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Introduction. Let E^{n} be an n-dimensional Euclidean space and X_{x} be
a position vector of a point x\in E^{n} with respect to a fixed origin. Then
a mapping xarrow X_{x} defines a position vector field in E^{n} and it is a homothetic
Killing vector field. The position vector field in E^{n} plays an important role
in the investigations of submanifolds in E^{n} . From this veiwpoint, Y. Katsu-
rada [2]^{1)} introduced the idea such that a conformal Killing vecotr field is
available for the study of hypersurfaces in an n-dimensional Riemannian
space M^{n} . By virtue of this idea, various results for global properties of
closed orientable hypersurfaces in E^{n} have been generalized for those in
M^{n}[4] . In the present paper, a closed submanifold means a compact con-
nected submanifold without boundary.

Now, an odd dimensional sphere S^{2n+1} has a normal contact metric
structure [8]. Making use of the properties of this structure, M. Okumura
[7] gave a condition for a closed orientable sumbanifold of codimension 2 in
S^{2n+1} to be totally umbilic.

A skew symmetric tensor field T_{i_{1}\cdots i_{p}} in M^{n} is called a conformal
Killing tensor field of degree p([9], [1]) , if there exists a skew symmetric
tensor field \rho_{i_{1}\cdots i_{p-1}} such that

T_{i_{1}\cdots i_{p};i}+T_{ii_{2}\cdots i_{p};i_{1}}

=2\rho_{i_{2}\cdots i_{p}}g_{i_{1}i}

- \sum_{h=2}^{p}(-1)^{h}\{\rho_{i_{1}\cdots\grave{t}_{h}\cdots i_{p}}g_{ii_{h}}+\rho_{i\ldots?_{h}\cdots i_{p}}g_{i_{1}i_{h}}\} ,

where the symbol \Lambda over i_{h} indicates the index i_{h} is to be omitted and the
symbol; means the covariant differentiation with respect to the Christoffel
symbols formed with the metric tensor g_{ij} of M^{n} . Then we can see that
the structure tensor field of a normal contact metric space is a conformal
Killing tensor field of degree 2. M. Morohashi [5] has shown that S^{n}

admits a conformal Killing tensor field of degree p for any positive integer

1) Numbers in bracketes refer to the references at the end of this paper.
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p such that p\leqq n . Then he used this tensor field for the study of sub-
manifolds of codimension p in S^{n} and gave a certain generalization of the
theorem due to M. Okumura. This result suggested to us that a conformal
Killing tensor field of degree p in M^{n} may be used effectively for the study
of submanifolds of codimension p in M^{n} . In particular, when an am_{4hent}

space is a constant curvature space we have

THEOREM (M. Morohashi [6]). Let M^{m+p}(c) and V^{m}(m, F\geqq 2^{\Gamma}) be an
(m+p) -dimensional Riemannian space of constant curvature c and an m-
dimensional closed orientable sumbanifold in M^{m+p}(c)respective^{f}’.y If

(i) M^{m+p}(c) admits a conformal Killing tensor fifield T_{i_{1}\cdots l_{p}}

(ii) the mean curvature vector fifield of V^{m} is parallel with respect to

the connection induced on the normal bundle of V^{m},

(iii) the connection induced on the normal bundle of V^{m} is trivial,

(iv) T_{i_{1}\cdots i_{p}}N_{m^{1}+1}^{i}\cdots N_{m+p}^{i_{p2)}} has fifixed sign on V^{m},

then V^{m} is a totally umbilical submanifold.
The purpose of the present paper is to show that a totally umbilical

submanifold is characterized by the existence of a certain tensor field along

the sumbanifold. \S 1 is devoted to give some notations and fundamental
formulas in the theory of submanifolds in a Riemannian space. In \S 2 we
give some lemmas for a submanifold with parallel mean curvature vector

field. In \S 3 we give a necessary and sufficient condition for a closed orien-
table submanifold to be totally umbilic.

\S 1. Preliminaries. Let M^{m+p}(c) be an (m+p) -dimensional Riemannian
space of constant curvature c covered by a system of coordinate neighbor-

hoods \{U;x^{i}\} and denote by g_{ij}, \Gamma_{ij}^{h} and R_{ihjk} the metric tensor, the Chris-
toffel symbols formed with g_{ij} and the curvature tensor respectively. Then
we have

(1. 1) R_{ihjk}=c(g_{ik}g_{hj}-g_{ij}g_{hk})

We then consider an m-dimensional Riemannian space V^{m} covered by a
system of coordinate neighborhoods \{V;u^{a}\} and denote by g_{\alpha\beta} , \Gamma_{\alpha\beta}^{\prime\gamma} and
R_{\delta a\beta\gamma}’ the metric tensor, the Christoffel symbols formed with g_{\alpha\beta} and the
curvature tensor respectively.

We assume that V^{m} is isometrically immersed in M^{m+p}(c) by the im-

mersion: V^{m}arrow M^{m+p}(c) and represent the immersion by

2) N_{P}^{i}(P=m+1, \cdots, m+p) denote the contravariant components of p mutually orthogonal

unit vectors normal to V^{m} .
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x^{i}=x^{i}(u^{\alpha}) (i=1,2, \cdots, m+p;\alpha=1,2, \cdots, m).3)

Since the immersion is isometric, we have
g_{\alpha\beta}=g_{ij}B_{\alpha}^{i}B_{\beta}^{j} (B_{\alpha}^{i}=\partial x^{i}/\partial u^{a})

We choose p mutually orthogonal unit vectors N_{P}^{i}(P=m+1, \cdots, m+p)^{4)}

norma_{\perp}^{1}.to V^{m} . Denoting by the symbol; the covariant differentiation along
V^{m} due to van der Waerden-Bortolotti, we have the following formulas of
Gauss an\iota\prec Weingarten for V^{m} :

(1. 2) B_{\alpha;\theta}^{t}= \sum_{P}b_{P\alpha\beta}N_{P}^{i} ,

(1. 3) N_{P;\alpha}^{i}=-b_{P\alpha}^{\beta}B_{\beta}^{i}+\Gamma_{P\alpha}^{\prime\prime Q}N_{Q}^{i} ,

where b_{Pa\beta} denotes the second fundamental tensor with respect to the normal
vector N_{P}^{i}, b_{P\alpha}^{\beta}=g^{\beta\gamma}b_{Pa\gamma} and \Gamma_{P\alpha}^{\prime\prime Q} indicate components of a connection induced
on the normal bundle of V^{m}, that is

\Gamma_{Pa}^{\prime\prime Q}=(N_{P;a}^{i}+\Gamma_{kj}^{i}N_{P}^{k}B_{\alpha}^{j})N_{Qi} .
By means of \backslash /1.1) -(1.3) we have the following Gauss and Codazzi equations:

(1. 4) R_{\delta a\beta\gamma}’=c(g_{\alpha\beta}g_{\delta\gamma}-g_{\alpha\gamma}g_{\delta\beta})+ \sum_{P}(b_{Pa\beta}b_{P\delta\gamma}-b_{P\alpha\gamma}b_{P\delta\beta})’.

(1. 5) b_{P\alpha\beta;r}-b_{P\alpha\gamma;\beta}-b_{Q\alpha\beta}\Gamma_{P\gamma}^{\prime\prime Q}+b_{Q\alpha\gamma}\Gamma_{P\beta}^{\prime\prime Q}=01

When there exist p mutually orthogonal unit normal vector fields N_{P}^{i} such
that \Gamma_{Pa}^{\prime\prime Q}=0(P, Q=m+1, \cdots, m+p;\alpha=1, \cdots, m) , we asy that the connec-
tion induced on the normal bundle of V^{m} is trivial. It has been shown
that the connection induced on the normal bundle of V^{m} is trivial if and
only if
(1. 6) b_{P\alpha}^{\gamma}b_{Q\gamma}^{\beta}=b_{Qa}^{\gamma} b_{P\gamma}^{\beta} (P, Q=m+1, \cdots, m+p)

be satisfied.
Let N^{i} be an arbitrary vector field in the normal bundle of V^{m} . When

(N_{;a}^{i})^{\perp}=0 , i . e. , the vector N_{;\alpha}^{i} is tangent to V^{m} everywhere, the vector field
N^{i} is said to be parallel with respct to the connection induced on the normal
bundle of V^{m} , where ( )^{\perp} denotes the normal part of a vector in the round
bracket.

The invariant normal vector field H^{i} defined by

(1. 7) H^{i}= \frac{1}{m}\sum_{P}b_{P\alpha}^{\alpha}N_{P}^{i}

3) The Latin indices i,j, k, \cdots and the Greek indices \alpha , \beta , \gamma , \cdots run over the range 1, 2, \cdots ,
m+p and 1, 2, \cdots , m, respectively.

4) The capital Latin indices P, Q, R, \cdots run over the range m+1, \cdots , m+p.
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is called the mean curvature vector field of V^{m} and its magnitude H is
called the mean curvature.

Denote by \kappa_{P1} , \kappa_{P2}, \cdots , \kappa_{Pm} the eigen values of b_{Pa\beta} relative to g_{\alpha\beta} and put

(1. 8) H_{P}= \frac{1}{m}\sum_{\alpha}\kappa_{Pa}(=\frac{1}{m}b_{P\alpha}^{\alpha}) .

H_{P} is called the 1-st mean curvature of V^{m} with respect to N_{P}. At a
point of V^{m} , if we have \kappa_{P1}=\kappa_{P2}=\cdots=\kappa_{Pm} for a fixed integer P then the
point is said to be umbilic with respect to N_{P}. A point of V^{m} is umbilic
with respect to N_{P} if and only if

(1. 9) b_{P\alpha\beta}=H_{P}g_{a\beta}

be satisfied at the point. When (1. 9) holds good for P=m+1 , \cdots , m+p
at every point of V^{m} , the submanifold V^{m} is said to be totally umbilic.
From the identity

b_{P\alpha\beta}b_{P^{a\beta}}- \frac{1}{m}(b_{P\gamma}^{\gamma})^{2}=(b_{P\alpha\beta}-\frac{1}{m}b_{P\gamma}^{r}g_{\alpha\beta})(b_{P}^{\alpha\beta}-\frac{1}{m}b_{P\gamma}^{r}g^{\alpha\beta)} ,

and the positive definiteness of the Riemannian metric g_{a\beta} we have

Lemma 1. 1. Let V^{m} be a submanifold in M^{m+p} . Then V^{m} is totally
umbilic if and only if

b_{Pa\beta}b_{P}^{a\beta}= \frac{1}{m}(b_{P\gamma}^{r})^{2} (P=m+1, \cdots, m+p)

be satisfified at every point of V^{m} .

\S 2. Submanifolds with parallel mean curvature vector field. By
virtue of (1. 3) and (1. 7) we get

LEMMA 2. 1. Let V^{m} be a submanifold in M^{m+p} . Then the mean
curvature vector fifield H^{i} is parallel with respect to the connection induced
on the normal bundle of V^{m} if and only if b_{P\alpha;\beta}^{\alpha}=b_{Q\alpha}^{\alpha}\Gamma_{P\beta}^{\prime\prime Q} .
Furthermore, by means of (1. 5) and Lemma 2. 1 it follows that

Lemma 2. 2. Let V^{m} be a submanifold in M^{m+p}(c) and the mean
curvature vector fifield H^{i} is parallel with respect to the connection induced
on the normal bundle of V^{m}, then b_{P\alpha;\beta}^{\beta}=b_{Qa}^{8}\Gamma_{P\beta}^{\prime\prime Q} .

If the mean curvature H of V^{m} does not vanish everywhere on V^{m} ,

we have a uniquely determined unit normal vector at every point of V^{m}

which has the same direction with the mean curvature vector H^{i} at the
point. This is called the Euler vector field and we denote it by N_{E}^{i}. Thus,
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for a submanifold V^{m} with H\neq 0 we can choose p vectors \{N_{E}^{i}, N_{m+2}^{i}, \cdots ,
N_{m+p}^{i}\} as a set of p mutually orthogonal unit vectors normal to V^{m} . In
this case, from (1. 7) and (1. 8) we have

(2. 1) H_{P}= \frac{1}{m}b_{P\alpha}^{\alpha}=0 (P=m+2, \cdots, m+p)

Then we get

(2. 2) H=H_{E}= \frac{1}{m}b_{E\alpha}^{\alpha} ,

where .w,e..have used the index E in place of m+1 . Then we have

Lemma 2. 3. (K. Yano [10]) Let V^{m} be a submanifold of M^{m+p} and
H\neq 0 everywhere on V^{m} . Then the following statements (i) and (ii) are
equivalent :

(i) H=const. and \Gamma_{E\alpha}^{\prime\prime P}=0 . (P=m+2, \cdots, m+p ; \alpha=1, \cdots, m)

(ii) The mean curvature vector fifield H^{i} is parallel with respect to
the connection induced on the normal bundle of V^{m} .
Furthermore, we have

Lemma 2. 4. Let V^{m} be a totally umbilical submanifold in M^{m+p}(c)

and H\neq 0 everywhere on V^{m} . Then the connection induced on the normal
bundle of V_{m} is trivial and the mean curvature vector fifield H^{i} is parallel
with respect to the connection induced on the normal bundle of V^{m} .

\S 3. Characterizations of totally umbilical submanifolds.

THEOREM 3. 1. Let V^{m} be a closed orientable submanifold in M^{m+p}(c)

( m\geqq 2 , p\geqq 3^{\backslash }, and the mean curvature H does not vanish everywhere on
V^{m} . Then V^{m} is totally umbilic if and only if

(i) there exists a skew symmetric tensor fifield T_{i_{1}\cdots i_{p}} along V^{m} such that
T_{i_{1}\cdots i_{a}\cdots t_{p};a}N_{m^{1}+1}^{i}\cdots B_{\beta^{a}}^{i}\cdots N_{m^{p}+p}^{i}

+T_{i_{1}\cdots i_{a}\cdots i_{p};\beta}N_{m^{1}+1}^{i}\cdots B_{\alpha}^{i}a\ldots N_{m+p}^{i_{p}}=\Phi_{m+a}g_{\alpha\beta}

for some functions \Phi_{m+a}(a=1, \cdots, p) and

T_{i_{1}\cdots i_{p}}N_{n^{1}+1}^{i}\cdots N_{m+p}^{i_{p}}

has fifixed sign on V^{m},
(ii) the mean curvature vector fifield H^{i} is parallel with respect to the

connection induced on the normal bundle of V^{m} ,
(iii) the connection induced on the normal bundle of V^{m} is trivial.

PROOF. The condition (i) for a skew symmetric tensor field T_{i_{1}\cdots i_{p}} is
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independent on the choice of a set of p mututally orthogonal unit normal
vector fields \{N_{m+1}^{i}, \cdots, N_{m+p}^{i}\} (Cf. [6]). Then we prove Theorem 3. 1 with
respect to a suitable set of p mutually orthogonal unit normal vector fields.

Let V^{m} be a totally umbilical submanifold in M^{m+p}(c) and H\neq 0 every-
where on V^{m} . Then we can choose \{N_{E}^{i}, N_{m+2^{ }}^{i},\cdots, N_{m+p}^{i}\} as a set of p
mutually orthogonal unit normal vector fields along V_{m} . From Lemma 2. 4,
V^{m} satisfies (ii) and (iii). Now, we put

(3. 1)
T_{i_{1}i_{2}\cdots i_{p}}= \sum_{\sigma\in S(i_{1},\cdots i_{p})}

sgn (a) N_{E\sigma(i_{1})}N_{m+2\sigma(i_{2})}\cdots N_{m+p\sigma(i_{p})},\cdot

where S(i_{1^{ }},\cdots, i_{p}) denotes the symmetric group of all permutations of p
integers i_{1} , \cdots , i_{p} . Then T_{i_{1}\cdots i_{p}} is a skew symmetric tensor field along V^{m} .
In this case T_{i_{1}\cdots i_{p}}N_{E^{1}}^{i}N_{m+2}^{i_{2}}\cdots N_{m^{p}+p}^{i}=1 on V^{m} and we can easily verify that
T_{i_{1}\cdots i_{p}} satisfies the first relation of (i) for \Phi_{m+1}=-2H and \Phi_{m+a}=0(a=2 ,
\ldots , p) . Therefore the skew symmetric tensor field T_{i_{1}\cdots i_{p}} defined by (3. 1)
satisfies (i).

Next, we show that if we assume (i)-(iii) , then V^{m} is a totally umbilical
submanifold.

Let \{N_{m+1^{ }}^{i},\cdots, N_{m+p}^{i}\} be a set of p mutually orthogonal unit normal
vector fields and with respect to this set \Gamma_{P\alpha}^{\prime\prime Q}=0(P, Q=m+1, \cdots , m+p ;
\alpha=1 , \cdots , m) . Then, by means of Lemma 2. 1 and Lemma 2. 2 it follows that

(3. 2) b_{P\alpha;\beta}^{\alpha}=0 , b_{P\alpha;\beta}^{\beta}=0 (P=m+1, \cdots, m+p)

Now we put

\xi_{a}=\sum_{a=1}^{p}b_{m+a\alpha}^{\gamma}T_{i_{1}\cdots i_{a}\cdots i_{p}}N_{m^{1}+1}^{i}\cdots B_{r^{a}}^{i}\cdots N_{m+p}^{i_{p}} ,

\eta_{\alpha}=\sum_{a=1}^{p}b_{m+a_{f}^{f}}T_{i_{1}\cdots i_{a}\cdots i_{p}}N_{m^{1}+1}^{i}\cdots B_{\alpha}^{i_{a}}\cdots N_{m+p}^{i_{p}}1

By means of (1. 2), (1. 3), (3. 2) and skew symmetric property of T_{i_{1}\cdots i_{p}} we
obtain

\xi_{;a}^{a}=f\sum_{P}b_{P}^{fr}b_{P\beta\gamma}+\frac{1}{2}\sum_{a=1}^{p}b_{m+a}^{\beta\gamma}(T_{i_{1}\cdots t_{a}\cdots i_{p};\rho}N_{m^{1}+1}^{i}\cdots B_{r^{g}}^{i}\cdots N_{m^{p}+p}^{i}

+T_{i_{1}\cdots i_{a}\cdots i_{p};\gamma}N_{m^{1}+1}^{i}\cdots B_{\beta^{a}}^{i}\cdots N_{m^{p}+p}^{i}) ,

\eta_{;a}^{\alpha}=f\sum_{P}(b_{P\gamma}^{\gamma})^{2}+\frac{1}{2}\sum_{a=1}^{p}b_{m+a\gamma}^{r}(T_{i_{1}\cdots i_{a}\cdots i_{p};a}N_{m^{1}+1}^{i}\cdots B_{\beta^{a}}^{i}\cdots N_{m^{p}+p}^{i}

+T_{i_{1}\cdots i_{a}\cdots i_{p};\beta}N_{m^{1}+1}^{i}\cdots B_{\alpha^{g}}^{i}\cdots N_{m^{p}+p}^{i})g^{a\beta}’.
where we put f=T_{i_{1}\cdots i_{p}}N_{m^{1}+1}^{i}\cdots N_{m^{p}+p}^{i} .
get from the avove equations

Making use of our assumption (i), we
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\xi_{;\alpha}^{\alpha}=f\sum_{P}b_{P}^{\beta\gamma}b_{P\beta\gamma}+\frac{1}{2}\sum_{a=1}^{p}\Phi_{m+a}b_{m+a\gamma}^{\gamma} ,

\eta_{;\alpha}^{\alpha}=f\sum_{P}(b_{P_{\mathcal{T}}^{f}})^{2}+\frac{m}{2}\sum_{a=1}^{p}\Phi_{m+a}b_{m+a\gamma}^{r} .

Integrating both sides of these equations over V^{m} and applying the Green’s
theorem we get

(3. 3) \int_{V^{m}}\{f\sum_{P}b_{P}^{\beta\gamma}b_{P\beta\gamma}+\frac{1}{2}\sum_{a=1}^{p}\Phi_{m+a}b_{m+a^{\gamma}}r\}dV=0 ,

(3. 4) \int_{r^{m}}\{f\sum_{P}(b_{P^{f}}r)^{2}+\frac{m}{2}\sum_{a=1}^{p}\Phi_{m+a}b_{m+a\gamma}^{r}\}dV=0 ,

where dV denotes the volume element of V^{m} . Then, from (3. 3) and (3. 4)

we obtain

(3. 5) \int_{r^{m}}f\{m\sum_{P}b_{P}^{\beta\gamma}b_{P\beta\gamma}-\sum_{P}(b_{P\gamma}^{r})^{2}\}dV=0t

Therefore, from our assumption (i) and Lemma 1. 1, we can see that V^{m}

is a totally umbilical submanifold.
When p=2, that is, V^{m} is a closed orientable submanifold of codimension

2 with H\neq 0 , by virtue of Lemma 2. 3 the connection induced on the normal
bundle is trivial if the mean curvature vector field H^{i} is parallel with respect

to the connection induced on the normal bundle. Then we get

COROLLARY 3. Let V^{m} be a closed orientable submanifold in M^{m+2}(c)

and H\neq 0 everywhere on V^{m} . Then V^{m} is totally umbilic if and only if
(i) there exists a skew symmetric tensor fifield T_{ij} along V^{m} such that

T_{ij;\alpha}B_{\beta}^{i}N_{m+a}^{j}+T_{ij;\rho}B_{\alpha}^{i}N_{m+a}^{j}=\Phi_{m+a}g_{\alpha\beta}

for some functions \Phi_{m+a}(a=1,2) and T_{ij}N_{m+1}^{i}N_{m+2}^{j} has fifixed sign on V^{m},

(ii) the mean curvature vector fifield H^{i} is parallel with respect to the
connection induced on the normal bundle of V^{m} .

Finally we cansider the case of p=1 . When V^{m} is a hypersurface in
M^{m+1}, the Gauss and Weingarten formulas are

(3. 6) B_{\alpha;\beta}^{i}=b_{a\beta}N^{i} . N_{;a}^{i}---b_{\alpha}^{\beta}B_{\beta j}^{i}

and the mean curvature vector field H^{i} is

(3. 7) H^{i}=HN^{i}= \frac{1}{m}b_{r}^{r}N^{i} ,

where b_{a\beta}, N^{i} and H denotes the second fundamental tensor, contravariant
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component of a unit normal vector and mean curvature of V^{m} respectively.
By means of (3. 6) and (3. 7) it follows that H=const . if and only if (H_{;a}^{i})^{\perp}

=0.
Making use of the method of Y. Katsurada [3] for the study of hyper-

surface in an Einstein space, we get

COROLLARY 3. 3. Let V^{m} be a closed orientable hypersurface in an
Einstein space R^{m+1} and H\neq 0 everywhere on V^{m} . Then V^{m} is an umbilical
hypersurface if and only if

(i) there exists a vector fifield T_{i} along V^{m} such that
T_{i;\alpha}B_{\beta}^{i}+T_{i;\beta}B_{\alpha}^{i}=\Phi g_{a\beta}

for some function \Phi , and T_{i}N^{i} has fifixed sign on V^{m},
(ii) H=const.
PROOF. Let V^{m} be an umbilical hypersurface in an Einstein space

R^{m+1} . In this case the Codazzi equation is

(3. 8) R_{ihfk}N^{i}B_{\alpha}^{h}B_{\beta}^{j}B_{r}^{k}=b_{\alpha\beta;\gamma}-b_{\alpha\gamma;\beta} .
Since b_{\alpha\beta}=Hg_{\alpha\beta} , from (3. 8) we get (ii). Furthermore, if we put T_{i}=N_{t},

we have (i).
Next, we show that if we assume (i) and (ii), a closed orientable hyper-

surface V^{m} in R^{m+1} is an umbilical hypersurface. We put

\xi_{\alpha}=T_{i}B_{\alpha j}^{i} \eta_{\alpha}=b_{\alpha}^{r}T_{\dot{l}}B_{r}^{i}

By means of (3. 6) it follows that

\xi_{;a}^{a}=\frac{1}{2}g^{\alpha\beta}(T_{i;\beta}B_{\alpha}^{i}+T_{i;\alpha}B_{\beta}^{i})+b_{r}^{r}T_{i}N^{i} ,

\eta_{;\alpha}^{\alpha}=b_{;\alpha}^{\gamma\alpha}T_{i}B_{\gamma}^{i}+b_{\alpha}^{r}b_{\gamma}^{\alpha}T_{i}N^{i}+\frac{1}{2}b^{\alpha\beta}(T_{i;\beta}B_{\alpha}^{i}+T_{i;a}B_{\beta}^{i})

On the other hand, from (3. 8) we get b_{;\alpha}^{\gamma\alpha}=g^{\gamma\beta}b_{\alpha;\beta}^{\alpha} . Then from our
assumptions ( i_{1}^{\backslash } and (ii) we have

\xi_{;\alpha}^{\alpha}=\frac{m}{2}\Phi+b_{r}^{r}T_{i}N^{i} , \eta_{;\alpha}^{a}=\frac{1}{2}b_{r}^{r}\Phi+b_{\alpha}^{\gamma}b_{r}^{\alpha}T_{i}N^{i} .

Integrating both sides of above equations over V^{m} and applying the Green’s
theorem we have

\int_{r^{m}}\{\frac{m}{2}\Phi+b_{r}^{r}T_{i}N^{i}\}dV=0 , \int_{r^{m}}\{\frac{1}{2}b_{r}^{r}\Phi+b_{\alpha}^{r}b_{r}^{\alpha}T_{i}N^{i}\}dV=0

Then, from our assumption (ii) we obtain
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\int_{r^{n}},\{mb_{\alpha}^{r}b_{\gamma}^{\alpha}-(b_{r}^{\gamma})^{2}\}T_{i}N^{i}dV=0t

Thus, from our assumption (i) and Lemma 1. 1, we can see that V^{m} is an
umbilical hypersurface.
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