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Some congruence properties of Eisenstein series

By Shoyta Nacaoka
(Received February 21, 1979)

§ 1. Introduction.

Let ¥ be the normalized Eisenstein series of weight k£ and degree g¢.
Let p be a prime number different from 2 and 3 (we assume this through-
out this paper.). Then it is known that ¥® satisfies the following con-
gruence :

UM, =1 (modp) .

This fact was used by H. P. F. Swinnerton-Dyer in [9] to determine
the structure of the ring of mod p modular forms, and was also used by
J.-P. Serre in to develop the theory of p-adic modular forms.

We denote by B, the m-th Bernoulli number. In the previous paper
[4], the author showed that ¥, =1 (mod p) for all prime number p satisty-
ing B,_3%0 (mod p), generalized the concept of the algebra of mod p modular
forms to the case of Siegel modular forms and determined its structure.

In this note we shall show the following theorem.

THEOREM. There exists a prime number p satisfying

PO, =1 (mod p).

§2. On the Fourier coefficients of the Eisenstein series.

Let ¥ (Z) be the normalized Eisenstein series of weight £ and degree
g. Then ¥ (Z) has the Fourier expansion of the form
U (Z) = 3 an(T) exp{2qitr(TZ)},
720
where the sum runs over all half integral positive semi-definite symmetric
matrices 7.

C. L. Siegel proved in [6] that all Fourier coefficients of ¥{? are rational
numbers. Furthermore he proved in that for each fixed k&, the rational
numbers a,(7T) have bounded denominators, the common denominator being
a product of a power of 2 and of the numerators of certain Bernoulli num-
bers. In the case of degree 2, H. Maass gave in an explicit formula
of Fourier coefficient ax(T) of Eisenstein series ¥'®. In particular,
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( 1
1 2 4k-Bk_1,<—T3)
ak = — . N*7
( 1 > é_ 1 Bk'sz—2 .
(( 1 0 ) 4k-Bk_1,<—_4)
ay = \*x/
{ 0 1 By» By,

The numerical tables (1) and (2) can be obtained from the formulae (1).

§ 3. Some properties of the generalized Bernoulli numbers.

We shall study some properties of the generalized Bernoulli number

B,, Let y be a Dirichlet character of conductor f.

Let Q(x) denote the field generated over @ by the values of 7.
any integer k=0, let

Susll) = Nxld)a*,  nZ0.
a=1
The following fact was obtained by H. W. Leopoldt in [2].

ProrosiTION 3.1. In Q(y), we have

Boi=5Sulfe)  (modp),

where p is a prime number satisfying (f, p)=1.

ExaMpPLE. Let y= (_:*wg_>
2 1 223
U 3=B)=15Sum9=-"3" (mod5).
10 1 191551
@ g EEE =SSRl =-"" (mod 7).

For

ProposiTION 3.2. Let Xdz(——;k—d> be the Kronecker symbol with d>0,

and let p be an odd prime number satisfying (d, p)=1.
Then

1 n p=1/d-1

ap Seald) = L (Letatep) et (modp).

Proor. For each integer a (1<a<p—1),

a-1 d—1 d-1
mZ:() Xala+mp) (a+mp) = mZ=0 Xala+mp) a"—{—np(c; cxd(a—l—cp)) an!

(mod p?) .
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Since (d, p)=1, we have di Xala+mp)=
m=0
Therefore

1 a»

ap o) 0= (T epalatep) @t (modp).

a=1

This completes the proof.

By [Proposition 3. 1 and 3.2, we have
5 _3> o ) bt d
) e== mod ).
1/ —4 —4 4\,
1{<b+p>+2<b+2p>+3<b+3p>}b mod ).

§4. Congruence properties of the Fourier coefficients a;(T).

Now we would like to ask the following question.

Is it true that the relation ¥, =1(mod p) is valid for any prime num-
ber p?

Our main purpose of this note is to answer the above question. Namely,
we shall show the existence of a prime number p satisfying ¥?,21 (mod p).

From our previous result (c. f. [4]), if ¥ ;21 (mod p), then such a prime
number p satisfies B, s=0 (mod p). Such prime numbers are studied in
connection with Fermat’s problem and the Iwasawa invariants. In particular,
it is known that p=16843 is the unique prime number satisfying B, ;=0
(mod p) and p=125000. (e.g. c.f. [10]).

Now we are going to calculate a,_;(7T") (mod p) for p=16843 and

1.
(1= (’1 0)
T = , )
1) 0o
2
From the formulae (1) in § 2,
A
. 2 \\_ _ 4p—1)Bpon-1,(3
Pt _L 1 Bp—l‘Bz<p—1)—2 ,
2

’

<( 1 0 )) 4(P—1>'B(p_1)_1’(“?‘4>
ap_1 —_ —
0 1 Bp—1'Bz(p—1)—2

Since B,_3=0 (mod p), it follows from the theorem of von Staudt-Clausen
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and Kummer’s congruence that p does not appear in the numerator of the
rational number 4(p—1)/(B,y_1*Basp_p—s). Furthermore, by using the for-
mulae (2) in § 3, the author proved

B16843—2,(:’§) =16739 (mod 16843),
Bigssss,(71) =6022 (mod 16843) .

(This result was obtained by using a computer FACOM 230 in Hokkaido
University computing center.)
Consequently, we obtain

: 1

2
ap_; ( . %0  (modp),
Azt

1 0
ap_y (( 0 1 )) =0 (mod p) for p=16843.

In particular, we have ¥ ;%1 (mod p) for p=16843.

REMARK. In the case of ¢g=3, we can calculate the value a,(7T) in
terms of p-adic densities. (e. g. c.f. [6], [7]).

From various results (e.g. c.f. [6], [8]), we would like to conjecture
the following :

CONJECTURE.
TP x1 (mod p)¢&= Bp_s*Bp_s*--*Bp_gin =0 (mod p) (g: even)
T, =1 (mod p)¢= By_s*By_s+++-+ By ;=0 (mod p) (g: odd)
where p is a prime number satisfying p=5 and p—1>¢g+1.

Table 1.
1 g
: B3 o |
0} 1
4 2.3-1 274357
6 —2+5.3-1 26.32.7.11
8 2+72.3-1 2843+5.7
10 —2.809.3-1 26.3.7+11+19-809-438671
12 2+11.1847.3-1 27.32.5.7+13+23.1847.131-1.593-1.691 -1
14 —2.7.133.47.3-1 2603¢7132.47.657931-1
16 2+5.419.16519.3~1 29.3.52.7+11.17+31-419.16519.1721 1.
3617-1.1001259881 -1
18 —2.17.23-401-13687-3-1 26.33.7.19.23-401-13687 438671
1516286975511
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Table 2.
( p )
k Br-1,(=2 ar
& o
4 3.9-1 25.93.5.7
6 —52.2-1 24.33.5.7.11
8 7-61.2-1 26.32.5.61
10 —32.5.277.2-1 24.34.5.7.11.19.277.438671
12 11.19.2659.2-1 25¢3345+7.13:19+23.2659.131-1.593 1.
691-1
14 —5.132.43-.967-2-1 24.32.5.13+43.967-657931-1
16 3:5.47.4241723.2-1 2734¢52.7+11+17-31-47-4241723.1721-1.
3617-1.1001259881—1
18 —5.172.228135437-2—1 27632.5¢7+17.19.228135437- 438671+
1516286975511
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