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Some considerations on fibred spaces with
certain almost complex structures

By Masaru SEINO
(Received February 6, 1978)

Fibred spaces with almost complex structures have been studied by M.
Ako [1]^{1)} and B. Watson [2]. The interesting result on a fibred space with
K\"ahlerian structure was given in [1]. The purpose of the present paper is
to study the analogous problem in fibred almost K\"ahlerian and almost Ta-
chibana spaces and give certain extensions of Theorem 5. 1 in [1]. For
the purpose we need to have the method in [1].

In section 1 we define fibred spaces \overline{M} and the additional conception.
In section 2 we introduce a projectable Riemannian metric \tilde{g} in \overline{M}. In
section 3 we give formulas for the covariant differentiation with respect to
the Riemannian connection induced by \tilde{g} . In section 4 we give some lemmas
which will be used to prove Theorems in section 5.

The present author wishes to express his sincere thanks to Dr. Y.
Katsurada and Dr. Tr Nagai for their kind guidance and help.

1. Fibred spaces.

The manifolds, objects and mappings which we consider are assumed
to be of class C^{\infty}. The notation used in this paper is the same as [1].

Let \overline{M} and M be manifolds of dimension n and m respectively, where
n>m . A mapping \sigma from \overline{M} onto M is called a submersion if the differential
map \sigma_{*} induced by \sigma has the maximal rank m everywhere in \overline{M}. We assume
the existence of such a submersion. (\overline{M}, M;\sigma) is then called a fibred space
over M. Under the above assumption the inverse image \mathscr{F}_{P} of P\in M by
\sigma is an (n-m) -dimensional closed submanifold of \overline{M} and is called a fibre
over P. Throughout this paper we assume that each fibre is connected.

A vector in \tilde{M} at P\in\overline{M} is said to be vertical if it is tangent to the
fibre over \sigma(P) . A vector field of vertical vectors is called a vertical vector
field.

Now, since the rank of \sigma_{*}=m , there are (n-m) linearly independent
vertical vector fields C_{\alpha}(\alpha=m+1, \cdots, n) in a neighborhood of each point in

1) Numbers in brackets refer to references at the end of the paper.
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\overline{M}. C_{\alpha} define an (n-m)-dimensional distribution Parrow T_{p}^{V}(M) which is com-
pletely integrable, where T_{p}^{V}(\overline{M}) is the subspace spanned by C_{\alpha} in the tangent
space T_{\vec{P}}(\overline{M}) of \overline{M} at P \in\overline{M}. Denoting by T_{P}^{H}\approx(\tilde{M}) the complementary
subspace of T_{\tilde{P}}^{V}(\overline{M}) in T_{\tilde{P}}(\overline{M}) , we get an m-dimensional distribution Parrow T_{F}^{H}(\overline{M})

and we call it the horizontal distribution. Here such a distribution be fixed,
we can choose m linearly independent vector fields E_{a}(a=1,2, \cdots, m) in
a neighborhood of every point P such that at each point P they span T_{F}^{H}(\tilde{M}) .

Let (\begin{array}{l}E^{a}C^{\alpha}\end{array}) be the inverse matrix of the matrix (E_{a}, C_{a}) . Then each (r, s)-

tensor \prime r in M is expressed as

T =T_{a_{1}\cdots a_{s}^{b_{1}\cdots b_{r}}}E^{a_{1}}\otimes\cdots\otimes E^{a_{s}}\otimes E_{b_{1}}\otimes\cdots\otimes E_{b_{r}}+\cdots

+T_{a_{1}\cdots a_{s}^{\beta_{1}\cdots\beta_{r}}}E^{a_{1}}\otimes\cdots\otimes E^{a_{s}}\otimes C_{\beta_{1}}\otimes\cdots\otimes C_{\rho_{r}}+\cdots

+T_{\alpha_{1}\cdots\alpha_{s}}b_{1}\cdots b_{r}C^{\alpha_{1}}\otimes\cdots\otimes C^{a_{s}}\otimes E_{b_{1}}\otimes\cdots\otimes E_{b_{r}}+\cdots

+T_{a_{1}\cdots\alpha s}\beta_{1}\cdots\beta_{r}C^{\alpha_{1}}\otimes\cdots\otimes C^{\alpha}s\otimes C_{\beta_{1}}\otimes\cdots\otimes C_{\beta},
\cdot

The first and the last terms in the right hand side are called the horizontal
part and the vertical part of T and denoted by T^{H} and T^{V} respectively. For
(0, 0) tensor \tilde{f} in \tilde{M} we define

\tilde{f}^{H}=\tilde{f}^{\nabla}=\tilde{f} .

A tensor field T in \overline{M} is said to be projectable if it satisfies
(S_{\tilde{\nabla}}’F^{H})^{H}=0

for any vertical vector V, where S - denotes the Lie derivative with respect
to V.

Let us denote by \mathscr{F}_{s}^{r}(M) and \mathscr{P}_{s}^{Hr}(\overline{M}) the space of all (r, s) -tensor fields
in M and that of all projectable and horizontal (r, s) -tensor fields in \overline{M} re-
spectively. We have then by [1] isomorphisms \pi from -p_{s}^{Hr}(\overline{M}) onto \mathscr{T}_{s}^{d}(M)

and L from \mathscr{T}_{s}^{r}(M) onto \mathscr{P}_{s}^{Hr}(\overline{M}) which are the inverse mappings each
other. The former and the latter are called a projection and a lift respec-
tively.

2. A projectable Riemannian metric.

We assume, here and in the sequel, that there is given a projectable
Riemannian metric \tilde{g} in \overline{M}. Without loss of generality, we can furthermore
assume that

\tilde{g}(E_{a}, C_{\alpha})=0 .
The Riemannian connection \overline{\nabla} with respect to \tilde{g} and the Riemannian

connection \nabla with respect to g=\pi\tilde{g} are related by
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\nabla_{X}Y=\pi(\overline{\nabla}_{X}LY^{L}) for X, Y\in \mathscr{T}_{0}^{1}M).

On the other hand we have the induced Riemannian metric \prime g and the
induced Riemannian connection ’\nabla with respect to \prime g in each fibre.

3. Expressions in terms of a local coordinate system.

From now on we discuss by means of a local coordinate system.

If (\tilde{x}^{i}) , (x^{a}) and (’x^{\alpha})(i=1,2, \cdots , m, m+1, \cdots , n;a=1, \cdots , m;\alpha=m+

1 , \cdots , n) are local coordinate systems of \overline{M}, M and each fibre respectively,
the submersion \sigma from \tilde{M} onto M is represented by equations x^{a}=x^{a}(\tilde{x}^{i})

whose Jacobian matrix \partial x^{a}/\partial\tilde{x}^{i} is of rank m at any point of \tilde{M}. The vertical
vector fields C_{\alpha} and the horizontal covector fields E^{b} may have C_{\alpha}^{i}=\partial\tilde{x}^{i}/\partial’x^{\alpha}

and E_{i}^{b}=\partial x^{b}/\partial\tilde{x}^{i} as their components with respect to (\tilde{x}^{i}) respectively. If
the components of E_{a} and C^{\beta} are denoted by E_{a}^{i} and C_{i}^{\beta} respectively, we
have

E_{a}^{i}E_{i}^{b}=\delta_{a}^{b} , E_{a}^{i}C_{i}^{\beta}=0 , E_{i}^{b}C_{\alpha}^{i}=0 , C_{l}^{\beta}C_{\alpha}^{i}=\delta_{\alpha}^{\beta} ,
E_{i}^{a}E_{a}^{h}+C_{i}^{\alpha}C_{\alpha}^{h}=\delta_{i}^{h} .

Since we may put (\tilde{x}^{i})=(x^{a\prime},x^{\alpha}) , with respect to the natural frame the
non-holonomic frame may have the following components:

(3. 1) E_{a}=(_{-\Pi_{a}^{\rho}}^{\delta_{a}^{b}}) , C_{\alpha}=(\begin{array}{l}0\delta_{\alpha}^{\beta}\end{array}) ,

C^{\beta}=(\Pi_{a}^{\rho}, \delta_{\alpha}^{\beta}) , E^{b}=(\delta_{a}^{b}, 0) ,

where \Pi_{a}^{\rho} are functions in \overline{M}.
Then by [1] we have the following formulas;

(3. 2) \tilde{\nabla}_{j}E_{a}^{h}=\{b c a\}E_{f}^{b}E_{c}^{h}+h_{a^{b}\alpha}E_{b}^{h}C_{f}^{\alpha}+h_{ba^{\alpha}}E_{f}^{b}C_{\alpha}^{h}-1_{\beta}^{\alpha}{}_{a}C_{\alpha}^{h}C_{f}^{\beta} ,

(3. 3) \overline{\nabla}_{j}E_{i}^{a}=-\{c a b\} E_{f}^{e}E_{i}^{b}+h_{b\alpha}^{a}(E_{f}^{b}C_{i}^{\alpha}+E_{i}^{b}C_{f}^{\alpha})-1_{\beta\alpha}^{a}C_{f}^{\beta}C_{i}^{\alpha} ,

(3. 4) \overline{\nabla}_{j}C_{\alpha}^{h}=-h_{b\alpha}^{a}E_{a}^{h}E_{f}^{b}-(1_{\alpha a}^{\beta}-\Pi_{a^{\beta}\alpha})E_{f}^{a}C_{\beta}^{h}+1_{\beta\alpha}^{a}E_{a}^{h}c_{f}^{\beta}+’\{_{\beta^{\gamma}\alpha}\}C_{f}^{\beta}C_{\gamma}^{h} ,

(3. 5) \overline{\nabla}_{j}C_{i}^{\alpha}=-h_{ba^{\alpha}}E_{f}^{b}E_{i}^{a}+(1_{\beta a}^{\alpha}-\Pi_{a^{\alpha}\beta})E_{f}^{a}C_{i}^{\beta}+1_{\beta a}^{\alpha}E_{i}^{a}C_{f}^{\beta\prime}-\{_{r^{\alpha}\beta}\}C_{f}^{\gamma}C_{i}^{\beta} ,

where h_{ba^{\alpha}}=h_{b\beta}^{c\prime}g^{\beta\alpha}g_{ca} is skew-symmetric in b and a, 1_{\beta\alpha}^{a}=1_{p^{\gamma_{b}}}\prime g_{\gamma\alpha}g^{ba} is

symmetric in \beta and \alpha, \Pi_{a\beta}^{\alpha}=\partial_{\beta}\Pi_{a^{\alpha}}(\partial_{\beta}=\partial/\partial’x^{\beta}) , \{b c a\} and ’\{_{\beta^{\gamma}\alpha}\} are Christoffel

symbols with respect to g_{ba} and ’
g_{\beta\alpha} respectively.

Since E_{b}^{j}\overline{\nabla}_{j}E_{a}^{h}-E_{a}^{f}\overline{\nabla}_{j}E_{b}^{h}=2h_{ba^{\alpha}}C_{\alpha}^{h} , we have h_{ba^{\alpha}}=0 as a necessary and
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sufficient condition for the horizontal distribution to be completely integrable.
When the horizontal distribution is completely integrable we can choose
a non-holonomic frame (E_{a}, C_{\alpha}) such that \Pi_{a}^{\alpha}=0 .

On the other hand C_{\beta}^{f}\overline{\nabla}_{j}C_{\alpha}^{h}=1_{\beta\alpha}^{a}E_{a}^{h}+’\{_{\beta^{\gamma}\alpha}\}C_{\gamma}^{h} being hold, we find 1_{\beta\alpha}^{a}

are the components of the second fundamental tensor on \mathscr{F}_{P} with respect
to the normal vector E_{a} . Then we have 1_{\beta\alpha}^{a}=0 as a necessary and sufficient
condition for each fiber to be totally geodesic.

4. Lemmas.

In this section we show some lemmas given in [1] which will be useful
to prove Theorems in section 5.

First putting j=a and i=b in (3. 5) and taking account of (3. 1), we
have

\partial_{a}\Pi_{b^{\alpha}}-\{\begin{array}{ll}c a b\end{array}\}\Pi_{c^{\alpha}}=-h_{ab}^{\alpha}+(1_{\beta a}^{\alpha}\Pi_{b^{\beta}}+1_{\beta b}^{\alpha}\Pi_{a}^{\rho})

-\Pi_{a\beta}^{\alpha}\Pi_{b^{\beta}}-,\{_{r^{\alpha}\beta}\}\Pi_{a^{\gamma}}\Pi_{b^{\beta}c}

Then we get

h_{ab}^{\alpha}=\Pi_{\mathfrak{c}b}^{\alpha}\Pi_{aJ^{\alpha}\beta}+\partial_{Ia}\Pi_{bJ\prime}^{\alpha}.

where [ ] denotes the skew-symmetrization. Thus we have
Lemma 4. 1. If \Pi_{a}^{\alpha} are constant, then the horizontal distribution is

integrable. Conversely, if the horizontal distribution is integrable, then we
can choose a local coordinate system in which \Pi_{a^{\alpha}}=0 .

\tilde{M} is said to have isometric fibres if at each point of \overline{M} the equations

(S_{E_{a}}\tilde{g})^{v}=0 (a=1,2, \cdots, m)

are satisfied. By a straight forward computation we can see that \tilde{M} has
isometric fibres if and only if

(4. 1) \partial_{a}’g_{\beta\alpha}-\Pi_{a^{\gamma}}\partial_{\gamma}’g_{\beta\alpha}-g_{\gamma\alpha}\Pi_{a\rho}^{\gamma’}-g_{\beta\gamma}\Pi_{a^{\gamma}\alpha}=0

On the other hand by another computation we have

(4. 2) (S_{E_{a}}\tilde{g})_{fi}^{V}=-21_{\beta\alpha a}C_{f}^{\beta}C_{i}^{\alpha}c

Now from Lemma 4. 1 and (4. 1) we have
Lemma 4. 2. If \tilde{M} has isometric fifibres and the horizontal distribution

is integrable, then \overline{M} is locally the Riemannian product of \mathscr{F}_{P} and \hat{M},

where \hat{M} is the integral submanifold of the horizontal distribution.
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Proof. Since the horizontal distribution is integrable, we can see that
\overline{M} is locally the product of two submanifolds \mathscr{F}_{P} and \hat{M}. Furthermore, in
this case, from Lemma 4. 1 we can choose a local coodinate system in which
\Pi_{a}^{\alpha}=0 . Then, from (_{\backslash }4.1) we have

\partial_{a}’g_{\beta\alpha}=0 :

with respect to such the local coordinate system. On the other hand we
have also

\partial_{\alpha}g_{ba}=0 ,

because the Riemannian metric \tilde{g} is projectable. Thus \overline{M} is locally the
Riemannian product of\swarrow _{rP} and \hat{M}.

Furthermore by means of (4. 2) we have
Lemma 4. 3. \tilde{M} has isometric fifibres if and only if the each fifibre is

totally geodesic submanifold of \overline{M}.

5. Fibred almost Kihlerian and fibred almost Tachibana spaces.

We consider in this section an almost complex structure F in \overline{M} which
is assumed to be projectable, that is,

(S_{\check{V}}F^{H})^{H}=0

for any vertical vector field V. Furthermore we assume that F is pure,
that is, if we denote by F_{i}^{h} the components of F with respect to a local
coordinate system, they are expressed by the non-holonomic frame (E_{a}, C_{\alpha})

as follows ;

F_{i}^{h}=f_{b}^{a}E_{i}^{b}E_{a}^{h}+f_{\beta}^{\alpha}C_{i}^{\beta}C_{\alpha}^{h} ,

where f_{b}^{a} are projectable functions by the assumption. Since we have

(5. 1) f_{b}^{a}f_{a}^{c}=-\delta_{b}^{c} , f_{\beta}^{\alpha}f_{\alpha}^{\gamma}=-\delta_{\gamma}^{\beta} ,

we can see that Mand\swarrow\sigma_{rP} admit almost complex structures respectively.
An almost complex structure F_{i}^{h} is said to be K\"ahlerian, almost K\"ahlerian

and almost Tachibana if F_{i}^{h} satisfies (i) \overline{\nabla}_{j}F_{i}^{h}=0 , (ii) \overline{\nabla}_{j}F_{ih}+\overline{\nabla}_{ihj}F+\tilde{\nabla}_{h}F_{fi}=0

and (iii) \overline{\nabla}_{j}F_{i}^{h}+\overline{\nabla}_{i}F_{j}^{h}=0 respectively, where F_{ih}=F_{i}^{j}\tilde{g}_{jh} . Obviously (i) implies
(ii) and (iii) and if F_{i}^{h} satisfies (ii) and (iii) at the same time, then (i) is satisfied
by F_{i}^{h}[3] .

In general by a straightforward computation we have

(5. 2) \overline{\nabla}_{J}fF_{i}^{h}=\nabla_{c}f_{b}^{a}E_{f}^{c}E_{i}^{b}E_{a}^{h}+(\Lambda_{C\beta}^{\alpha}-f_{\beta}^{\gamma}1_{\gamma C}^{\alpha}+f_{\gamma}^{\alpha}1_{\beta}^{r_{C}})E_{f}^{c}C_{i}^{\beta}C_{\alpha}^{h}

+(f_{b}^{a}h_{c^{b}\beta}-f_{\beta}^{\gamma}h_{C\gamma}^{a})E_{f}^{c} C_{i}^{\beta}E_{a}^{h}+(f_{b}^{a}h_{ca^{\alpha}}-f_{\beta}^{\alpha}h_{cb^{\beta}})E_{f}^{c} E_{i}^{b}C_{\alpha}^{h}
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+(f_{c}^{a}H_{b\gamma}^{c}-f_{b}^{c}h_{c^{a}\gamma})C_{j}^{\gamma}E_{i}^{b}E_{a}^{h}-(f_{b}^{a}1_{\gamma\beta}^{b}-f_{\beta}^{\alpha}1_{\gamma\alpha}^{a})C_{f}^{\gamma}C_{i}^{\beta}E_{a}^{h}

+(f_{\beta}^{\alpha}1_{\gamma b}^{\beta}-f_{b}^{a}1_{\gamma a}^{\beta})C_{f}^{\gamma}E_{i}^{b}C_{\alpha}^{h}+’\nabla_{\gamma}f_{\beta}^{\alpha}C_{j}^{r}C_{i}^{\beta}C_{\alpha}^{h} ,

where \Lambda_{c\rho^{\alpha}}=(S_{E_{C}}F_{i}^{h})C_{\beta}^{i}C_{h}^{\alpha} . Using (5. 2) M. Ako [1] proved
,-

THEOREM. If \overline{M} is fifibred K\"ahlerian, then the horizontal distribution
is integrable. In this case \overline{M} is locally the Riemannian product of \hat{M} and
\mathscr{F}_{P} if and only if \Lambda_{0\beta}^{\alpha}=0 .

Now we consider the case where the fibred space \overline{M} is almost K\"ahlerian

or almost Tachibana, and as extensions of the above theorem we have the
following Theorem 5. 1 and Theorem 5. 2.

THEOREM 5. 1. If \overline{M} is fifibred almost K\"ahlerian, the horizontal dis-
tribution is integrable. In this case \tilde{M} is locally the Riemannian product
of \hat{M} and \mathscr{F}_{P} if and only if \Lambda_{C\beta}^{\alpha}=0 .

PROOF. When the almost complex structure is almost K\"ahlerian, we
substitute (5. 2) into (ii) and have
(5. 3) \nabla_{c}f_{ba}+\nabla_{b}f_{ac}+\nabla_{a}f_{cb}=0 ,

(5. 4) h_{cb\alpha}=0 ,

(5. 5) \Lambda_{C\beta\alpha}=2f_{\beta}^{\gamma}1_{\alpha\gamma c:}

(5. 6) ’\nabla_{\gamma}f_{\beta\alpha}+’\nabla_{\beta}f_{\alpha\gamma}+’\nabla_{\alpha}f_{\gamma\beta}=0 ,

where f_{ba}=f_{b^{C}}g_{ca}, f_{\beta\alpha}=f_{\beta}^{\gamma’}g_{\gamma\alpha} and \Lambda_{c\beta\alpha}=\Lambda_{c\beta}^{r’}g_{\gamma\alpha} . Obviously (5. 4) shows that
the horizontal distribution is integrable. Furthermore from (5. 5) we find
that \Lambda_{t\beta\alpha}=0 if and only if 1_{\beta\alpha a}=0 . Then by virtue of Lemma 4. 2 we can
see that \overline{M} is locally the Riemannian product of \hat{M} and \mathscr{F}_{P} if and only if
\Lambda_{c\rho^{\alpha}}=0 .

THEOREM 5. 2. If \overline{M} is fifibred almost Tachibana, then the horizontal
distribution is integrable. In this case \overline{M} is locally the Riemannian product
of \hat{M} and \mathscr{F}_{P} if and only if \Lambda_{C\beta}^{\alpha}=0 .

PROOF. Since \overline{M} is almost Tachibana, we substitute (5. 2) into (iii) and
have

(5. 7) \nabla_{c}f_{b}^{a}+\nabla_{b}f_{c}^{a}=0’.
(5. 8) 2f_{c}^{a}h_{b\gamma}^{c}-h_{c\gamma}^{a}f_{b}^{c}-h_{b\alpha}^{a}f_{\gamma}^{a}=0 ,

(5. 9) f_{b}^{a}h_{ca^{\alpha}}+f_{c}^{a}h_{ba^{\alpha}}=0 ,

(5. 10) 2f_{b}^{a}1_{\beta\gamma}^{b}-f_{\beta}^{\alpha}1_{\gamma\beta}^{a}-f_{\gamma}^{\alpha}1_{\beta\alpha}^{a}=0 ,

(5. 11) \Lambda_{C\beta}^{\alpha}+21_{\beta t}^{\gamma}f_{\gamma G}^{\alpha}f_{\gamma}^{\alpha}-1_{r^{\alpha}c}f_{\beta}^{\gamma}-1_{\beta a}^{\alpha}f_{c}^{a}=0 ,

(5. 12) ’\nabla_{\gamma}f_{\beta}^{\alpha}+’\nabla_{\beta}f_{\gamma}^{\alpha}=0t
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From (5. 9) we have f_{b^{C}}h_{C\gamma}^{a}=-f_{c}^{a}h_{b^{C}\gamma} . Substituting this into (5. 8) we
have

(5. 13) 3f_{c}^{a}h_{b\gamma}^{c}=f_{\gamma}^{\alpha}h_{b\alpha}^{a}

Transvecting f_{a}^{a}f_{\beta}^{\gamma} to each side of (5. 13), taking account of (5. 1) and renum-
bering indices, we have

(5. 14) 3f_{r^{\alpha}}h_{b\alpha}^{a}=f_{c}^{a}h_{b^{C}\gamma} .
From (5. 13) and (5. 14) we get

f_{c}^{a}h_{b^{C}\gamma}=0

Then it follows that
h_{b\gamma}^{a}=0 ,

which shows the horizontal distribution is integrable.
It \Lambda_{C\beta}^{\alpha}=0 , we have from (5. 11)

21_{\rho c}^{\delta}f_{\delta}^{\alpha}-1_{\delta C}^{\alpha}f_{\beta}^{\delta}-1_{\beta}^{\alpha b}f_{c}^{b}=0 .
Transvecting g^{ca’}g_{\alpha\beta} , we have

(5. 15) 1_{\beta\gamma}^{b}f_{b}^{a}=21_{\beta\alpha}^{a}f_{\gamma}^{\alpha}+1_{\gamma\alpha}^{a}f_{\beta}^{\alpha}

Substituting (5. 15) into (5. 13), we get

(5. 16) 31_{\beta\alpha}^{a}f_{\gamma\alpha}+1_{\alpha\gamma}^{a}f_{\beta}^{a}=0

Interchanging the indices \beta and \gamma in (5. 16) we have

(5. 17) 31_{\gamma a}^{a}f_{\beta}^{\alpha}+1_{\alpha\rho^{a}}f_{\gamma\alpha}=0

From (5. 16) and (5. 14) we have

(5. 18) 1_{\gamma\beta}^{a}f_{\beta}^{\alpha}+1_{\alpha\beta}^{a}f_{\gamma}^{\alpha}=0 ,

and from (5. 16) and (5. 14) we have
1_{\beta\gamma}^{a}=0

This means from Lemma 4. 3 that \overline{M} has isometric fibres. Then by means
of Lemma 4. 2 \overline{M} is locally the Riemannian product of \hat{M} and r\swarrow _{rP} .

Conversely if we assume that 1_{\beta\gamma}^{a}=0 , then clearly \Lambda_{c\beta}^{\alpha}=0 , which com.
plete the proof.
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