Notes on the greatest harmonic minorant

Yukio NAGASAKA (Received October 25, 1985)

On the unit disk U:|z|<1 consider the line segments $I_n=[a_n,b_n]$ (n=1,2,...) on the real line such that $0< b_{n+1} < a_n < b_n$ and $a_n \downarrow 0$. Let $D=U-\bigcup_{n=1}^{\infty}I_n-\{0\}$ and $D_n=U-I_n$. Join D with D_n crosswise along each slit I_n (n=1,2,...). Denote by $R=R_{\{I_n\}}$ this infinite sheeted covering surface over |z|<1. Consider $u(z)=\log\frac{1}{|z|}$ on R. Then u is superharmonic on R. Denote by H the greatest harmonic minorant of u, that is $H(z)=\max\{h(z)\mid h\in HP(R) \text{ and } h\leq u \text{ on } R\}$, where HP(R) is the set of nonnegative harmonic functions on R. It is an open question whether H>0 or H=0 on R. Our result is the following.

THEOREM A. (i) If z=0 is an irregular boundary point of D, then H>0 on R.

(ii) There exists a sequence $\{I_n\}$ such that z=0 is a regular boundary point of D and H=0 on $R_{\{I_n\}}$.

Fix any sequences $\{a_n\}$ and $\{b_n\}$ such that $0 < b_{n+1} < a_n < b_n < 1$ (n=1, 2, ...) and $a_n \downarrow 0$. Set $I_n = [a_n, b_n]$. Let $\{k_n\}$ be any sequence of positive integers. For each I_n , consider

$$I_{n, m} = e^{im\theta_n} I_n \quad (\theta_n = \frac{2\pi}{2^{k_n}}: m = 1, 2, ..., 2^{k_n})$$

$$D = U - \bigcup_{n, m} I_{n, m} - \{0\} \text{ and } D_{n, m} = U - I_{n, m}.$$

Join D with $D_{n,m}$ crosswise along each slit $I_{n,m}$ $(m=1,2,\ldots,2^{k_n}: n=1,2,\ldots)$. Denote by $R_{\{k_n\}}$ this covering surface over |z|<1. The relative boundary $\partial R_{\{k_n\}}$ of $R_{\{k_n\}}$ consists of $D(|z|=1)=\bar{D}\cap(|z|=1)$ and $D_{n,m}$ $(|z|=1)=\bar{D}_{n,m}\cap(|z|=1)$ $(m=1,2,\ldots,2^{k_n}; n=1,2,\ldots)$. Let $\phi(r)$ be a non negative continuous function on (0,1] such that $\lim_{r\to 0}\phi(r)=\infty$ and $\phi(1)=0$.

THEOREM B. For any ϕ , there exists $\{k_n\}$ such that every nonnegative harmonic function v on $R_{\{k_n\}}$ with $v(z) \leq \phi(|z|)$ on D reduces to constant zero.

REMARK. For any $\{k_n\}$, consider Martin compactification R^* of $R = R_{\{k_n\}}$. Then there is always a point $p \in R^*$ -R such that the Martin kernel K (\bullet, p) is positive harmonic with boundary values 0 on ∂R .

Consider u on U. Denote by $u_E = u_E^U$ the regularized reduced function of u relative to $E = \bigcup_{n=1}^{\infty} I_n \cup \{0\}$ in u ([2]). Then u_E is superharmonic on U, $u_E \le u$ on U, $u_E = u$ on $\bigcup_{n=1}^{\infty} I_n$ and harmonic on U-E with boundary values u on $(\bigcup_{n=1}^{\infty} I_n) \cup (|z| = 1)$.

LEMMA 1. z=0 is a regular boundary point of D if and only if $u=u_E$ on U.

PROOF. Let $G(z, z_o)$ and $g(z, z_o)$ be the Green functions of U and D with pole $z_o \in D$ respectively. Then $g(z, z_o) = G(z, z_o) - G(\bullet, z_o)_E(z)$ on D. Since $g(z, z_o) = 0$ on $\bigcup_{n=1}^{\infty} I_n$,

$$\begin{split} \overline{\lim}_{\substack{z \to 0 \\ z \in D}} & g\left(z, z_o\right) = \overline{\lim}_{\substack{z \to 0 \\ z \in U}} & g\left(z, z_o\right) = G(0, z_o) - \lim_{\substack{\overline{z} \to 0 \\ z \in U}} & G(\bullet, z_o)_E(z) \\ & = G(z_o, 0) - G(\bullet, z_o)_E(0). \end{split}$$

Now let show $G(\bullet, z_o)_E(0) = G(\bullet, 0)_E(z_o)$. Set $E_n = \bigcup_{i=1}^n I_i$. Then $G(\bullet, z_o)_{E_n}$ and $G(\bullet, 0)_{E_n}$ are Green potentials, that is $G(\bullet, z_o)_{E_n}(z) = \int G(z, w) \, d\mu_{z_o}(w)$ and $G(\bullet, 0)_{E_n}(z) = \int G(z, w) \, d\mu_o(w)$, where μ_{z_o} and μ_o are measures on E_n . Since every point of E_n is a regular boundary point of E_n , $G(\bullet, z_o)_{E_n} = G(\bullet, z_o)$ on E_n and $G(\bullet, 0)_{E_n} = G(\bullet, 0)$ on E_n . Hence

$$G(\bullet, z_o)_{E_n}(0) = \int G(0, w) d\mu_{z_o}(w) = \int G(w, 0) d\mu_{z_o}(w)$$

$$= \int G(\bullet, 0)_{E_n}(w) d\mu_{z_o}(w) = \int \int G(w, z) d\mu_0(z) d\mu_{z_o}(w)$$

and so $G(\bullet, z_o)_{E_n}(0) = G(\bullet, 0)_{E_n}(z_o)$. Since $\{E_n\}$ is an increasing sequence and $E - \bigcup_{n=1}^{\infty} I_n = \{0\}$ is a polar set, it follows that $G(\bullet, z_o)_E(0) = G(\bullet, 0)_E$

$$(z_o) = u_E(z_o)$$
. Hence $\overline{\lim_{\substack{z \to 0 \ z \in D}}} g(z, z_o) = u(z_o) - u_E(z_o)$. Since $z = 0$ is a regular

boundary point of D if and only if $\overline{\lim_{\substack{z\to 0\\z\in D}}} g(z,z_o)=0$ for any $z_o\in D$, this lemma follows.

LEMMA 2. Let z=0 be a regular boundary point of D and let v be a positive harmonic function of D such that $v \le u$ on D. If there exists a real number 0 < c < 1 such that $\overline{\lim}_{z \to \xi} v(z) \le cu(\xi)$ for each $\xi \in \bigcup_{n=1}^{\infty} I_n$, then $v \le cu$ on D.

PROOF. Let v_n be harmonic on $G_n = (b_{n+1} < |z| < 1) - \bigcup_{i=1}^n I_i$ and continuous on $(b_{n+1} \le |z| \le 1)$ such that $v_n = u$ on $(|z| = b_{n+1})$, $v_n = cu$ on $E_n = \bigcup_{i=1}^n I_i$ and $v_n = 0$ on (|z| = 1) and let $u_{n,m}$ $(n \le m)$ be harmonic $(b_{m+1} < |z| < 1) \cdot E_n$ and continuos on $(b_{m+1} \le |z| \le 1)$ such that $u_{n,m} = u$ on E_n and $u_{n,m} = 0$ on $(|z| = b_{m+1}) \cup (|z| = 1)$. Then $v \le v_m \le cu + (u - u_{m,m})$ on G_m . Since $u_{n,m} \le u_{m,m} \le u_{E}$, $u_{n,m} \uparrow u_{E_n}$ $(m \to \infty)$ and $u_{E_n} \uparrow u_{E_n}$ $(n \to \infty)$, it follows that $\lim_{m \to \infty} u_{m,m} = u_{E}$. By Lemma 1, $u = u_{E}$. Hence $\lim_{m \to \infty} (u - u_{m,m}) = 0$ and so $v \le cu$ on D.

LEMMA 3. If $\{I_n\}$ satisfies $\sum_{n=1}^{\infty} \log \frac{b_n}{a_n} = \infty$, then z = 0 is a regular boundary point of D.

PROOF. Fix a point z_o with $b_1 < |z_o| < 1$. Let g(z) be the Green function on D with pole at z_o . Then the Dirichlet integral $D_{\Omega}(g)$ of g on $\Omega = D \cap (|z| < b_1)$. Set $M(r) = \sup\{g(z) \mid |z| = r\}$, $M_n = \inf\{M(r) \mid r \in I_n\}$ and $\Omega_n = D \cap (a_n < |z| < b_n)$. By Schwart's inequality,

$$D_{\Omega_n}(g) \leq \int_0^{2\pi} \int_{a_n}^{b_n} \frac{1}{r^2} \left(\frac{\partial g}{\partial \theta} \right)^2 r \ dr d\theta \leq \int_{a_n}^{b_n} \frac{1}{r} \ \frac{1}{2\pi} \left(\int_0^{2\pi} \left| \frac{\partial g}{\partial \theta} \right| d\theta \right)^2 dr.$$

Since g(r) = 0 for every $r \in I_n$,

$$\int_{0}^{2\pi} \left| \frac{\partial g}{\partial \theta} (re^{i\theta}) \right| d\theta \ge \int_{0}^{\theta} \frac{\partial g}{\partial \theta} (re^{i\theta}) d\theta = g(re^{i\theta})$$

for each θ and so $\int_0^{2\pi} \left| \frac{\partial g}{\partial \theta} (re^{i\theta}) \right| d\theta \ge M(r) \ge M_n$. Hence $D_{\Omega_n}(g) \ge \frac{1}{2\pi} M_n^2 \log \frac{b_n}{a_n}$ and so

$$D_{\Omega}(g) \ge \sum_{n=1}^{\infty} D_{\Omega_n}(g) \ge \frac{1}{2\pi} \sum_{n=1}^{\infty} M_n^2 \log \frac{b_n}{a_n}.$$

Since $\sum_{n=1}^{\infty} \log \frac{b_n}{a_n} = \infty$, this shows $\lim_{n \to \infty} M_n = 0$. Hence $\lim_{z \to 0} g(z) = 0$

and so z=0 is regular.

Let 0 < r < a < b < s < 1 and I = [a, b]. Join S = (r < |z| < s) - I and S' = (|z| < 1) - I crosswise along the slit I, and denote by Ω this covering surface over (|z| < 1). Then $\partial \Omega$ consists of $(|z| = r) \cup (|z| = s)$ on S and (|z| = 1) on S'. Let h be a harmonic function on Ω with boundary values $\log \frac{1}{|z|}$ on $\partial \Omega$. Then $h(z) = h(\overline{z})$ on each sheet.

LEMMA 4. If $r \le a^{\frac{3}{2}}$ and $s \ge b^{\frac{2}{3}}$, then $h(z) \le \frac{17}{18} \log \frac{1}{|z|}$ for all $z \in I$.

PROOF. Since $h(z) \leq \log \frac{1}{|z|}$ on Ω , $h \leq \log \frac{1}{a}$ on S' by the maximum theorem. For each z in A = (r < |z| < s) let z_1 and z_2 be the points in S and S' over z respectively. Then $\phi(z) = h(z_1) + h(z_2)$ is harmonic on A. Since $\phi(z) \leq \log \frac{1}{r} + \log \frac{1}{a} (=\alpha)$ on (|z| = r) and $\phi(z) \leq 2 \log \frac{1}{s} (=\beta)$ on (|z| = s), it follows that

$$\begin{split} \phi(z) & \leq (\alpha - \beta) \frac{\log \frac{s}{|z|}}{\log \frac{s}{r}} + \beta = \left(2 - \frac{\log \frac{a}{r}}{\log \frac{s}{r}}\right) \log \frac{1}{|z|} + \frac{\log \frac{a}{r}}{\log \frac{s}{r}} \log \frac{1}{s} \\ & (= \phi_1(z)) \text{ on } A. \quad \text{Since } h(z) = \frac{1}{2} \phi(z) \leq \frac{1}{2} \phi_1(z) \text{ on } I \text{ and } \log \frac{1}{|z|} \geq \log \frac{1}{b} \\ & \text{on } I, \end{split}$$

$$\frac{h(z)}{\log \frac{1}{|z|}} \leq \frac{\phi_1(z)}{2\log \frac{1}{|z|}} = 1 - \frac{1}{2} \frac{\log \frac{a}{r}}{\log \frac{s}{r}} + \frac{1}{2} \frac{\log \frac{a}{r}}{\log \frac{s}{r}} \frac{\log \frac{1}{s}}{\log \frac{1}{|z|}}$$

$$\leq 1 - \frac{1}{2} \cdot \frac{\log \frac{a}{r}}{\log \frac{s}{r}} \cdot \frac{\log \frac{s}{b}}{\log \frac{1}{b}}$$

on I. Since $r^{\frac{2}{3}} \le a$ and $b^{\frac{2}{3}} \le s < 1$, $\frac{a}{r} \ge \left(\frac{1}{r}\right)^{\frac{1}{3}} > \left(\frac{s}{r}\right)^{\frac{1}{3}}$ and $\frac{s}{b} \ge \left(\frac{1}{b}\right)^{\frac{1}{3}}$.

Hence
$$\frac{h(z)}{\log \frac{1}{|z|}} \le 1 - \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{17}{18}$$
 on *I*.

THE PROOF OF THEOREM A.

- (i) Take $\{I_n\}$ such that z=0 is an irregular boundary point of D and consider $R=R_{|I_n|}$. For $A\subset (|z|\le 1)$, denote by D(A) (resp. $D_n(A)$) the part of $D^*=(|z|\le 1)-\bigcup\limits_{n=1}^\infty I_n(\text{resp. }D^*_n=(|z|\le 1)-I_n)$ over A. Let R_n be the subregion of R bounded by $\partial R_n=D(|z|=b_{n+1})\cup D(|z|=1)\cup \bigcup\limits_{i=1}^n D_i(|z|=1)$). Let H_n be harmonic on R_n with boundary values $u=\log\frac{1}{|z|}$ on ∂R_n . Then $H_n\ge u-u_E$ on D and $H_n\downarrow H$ on R as $n\to\infty$. Since $u\ne u_E$ on D by Lemma 1, it follows that H>0 on R.
- (ii) Let $a_1=0.3$, $b_n=e^{\frac{1}{n}}a_n$ and $b_{n+1}=a^{\frac{2}{3}}$ (n=1,2,...) and consider $R=R_{+I_n}:I_n=[a_n,b_n]$, n=1,2,... For each n, let Ω_n be the subregion of R bounded by $\partial\Omega_n=D(|z|=b_{n+1})\cup D(|z|=a_{n-1})\cup D_n(|z|=1)$. The $H\leq \log\frac{1}{|z|}$ on Ω_n . Since $b_{n+1}=a^{\frac{3}{2}}$ and $b^{\frac{2}{3}}=a_{n-1}$, it follows from Lemma 4 that $H(z)\leq \frac{17}{18}\log\frac{1}{|z|}$ on I_n for each n. Since $\log\frac{b_n}{a_n}=\frac{1}{n}$, $\sum \log\frac{b_n}{a_n}=\infty$ and so z=0 is a regular boundary point of D by Lemma 3. Hence $H(z)\leq \frac{17}{18}\log\frac{1}{|z|}$ on D for every positive integer k. Therefore H=0 on R.

By Schwarz's inequality, we have Lemma 5 and Lemma 6.

LEMMA 5. Let f be a C^1 -function on $\Omega = (|z| \le 1, \text{ Im } z \ge 0, a \le \text{Re } z \le b)$ (0 < a < b < 1) with f = 0 on $\partial \Omega \cap (|z| = 1)$. Then

$$D\Omega(f) \ge \int_a^b \int_0^{\sqrt{1-x^2}} \left(\frac{\partial f}{\partial y} \right)^2 dy dx \ge \frac{1}{\sqrt{1-a^2}} \int_a^b [f(x, 0)]^2 dx.$$

Lemma 6. Let f be a C^1 -function on $\Omega=(a<|z|< b,\, \theta_1<\arg\ z<\theta_2)$ $(0\leq \theta_1<\theta_2<2\pi)$. For any a< r< b, denote by $Os_{\Omega}(f:r)$ the oscilation of f on $\{z\in\Omega\mid\ |z|=r\}$, that is $Os_{\Omega}(f:r)=\sup\{|f(re^{i\theta})-f(re^{i\theta'})|\ |\theta_1<\theta,\, \theta'<\theta_2\}$. Then

$$D_{\Omega}(f) \geq \int_{\theta_{1}}^{\theta_{2}} \int_{a}^{b} \left(\frac{1}{r} \frac{\partial f}{\partial \theta} \right)^{2} r \, dr \, d\theta \geq \frac{1}{(\theta_{2} - \theta_{1}) \, b} \int_{a}^{b} \left[Os_{\Omega}(f : r) \right]^{2} \, dr.$$

LEMMA 7. Let 0 < r < a < b < s < 1 and I = [a, b]. For any positive

integer k consider $I_m = e^{im\theta}I$ $(\theta = \frac{2\pi}{2^k}, m = 1, 2, ..., 2^k)$, $S = (r < |z| < s) - \frac{2^k}{2^k}I_m$ and $S_m = (|z| < 1) - I_m$. Join S with S_m crosswise along every slit I_m and denote Ω_k this covering surface. Then $\partial \Omega_k = S(|z| = r) \cup S(|z| = s) \cup \left(\begin{array}{c} 2^k \\ \bigcup_{m=1}^n S_m(|z| = 1) \end{array} \right)$. Let v_k be a non negative harmonic function on Ω_k with boundary values on $\partial \Omega_k$, $v_k = 1$ on $S(|z| = r) \cup S(|z| = s)$ and $v_k = 0$ on $\int_{m=1}^{2^k} S_m(|z| = 1)$. Then $\lim_{k \to \infty} \inf_{a < t < b} \max\{v_k : \Omega_k(|z| = t)\} = 0$ where $\Omega_k(|z| = t)$ is the part of Ω_k over (|z| = t).

PROOF. Let ω be harmonic on $S(r < |z| < a) \cup S(b < |z| < s)$ and continuous on $\Omega_k \cup \partial \Omega_k$ such that $\omega = 1$ on $S(|z| = r) \cup S(|z| = s)$ and $\omega = 0$ on Ω_k' , where Ω_k' is a subregion on Ω_k bounded by $S(|z| = a) \cup S(|z| = b) \cup \left(\begin{array}{c} 2^k \\ \bigcup_{m=1}^2 S_m(|z| = 1) \end{array} \right)$. Then $D_{\Omega_k}(v_k) \leq D_{\Omega_k}(\omega)$ (= A) by Dirichlet principle, and A is not dependent on k. Let $\Omega_{k,m}$ be the subregion of Ω_k bounded by S(|z| = r) or S(|z| = r) on each sheet S(|z| = r) on each sheet S(|z| = r) or S(|z

$$D_{\Omega_{k,m}}(v_k) = \frac{1}{2^k} D_{\Omega_k}(v_k) \leq \frac{A}{2^k} \to 0 \quad (k \to \infty).$$

Fix any $0 < \varepsilon < 1$. Applying Lemma 6 to $e^{im\theta}\Omega$ on S_m there exists a positive integer k_1 with following property: for any $k \ge k_1$ there exists a subset I' of I such that |I'|(=the length of $I') > \frac{3}{4} |I|$ and $v_k(z) < \varepsilon$ for every $z \in e^{im\theta}I'$ $(\theta = \frac{2\pi}{2^k}; m = 1, 2 ..., 2^k)$. Applying Lemma 7 to $S'_m = S(a < |z| < b, (m-1)$ $\theta < \arg z < m\theta)$ and S_m , there exists a positive integer k_2 with the following property: for any $k \ge k_2$ there exists a subset I'' of I such that $|I''| > \frac{3}{4} |I|$, $Os_{S'_m}(v_k : r) < \varepsilon$ and $Os_{S_m}(v_k : r) < \varepsilon$. Hence for any $k \ge \max(k_1, k_2)$ there exists a subset I^* of I such that $|I^*| > \frac{1}{2} |I|$ and $\max\{v_k : \Omega_k(|z| = t)\} < 2\varepsilon$ for any $t \in I^*$

THE PROOF OF THEOREM B.

Let $M_n = \max\{\phi(r) \mid r \in I_n\}$. Fix $0 < \varepsilon < 1$. For each n, take a positive integer k_n such that $\max\{M_n \ v_{k_n} : \Omega_{k_n}(|z| = t_n)\} < \varepsilon$ for some $t_n \in I_n$, where v_{k_n} is the HP function on Ω_{k_n} stated in Lemma 7 $(r = b_{n+1}, a = a_n, b = b_n \text{ and } s = a_{n-1})$. The covering surface $R_{\{k_n\}}$ over (|z| < 1) is a required example. Let v be an HP function on $R_{\{k_n\}}$ such that $v(z) \le \phi(|z|)$ on $R_{\{k_n\}}$. Since $v \le M_n v_{k_n}$ on Ω_{k_n} for each n, $v < \varepsilon$ on $R_{\{k_n\}}$ and so $v < \varepsilon^m$ for any positive integer m. This shows v = 0 on $R_{\{k_n\}}$.

References

- [1] C. CONSTANTINESCU and A. CORNEA: Ideale Ränder Riemannscher Flachen, Springer (1963).
- [2] L. HELMS: Introduction to potential theory, Wiley-Interscience, (1969).
- [3] M. HEINS: On the Lindelöf principle, Ann. of Math. 61 (1955), 440-473.

College of Medical Technology Hokkaido University