Notes on totally umbilical submanifolds in constant curvature spaces

By Tamao Nagai and Hidemaro KôjYô
(Received December 21, 1981; Revised March 9, 1982)

Introduction. Let E^{n} be an n-dimensional Euclidean space and X_{x} be a position vector of a point $x \in E^{n}$ with respect to a fixed origin. Then a mapping $x \rightarrow X_{x}$ defines a position vector field in E^{n} and it is a homothetic Killing vector field. The position vector field in E^{n} plays an important role in the investigations of submanifolds in E^{n}. From this veiwpoint, Y. Katsurada [2] ${ }^{1)}$ introduced the idea such that a conformal Killing vecotr field is available for the study of hypersurfaces in an n-dimensional Riemannian space M^{n}. By virtue of this idea, various results for global properties of closed orientable hypersurfaces in E^{n} have been generalized for those in M^{n} [4]. In the present paper, a closed submanifold means a compact connected submanifold without boundary.

Now, an odd dimensional sphere $S^{2 n+1}$ has a normal contact metric structure [8]. Making use of the properties of this structure, M. Okumura [7] gave a condition for a closed orientable sumbanifold of codimension 2 in $S^{2 n+1}$ to be totally umbilic.

A skew symmetric tensor field $T_{i_{1} \cdots i_{p}}$ in M^{n} is called a conformal Killing tensor field of degree p ([9], [1]), if there exists a skew symmetric tensor field $\rho_{i_{1} \cdots i_{p-1}}$ such that

$$
\begin{aligned}
& T_{i_{1} \cdots i_{p} ; i}+ \\
& =2 T_{i i_{2} \cdots i_{p} ; i_{1}} \\
& =2 \rho_{i_{2} \cdots i_{p}} g_{i_{1} i} \\
& \quad-\sum_{h=2}^{p}(-1)^{h}\left\{\rho_{i_{1} \cdots i_{h} \cdots i_{p}} g_{i i_{h}}+\rho_{i \cdots i_{h} \cdots i_{p}} g_{i_{1} i_{h}}\right\}
\end{aligned}
$$

where the symbol \wedge over i_{h} indicates the index i_{h} is to be omitted and the symbol; means the covariant differentiation with respect to the Christoffel symbols formed with the metric tensor $g_{i j}$ of M^{n}. Then we can see that the structure tensor field of a normal contact metric space is a conformal Killing tensor field of degree 2. M. Morohashi [5] has shown that S^{n} admits a conformal Killing tensor field of degree p for any positive integer

[^0]p such that $p \leqq n$. Then he used this tensor field for the study of submanifolds of codimension p in S^{n} and gave a certain generalization of the theorem due to M. Okumura. This result suggested to us that a conformal Killing tensor field of degree p in M^{n} may be used effectively for the study of submanifolds of codimension p in M^{n}. In particular, when an ambent space is a constant curvature space we have

Theorem (M. Morohashi [6]). Let $M^{m+p}(c)$ and $V^{m}(m, p \geqq 2)$ be an ($m+p$)-dimensional Riemannian space of constant curvature c and an m dimensional closed orientable sumbanifold in $M^{m+p}(c)$ respectively If
(i) $M^{m+p}(c)$ admits a conformal Killing tensor field $T_{i_{1} \ldots v_{p}}$
(ii) the mean curvature vector field of V^{m} is parallel with respect to the connection induced on the normal bundle of V^{m},
(iii) the connection induced on the normal bundle of V^{m} is trivial,

then V^{m} is a totally umbilical submanifold.
The purpose of the present paper is to show that a totally umbilical submanifold is characterized by the existence of a certain tensor field along the sumbanifold. $\S 1$ is devoted to give some notations and fundamental formulas in the theory of submanifolds in a Riemannian space. In § 2 we give some lemmas for a submanifold with parallel mean curvature vector field. In § 3 we give a necessary and sufficient condition for a closed orientable submanifold to be totally umbilic.
§ 1. Preliminaries. Let $M^{m+p}(c)$ be an $(m+p)$-dimensional Riemannian space of constant curvature c covered by a system of coordinate neighborhoods $\left\{U ; x^{i}\right\}$ and denote by $g_{i j}, \Gamma_{i j}^{h}$ and $R_{i h j k}$ the metric tensor, the Christoffel symbols formed with $g_{i j}$ and the curvature tensor respectively. Then we have

$$
\begin{equation*}
R_{i h j k}=c\left(g_{i k} g_{h j}-g_{i j} g_{h k}\right) . \tag{1.1}
\end{equation*}
$$

We then consider an m-dimensional Riemannian space V^{m} covered by a system of coordinate neighborhoods $\left\{V ; u^{a}\right\}$ and denote by $g_{\alpha \beta}, \Gamma_{\alpha ;}^{\prime ;}$ and $R_{{ }_{j \alpha \beta \gamma}}^{\prime}$ the metric tensor, the Christoffel symbols formed with $g_{\alpha \beta}$ and the curvature tensor respectively.

We assume that V^{m} is isometrically immersed in $M^{m+p}(c)$ by the immersion : $V^{m} \rightarrow M^{m+p}(c)$ and represent the immersion by

[^1]$$
x^{i}=x^{i}\left(u^{\alpha}\right) \quad(i=1,2, \cdots, m+p ; \alpha=1,2, \cdots, m) .{ }^{3)}
$$

Since the immersion is isometric, we have

$$
g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{j} . \quad\left(B_{\alpha}^{i}=\partial x^{i} / \partial u^{\alpha}\right)
$$

We choose p mutually orthogonal unit vectors $N_{P}^{i}(P=m+1, \cdots, m+p)^{4)}$ normal to V^{m}. Denoting by the symbol; the covariant differentiation along V^{m} due to van der Waerden-Bortolotti, we have the following formulas of Gauss and Weingarten for V^{m} :

$$
\begin{equation*}
B_{\alpha ; \beta}^{i}=\sum_{P} b_{P \alpha \beta} N_{P}^{i} \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
N_{P ; \alpha}^{i}=-b_{P \alpha}^{\beta} B_{\beta}^{i}+\Gamma_{P \alpha}^{\prime \prime}{ }_{P \alpha} N_{Q}^{i}, \tag{1.3}
\end{equation*}
$$

where $b_{P_{\alpha} \beta}$ denotes the second fundamental tensor with respect to the normal vector $N_{P}^{i}, b_{P_{\alpha}}^{\beta}=g^{\beta \gamma} b_{P \alpha \gamma}$ and $\Gamma_{P \alpha}^{\prime \prime} Q_{P \alpha}$ indicate components of a connection induced on the normal bundle of V^{m}, that is

$$
\Gamma^{\prime \prime} Q_{P \alpha}=\left(N_{P ; \alpha}^{i}+\Gamma_{k j}^{i} N_{P}^{k} B_{\alpha}^{j}\right) N_{Q i} .
$$

By means of (1.1)-(1.3) we have the following Gauss and Codazzi equations :

$$
\begin{align*}
& R_{{ }_{\delta \alpha \beta \gamma}}^{\prime}=c\left(g_{\alpha \beta} g_{\delta_{r}}-g_{\alpha \gamma} g_{\partial \beta}\right)+\sum_{P r}\left(b_{P \alpha \beta} b_{P \delta_{r}}-b_{P \alpha \gamma} b_{P o \beta}\right), \tag{1.4}\\
& b_{P \alpha \beta ; \gamma}-b_{P \alpha \gamma ; \beta}-b_{Q \alpha \beta} \Gamma^{\prime \prime} Q_{\gamma \gamma}+b_{Q_{\alpha \gamma}} \Gamma_{P \beta}^{\prime \prime Q_{P \beta}}=0 .
\end{align*}
$$

When there exist p mutually orthogonal unit normal vector fields N_{P}^{i} such that $\Gamma_{P \alpha}^{\prime \prime}=0(P, Q=m+1, \cdots, m+p ; \alpha=1, \cdots, m)$, we asy that the connection induced on the normal bundle of V^{m} is trivial. It has been shown that the connection induced on the normal bundle of V^{m} is trivial if and only if

$$
\begin{equation*}
b_{P_{\alpha}^{\gamma}}^{\gamma} b_{Q}^{\beta}=b_{Q \alpha}^{\gamma} b_{P r}^{\beta} \quad(P, Q=m+1, \cdots, m+p) \tag{1.6}
\end{equation*}
$$

be satisfied.
Let N^{i} be an arbitrary vector field in the normal bundle of V^{m}. When $\left(N_{;}^{i}{ }_{;}\right)^{\perp}=0$, i. e., the vector $N^{i} ; \alpha$ is tangent to V^{m} everywhere, the vector field N^{i} is said to be parallel with respct to the connection induced on the normal bundle of V^{m}, where ()$^{\perp}$ denotes the normal part of a vector in the round bracket.

The invariant normal vector field H^{i} defined by

$$
\begin{equation*}
H^{i}=\frac{1}{m} \sum_{P} b_{P \alpha}^{\alpha} N_{P}^{i} \tag{1.7}
\end{equation*}
$$

3) The Latin indices i, j, k, \cdots and the Greek indices $\alpha, \beta, \gamma, \cdots$ run over the range $1,2, \cdots$, $m+p$ and $1,2, \cdots, m$, respectively.
4) The capital Latin indices P, Q, R, \cdots run over the range $m+1, \cdots, m+p$.
is called the mean curvature vector field of V^{m} and its magnitude H is called the mean curvature.

Denote by $\kappa_{P 1}, \kappa_{P 2}, \cdots, \kappa_{P m}$ the eigen values of $b_{P \alpha \beta}$ relative to $g_{\alpha \beta}$ and put

$$
\begin{equation*}
H_{P}=\frac{1}{m} \sum_{\alpha} \kappa_{P_{\alpha}}\left(=\frac{1}{m} b_{P_{\alpha}^{\alpha}}^{\alpha}\right) . \tag{1.8}
\end{equation*}
$$

H_{P} is called the 1 -st mean curvature of V^{m} with respect to N_{P}. At a point of V^{m}, if we have $\kappa_{P 1}=\kappa_{P 2}=\cdots=\kappa_{P m}$ for a fixed integer P then the point is said to be umbilic with respect to N_{P}. A point of V^{m} is umbilic with respect to N_{P} if and only if

$$
\begin{equation*}
b_{P \alpha \beta}=H_{P} g_{\alpha \beta} \tag{1.9}
\end{equation*}
$$

be satisfied at the point. When (1.9) holds good for $P=m+1, \cdots, m+p$ at every point of V^{m}, the submanifold V^{m} is said to be totally umbilic. From the identity

$$
b_{P_{\alpha \beta}} b_{P}^{\alpha \beta}-\frac{1}{m}\left(b_{P r}^{\tau}\right)^{2}=\left(b_{P_{\alpha \beta}}-\frac{1}{m} b_{P r}^{\gamma} g_{\alpha \beta}\right)\left(b_{P}^{\alpha \beta}-\frac{1}{m} b_{P r}^{\gamma} g^{\alpha \beta}\right),
$$

and the positive definiteness of the Riemannian metric $g_{\alpha \beta}$ we have
Lemma 1.1. Let V^{m} be a submanifold in M^{m+p}. Then V^{m} is totally umbilic if and only if

$$
b_{P_{\alpha \beta}} b_{P}^{\alpha \beta}=\frac{1}{m}\left(b_{P}^{\tau}\right)^{2} \quad(P=m+1, \cdots, m+p)
$$

be satisfied at every point of V^{m}.
§ 2. Submanifolds with parallel mean curvature vector field. By virtue of (1.3) and (1.7) we get

Lemma 2.1. Let V^{m} be a submanifold in M^{m+p}. Then the mean curvature vector field H^{i} is parallel with respect to the connection induced on the normal bundle of V^{m} if and only if $b_{P \alpha ; \beta}^{\alpha}=b_{Q \alpha}^{\alpha} \Gamma_{P \beta}^{\prime \prime Q}$.
Furthermore, by means of (1.5) and Lemma 2.1 it follows that
Lemma 2.2. Let V^{m} be a submanifold in $M^{m+p}(c)$ and the mean curvature vector field H^{i} is parallel with respect to the connection induced on the normal bundle of V^{m}, then $b_{P \alpha ; \beta}^{\beta}=b_{Q \alpha}^{\beta} \Gamma^{\prime \prime Q_{P \beta}}$.

If the mean curvature H of V^{m} does not vanish everywhere on V^{m}, we have a uniquely determined unit normal vector at every point of V^{m} which has the same direction with the mean curvature vector H^{i} at the point. This is called the Euler vector field and we denote it by N_{E}^{i}. Thus,
for a submanifold V^{m} with $H \neq 0$ we can choose p vectors $\left\{N_{E}^{i}, N_{m+2}^{i}, \cdots\right.$, $\left.N_{m+p}^{i}\right\}$ as a set of p mutually orthogonal unit vectors normal to V^{m}. In this case, from (1.7) and (1.8) we have

$$
\begin{equation*}
H_{P}=\frac{1}{m} b_{P \alpha}^{\alpha}=0 . \quad(P=m+2, \cdots, m+p) \tag{2.1}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
H=H_{E}=\frac{1}{m} b_{E \alpha}^{\alpha}, \tag{2.2}
\end{equation*}
$$

where we have used the index E in place of $m+1$. Then we have
Lemma 2.3. (K. Yano [10]) Let V^{m} be a submanifold of M^{m+p} and $H \neq 0$ everywhere on V^{m}. Then the following statements (i) and (ii) are equivalent:
(i) $\quad H=$ const. and $\Gamma^{\prime \prime}{ }_{E \alpha}^{P}=0 . \quad(P=m+2, \cdots, m+p ; \alpha=1, \cdots, m)$
(ii) The mean curvature vector field H^{i} is parallel with respect to the connection induced on the normal bundle of V^{m}.
Furthermore, we have
Lemma 2.4. Let V^{m} be a totally umbilical submanifold in $M^{m+p}(c)$ and $H \neq 0$ everywhere on V^{m}. Then the connection induced on the normal bundle of V_{m} is trivial and the mean curvature vector field H^{i} is parallel with respect to the connection induced on the normal bundle of V^{m}.
\S 3. Characterizations of totally umbilical submanifolds.
Theorem 3.1. Let V^{m} be a closed orientable submanifold in $M^{m+p}(c)$ ($m \geqq 2, p \geqq 3$) and the mean curvature H does not vanish everywhere on V^{m}. Then V^{m} is totally umbilic if and only if
(i) there exists a skew symmetric tensor field $T_{i_{1} \cdots i_{p}}$ along V^{m} such that

$$
\begin{aligned}
& T_{i_{1} \cdots i_{a} \cdots i_{p} ; \alpha} N_{m+1}^{i_{1}} \cdots B_{\beta}^{i_{a} \cdots} N_{m+p}^{i_{p}} \\
& \quad+T_{i_{1} \cdots i_{a} \cdots i_{p} ; \beta} N_{m+1}^{i_{1}} \cdots B_{a}^{i_{a} \cdots N_{m+p}^{i_{p}}=\Phi_{m+a} g_{\alpha \beta}}
\end{aligned}
$$

for some functions $\Phi_{m+a}(a=1, \cdots, p)$ and

$$
T_{i_{1} \cdots i_{p}} N_{m+1}^{i_{1}} \cdots N_{m+p}^{i_{p}}
$$

has fixed sign on V^{m},
(ii) the mean curvature vector field H^{i} is parallel with respect to the connection induced on the normal bundle of V^{m},
(iii) the connection induced on the normal bundle of V^{m} is trivial.

Proof. The condition (i) for a skew symmetric tensor field $T_{i_{1} \cdots i_{p}}$ is
independent on the choice of a set of p mututally orthogonal unit normal vector fields $\left\{N_{m+1}^{i}, \cdots, N_{m+p}^{i}\right\}$ (Cf. [6]). Then we prove Theorem 3.1 with respect to a suitable set of p mutually orthogonal unit normal vector fields.

Let V^{m} be a totally umbilical submanifold in $M^{m+p}(c)$ and $H \neq 0$ everywhere on V^{m}. Then we can choose $\left\{N_{E}^{i}, N_{m+2}^{i}, \cdots, N_{m+p}^{i}\right\}$ as a set of p mutually orthogonal unit normal vector fields along V_{m}. From Lemma 2.4, V^{m} satisfies (ii) and (iii). Now, we put

$$
\begin{equation*}
T_{i_{1} i_{2} \cdots i_{p}}=\sum_{\sigma \in S\left(i_{1}, \cdots i_{p}\right)} \operatorname{sgn}(\sigma) N_{E o\left(i_{1}\right)} N_{m+2 \sigma\left(i_{2}\right)} \cdots N_{m+p o\left(i_{p}\right)} \tag{3.1}
\end{equation*}
$$

where $S\left(i_{1}, \cdots, i_{p}\right)$ denotes the symmetric group of all permutations of p integers i_{1}, \cdots, i_{p}. Then $T_{i_{1} \cdots i_{p}}$ is a skew symmetric tensor field along V^{m}. In this case $T_{i_{1} \cdots i_{p}} N_{E}^{i_{1}} N_{m+2}^{i_{2}} \cdots N_{m+p}^{i_{p}}=1$ on V^{m} and we can easily verify that $T_{i_{1} \cdots i_{p}}$ satisfies the first relation of (i) for $\Phi_{m+1}=-2 H$ and $\Phi_{m+a}=0 \quad(a=2$, $\cdots, p)$. Therefore the skew symmetric tensor field $T_{i_{1} \cdots i_{p}}$ defined by (3.1) satisfies (i).

Next, we show that if we assume (i)-(iii), then V^{m} is a totally umbilical submanifold.

Let $\left\{N_{m+1}^{i}, \cdots, N_{m+p}^{i}\right\}$ be a set of p mutually orthogonal unit normal vector fields and with respect to this set $\Gamma^{\prime \prime} \mathcal{P}_{\beta \alpha}=0(P, Q=m+1, \cdots, m+p$; $\alpha=1, \cdots, m)$. Then, by means of Lemma 2.1 and Lemma 2.2 it follows that

$$
\begin{equation*}
b_{P \alpha ; \beta}^{\alpha}=0, b_{P \alpha ; \beta}^{\beta}=0 . \quad(P=m+1, \cdots, m+p) \tag{3.2}
\end{equation*}
$$

Now we put

$$
\begin{aligned}
& \xi_{\alpha}=\sum_{a=1}^{p} b_{m+a_{\alpha}^{r}}^{r} T_{i_{1} \cdots i_{a} \cdots i_{p}} N_{m+1}^{i_{1}} \cdots B_{r}^{i_{a} \cdots N_{m+p}^{i_{p}}} \\
& \eta_{\alpha}=\sum_{a=1}^{p} b_{m+a_{\gamma}^{r}}^{r} T_{i_{1} \cdots i_{a} \cdots i_{p}} N_{m+1}^{i_{1}} \cdots B_{\alpha}^{i_{a} \cdots N_{m+p}^{i_{p}}}
\end{aligned}
$$

By means of (1.2), (1.3), (3.2) and skew symmetric property of $T_{i_{1} \cdots i_{p}}$ we obtain

$$
\begin{aligned}
& \xi^{\alpha} ; \alpha \\
&=f \sum_{P} b_{P}^{f r} b_{P_{\beta r}}+\frac{1}{2} \sum_{a=1}^{p} b_{m+a}^{\beta \gamma}\left(T_{i_{1} \cdots i_{a} \cdots i_{p} ; \beta} N_{m+1}^{i_{1}} \cdots B_{r}^{i a} \cdots N_{m+p}^{i_{p}}\right. \\
&\left.+T_{i_{1} \cdots i_{a} \cdots i_{p} ; r} N_{m+1}^{i_{1}} \cdots B_{\beta}^{i a} \cdots N_{m+p}^{i_{p}}\right), \\
& \eta^{\alpha} ; \alpha=f \sum_{P}\left(b_{P_{r}^{r}}^{i_{\gamma}}\right)^{2}+\frac{1}{2} \sum_{a=1}^{p} b_{m+a r}^{\gamma}\left(T_{i_{1} \cdots i_{a} \cdots i_{p} ; \alpha} N_{m+1}^{i_{1}} \cdots B_{\beta}^{i_{a} \cdots N_{m+p}^{i_{p}}}\right. \\
&\left.+T_{i_{1} \cdots i_{a} \cdots i_{p} ; \beta} N_{m+1}^{i_{1}} \cdots B_{\alpha}^{i_{a}} \cdots N_{m+p}^{i_{p}}\right) g^{\alpha \beta}
\end{aligned}
$$

where we put $f=T_{i_{1} \cdots i_{p}} N_{m+1}^{i_{1}} \cdots N_{m+p}^{i_{p}}$. Making use of our assumption (i), we get from the avove equations

$$
\begin{aligned}
\xi_{; \alpha}^{\alpha} & =f \sum_{P} b_{P}^{\beta \gamma} b_{P \beta_{r}}+\frac{1}{2} \sum_{a=1}^{p} \Phi_{m+a} b_{m+a_{r}^{\gamma}}^{\gamma} \\
\eta_{; \alpha}^{\alpha} & =f \sum_{P}\left(b_{P \gamma}^{\eta}\right)^{2}+\frac{m}{2} \sum_{a=1}^{p} \Phi_{m+a} b_{m+a_{r}^{r}}^{\gamma} .
\end{aligned}
$$

Integrating both sides of these equations over V^{m} and applying the Green's theorem we get

$$
\begin{align*}
& \int_{V^{m}}\left\{f \sum_{P} b_{P}^{\beta r} b_{\dot{P}_{\beta r}}+\frac{1}{2} \sum_{a=1}^{p} \Phi_{m+a} b_{m+a^{7}}\right\} d V=0 \tag{3.3}\\
& \int_{V^{m}}\left\{f \sum_{P}\left(b_{P_{r}^{r}}^{\tau}\right)^{2}+\frac{m}{2} \sum_{a=1}^{p} \Phi_{m+a} b_{m+a_{\tau}}^{\gamma}\right\} d V=0 \tag{3.4}
\end{align*}
$$

where $d V$ denotes the volume element of V^{m}. Then, from (3.3) and (3.4) we obtain

$$
\begin{equation*}
\int_{V^{m}} f\left\{m \sum_{P} b_{P}^{\beta_{P}^{r}} b_{P_{\beta_{r}}}-\sum_{P}\left(b_{P}^{r}\right)^{2}\right\} d V=0 \tag{3.5}
\end{equation*}
$$

Therefore, from our assumption (i) and Lemma 1.1 , we can see that V^{m} is a totally umbilical submanifold.

When $p=2$, that is, V^{m} is a closed orientable submanifold of codimension 2 with $H \neq 0$, by virtue of Lemma 2.3 the connection induced on the normal bundle is trivial if the mean curvature vector field H^{i} is parallel with respect to the connection induced on the normal bundle. Then we get

Corollary 3. Let V^{m} be a closed orientable submanifold in $M^{m+2}(c)$ and $H \neq 0$ everywhere on V^{m}. Then V^{m} is totally umbilic if and only if
(i) there exists a skew symmetric tensor field $T_{i j}$ along V^{m} such that

$$
T_{i j ; \alpha} B_{\beta}^{i} N_{m+a}^{j}+T_{i j ; \beta} B_{\alpha}^{i} N_{m+a}^{j}=\Phi_{m+a} g_{\alpha \beta}
$$

for some functions $\Phi_{m+a}(a=1,2)$ and $T_{i j} N_{m+1}^{i} N_{m+2}^{j}$ has fixed sign on V^{m},
(ii) the mean curvature vector field H^{i} is parallel with respect to the connection induced on the normal bundle of V^{m}.

Finally we cansider the case of $p=1$. When V^{m} is a hypersurface in M^{m+1}, the Gauss and Weingarten formulas are

$$
\begin{equation*}
B_{\alpha ; \beta}^{i}=b_{\alpha \beta} N^{i}, \quad N^{i}{ }_{; \alpha}=-b_{\alpha}^{\beta} B_{\beta}^{i}, \tag{3.6}
\end{equation*}
$$

and the mean curvature vector field H^{i} is

$$
\begin{equation*}
H^{i}=H N^{i}=\frac{1}{m} b_{7}^{r} N^{i} \tag{3.7}
\end{equation*}
$$

where $b_{\alpha \beta}, N^{i}$ and H denotes the second fundamental tensor, contravariant
component of a unit normal vector and mean curvature of V^{m} respectively. By means of (3.6) and (3.7) it follows that $H=$ const. if and only if $\left(H_{; \alpha}^{i}\right)^{\perp}$ $=0$.

Making use of the method of Y. Katsurada [3] for the study of hypersurface in an Einstein space, we get

Corollary 3.3. Let V^{m} be a closed orientable hypersurface in an Einstein space R^{m+1} and $H \neq 0$ everywhere on V^{m}. Then V^{m} is an umbilical hypersurface if and only if
(i) there exists a vector field T_{i} along V^{m} such that

$$
T_{i ; \alpha} B_{\beta}^{i}+T_{i ; \beta} B_{\alpha}^{i}=\Phi g_{\alpha \beta}
$$

for some function Φ, and $T_{i} N^{i}$ has fixed sign on V^{m},
(ii) $H=$ const.

Proof. Let V^{m} be an umbilical hypersurface in an Einstein space R^{m+1}. In this case the Codazzi equation is

$$
\begin{equation*}
R_{i h j k} N^{i} B_{\alpha}^{h} B_{\beta}^{j} B_{r}^{k}=b_{\alpha \beta ; \gamma}-b_{\alpha 7 ; \beta} \tag{3.8}
\end{equation*}
$$

Since $b_{\alpha \beta}=H g_{\alpha \beta}$, from (3.8) we get (ii). Furthermore, if we put $T_{i}=N_{i}$, we have (i).

Next, we show that if we assume (i) and (ii), a closed orientable hypersurface V^{m} in R^{m+1} is an umbilical hypersurface. We put

$$
\xi_{\alpha}=T_{i} B_{\alpha}^{i}, \quad \eta_{\alpha}=b_{\alpha}^{r} T_{i} B_{r}^{i}
$$

By means of (3.6) it follows that

$$
\begin{aligned}
& \xi_{; \alpha}^{\alpha}=\frac{1}{2} g^{\alpha \beta}\left(T_{i ; \beta} B_{\alpha}^{i}+T_{i ; \alpha} B_{\beta}^{i}\right)+b_{r}^{r} T_{i} N^{i}, \\
& \eta_{; \alpha}^{\alpha}=b_{; \alpha}^{\tau \alpha} T_{i} B_{r}^{i}+b_{\alpha}^{r} b_{r}^{\alpha} T_{i} N^{i}+\frac{1}{2} b^{\alpha \beta}\left(T_{i ; \beta} B_{\alpha}^{i}+T_{i ; \alpha} B_{\beta}^{i}\right) .
\end{aligned}
$$

On the other hand, from (3.8) we get $b^{r \alpha} ;{ }_{; \alpha}=g^{\gamma \beta} b_{\alpha ; \beta}^{\alpha}$. Then from our assumptions (i) and (ii) we have

$$
\xi_{; \alpha}^{\alpha}=\frac{m}{2} \Phi+b_{r}^{r} T_{i} N^{i}, \quad \eta_{; \alpha}^{\alpha}=\frac{1}{2} b_{\tau}^{\tau} \Phi+b_{\alpha}^{r} b_{r}^{\alpha} T_{i} N^{i}
$$

Integrating both sides of above equations over V^{m} and applying the Green's theorem we have

$$
\int_{V^{m}}\left\{\frac{m}{2} \Phi+b_{\tau}^{\tau} T_{i} N^{i}\right\} d V=0, \quad \int_{V^{m}}\left\{\frac{1}{2} b_{\tau}^{\tau} \Phi+b_{a}^{\tau} b_{\tau}^{\alpha} T_{i} N^{i}\right\} d V=0
$$

Then, from our assumption (ii) we obtain

$$
\int_{V^{m}}\left\{m b_{a}^{\tau} b_{\tau}^{\alpha}-\left(b_{r}^{r}\right)^{2}\right\} T_{i} N^{i} d V=0 .
$$

Thus, from our assumption (i) and Lemma 1.1 , we can see that V^{m} is an umbilical hypersurface.

References

[1] T. Kashiwada: On conformal Killing tensor; Nat. Sci. Rep. Ochanomizu Univ., 21 (1968) 67-74.
[2] Y. Katsurada: Generalized Minkowski formulas for closed hypersurfaces in Riemann space ; Ann. Mat. p. Appl., 57 (1962) 283-293.
[3] Y. Katsurada: On a certain property of closed hypersurface in an Einstein space, Comment. Math. Helv., 38 (1964) 165-171.
[4] Y. Katsurada, T. Nagai and H. Kôjyô: On submanifolds with constant mean curvature in a Riemannian manifold; Publ. Study Group of Geom., 9 (1975) 1-129.
[5] M. MOROHASHI: Certain properties of a submanifold in a sphere; Hokkaido Math. Jour., 2 (1973) 40-54.
[6] M. МОROHASHI: Compact orientable submanifolds in a Riemannian manifold of constant curvature admitting certain tensor field; Hokkaido Math. Jour., 2 (1973) 60-68.
[7] M. OkUMURA: Compact orientable submanifold of codimenstion 2 in an odd dimensional sphere; Tôhoku Math. Jour., 20 (1968) 8-20.
[8] S. Sasaki and Y. Hatakeyama: On differentiable manifolds with contact metric structure ; Jour. Math. Soc. Japan, 14 (1962) 249-271.
[9] S. Tachibana: On conformal Killing tensor in a Riemannian space; Tôhoku Math. Jour., 21 (1969) 56-64.
[10] K. Yano: Notes on submanifolds in a Riemannian manifold; Kodai Math. Sem. Rep., 21 (1969) 496-509.

Department of Mathematics
Hokkaido University

[^0]: 1) Numbers in bracketes refer to the references at the end of this paper.
[^1]: 2) $N_{P}^{i}(P=m+1, \cdots, m+p)$ denote the contravariant components of p mutually orthogonal unit vectors normal to V^{m}.
