$ such
that $S(0)=s$ and $S(1)$ is transverse on $\Sigma$ . Since $co\dim\Sigma>n+\sigma$, this means
$j^{r}S(1)(N)\cap\Sigma.=\phi$ . Hence $S(1)$ is an element of $\Gamma_{\Omega’}E$.

By the above fact we may fix abase point in $\Gamma_{9’}E$ when we consider
aconnected component of $\Gamma_{\Omega}E$. Let $s$ be abase point in $\Gamma_{\rho’}E$. Consider
the following commutative diagram

$\pi_{i}(\Gamma_{\Omega’}E, s)--\pi_{\iota}(\Gamma_{\rho}E, s)$

$\downarrow$
$\downarrow$

$\pi_{0}(\mathscr{F}_{0}(S^{i}, \Gamma_{\Omega’}E))-\pi_{0}(\mathscr{F}_{0}(S^{i}, \Gamma_{\rho}E))$

1 1
$\pi_{0}(\swarrow^{_{0}^{r}},(S^{i},\Gamma_{\Omega’}E))-\pi_{0}(c\swarrow _{0}^{r},(S^{i},\Gamma_{\Omega}E))$

Since both of vertical maps are bijective, it is enough to show that the
bottom horizontal map is bijective for $i<\sigma$ and surjective for $i=\sigma$. Let
4: $S^{i}arrow\Gamma_{\Omega}E$ be aelement of $\llcorner\sqrt{}^{_{0}}(S^{i}, \Gamma_{\Omega}E)$ . Then it is identified with an
element $\alpha’$ : $S^{i}\cross Narrow S^{i}\cross E(N)$ of $\Gamma_{\Omega_{c\grave{\backslash }}i}E_{S^{i}}$ . Since $\alpha(p)=s$, $\alpha’$ is transverse
on $\Sigma$ at $p\cross N$, that is, $j^{r}\alpha’(p\cross N)\cap\Sigma=\phi$ . By Corollary 2. 4there exists
an $\Omega_{S^{t}}$ -regular differentiable section, $S:I\cross S^{i}\cross Narrow I\cross S^{i}\cross E(N)$ such that
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$S|_{0\cross S^{i}\cross N}=\alpha’$ , $S|_{1\cross S^{i}\cross N}\in\Gamma_{\Omega_{\acute{S}}i}E_{S}i$ and $S|_{l\cross p\cross N}=s$ for each $t\in I$. Hence $i_{*}$ is
surjective. Let $\alpha_{0}$ and $\alpha_{1}$ be elements of $\mathscr{B}_{0}^{\infty}(S^{i}, \Gamma_{\Omega’}E)$ such that $i_{*}\alpha_{0}=i_{*}\alpha_{1}$ .
By the differentiable approximation theorem there exists an $\Omega$ regular differen-
tiable map $S:(I\cross S^{i}, I\cross p)arrow(\Gamma_{\Omega}E, s)$ such that $S|_{j\cross S^{i}}=\alpha_{j}(j=0,1)$ . We obtain
the associated differentiable section $\alpha_{j}’$ : $S^{i}\cross N$}$arrow S^{i}\cross E(N)$ and $S’$ : $I\cross S^{i}\cross Narrow$

$I\cross S^{i}\cross E(N)$ . We consider $\Omega_{I\cross S^{i}}$ and $\Omega_{I\cross S^{i}}’$ . Then $S’$ is an $\Omega_{I\cross S^{\sqrt}}$ regular
$C^{r}$ section with $j^{r}S’(j\cross S^{i}\cross N)\subseteqq\Omega_{I\cross S^{i}}’(j=0,1)$ and $j^{r}S’(I\cross p\cross N)\subseteqq\Omega_{1\cross S^{l}}’$ .
Since $\Omega_{I\cross S^{i}}-\Omega_{1Xs^{i}}’=\pi_{I\cross S^{i}}^{-1}(\Omega-\Omega’)$ , it is afinite union of submanifolds with
codimensions $>n+\sigma$. By applying Corollary 2. 4to the case of $\Omega_{I\cross S^{\dot{\theta}}}\cdot$ , $\Omega_{I\cross s^{t}}’$ ,
$\dot{I}\cross S^{i}\cross N\cup I\cross p\cross N$ and $S_{:}’$ we get $\Omega’$ regular section $\overline{S}’$ : $I\cross S^{i}\cross N\llcornerarrow I\cross$

$S^{i}\cross E(N)$ such that $\overline{S}’|_{j\cross S^{i}\cross N}=S|_{j\cross S^{i}\cross N}(j=0,1)$ and $\overline{S}’|_{t\cross p\cross N}=s$ for each $t\in I$.
This completes the proof.

The proof of (ii) follows from the similar arguments as above by the
transversality theorem. In fact we consider the bundle $E^{r}(N)$ over $N$ instead
of $E(N)$ over $N$ in the proof of (i) and apply Corollary 2. 4to the following
diagram

$\pi_{i}(\Gamma_{\Omega’}E^{r*},)--\cdot\pi_{i}(\Gamma_{\Omega}E^{r*},)$

1 $\downarrow$

$\pi_{0}(\mathscr{B}_{0}(S^{i}, \Gamma_{\Omega’}E^{r}))-\pi_{0}(\mathscr{F}_{0}(S^{i},\Gamma_{\Omega}E^{r}))$

1 $\downarrow$

$\pi_{0}(\mathscr{B}0(rS^{i}, \Gamma_{\Omega’}E^{r}))-\pi_{0}(\mathscr{F}_{0}^{r}(S^{i}, \Gamma_{\Omega}E^{r}))$ . Q. E. D.

PROOF OF THEOREM. This follows from the following commutative
diagram

$(j^{r})_{*}$

$\pi_{i}(\Gamma_{\Omega’}E)-\pi_{i}(\Gamma_{\Omega’}E^{r})\downarrow\downarrow$

$\pi_{i}(\Gamma_{\rho}E)\underline{(j^{r})_{*}}\pi_{i}(\Gamma_{\Omega}E^{r})$

Q. E. D.

\S 4. Applications

In this section we slightly extend the notion of Thom-Boardman sin-
gularities [2, 7, 9] into the space of $r$-jet bundles $E^{r}(N)$ . Let $J^{r}(U, P)$ denote
the bundle of $r$-jets over differentiable manifolds $U$ and $P$ . Then the Thom-
Boardman singularity with symbol $I$, $\Sigma^{I}(U, P)$ is defined in $J^{r}(U, P)$ . $\Sigma^{I}(U, P)$

is aregular differentiable submanifold of $J^{r}(U, P)$ and adifferentiable sub-
bundle of $J^{r}(U, P)$ over $U\cross P$. Let $V$ be adifferentiable manifold which
is diffeomorphic to $U$ by $h$ . Let $\overline{h}:U\cross Parrow V\cross P$ be adifferentiable bundle
map over the diffeomorphism $h:Uarrow V$. Then we can define amap $j^{r}\overline{h}$ :
$J^{r}(U, P)arrow J^{r}(V, P)$ . Let $z$ be an element of $J^{r}(U, P)$ which is represented
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by $f:(U, x)arrow(P,f(x))$ . Then $j^{r}\overline{h}$ is defined to be the $r$-jet at $h^{-1}(x)$ of the
composition, $p\circ\overline{h}\circ(id_{U}\cross f)\circ h^{-1}$ where $p$ denotes the projection of $V\cross P$ onto $P$.

REMARK 4. 1. The map $j^{r\overline{l}_{?}^{-}}\vee$ maps $\Sigma^{I}(U, P)$ diffeomorphically onto
$\Sigma^{I}(V, P)$ and makes the following diagram commute.

$J^{r}(U, P).J^{r}(V, P)\downarrow\downarrow\underline{j^{r}\overline{h}}$

$U\cross P-V\cross P\underline{\overline{h}}$

PROOF. Let $z=j^{r}f$ and $y=f(x)$ where $f:(U, x)arrow(P, y)$ . Let $C(U)_{x}(resp$ .
$C(P)_{y})$ denote the set of $C^{\infty}$ map germs, $(U, x)arrow R$ (resp. $(P,$ $y)arrow R$). Let
$\mathfrak{M}_{x}(resp. \mathfrak{M}_{y})$ denote the ideal in $C(U)_{x}(resp. C(P)_{y})$ consisting of $C^{\infty}$ map
germs which vanish on $x(resp.y)$ . It is shown in [7] that the Boardman
symbol I is determined only by the ideal $f^{*}(\mathfrak{M}_{y})$ in $C(U)_{x}$ modulo $\mathfrak{M}_{x}^{r+1}$ . It
follows from [6, Proposition in (2. 3)] that $(p\circ\overline{h}\circ(id_{U}\cross f)\circ h^{-1})^{*}(\mathfrak{M}_{y})$ is equal to
$(h^{-1})^{*}f^{*}(\mathfrak{M}_{y})$ . Hence we know that the Boardman symbol of $j^{r}\overline{h}(z)$ coincides
with that of $z$ by definition. Other statement immediately follows from the
definition of $j^{r}\overline{h}$ . Q. E. D.

Let $\pi:E(N)arrow N$ be adifferentiate bundle over $N$ with fibre $P$. If $\pi$

is trivial over an open set $U$, then $E^{r}(N)|_{U}$ is canonically identified with
$J^{r}(U, P)$ . Let $\Sigma^{I}(E|_{D})$ denote the differentiate subbundle of $E^{r}(N)|_{U}$ which
corresponds to $\Sigma^{I}(U, P)$ by this identification. Let { $U_{\alpha}\rangle$ denote the covering

of $N$ such that the bundle $\pi$ is trivial over U. for each $\alpha$ . Then we put
$\Sigma^{I}(E)=\cup\Sigma^{I}(E|_{U_{a}})$ . Then it follows from Remark 4. 1that $\Sigma^{I}(E)$ is adif-
ferentiable subbundle of $E^{r}(N)$ over $N$ and does not depend on the choice
of the covering $\{U_{a}\}$ . We should note that the codimension of $\Sigma^{I}(E)$ in
$E^{r}(N)$ coincides with that of $\Sigma^{I}(U, P)$ in $J^{r}(U, P)$ .

DEFINITION 4. 2. We call $\Sigma^{I}(E)$ the Thom-Boardman singularity utith
symbol I of $E^{r}(N)$ .

We define an open set $\Omega^{I}(E)$ in $E^{r}(N)$ to be the union of all Thom-
Boardman singularities with symbol $K$ such that $K\leqq I$ where we consider
the lexicographic order. Since the union of all Thom-Boardman singularities
$\Sigma^{K}(U, P)$ , $K_{=}’\backslash$ I is open in $J^{r}(U, P)$ , we know that $\Omega^{I}(E)$ is open in $E^{r}(N)$ .
Now we consider the integrability of $j^{r}$ : $\Gamma_{\Omega}Earrow\Gamma_{\Omega}E^{r}$ for $\Omega=\Omega^{I}(E)$ .

In the sequel we provide $\pi:E(N)arrow N$ with the certain condition which
is called ‘natural’ For any $n$ dimensional manifold $N$ there exists adiffer-
entiable bundle $E(N)$ such that if $U$ is open in $N$, then $E(U)$ is the re-
striction $E(N)$ to $U$. Moreover for any diffeomorphim $h$ of an open sets
$V$ of $N$, there exists adiffeomorphism $\overline{h}:E(U)arrow E(V)$ covering $h$ such that
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$\overline{k}\circ\overline{h}=\overline{k\circ h}$ and $\overline{id}_{U}=id_{E(U)}$ . Also $\overline{h}$ depends continuously on $h$ (see, for example
[3] $)$ .

Let $E’(N’)$ be anatural differentiate bundle over $n+1$ dimensional
manifolds $N’$ such that $E’(N\cross R)$ is isomorphic to $E(N)\cross R$ over $N\cross R$.
Then we have anatural map $\overline{\iota}’$ : $E^{\prime\gamma}(N\cross R)arrow E^{r}(N)$ which is induced from
the inculusion $i:N=N\cross O\subset N\cross R$. If we consider $\Omega^{I}(E’)$ in $E^{\prime r}(N\cross R)$ ,
then we obtain that $\overline{\iota}(\Omega^{I}(E’))$ is contained in $\Omega^{I}(E)$ by the similar arguments
as in [4]. It follows from [3, Theorem $B$] that $j^{r}$ : $\Gamma_{\Omega}(E)arrow\Gamma_{\Omega}(E^{r})$ is aweak
homotopy equivalence for $\Omega=\overline{\iota}(\Omega^{I}(E’))$ . Now we show that $\Omega^{I}(E)-\overline{\iota}(\Omega^{I}(E’))$

is afinite union of regular submnaifolds of $\Omega^{I}(E)$ . At first we note that
$\Omega^{I}(E)$ and $\overline{\iota}(\Omega^{I}(E’))$ are open subbundles over $E(N)$ . Their fibers are de-
scribed as follows. Let $J^{r}(n, p)$ (resp. $\Omega^{I}$ ( $n$ , $p$)) denote the fibre over the
origin $(O, O)$ of $J^{r}(R^{n}, R^{p})$ over $R^{n}\cross R^{p}$ (resp. $\Omega^{I}(R^{n}\cross R^{p})$ where $N=R^{n}$

and $E(N)=R^{n}\cross R^{p})$ . There is arestriction map $\overline{\iota}:J^{r}(n+1,p)arrow J^{r}(n,p)$

forgetting the last coordinate. Then the fibre of $\Omega^{I}(E)$ (resp. $\overline{\iota}(\Omega^{I}(E’))$ is
$\Omega^{I}(n, p)$ (resp. $\overline{\iota}(\Omega^{I}(n+1, p))$ . If we identify $J^{r}(n,p)$ with an eucledian space
in the usual way, then we know that $\Omega^{I}(n, p)$ and $\overline{\iota}(\Omega^{I}(n+1, p))$ are both
Zariski open sets. In fact it follows from [7, The Proof of Proposition 2]
that $J^{r}(n,p)-\Omega^{I}(n, p)$ is aZariski closed set. It follows from [10] that $J^{r}(n,p)$

$-\overline{\iota}\Omega^{I}(n+1,p))$ is afinite union of locally Zariski closed submanifolds of
$J^{r}(n,p)$ . Thus $\Omega^{I}(n, p)-\overline{\iota}(\Omega^{I}(n+1, p))$ is afinite union of locally Zariski
closed submanifolds. Hence we obtain that $\Omega^{I}(E)-\overline{l}(\Omega^{I}(E’))$ is afinite union
of regular submanifolds of $\Omega^{I}(E)$ . We again note that the minimal codi-
mension of these submanifolds coincides with that of the submanifolds of
$\Omega^{I}(n,p)-\overline{\iota}(\Omega^{I}(n+1,p))$ . Let $\sigma^{I}$ denote the interger such that $\sigma^{I}+n+1$ is the
above codimension. The following theorem is aslight extension of the result
in [4, \S 1] and we know that $\Omega^{I}(n, p)$ is equal to $\overline{\iota}(\Omega^{I}(n+1, p))$ in this case.

THEOREM 4. 3. Let $\pi:E(N)arrow N$ be a natural differentiate fibre bun-
dle with $\dim N=n$ and $\dim P=p$ . Let $I=(i_{1}, \cdots, i_{r})$ and $d^{I}= \sum\alpha_{s}r-1$ where

$\alpha_{s}=\{$

$=1

1if $i_{s}-i_{s+1}>1$ .
0othe rwise

If $i_{r}>n-p-d^{I}$, then for $\Omega=\Omega^{I}(E)$

$j^{r}$ : $\Gamma_{\rho}(E)-\Gamma_{\Omega}(E^{r})$

is a weak homotopy equivalence
Now we give afew applications of Theorem in \S 1.
PROPOSITION 4. 4. Let $\pi:E(N)arrow N$ be as in Theorem 4. 3. Let $\Omega^{I}(E)$

and $\sigma^{I}$ be as defined above. Then $j^{r}$ : $\Gamma_{\Omega}(E)arrow\Gamma_{\rho}(E^{r})$ is a $\sigma^{I}$ homotopy equiva-
lertce for $\Omega=\Omega^{I}(E)$ .
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Let $K\leqq I$. Then $\Omega^{I}(E)-\Omega^{K}(E)$ is the union of Thom-Boardman singu-
larities with symbol $H$ such that $K<H\leqq I$. The codimension of $\Sigma^{H}(E)$

is determined in [2]. If we take $\Omega^{I}(E)$ (or $\Omega^{K}(E)$ ) as $\Omega$ in Theorem 4. 3
or Proposition 4. 4, we know by applying Theorem in \S 1 or Proposition
4. 4how the map $j^{r}$ : $\Gamma_{\Omega}(E)arrow\Gamma_{\Omega}(E^{r})$ is close to ahomotopy equivalence.
For example, let $i_{1}$ be fixed. Let $i_{2}$ be the positive minimal integer such
that $i_{2}>n-p$ -d’where $I=(i_{1}, i_{2})$ . Let $K=(i_{1}, i_{2}-1)$ . Then $j^{r}$ is ahomotopy
equivalence for $\Omega^{I}(E)$ . Hence $j^{r}$ induces the isomorphisms of $k$ dimensional
homotopy groups where $k<(p-n+i_{1})\{i_{1}(i_{2}+1)-(1/2)i_{2}(i_{2}-1)\}-i_{2}(i_{1}-i_{2})$ for
$\Omega^{K}(E)$ since the codimension of $\Sigma^{I}(E)$ is as mentioned. The examples of
the number $\sigma^{J}$ in Proposition 4. 4are given in [1] for the product bundle
$E(N)=N\cross P$, which is also valid in our general bundle case.
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