KMO-Langevin equation and Fluctuation-Dissipation Theorem (II)

Yasunori OKABE (Received April 8, 1985)

§ 1. Introduction

Let $R = (R_{pq})_{1 \le p, \ q \le d}$ be an M(d; C)-valued continuous and non-negative definite function on R, that is, for any $u = {}^t(u_1, u_2, \cdots, u_d) \in C^d$, $(Ru, u)_{C^d} = \sum_{p, \ q=1}^d \bar{u}_p u_q R_{pq}$ is a C-valued continuous and non-negative definite function on R, where d is a fixed integer through this paper and M(d; C) denotes the set of $d \times d$ -matrices over C. We define an M(d; C)-valued holomorhic function [R] on C^+ by

$$(1.1) \qquad [R](\zeta) \equiv \frac{1}{2\pi} \int_0^\infty e^{i\zeta t} R(t) dt.$$

Furthermore, let $A = (A(t); t \in \mathbb{R})$ be any stationary curve in a Hilbert space \mathcal{H}^d with R as its covariance matrix:

$$((A_p(t), A_q(s))_{\mathscr{R}})_{1 \leq p, q \leq d} = R(t-s),$$

where $A(t) = {}^t(A_1(t), A_2(t), \dots, A_d(t)).$

In [11], we have treated the case where d=1 and R satisfies the following conditions:

- (1.2) $R(0) \neq 0$
- (1.3) there exists a null set Λ_R in $R \{0\}$ such that $\lim_{\eta \downarrow 0} [R](\xi + i\eta)$ exists for any $\xi \in R \Lambda_R$
- (1.4) there exist positive constants c and m such that $|\lceil R \rceil(\xi)| \ge c(1+|\xi|^m)^{-1}$ for any $\xi \in \mathbb{C}^+$.

In the first half of [11], we have obtained a complete structure of the function [R] by introducing a second KMO-Langevin data (Theorems 4.1 and 4.2 in [11]). In the last half of [11], by using a spectral representation of the stationary curve A, we have introduced a Kubo noise from the point of view of Kubo's linear response theory in statistical physics. And we have

applied the complete form of the function [R] to derive an equation of motion describing the time evolution of the stationary curve A with the Kubo noise as the random force which we called a second KMO-Langevin equation (Theorem 7.1 in [11]). We have found that such a second KMO-Langevin equation gives a natural generalization of Stokes-Boussinesq-Langevin equation which describes the time evolution of Brownian motion with Alder-Wainwright effect ([12]). Furthermore we have shown that Kubo's fluctuation-dissipation theorem holds on the basis of the second KMO-Langevin equation with both a mathematical structure and a physical meaning (Theorems 8.1, 8.2 and 8.4 in [11]).

In the investigation of [11] stated above, it was fundamental to obtain a complete structure of the function [R]. For this reason, we shall in this paper obtain a complete form of the function [R] for the d-dimensional case in (1,1) under the following more general conditions (1,5) and (1,6) than conditions (1,2), (1,3) and (1,4) assumed in case d=1:

$$(1.5) R(0) \in GL(d; \mathbf{C})$$

and

(1.6)
$$D \equiv \lim_{\epsilon \downarrow 0} \int_0^\infty e^{-\epsilon t} R(t) dt$$
 exists and $D \in GL(d; C)$,

where GL(d; C) denotes the set of $d \times d$ -regular matrices over C.

We call the function $[R](2\pi R(0))^{-1}$ an M(d; C)-valued **mobility function** associated with R. We define two sets $\mathscr R$ and $\mathscr L$ by

 $\mathscr{R} \equiv \{R \; ; \; R \; \text{ is an } M(d \; ; \; C) \text{-valued continuous and non-negative definite function on } R \; \text{satisfying conditions} \; (1.5) \; \text{and} \; (1.6) \}$ and

$$\mathscr{L} \equiv \{(\alpha, \beta, \kappa);$$

- (i) $\alpha \in GL(d; \mathbf{C})$, $\alpha^* = \alpha$ and α is positive definite
- (ii) $\beta \in GL(d; \mathbf{C})$
- (iii) $\kappa \equiv (\kappa_{pq})_{1 \leq p, q \leq d}$;

(a) for each p, $q \in \{1, 2, \dots, d\}$ κ_{pq} is a C-valued Borel signed measure on R

(b) for any
$$u = {}^t(u_1, u_2, \dots, u_d) \in \mathbb{C}^d$$

$$\kappa_u = (\kappa u, u)_{\mathbb{C}^d} = \sum_{p, q=1}^d \bar{u}_p u_q \kappa_{pq} \text{ is a Borel measure on } \mathbf{R}$$

$$(c)\int_{\mathbf{R}} \frac{1}{1+\lambda^2} \kappa_u(d\lambda) < \infty$$
 for any $u \in \mathbf{C}^d$

$$(d) \quad \kappa^* = \kappa$$

$$(e) \lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} \frac{1}{\pi} \frac{\varepsilon}{\lambda^2 + \varepsilon^2} \kappa(d\lambda) = \frac{1}{\sqrt{2\pi}} (\beta \cdot \alpha + (\beta \cdot \alpha)^*)$$

(f)
$$\lim_{\eta \downarrow 0} (\lim_{\epsilon \downarrow 0} \int_{\mathbf{R}} (\frac{1}{\lambda - i\eta} - \frac{1}{\lambda - i\epsilon}) \kappa(d\lambda)) = 0$$

(iv) for any $\zeta \in C^+$

(1.7)
$$Z(\zeta) \equiv \beta - i\zeta - i\zeta \lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} \frac{1}{(\lambda - \zeta - i\varepsilon)(\lambda - i\varepsilon)} \kappa (d\lambda) \cdot (\sqrt{2\pi}\alpha)^{-1}$$
$$\in GL(d; \mathbf{C})$$

$$(v) \sup_{\eta>0} \int_{R} \operatorname{trace} (Z(\xi+i\eta)^{-1} \cdot \alpha + (Z(\xi+i\eta)^{-1} \cdot \alpha)^*) d\xi < \infty).$$

In § 2 we shall review Mori's theory of generalized Brownian motion ([6]), which can be applied to the case where the stationary curve A is differentiable. We shall in § 3 proceed a sort of renormalization to the results in § 2 in order that we can treat the class \mathcal{R} . By using the result in § 3 through an approximation procedure, we shall in § 4 and § 5 show the following main theorems in this paper.

Theorem 5.1 There exists a bijective mapping Φ from $\mathscr R$ onto $\mathscr L$ such that

$$[R](\xi) = Z(\xi)^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}}$$
 for any $\xi \in \mathbb{C}^+$,

where $R \in \mathcal{R}$ and $(\alpha, \beta, \kappa) = \Phi(R) \in \mathcal{L}$.

Furthermore, we shall give a formula by which the triple $(\alpha, \beta, \kappa) = \Phi(R)$ can be represented in terms of R.

THEOREM 5.2 Let R and (α, β, κ) be any element of \mathcal{R} and \mathcal{L} , respectively, such that $\Phi(R) = (\alpha, \beta, \kappa)$. Then

$$(i) \quad \alpha = \frac{R(0)}{\sqrt{2\pi}}$$

(ii)
$$\beta = R(0) \cdot D^{-1}$$

(iii)
$$\kappa(d\xi) = \frac{1}{(2\pi)^2} \lim_{\eta \downarrow 0} R(0) \cdot ([R](\xi + i\eta)^{-1} + ([R](\xi + i\eta)^{-1})^*) \cdot R(0) d\xi$$

 $in \mathscr{D}'(R).$

Let R and (α, β, κ) be any element of \mathscr{R} and \mathscr{L} , respectively, such that $\Phi(R) = (\alpha, \beta, \kappa)$. Then we call the triple (α, β, κ) a second KMO-Langevin data associated with R.

REMARK 1.1 Let $(\alpha, \beta, \kappa) \in \mathcal{L}$ be a second KMO-Langevin data associated with $R \in \mathcal{R}$. We note that, for d=1, the triple $(\alpha, \beta, \kappa \cdot (\sqrt{2\pi}\alpha)^{-1})$ corresponds to the second KMO-Langevin data associated with R given in Definition 4.1 of [11].

Under the general framework carried out in § 5, we shall in § 6 characterize a set $\Phi(\mathcal{R}_{sm})$ of second KMO-Langevin data associated with elements of \mathcal{H}_{sm} which were treated in § 3 (Theorem 6.1):

$$\mathscr{R}_{sm} \equiv \{ R \in \mathscr{R} ; \int_{R} \lambda^{2} (\Delta(d\lambda)u, u)_{C^{d}} < \infty \quad \text{for any } u \in C^{d},$$

where Δ is a spectral measure matrix of R.

Furthermore, by combining Theorem 6.1 with Theorems 5.1 and 5.2, we shall give a continued fraction expansion of the function [R] for $R \in \mathcal{R}_{sm}$ (Theorems 6.2 and 6.3).

Finally, we shall in § 7 characterize a set $\Phi(\mathcal{R}_{ds})$ of second KMO-Langevin data associated with elements of \mathcal{R}_{ds} which have spectral density matrices (Theorem 7.1):

$$\mathcal{R}_{ds} \equiv \{R \in \mathcal{R}; R \text{ has a spectral density matrix}\}.$$

Simultaneously, the intersection $\Phi(\mathcal{R}_{sm}) \cap \Phi(\mathcal{R}_{ds}) = \Phi(\mathcal{R}_{sm} \cap \mathcal{R}_{ds})$ will be characterized (Theorem 7.2).

In a forthcoming paper, we shall consider a stationary curve A in a Hilbert space \mathcal{H}^d whose covariance matrix R belongs to the set \mathcal{H}_{ds} . And we shall derive a differential-integral equation which R satisfies and then an equation of motion describing the time evolution of the stationary curve A by introducing a Kubo noise as a random force, which will be called a second-KMO-Langevin equation. Furthermore, we shall find that Kubo's fluctuation-dissipation theorem holds on the basis of the second-KMO-Langevin equation, which gives a justification of the nomenclature of the $M(d; \mathbf{C})$ -valued mobility function $[R](2\pi R(0))^{-1}$ and the second KMO-Langevin data (α, β, κ) .

§ 2. Mori's theory of generalized Brownian motion

Let \mathscr{H} be a Hilbert space with an inner product $(\bullet,*)_{\mathscr{H}}$ and L a self-adjoint operator on \mathscr{H} . We denote by $(U(t); t \in \mathbb{R})$ a strongly continuous one-parameter group of unitary operators on \mathscr{H} whose infinitesimal generator is equal to iL:

$$(2.1) U(t) = e^{itL}.$$

Furthermore we are given d vectors $A_p \in \mathcal{H} (1 \le p \le d)$, where d is a fixed positive integer. Then we define a stationary curve $A = (A(t); t \in \mathbb{R})$ in \mathcal{H}^d by

$$(2.2) A(t) \equiv \begin{pmatrix} A_1(t) \\ A_2(t) \\ \vdots \\ A_d(t) \end{pmatrix} = \begin{pmatrix} U(t)A_1 \\ U(t)A_2 \\ \vdots \\ U(t)A_d \end{pmatrix}$$

and then a covariance matrix R_A on R by

(2.3)
$$R_A(t) = ((A_p(t), A_q(0))_{\mathscr{X}})_{1 \le p, q \le d}.$$

In this section we suppose the following conditions:

(2.4)
$$\{A_p; 1 \le p \le d\}$$
 is linearly independent in \mathcal{H}

and

$$(2.5) \{A_p; 1 \leq p \leq d\} \subset \mathcal{D}(L).$$

We note that condition (2.4) is equivalent to the following condition:

$$(2.6) R_A(0) \in GL(d, \mathbf{C}).$$

It follows from (2.1), (2.2) and (2.5) that A(t) satisfies the following equation:

(2.7)
$$\dot{A}(t) = \begin{pmatrix} iLA_1(t) \\ iLA_2(t) \\ \vdots \\ iLA_d(t) \end{pmatrix} \text{ for any } t \in \mathbf{R},$$

where $\dot{A}(t) \equiv \frac{d}{dt}A(t)$

We shall remind of Mori's theory of generalized Brownian motion ([6]). The object of Mori's theory is to rewrite a sort of partial differential equation (2.7) into an ordinary differential-integral equation, which is divided into a dissipative part and a fluctuating part from the point of view of a fundamental principle in statistical physics. And these parts are related each other through Mori's fluctuation-dissipation theorem.

Let \mathcal{H}_0 be the closed subspace generated by $\{A_p; 1 \le p \le d\}$ and \mathcal{H}_1 be the orthogonal complementary subspace of \mathcal{H}_0 in \mathcal{H} . We denote by P_0 the projection operator on \mathcal{H}_0 . Then we define a linear operator L_1 in \mathcal{H}_1 by

(2.8)
$$\begin{cases} \mathscr{D}(L_1) \equiv \mathscr{H}_1 \cap \mathscr{D}(L) \\ L_1 u \equiv (I - P_0) L u \ (u \in \mathscr{D}(L_1)). \end{cases}$$

The fundamental point in the so-called projection method which is used in Mori's theory lies in the following

LEMMA 2.1 ([6]) L_1 is a self-adjoint operator on \mathcal{H}_1 .

We define an element ω of M(d; C) by

(2.9)
$$\omega = i^{-1} \dot{R}_A(0) \cdot R_A(0)^{-1}$$
.

Furthermore, by virtue of Lemma 2.1, we can define a stationary curve $I_M = (I_M(t); t \in \mathbb{R})$ in \mathcal{H}_1^d by

$$(2.10) \quad I_{M}(t) \equiv \begin{pmatrix} I_{M,1}(t) \\ I_{M,2}(t) \\ \vdots \\ I_{M,d}(t) \end{pmatrix} = \begin{pmatrix} V(t)(I-P_{0})\dot{A}_{1}(0) \\ V(t)(I-P_{0})\dot{A}_{2}(0) \\ \vdots \\ V(t)(I-P_{0})\dot{A}_{d}(0) \end{pmatrix},$$

where $(V(t); t \in \mathbb{R})$ is a strongly continuous one-parameter group of unitary operators on \mathcal{H}_1 whose infinitesimal generator is equal to iL_1 :

(2.11)
$$V(t) = e^{itL_1}$$
.

We define an M(d; C)-valued function ϕ_M on R by

$$(2.12) \quad \phi_{M}(t) = ((I_{M,p}(t), I_{M,q}(0))_{\mathscr{H}_{r}})_{1 \leq p, q \leq d} \cdot R_{A}(0)^{-1}.$$

Now we can state Mori's theory of generalized Brownian motion. Concerning the covariance matrix R_A , we have

THEOREM 2.1 ([6])

(i) For any $t \in \mathbf{R}$

$$\dot{R}_A(t) = i \omega \cdot R_A(t) - \int_0^t \phi_M(t-s) \cdot R_A(s) ds$$

(ii) For any $\xi \in \mathbb{C}^+$ $\int_0^\infty e^{i\xi t} R_A(t) dt = (-i\omega - i\xi + \int_0^\infty e^{i\xi t} \phi_M(t) dt)^{-1} \cdot R_A(0).$

Next, an equation of motion which describes the time evolution of $(A(t); t \in \mathbb{R})$ is given in

Theorem 2.2 ([6]) For any
$$t \in \mathbf{R}$$

$$\dot{A}(t) = i \, \omega \cdot A(t) - \int_0^t \phi_M(t-s) \cdot A(s) \, ds + I_M(t).$$

Furthermore, by (2.9), (2.10), (2.11) and (2.12), we have the following Mori's fluctuation-dissipation theorem.

THEOREM 2.3 ([6])

- (i) $\omega = i^{-1}\dot{R}_A(0) \cdot R_A(0)^{-1}$
- (ii) For any $t \in \mathbf{R}$ and p, $q \in \{1, 2, \dots, d\}$ $(A_p(0), I_{\mathbf{M}, q}(t))_{\mathscr{H}} = 0$
- (iii) For any s, $t \in \mathbb{R}$ $((I_{M,p}(t), I_{M,q}(s))_{\mathscr{H}})_{1 \leq p, q \leq d} = \phi_M(t-s) \cdot R_A(0).$

DEFINITION 2.1 (i) An equation in Theorem 2.2 is said to be *Mori's memory kernel equation*.

(ii) We call ω , ϕ_M and I_M in Mori's memory kernel equation frequency matrix, memory kernel matrix and Mori noise, respectively.

Immediately from (2.7), Theorems 2.3 (i) and 2.3 (ii), we have

Proposition 2.1

- (i) $(\omega \cdot R_A(0))^* = \omega \cdot R_A(0)$
- (ii) $\phi_M(\cdot) \cdot R_A(0)$ is an $M(d; \mathbf{C})$ -valued continuous and non-negative definite function on \mathbf{R} .

§ 3. A renormalization of Mori's theory

In this section we shall treat the same situation as § 2 and call it a smooth case. By (2.3) and Proposition 2.1 (ii), we can apply Bochner's theorem to see that there exist two bounded Borel spectral measure matrices Δ and κ on R such that

(3.1)
$$R_A(t) = \int_{\mathbf{R}} e^{-it\lambda} \Delta(d\lambda)$$

and

(3.2)
$$\phi_M(t) \cdot R_A(0) = \int_{\mathbf{R}} e^{-it\lambda} \kappa(d\lambda).$$

We define two M(d; C)-valued holomorphic functions $[R_A]$ and $[\phi_M]$ on R by

$$(3.3) \qquad [R_A](\xi) \equiv \frac{1}{2\pi} \int_0^\infty e^{i\xi t} R_A(t) dt = \frac{1}{2\pi i} \int_0^\infty \frac{1}{\lambda - \xi} \Delta(d\lambda)$$

and

$$(3.4) \qquad [\phi_{\scriptscriptstyle M}](\xi) \equiv \frac{1}{2\pi} \int_0^\infty \!\! e^{i\zeta t} \phi_{\scriptscriptstyle M}(t) \, dt = \frac{1}{2\pi i} \int_{\cal R} \frac{1}{\lambda - \zeta} \varkappa(d\lambda) \cdot R_{\scriptscriptstyle A}(0)^{-1}.$$

Besides conditions (2.4) and (2.5), we shall put the following condition (3.5) on R_A :

(3.5) $D \equiv \lim_{\epsilon \downarrow 0} 2\pi [R_A](i\epsilon)$ exists and $D \in GL(d; C)$.

Then we define an element β of GL(d; C) by

(3.6)
$$\beta \equiv R_{A}(0) \cdot D^{-1}$$
.

Now, we see from Theorem 2.1 (ii), (3.5) and (3.6) that

LEMMA 3.1

(i)
$$[\phi_M](0+i0) \equiv \lim_{\epsilon \downarrow 0} [\phi_M](i\epsilon)$$
 exists

(ii)
$$-i\omega + 2\pi [\phi_M](0+i0) = \beta$$
.

Next we define for each $\varepsilon > 0$ an M(d; C)-valued function γ_{ε} on R by

(3.7)
$$\gamma_{\epsilon}(t) \equiv -\chi_{(0,\infty)}(t) \int_{t}^{\infty} e^{-\epsilon s} \phi_{M}(s) ds.$$

A direct calculation yields

LEMMA 3.2

- (i) For any $\varepsilon > 0$ and p, $q \in \{1, 2, \dots, d\}$ $(\gamma_{\varepsilon})_{pq} \in L^{1}(\mathbf{R})$
- (ii) For any $\varepsilon > 0$ and $\xi \in \mathbb{C}^+$ $(-i\xi) \int_0^\infty e^{i\xi t} \gamma_{\varepsilon}(t) dt = 2\pi ([\phi_M](\xi + i\varepsilon) [\phi_M](i\varepsilon))$
- (iii) For any $\varepsilon > 0$ and $\zeta \in \mathbb{C}^+$ $\int_0^\infty e^{i\xi t} \gamma_{\varepsilon}(t) dt = \int_{\mathbb{R}} \frac{1}{(\lambda \zeta i\varepsilon)(\lambda i\varepsilon)} \kappa(d\lambda) \cdot R_A(0)^{-1}.$

Furthermore we define for each $\epsilon>0\;$ two $M(d\;;C)$ -valued functions K_ϵ and L_ϵ on $C^+\cup R$ by

(3.8)
$$K_{\varepsilon}(\xi) \equiv \int_{R} \frac{1}{(\lambda - \xi - i\varepsilon)(\lambda - i\varepsilon)} \chi(d\lambda) \cdot R_{A}(0)^{-1}$$

and

(3.9)
$$L_{\varepsilon}(\xi) \equiv (-i\xi) K_{\varepsilon}(\xi).$$

It then follows from Lemmas 2.1 (i), 3.2 (ii) and 3.2 (iii) that

Lemma 3.3

- (i) For each $\epsilon > 0$
 - (a) K_{ε} and L_{ε} are holomorphic on C^+
 - (b) K_{ε} and L_{ε} are continuous on $C^+ \cup R$
- (ii) For any $\xi \in C^+$

(a)
$$K(\zeta) \equiv \lim_{\epsilon \downarrow 0} K_{\epsilon}(\zeta)$$
 exists

(b)
$$L(\xi) \equiv \lim_{\epsilon \downarrow 0} L_{\epsilon}(\xi)$$
 exists and $L(\xi) = (-i\xi)K(\xi)$.

Immediately from (3.8), (3.9) and Lemma 3.3 (ii) (b), we have

LEMMA 3.4

(i) For any $\varepsilon > 0$ and $\xi \in C^+$ $L(\xi) = \frac{1}{2} \int_{-\infty}^{\infty} (dt) dt$

$$L_{\varepsilon}(\xi) = \frac{1}{i} \int_{R} \left(\frac{1}{\lambda - \xi - i\varepsilon} - \frac{1}{\lambda - i\varepsilon} \right) \kappa (d\lambda) \cdot R_{A}(0)^{-1}$$
(ii) For any $\varepsilon > 0$, $\xi \in C^{+}$ and $\eta_{0} > 0$

$$L_{\varepsilon}(\xi) = L_{\varepsilon}(i\eta_{0}) + \frac{1}{i} \int_{R} \frac{\xi - i\eta_{0}}{(\lambda - \xi - i\varepsilon)(\lambda - i(\eta_{0} + \varepsilon))} \kappa(d\lambda) \cdot R_{A}(0)^{-1}$$

(iii) For any
$$\xi \in C^+$$
 and $\eta_0 > 0$

$$L(\xi) = L(i\eta_0) + \frac{1}{i} \int_{R} \frac{\xi - i\eta_0}{(\lambda - \xi)(\lambda - i\eta_0)} \kappa(d\lambda) \cdot R_A(0)^{-1}$$

(iv) K and L are holomorphic on C^+ .

By using β in (3.6), we see from Lemmas 3.1 (ii), 3.2 (ii), 3.2 (iii) and 3.3 (ii) that Theorem 2.1 can be renormalized into the following

Theorem 3.1 For any
$$\xi$$
 \in C^+
$$[R_A](\xi) = (\beta - i\xi + L(\xi))^{-1} \cdot \frac{R_A(0)}{2\pi} \, .$$

For future use, we shall investigate some properties of the spectral measure matrix κ in (3.2).

Lemma 3.5

(i)
$$\lim_{\eta \downarrow 0} L(i\eta) = \lim_{\eta \downarrow 0} \eta K(i\eta) = 0$$

(ii) For any $\xi = \xi + i\eta \in C^+$

(ii) For any
$$\xi = \xi + i\eta \in C^+$$

$$\frac{1}{\pi} \int_R \frac{\eta}{(\lambda - \xi)^2 + \eta^2} \kappa(d\lambda) = [\phi_M](\xi) \cdot R_A(0) + ([\phi_M](\xi) \cdot R_A(0))^*$$

$$(iii) \quad \lim_{\eta \downarrow 0} \frac{1}{\pi} \int_{\mathbf{R}} \frac{\eta}{\lambda^2 + \eta^2} \kappa(d\lambda) = \frac{1}{2\pi} (\beta \cdot R_A(0) + (\beta \cdot R_A(0))^*)$$

(iv)
$$\kappa(\{0\}) = 0$$
.

RROOF (i) follows from (3.5), (3.6) and Lemma 3.3 (ii) (b). For the proof of (ii), let any $\xi = \xi + i\eta \in C^+$ be fixed. Since κ is a bounded spectral measure matrix, we see from (3.2) that

$$\begin{split} &\frac{1}{\pi} \int_{\mathbf{R}} \frac{\eta}{(\lambda - \xi)^2 + \eta^2} \kappa(d\lambda) \\ &= \frac{1}{2\pi} \int_{\mathbf{R}} \left(\int_0^{\infty} e^{-i(\lambda - \xi - i\eta)t} dt + \int_0^{\infty} e^{i(\lambda - \xi + i\eta)t} dt \right) \kappa(d\lambda) \end{split}$$

$$\begin{split} &= \frac{1}{2\pi} (\int_0^\infty & e^{i(\xi+i\eta)t} \phi_M(t) \bullet R_A(0) \, dt + \int_0^\infty & e^{i(-\xi+i\eta)t} (\phi_M(t) \bullet R_A(0))^* \, dt) \\ &= [\phi_M](\xi) \bullet R_A(0) + ([\phi_M](\xi) \bullet R_A(0))^*, \end{split}$$

which gives (ii). By Lemma 3.1 (i),

$$(3.10) \qquad [\phi_M](0+i0) \cdot R_A(0) = \frac{1}{2\pi} (\beta \cdot R_A(0) + i \omega \cdot R_A(0)).$$

Therefore, combining (3.10) with Proposition 2.1 (i), we find that (iii) follows from (ii). In particular, (iii) implies (iv). (Q. E. D.)

$\S 4$. A mobility function $[R_A](2\pi R(0))^{-1}$ of a stationary curve A

In this section we shall consider a stationary curve $A = (A(t); t \in \mathbb{R})$ in (2.2) with covariance matrix R_A in (2.3) satisfying conditions (2.6) and (3.5) only. The difference between § 3 and § 4 is that we do not suppose condition (2.5) in § 2. For this reason we define for each $n \in \mathbb{N}$ and $p \in \{1, 2, \dots, d\}$ a vector $A_{n,p}$ in \mathcal{H} by

(4.1)
$$A_{n,p} \equiv n \int_0^\infty e^{-nt} U(t) A_p(0) dt$$

and a vector A_n in \mathcal{H}^d by

$$(4.2) A_n \equiv \begin{pmatrix} A_{n,1} \\ A_{n,2} \\ \vdots \\ A_{n,d} \end{pmatrix}.$$

(Step 1) From a general theory of semi-groups of linear operators, we have

Lemma 4.1

- (i) For each $n \in \mathbb{N}$ $\{A_{n,p}; 1 \le p \le d\}$ is linearly independent
- (ii) For each $n \in \mathbb{N}$ $\{A_{n,p}; 1 \le p \le d\} \subset \mathcal{D}(L)$
- (iii) $\lim_{n\to\infty} A_n = A(0)$ in \mathcal{H}^d .

For each $n \in \mathbb{N}$ we define a covariance matrix R_n on \mathbb{R} and an $M(d; \mathbb{C})$ -valued holomorphic function $[R_n]$ on \mathbb{C}^+ by

$$(4.3) R_n(t) \equiv ((U(t)A_{n,p}, A_{n,q})_{\mathscr{H}})_{1 \le p, q \le d}$$

and

$$(4.4) [R_n](\xi) \equiv \frac{1}{2\pi} \int_0^\infty e^{i\xi t} R_n(t) dt.$$

Immediately from Lemma 4.1 (iii), we have

Lemma 4.2

(i)
$$\lim_{n\to\infty} R_n(t) = R_A(t)$$
 for any $t \in \mathbb{R}$

(ii)
$$\lim_{n\to\infty} [R_n](\xi) = [R_A](\xi)$$
 for any $\xi \in C^+$.

(Step 2) Similarly as Lemma 4.3 in [11] for one-dimensional case, we have

LEMMA 4.3 For each $n \in \mathbb{N}$ and any $\zeta \in \mathbb{C}^+$ with Im $\zeta \neq n$,

$$[R_n](\xi) = \frac{n}{2\pi (n-i\xi)} \{ \frac{1}{2} \int_{\mathbb{R}} e^{-n|t|} R(t) + \frac{n}{n+i\xi} (2\pi [R_A](\xi) - \int_0^{\infty} e^{-nt} R(t) dt) \}.$$

By condition (3.5) and Lemma 4.3, we have

LEMMA 4.4

(i) For each $n \in \mathbb{N}$ $D_n \equiv 2\pi \lim_{\epsilon \downarrow 0} [R_n](i\epsilon) \text{ exists}$

(ii) $\lim_{n\to\infty} D_n = D$.

On the other hand, it is easy to see

LEMMA 4. 5

$$\lim_{\eta\to\infty} \eta[R_A](i\eta) = \frac{R_A(0)}{2\pi}.$$

Therefore, by using conditions (2.6) and (3.5) again, we find from Lemmas 4.4 (ii) and 4.5 that

LEMMA 4.6 There exist $T_0 > 0$, $\varepsilon_0 > 0$ and $n_0 \in \mathbb{N}$ such that

- (i) $[R_A](i\eta) \in GL(d; C)$ for any $\eta \in (0, 2\varepsilon_0] \cup [T_0, \infty)$
- (ii) $D_n \in GL(d; \mathbf{C})$ for any $n \in \mathbf{N} \cap (n_0, \infty)$.

We define elements α , α_n , β and $\beta_n(n \ge n_0)$ of $GL(d; \mathbb{C})$ by

(4.5)
$$\alpha \equiv \frac{R_A(0)}{\sqrt{2\pi}} \text{ and } \alpha_n \equiv \frac{R_n(0)}{\sqrt{2\pi}}$$

and

328

(4.6)
$$\beta \equiv R_A(0)D^{-1} \text{ and } \beta_n \equiv R_n(0)D_n^{-1}.$$

It then follows from Lemmas 4.2 (i) and 4.4 (i) that

Lemma 4.7

(i)
$$\alpha^* = \alpha$$
 and $\alpha_n^* = \alpha_n$ $(n \ge n_0)$

(ii)
$$\lim_{n\to\infty} \alpha_n = \alpha$$

(iii)
$$\lim_{n\to\infty} \beta_n = \beta$$
.

(Step 3) By virtue of Lemmas 4.1 (i), 4.4 (i) and (4.6) (ii), we can apply Theorem 2.1 (ii), Proposition 2.1, (3.2), Lemmas 3.1 and 3.5 (iv) to stationary curves A_n ($n \ge n_0$) in order to find that

Lemma 4.8 There exist for each $n \ge n_0$ a frequency matrix ω_n , a memory kernel matrix ϕ_n and a bounded Borel spectral measure matrix κ_n such that

(i)
$$(\omega_n \cdot R_n(0))^* = \omega_n \cdot R_n(0)$$

(ii)
$$\phi_n(t)R_n(0) = \int_{\mathbf{R}} e^{-it\lambda} \kappa_n(d\lambda)$$
 $(t \in \mathbf{R})$

(iii)
$$\kappa_n(\{0\}) = 0$$

(iv)
$$\kappa_n^* = \kappa_n$$

(
$$_{
m V}$$
) for any ξ \in C^+

$$-i\omega_n - i\zeta + 2\pi [\phi_n](\zeta) = \frac{\alpha_n}{\sqrt{2\pi}} \cdot [R_n](\zeta)^{-1}$$

(vi)
$$-i\omega_n + 2\pi [\phi_n](0+i0) = \beta_n$$

(vii) for any
$$\xi \in C^+$$

$$\beta_n - i\zeta + 2\pi ([\phi_n](\zeta) - [\phi_n](0+i0)) = \frac{\alpha_n}{\sqrt{2\pi}} \cdot [R_n](\zeta)^{-1}.$$

(Step 4) We define for each $n \ge n_0$ a bounded Borel symmetric spectral measure matrix $\kappa_n^{(s)}$ on \mathbf{R} by

(4.7)
$$\kappa_n^{(s)}(d\lambda) \equiv \frac{1}{2} (\kappa_n(d\lambda) + \kappa_n(-d\lambda)).$$

LEMMA 4.9

(i) For any $t \in \mathbb{R}$ $\frac{1}{2} \{ \phi_n(t) \cdot R_n(0) + (\phi_n(t) \cdot R_n(0))^* \} = \int_{\mathbb{R}} e^{-it\lambda} \kappa_n^{(s)}(d\lambda)$

(ii) For any
$$\xi \in \mathbb{C}^+$$

 $\pi\{[\phi_n](\xi) \cdot R_n(0) + ([\phi_n](\xi) \cdot R_n(0))^*\}$

$$= (-i\xi) \int_{\mathbf{R}} \frac{1}{(\lambda - \xi)(\lambda + \xi)} \kappa_n^{(s)}(d\lambda)$$

(iii) For any $\eta > 0$ $\pi\{[\phi_n](i\eta) \cdot R_n(0) + ([\phi_n](i\eta) \cdot R_n(0))^*\} = \int_{\mathbb{R}} \frac{\eta}{\lambda^2 + \eta^2} \kappa_n^{(s)}(d\lambda)$

(iv) For any
$$\eta > 0$$

$$2\pi \{ [\phi_n](i\eta) \cdot R_n(0) + ([\phi_n](i\eta) \cdot R_n(0))^* \}$$

$$= \alpha_n \cdot ([R_n](i\eta))^{-1} \cdot \alpha_n + (\alpha_n \cdot ([R_n](i\eta))^{-1} \cdot \alpha_n)^* - 2\eta \sqrt{2\pi} \alpha_n.$$

 P_{ROOF} (i) follows from Lemmas 4. 8 (ii) and 4. 8 (iv). By (i), we see that

the left hand side of
$$(ii) = \frac{1}{i} \int_{\mathbf{R}} \frac{1}{\lambda - \zeta} \varkappa_n^{(s)}(d\lambda)$$

$$= \frac{1}{2i} \left(\int_{\mathbf{R}} \frac{1}{\lambda - \zeta} \varkappa_n^{(s)}(d\lambda) + \int_{\mathbf{R}} \frac{1}{\lambda - \zeta} \varkappa_n^{(s)}(-d\lambda) \right)$$
= the right hand side of (ii) .

In particular, (iii) follows immediately from (ii). By operating both hand sides of (iii) for $\xi = i\eta$ to $R_n(0)$ and then noting (4.5), we have

$$(4.8) -i\omega_n \cdot R_n(0) + \eta \sqrt{2\pi} \alpha_n + 2\pi [\phi_n](i\eta) \cdot R_n(0) = \alpha_n \cdot [R_n](i\eta)^{-1} \cdot \alpha_n.$$

By taking the adjoint of both hands sides of (4.8) and then noting Lemmas 4.7 (i) and 4.8 (i), we have

(4.9)
$$i \omega_n \cdot R_n(0) + \eta \sqrt{2\pi} \alpha_n + 2\pi ([\phi_n](i\eta) \cdot R_n(0))^* = (\alpha_n \cdot [R_n](i\eta)^{-1}\alpha_n)^*.$$

Therefore, by summing up (4.8) and (4.9), we obtain (iv). (Q. E. D.)

(Step 5) Let any $u = {}^t(u_1, u_2, \dots, u_d) \in C^d$ be fixed. We define for each $n \ge n_0$ a bounded Borel measure $\tilde{\varkappa}_{u,n}^{(s)}(d\lambda)$ on $[-\infty,\infty]$ by

$$(4.10) \quad \tilde{\varkappa}_{u,n}^{(s)}(d\lambda) \equiv \frac{1}{\varepsilon_0^2 + \lambda^2} \sum_{p,q=1}^d \bar{u}_p u_q(\varkappa_n^{(s)})_{pq}((-\infty,\infty) \cap d\lambda).$$

LEMMA 4. 10

(i)
$$\sup_{n\geq n_0} \tilde{\varkappa}_{u,n}^{(s)}([-\infty,\infty]) < \infty$$

(ii) There exist a subsequence $(n_k; k \in \mathbb{N})(\lim_{k \to \infty} n_k = \infty)$ and a bounded Borel measure $\tilde{\kappa}_u$ on $[-\infty, \infty]$ such that

$$w - \lim_{k \to \infty} \tilde{\boldsymbol{\chi}}_{u, n_k}^{(s)} = \tilde{\boldsymbol{\chi}}_u \text{ on } [-\infty, \infty].$$

PROOF By Lemmas 4.9 (iii) and (iv), we have

$$(4.11) 2\varepsilon_0 \tilde{\varkappa}_{u,n}^{(s)}([-\infty,\infty]) = ((\alpha_n \cdot [R_n](i\varepsilon_0)^{-1} \cdot \alpha_n + (\alpha_n \cdot [R_n](i\varepsilon_0)^{-1} \cdot \alpha_n)^* - 2\varepsilon_0 \sqrt{2\pi} \alpha_n u, u)_{C^d}.$$

Therefore, by Lemmas 4. 2 (ii), 4. 6 (i) and 4. 7 (ii), we find that (4. 11) implies (i). Since for any c>0 {m; Borel measure on $[-\infty,\infty]$ with m ($[-\infty,\infty]$) $\leq c$ } is relative compact, (ii) follows immediately from (i). (Q. E. D.)

LEMMA 4.11
$$\tilde{\varkappa}_u(\{-\infty, 0, +\infty\}) = 0$$

PROOF For each $\eta > 0$ we define a bounded continuous function $g(\bullet; \eta)$ on $[-\infty, \infty]$ by

(4.12)
$$\begin{cases} g(\lambda; \eta) \equiv \eta \cdot \frac{\lambda^2 + \varepsilon_0^2}{\lambda^2 + \eta^2} & \text{for } \lambda \in \mathbf{R} \\ g(\pm \infty; \eta) \equiv \eta. \end{cases}$$

By (4.10) and Lemma 4.10 (ii), we have, for any $\eta > 0$,

$$(4.13) \qquad \int_{[-\infty,\infty]} g(\lambda;\eta) \tilde{\kappa}_u(d\lambda) = \lim_{k\to\infty} \sum_{p,q=1}^d \bar{u}_p u_q \int_{\mathbb{R}} \frac{\eta}{\lambda^2 + \eta^2} (\kappa_{n_k}^{(s)})_{pq}(d\lambda).$$

Therefore, by Lemmas 4.2 (ii), 4.6 (i), 4.7 (ii), 4.9 (iii) and 4.9 (iv), we see from (4.12) and (4.13) that for any $\eta \in (0, 2\epsilon_0] \cup [T_0, \infty)$

$$(4.14) \quad \eta \tilde{\boldsymbol{\chi}}_{u}(\{-\infty, +\infty\}) + \frac{1}{\eta} \tilde{\boldsymbol{\chi}}_{u}(\{0\}) + \eta \int_{\boldsymbol{R}-\{0\}} \frac{\lambda^{2} + \varepsilon_{0}^{2}}{\lambda^{2} + \eta^{2}} \tilde{\boldsymbol{\chi}}_{u}(d\lambda)$$

$$= \frac{1}{2} ((\boldsymbol{\alpha} \cdot [R_{A}](i\eta)^{-1} \cdot \boldsymbol{\alpha} + (\boldsymbol{\alpha} \cdot [R_{A}](i\eta)^{-1} \cdot \boldsymbol{\alpha})^{*}$$

$$-2\eta \sqrt{2\pi}\boldsymbol{\alpha}) u, u)_{C^{d}}.$$

By dividing both hand sides of (4.14) by η , for any $\eta \in (0, 2\varepsilon_0] \cup [T_0, \infty)$,

$$(4.15) \quad \tilde{\kappa}_{u}(\{-\infty,\infty\}) + \frac{1}{\eta^{2}}\tilde{\kappa}_{u}(\{0\}) + \int_{R-\{0\}} \frac{\lambda^{2} + \varepsilon_{0}^{2}}{\lambda^{2} + \eta^{2}}\tilde{\kappa}_{u}(d\lambda)$$

$$= \frac{1}{2} ((\alpha \cdot (\eta [R_{A}](i\eta))^{-1} \cdot \alpha + (\alpha \cdot (\eta [R_{A}](i\eta))^{-1} \cdot \alpha)^{*}$$

$$-2\sqrt{2\pi} \alpha) u, u)_{C^{d}}.$$

Therefore, by letting tend η to infinity in (4.15), we see from Lemma 4.5, (4.5) and Lemma 4.7 (i) that $\tilde{\varkappa}_u(\{-\infty,\infty\})=0$. On the other hand, by multiplying both hand sides of (4.14) by η , we have

$$(4.16) \quad \tilde{\varkappa}_{u}(\{0\}) \leq \frac{\eta}{2} (\alpha \cdot [R_{A}](i\eta)^{-1} \cdot \alpha + (\alpha \cdot [R_{A}](i\eta)^{-1} \cdot \alpha)^{*}$$

$$-2\eta \sqrt{2\pi} \alpha u, u)_{C^{d}}.$$

Therefore, by letting η tend to zero in (4.16), we see from condition (3.5) and Lemma 4.6 (i) that $\tilde{\kappa}_u(\{0\}) = 0$. Thus we have completed the proof of Lemma 4.11. (Q. E. D.)

(Step 6) Let any $u = {}^t(u_1, u_2, \dots, u_d) \in \mathbb{C}^d$ be fixed. We define for each $n \ge n_0$ two bounded Borel measures $\tilde{\mathbf{x}}_{u,n}^{(+)}$ and $\tilde{\mathbf{x}}_{u,n}^{(-)}$ on $[0, +\infty]$ by

$$(4.17) \quad \tilde{\varkappa}_{u,n}^{(+)}(B) \equiv \sum_{p, q=1}^{d} \bar{u}_{p} u_{q} \int_{B \cap [0, \infty]} \frac{1}{\varepsilon_{0}^{2} + \lambda^{2}} (\varkappa_{n})_{pq} (d\lambda)$$

and

$$(4.18) \quad \tilde{\varkappa}_{u,n}^{(-)}(B) \equiv \sum_{p,q=1}^{d} \bar{u}_{p} u_{q} \int_{B \cap [0,\infty]} \frac{1}{\varepsilon_{0}^{2} + \lambda^{2}} (\varkappa_{n})_{pq} (-d\lambda)$$

for any Borel set B in $[0, \infty]$.

LEMMA 4.12

$$(i)$$
 $\frac{1}{2}(\tilde{\boldsymbol{\chi}}_{u,n}^{(+)} + \tilde{\boldsymbol{\chi}}_{u,n}^{(-)}) \leq \tilde{\boldsymbol{\chi}}_{u,n}^{(s)}$

- (ii) There exist a subsequence $(m_k; k \in \mathbb{N})$ of $(n_k; k \in \mathbb{N})$ in Lemma 4.10 (ii) $(\lim_{k\to\infty} m_k = \infty)$, two bounded Borel measures $\tilde{\kappa}_u^{(+)}$ and $\tilde{\kappa}_u^{(-)}$ on $[0,\infty]$ such that
 - (a) $w \lim_{k \to \infty} \tilde{\kappa}_{u, m_k}^{(+)} = \tilde{\kappa}_{u}^{(+)}$
 - (b) $w \lim_{k \to \infty} \tilde{\kappa}_{u, m_k}^{(-)} = \tilde{\kappa}_{u}^{(-)}$.

PROOF (i) follows from (4.7), (4.10), (4.17) and (4.18). By (i) and Lemma 4.10 (i), we have (ii), similarly as Lemma 4.10 (ii). (Q. E. D.)

LEMMA 4.13

$$(i) \tilde{\chi}_{\nu}^{(+)}(\{0,\infty\}) = 0$$

$$(ii) \quad \tilde{\boldsymbol{\kappa}}_{u}^{(-)}(\{0,\infty\}) = 0.$$

PROOF Let f be any non-negative element of $C([-\infty, \infty])$. By Lemmas 4.10 (ii), 4.12 (i) and 4.12 (ii), we have

$$(4.19) \qquad \int_{[-\infty,\infty]} f d\tilde{\mathbf{x}}_{u} = \lim_{k \to \infty} \int_{[-\infty,\infty]} f d\tilde{\mathbf{x}}_{u,m_{k}}^{(s)}$$

$$\geq \lim_{k \to \infty} \int_{[0,\infty]} f d\tilde{\mathbf{x}}_{u,m_{k}}^{(s)}$$

$$\begin{split} &\geq \frac{1}{2} \lim_{\overrightarrow{k} \to \infty} (\int_{[0, \infty]} f d\widetilde{\mathbf{x}}_{u, m_k}^{(+)} + \int_{[0, \infty]} f d\widetilde{\mathbf{x}}_{u, m_k}^{(-)}) \\ &= \frac{1}{2} (\int_{[0, \infty]} f d\widetilde{\mathbf{x}}_u^{(+)} + \int_{[0, \infty]} f d\widetilde{\mathbf{x}}_u^{(-)}). \end{split}$$

Therefore, by taking a sequence $(f_n; n \in \mathbb{N})$ in $C([-\infty,\infty])$ such that $0 \le f_n \le 1$ and $\lim_{n \to \infty} f_n = \chi_{\{0,\infty\}}$, we find from (4.19) that

$$\frac{1}{2}(\tilde{\boldsymbol{x}}_{u}^{(+)}(\{0,\infty\})+\tilde{\boldsymbol{x}}_{u}^{(-)}(\{0,\infty\})\leq\tilde{\boldsymbol{x}}_{u}(\{0,\infty\}),$$

which completes the proof of Lemma 4.13, by noting Lemma 4.11.(Q.E.D.)

(Step 7) Let any $u = {}^t(u_1, u_2, \dots, u_d) \in C^d$ be fixed. We define bounded Borel measures $\tilde{\kappa}_{u,n} (n \ge n_0)$, $\tilde{\tilde{\kappa}}_u$ on $[-\infty, \infty]$ and a Borel measure κ_u on R by

$$(4.20) \quad \tilde{\kappa}_{u,n}(B) \equiv \sum_{p,q=1}^{d} \bar{u}_{p} u_{q} \int_{B \cap \mathbf{R}} \frac{1}{\varepsilon_{0}^{2} + \lambda^{2}} (\kappa_{n})_{pq} (d\lambda)$$

$$(4.21) \quad \tilde{\tilde{\mathbf{x}}}_{u}(B) \equiv \tilde{\mathbf{x}}_{u}^{(+)}(B \cap [0, \infty]) + \tilde{\mathbf{x}}_{u}^{(-)}((-B) \cap [0, \infty])$$

for any Borel set B in $[-\infty, \infty]$, and

(4.22)
$$\kappa_u(d\lambda) \equiv (\varepsilon_0^2 + \lambda^2) \tilde{\tilde{\kappa}}_u(\mathbf{R} \cap d\lambda).$$

LEMMA 4.14

- $(i) \quad \tilde{\boldsymbol{\chi}}_{u,n}(\{0\}) = 0$
- (ii) $\tilde{\tilde{\kappa}}_u(\{-\infty,0,\infty\})=0$

(iii)
$$w - \lim_{k \to \infty} \tilde{\kappa}_{u, m_{\star}} = \tilde{\tilde{\kappa}}_{u}$$

(iv)
$$\kappa_u(\{0\}) = 0$$

$$(v) \int_{\mathbf{R}} \frac{1}{1+\lambda^2} \kappa_u(d\lambda) < \infty.$$

PROOF (i) follows from Lemma 4.8 (iii) and (4.20). (ii) follows from Lemma 4.13 and (4.21). For the proof of (iii), let f be any element of $C([-\infty,\infty])$. By noting (i), we see from (4.17), (4.18) and (4.20) that

$$(4.23) \qquad \int_{[-\infty,\infty]} f d\tilde{\boldsymbol{x}}_{u,n} = \int_{[-\infty,0]} f d\tilde{\boldsymbol{x}}_{u,n} + \int_{[0,\infty]} f d\tilde{\boldsymbol{x}}_{u,n}$$

$$= \int_{[0,\infty]} f(-\lambda) \tilde{\boldsymbol{x}}_{u,n}^{(-)} (d\lambda) + \int_{[0,\infty]} f(\lambda) \tilde{\boldsymbol{x}}_{u,n}^{(+)} (d\lambda).$$

Therefore, by letting n tend to infinity along the sequence $(m_k; k \in \mathbb{N})$ in

(4.23), we find from Lemma 4.10 (ii), (4.21) and Lemma 4.14 (ii) that

$$\lim_{k\to\infty} \int_{[-\infty,\infty]} f d\tilde{\mathbf{x}}_{u, m_k}
= \int_{[0,\infty]} f(-\lambda)\tilde{\mathbf{x}}_u^{(-)}(d\lambda) + \int_{[0,\infty]} f(\lambda)\tilde{\mathbf{x}}_u^{(+)}(d\lambda)
= \int_{[-\infty,0]} f(\lambda)\tilde{\tilde{\mathbf{x}}}_u(d\lambda) + \int_{[0,\infty]} f(\lambda)\tilde{\tilde{\mathbf{x}}}_u(d\lambda)
= \int_{[-\infty,\infty]} f(\lambda)\tilde{\tilde{\mathbf{x}}}_u(d\lambda),$$

which gives (iii). (iv) and (v) follow immediately from (4.22) and (Q. E. D.) Lemma 4.14 (ii).

(Step 8) We define a finite subset $E = \{e_p, e_{pq}, \tilde{e}_{pq}; 1 \le p < q \le d\}$ of \mathbb{C}^d by

(4.24)
$$e_p \equiv {}^t(0, \dots, 0, 1, 0, \dots, 0)$$

(4.25) $e_{pq} \equiv e_p + e_q$

$$(4.25) e_{pq} \equiv e_p + e_q$$

and

$$(4.26) \qquad \tilde{e}_{pq} \equiv e_p + ie_q.$$

Furthermore we choose simultaneously the subsequence $(n_k; k \in \mathbb{N})$ in Lemma 4.10 (ii) and the subsequence $(m_k; k \in \mathbb{N})$ in Lemma 4.12 (ii) for elements of E. Then we define C-valued signed Borel measures κ_{pp} , κ_{pq} and κ_{qp} $(1 \le p < q \le d)$ on **R** by

$$(4.27)$$
 $\kappa_{pp} \equiv \kappa_{e_p}$

$$(4.28) \qquad \mathbf{x}_{pq} \equiv \frac{1}{2} \{ \mathbf{x}_{e_{pq}} - \mathbf{x}_{e_{p}} - \mathbf{x}_{e_{q}} - i(\mathbf{x}_{\tilde{e}_{pq}} - \mathbf{x}_{e_{p}} - \mathbf{x}_{e_{q}}) \}$$

and

$$(4.29)$$
 $\kappa_{ab} \equiv \bar{\kappa}_{ba}$

And we define κ by

$$(4.30) \qquad \kappa \equiv (\kappa_{pq})_{1 \leq p, \ q \leq d}.$$

Lemma 4.15 For any element f of $C([-\infty,\infty])$ $\lim_{k\to\infty}\int_{\mathbf{R}}\frac{f(\lambda)}{\lambda^2+\varepsilon^2}\kappa_{m_k}(d\lambda)=\int_{\mathbf{R}}\frac{f(\lambda)}{\lambda^2+\varepsilon^2}\kappa(d\lambda).$

From the manner of choosing a subsequence $(m_k; k \in \mathbb{N})$, we see from (4.20), Lemmas 4.14 (ii) and 4.14 (iii) that for any $v = {}^t(v_1, v_2, \dots, v_d)$ of E

$$\lim_{k\to\infty} \sum_{p,q=1}^{d} \bar{v}_{p} v_{q} \int_{\mathbf{R}} \frac{f(\lambda)}{\lambda^{2} + \varepsilon_{0}^{2}} (\mathbf{x}_{m_{k}})_{pq} (d\lambda) = \int_{\mathbf{R}} f(\lambda) \tilde{\tilde{\mathbf{x}}}_{v} (d\lambda).$$

In particular, we have, for $1 \le p < q \le d$,

$$(4.31) \quad \lim_{k\to\infty} \int_{\mathbf{R}} \frac{f(\lambda)}{\lambda^2 + \varepsilon_0^2} (\mathbf{x}_{m_k})_{pp} (d\lambda) = \int_{\mathbf{R}} f(\lambda) \tilde{\tilde{\mathbf{x}}}_{e_p} (d\lambda)$$

$$(4.32) \quad \lim_{k \to \infty} \int_{R} \frac{f(\lambda)}{\lambda^{2} + \varepsilon_{0}^{2}} \{ (\mathbf{x}_{m_{k}})_{pp} + (\mathbf{x}_{m_{k}})_{qq} + (\mathbf{x}_{m_{k}})_{pq} + (\mathbf{x}_{m_{k}})_{qp} \} (d\lambda)$$

$$= \int_{R} f(\lambda) \tilde{\mathbf{x}}_{e_{pq}} (d\lambda)$$

and

(4.33)
$$\lim_{k\to\infty} \int_{\mathbf{R}} \frac{f(\lambda)}{\lambda^{2} + \varepsilon_{0}^{2}} \{ (\mathbf{x}_{m_{k}})_{pp} + (\mathbf{x}_{m_{k}})_{qq} + i(\mathbf{x}_{m_{k}})_{pq} - i(\mathbf{x}_{m_{k}})_{qp} \} (d\lambda)$$
$$= \int_{\mathbf{R}} f(\lambda) \tilde{\mathbf{x}}_{\tilde{e}_{m}}(d\lambda).$$

It then follows from (4.31), (4.32) and (4.33) that for $1 \le p < q \le d$

$$(4.34) \quad \lim_{k \to \infty} \int_{R} \frac{f(\lambda)}{\lambda^{2} + \varepsilon_{0}^{2}} (\varkappa_{m_{k}})_{pq} (d\lambda)$$

$$= \int_{R} f(\lambda) \frac{1}{2} \{ \tilde{\tilde{\varkappa}}_{e_{pq}} - \tilde{\tilde{\varkappa}}_{e_{p}} - \tilde{\tilde{\varkappa}}_{e_{q}} - i (\tilde{\tilde{\varkappa}}_{\tilde{e}_{pq}} - \tilde{\tilde{\varkappa}}_{e_{p}} - \tilde{\tilde{\varkappa}}_{e_{q}}) \} (d\lambda)$$

$$(4.35) \quad \lim_{k \to \infty} \int_{\mathbf{R}} \frac{f(\lambda)}{\lambda^{2} + \varepsilon_{0}^{2}} (\mathbf{x}_{m_{k}})_{qp} (d\lambda)$$

$$= \int_{\mathbf{R}} f(\lambda) \frac{1}{2} \{ \tilde{\mathbf{x}}_{e_{pq}} - \tilde{\mathbf{x}}_{e_{p}} - \tilde{\tilde{\mathbf{x}}}_{e_{q}} + i (\tilde{\tilde{\mathbf{x}}}_{\tilde{e}_{pq}} - \tilde{\tilde{\mathbf{x}}}_{e_{p}} - \tilde{\tilde{\mathbf{x}}}_{e_{q}}) \} (d\lambda).$$

Therefore, we can see from (4.22), (4.27), (4.28), (4.29), (4.31), (4.34) and (4.35) that Lemma 4.15 holds. (Q. E. D.)

LEMMA 4.16 For any
$$u = {}^{t}(u_1, u_2, \dots, u_d)$$
 of C^d

$$\sum_{p, q=1}^{d} \bar{u}_p u_q \mathbf{x}_{pq} = \mathbf{x}_u.$$

PROOF By choosing the subsequence $(m_k; k \in \mathbb{N})$ in Lemma 4.12 (ii) for u from the subsequence $(m_k; k \in \mathbb{N})$ in Lemma 4.15, we find from (4.20), (4.22), Lemmas 4.14 (iii) and 4.15 that for any $f \in C([-\infty, \infty])$

$$\int_{\mathbf{R}} \frac{f(\lambda)}{\lambda^2 + \varepsilon_0^2} \left(\sum_{p,q=1}^d \bar{u}_p u_q \kappa_{pq} \right) (d\lambda) = \int_{\mathbf{R}} \frac{f(\lambda)}{\lambda^2 + \varepsilon_0^2} \kappa_u(d\lambda),$$

which completes the proof of Lemma 4.14. (Q. E. D).

By Lemmas 4.8 (iii), 4.8 (iv) and 4.15, we obtain

LEMMA 4.17

- $(i) \kappa(\{0\}) = 0$
- (ii) $\kappa^* = \kappa$.

(Step 9) We define for each $n \ge n_0$ and $\varepsilon > 0$ an $M(d; \mathbb{C})$ -valued holomorphic function $L_{n,\varepsilon}$ on $\mathbb{C}^+ \cup \mathbb{R}$ by

$$(4.36) L_{n,\varepsilon}(\zeta) \equiv (-i\zeta) \int_{\mathbb{R}} \frac{1}{(\lambda - \zeta - i\varepsilon)(\lambda - i\varepsilon)} \kappa_n(d\lambda) \cdot (\sqrt{2\pi} \alpha_n)^{-1}.$$

Immediately from Lemma 4.8 (ii), we have

Lemma 4.18 For any
$$n \ge n_0$$
, $\varepsilon > 0$ and $\zeta \in \mathbb{C}^+$

$$L_{n,\varepsilon}(\zeta) = 2\pi([\phi_n](\zeta + i\varepsilon) - [\phi_n](i\varepsilon)).$$

Now we shall show the following key lemma.

LEMMA 4.19 For any
$$\eta > 0$$
 with $0 < \eta \le \varepsilon_0$

$$\lim_{n \to \infty} (\lim_{\varepsilon \downarrow 0} L_{n,\varepsilon}(i\eta)) = \lim_{\varepsilon \downarrow 0} (\lim_{n \to \infty} L_{n,\varepsilon}(i\eta)).$$

Proof By Lemmas 4.8 (vii) and 4.18, we see that for any $n \ge n_0$

(4.37)
$$\lim_{\varepsilon \downarrow 0} L_{n,\varepsilon}(i\eta) = \sqrt{2\pi} \alpha_n \cdot [R_n] (i\eta)^{-1} - \beta_n - \eta I$$

and so by Lemmas 4.2 (ii), 4.6 (i), 4.7 (ii) and 4.7 (iii),

(4.38)
$$\lim_{n\to\infty} (\lim_{\epsilon\downarrow 0} L_{n,\epsilon}(i\eta)) = \sqrt{2\pi} \alpha \cdot [R](i\eta)^{-1} - \beta - \eta I.$$

On the other hand, by using Lemmas 4.8 (vii) and 4.18 again, we see that for any $n \ge n_0$ and $\varepsilon > 0$

$$(4.39) L_{n,\varepsilon}(i\eta) = \{ (\beta_n - i(i(\eta + \varepsilon)) + 2\pi([\phi_n](i(\eta + \varepsilon)) - [\phi_n](0 + i0)) \} - (\beta_n - i(i\varepsilon) + 2\pi([\phi_n](i\varepsilon) - [\phi_n](0 + i0)) \} - \eta I$$

$$= \sqrt{2\pi} \alpha_n \cdot ([R_n](i(\eta + \varepsilon))^{-1} - [R_n](i\varepsilon)^{-1}) - \eta I.$$

Therefore, by using Lemmas 4.2 (ii), 4.6 (i) and 4.7 (ii) again and letting n tend to infinity in (4.39) for any fixed $\varepsilon > 0$

$$(4.40) \quad \lim_{n\to\infty} L_{n,\varepsilon}(i\eta) = \sqrt{2\pi} \ \alpha \cdot ([R](i(\eta+\varepsilon))^{-1} - [R](i\varepsilon)^{-1}) - \eta I.$$

Furthermore, by letting ε tend to zero in (4.40), we see from (4.5) and (4.6) that

(4.41)
$$\lim_{\epsilon \downarrow 0} (\lim_{n \to \infty} L_{n,\epsilon}(i\eta)) = \sqrt{2\pi} \alpha \cdot [R](i\eta)^{-1} - \beta - \eta I.$$

Thus, by (4.38) and (4.41), we have lemma 4.19. (Q. E. D.)

(Step 10) We define for each $\varepsilon > 0$ two $M(d; \mathbb{C})$ -valued functions K_{ε} and L_{ε} on $\mathbb{C}^+ \cup \mathbb{R}$ by

$$(4.42) K_{\varepsilon}(\zeta) \equiv \int_{R} \frac{1}{(\lambda - \zeta - i\varepsilon)(\lambda - i\varepsilon)} \kappa (d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1}$$

and

(4.43)
$$L_{\varepsilon}(\xi) \equiv (-i\xi) K_{\varepsilon}(\xi)$$
.

By Lemmas 4.2 (i) and 4.15, we have

LEMMA 4.20 For any $\varepsilon > 0$ and $\xi \in C^+$

$$\lim_{k\to\infty} L_{m_k,\,\epsilon}(\zeta) = L_{\epsilon}(\zeta).$$

Similarly as Lemmas 3. 4 (i) and 3. 4 (ii), it follows from (4. 42) and (4. 43) that

LEMMA 4.21

(i) For any $\varepsilon > 0$ and $\zeta \in C^+$ $L_{\varepsilon}(\zeta) = \frac{1}{i} \int_{\mathbf{R}} (\frac{1}{\lambda - \zeta - i\varepsilon} - \frac{1}{\lambda - i\varepsilon}) \kappa(d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1}$

(ii) For any $\varepsilon > 0$ and $\zeta \in C^+$ $L_{\varepsilon}(\zeta) = L_{\varepsilon}(i\varepsilon_0) + \frac{1}{i} \int_{R} \frac{\zeta - i\varepsilon_0}{(\lambda - \zeta - i\varepsilon)(\lambda - i(\varepsilon_0 + \varepsilon))} \kappa(d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1}.$

By combining (4.41) with Lemmas 4.20 and 4.21 (ii), we can define an M(d; C)-valued function L on C^+ by

$$(4.44) L(\zeta) \equiv \lim_{\epsilon \downarrow 0} L_{\epsilon}(\zeta).$$

By noting Lemmas 4.14 (v) and 4.16, we can show that

LEMMA 4.22

(i) For any $\xi \in C^+$ $L(\xi) = L(i\varepsilon_0) + \frac{1}{i} \int_{R} \frac{\xi - i\varepsilon_0}{(\lambda - \xi)(\lambda - i\varepsilon_0)} \kappa(d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1}$

(ii) L is holomorphic on C^+ .

Now we shall show the following main lemma.

Lemma 4.23 For any $\xi \in C^+$

$$(i)$$
 $\beta - i\zeta + L(\zeta) \in GL(d; C)$

$$(\ \text{ii} \) \quad [R_A](\xi) = (\beta - i \xi + L(\xi))^{-1} \bullet \frac{\alpha}{\sqrt{2\pi}}.$$

PROOF We define an M(d; C)-valued function F on C^+ by

$$(4.45) F(\xi) \equiv (\beta - i\xi + L(\xi)) \cdot [R_A](\xi).$$

It follows from Lemma 4. 22 (ii) that F is holomorphic on C^+ . By Lemmas 4. 2 (ii), 4. 6 (i), 4. 7 (ii), 4. 7 (iii), 4. 8 (vii), 4. 18, 4. 19, 4. 20 and (4. 44), we find that

$$F(i\eta) = \frac{\alpha}{\sqrt{2\pi}}$$
 for any $\eta \in (0, \varepsilon_0]$.

Therefore, by the theorem of identity, we have Lemma 4.23. (Q. E. D.) By using Lemma 4.23, we shall show

LEMMA 4.24
$$\lim_{\eta \downarrow 0} L(i\eta) = 0.$$

PROOF By substituting $\xi = i\eta(\eta > 0)$ into both hand sides of Lemma 4. 23 (ii) and then letting η tend to zero, we see from condition (3.5), (4.5) and (4.6) that $\lim_{\eta \downarrow 0} L(i\eta)$ exists and then

$$(\beta + \lim_{\eta \downarrow 0} L(i\eta))^{-1} = \beta^{-1},$$

which gives Lemma 4.24.

(Q. E. D.)

(**Step** 11) Finally, by collecting the results which we have investigated into Step 1 to Step 10, we shall show the following

THEOREM 4.1 Let $A = (A(t); t \in \mathbb{R})$ be any stationary curve in (2.2) with covariance matrix R_A in (2.3) satisfying conditions (2.6) and (3.5). Then there exists a unique triple (α, β, κ) such that for any $\xi \in \mathbb{C}^+$

$$(4.46) \qquad [R_A](\xi) = (\beta - i\xi + L(\xi))^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}},$$

where

$$(4.47) L(\zeta) = (-i\zeta) \lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} \frac{1}{(\lambda - \zeta - i\varepsilon)(\lambda - i\varepsilon)} \kappa (d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1}.$$

Here

(i) $\alpha \in GL(d; C)$, $\alpha^* = \alpha$ and α is positive definite

- (ii) $\beta \in GL(d; \mathbf{C})$
- (iii) $\kappa = (\kappa_{pq})_{1 \leq p, q \leq d}$;

(a) for each p, $q \in \{1, 2, \dots, d\}$ κ_{pq} is a C-valued Borel signed measure on R

(b) for any
$$u = {}^{t}(u_1, u_2, \dots, u_d) \in \mathbb{C}^d$$

$$\kappa_u = \sum_{p, q=1}^{d} \bar{u}_p u_q \kappa_{pq} \text{ is a Borel measure on } \mathbf{R}$$

(c)
$$\int_{R} \frac{1}{1+\lambda^{2}} \kappa_{u}(d\lambda) < \infty$$
 for any $u \in C^{d}$

- $(d) \quad \kappa^* = \kappa$
- (e) $\lim_{\varepsilon \downarrow 0} \int_{R} \frac{1}{\pi} \frac{\varepsilon}{\lambda^{2} + \varepsilon^{2}} \kappa(d\lambda) = \frac{1}{\sqrt{2\pi}} (\beta \cdot \alpha + (\beta \cdot \alpha)^{*})$

$$(f) \lim_{\eta \downarrow 0} (\lim_{\varepsilon \downarrow 0} \int_{R} (\frac{1}{\lambda - i\eta} - \frac{1}{\lambda - i\varepsilon}) \kappa(d\lambda)) = 0$$

$$(iv) Z(\xi) \equiv \beta - i\xi + L(\xi) \in GL(d; C) \quad for$$

(iv)
$$Z(\xi) \equiv \beta - i\xi + L(\xi) \in GL(d; C)$$
 for any $\xi \in C^+$

(v)
$$\sup_{\eta>0}\int_{\mathbf{R}}\operatorname{trace} (Z(\xi+i\eta)^{-1}\cdot\alpha+(Z(\xi+i\eta)^{-1}\cdot\alpha)^*)d\xi<\infty.$$

It will be shown in the proof of Theorem 4.1 that, for any Remark 4.1 triple (α, β, κ) satisfying conditions (i), (ii) and (iii) in Theorem 4.1, $L(\xi)$ in (4.47) is always well-defined and $Z(\xi)^{-1} \cdot \alpha + (Z(\xi)^{-1} \cdot \alpha)^*$ is a non-negative definite matrix for any $\xi \in C^+$.

Proof At first we shall show that the triple (α, β, κ) in (4.5), (4.6)and (4.30) is our desired one. (i) and (ii) are clear. By Lemmas 4.14 (v), 4.16, 4.17 (ii) and 4.23, it suffices to prove (iii-e), (iii-f) and (v). By (4.22), Lemma 4.14 (iii), (4.20) and (4.7), we see that for any $\varepsilon \in (0, 1)$ $2\varepsilon_0$) and any $u={}^t(u_1, u_2, \cdots, u_d)\in C^d$

$$\int_{R} \frac{\varepsilon}{\lambda^{2} + \varepsilon^{2}} \kappa_{u}(d\lambda) = \sum_{p, q=1}^{d} \bar{u}_{p} u_{q} \lim_{k \to \infty} \int_{R} \frac{\varepsilon}{\lambda^{2} + \varepsilon^{2}} (\kappa_{m_{k}})_{pq}(d\lambda)$$

$$= \sum_{p, q=1}^{d} \bar{u}_{p} u_{q} \lim_{k \to \infty} \int_{R} \frac{\varepsilon}{\lambda^{2} + \varepsilon^{2}} (\kappa_{m_{k}}^{(s)})_{pq}(d\lambda).$$

Furthermore it follows from Lemmas 4.2, 4.6 (i), 4.9 (iii) and 4.9 (iv) that

$$\int_{R} \frac{\varepsilon}{\lambda^{2} + \varepsilon^{2}} \kappa_{u}(d\lambda) = \frac{1}{2} ((\alpha \cdot [R_{A}](i\varepsilon)^{-1} \cdot \alpha + (\alpha \cdot [R_{A}](i\varepsilon)^{-1} \cdot \alpha)^{*} - 2\varepsilon \sqrt{2\pi} \alpha) u, u)_{C^{d}}$$

and so by Lemma 4.16, for any $\varepsilon \in (0, 2\varepsilon_0)$,

$$(4.48) \int_{R} \frac{\varepsilon}{\lambda^{2} + \varepsilon^{2}} \kappa(d\lambda) = \frac{1}{2} \{ \alpha \cdot [R_{A}] (i\varepsilon)^{-1} \cdot \alpha + (\alpha \cdot [R_{A}] (i\varepsilon)^{-1} \cdot \alpha)^{*} - 2\varepsilon \sqrt{2\pi} \alpha \}.$$

By letting ε tend to zero in (4.48), we see from condition (3.5), (4.5) and (4.6) that (iii-e) holds. By Lemma 4.21 (i), for any $\varepsilon > 0$ and $\eta > 0$,

$$\begin{split} (4.49) \quad L_{\varepsilon}(i\eta) = & \int_{R} \frac{\varepsilon}{(\lambda - i(\eta + \varepsilon))(\lambda - i\eta)} \varkappa(d\lambda) \\ & + \frac{1}{i} \int_{R} (\frac{1}{\lambda - i\eta} - \frac{1}{\lambda - i\varepsilon}) \varkappa(d\lambda). \end{split}$$

By Lemma 4.14 (v), we can apply Lebesgue's convergence theorem to the first term in the right hand side of (4.49) to obtain

(4.50)
$$L(i\eta) = \frac{1}{i} \lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} \left(\frac{1}{\lambda - i\eta} - \frac{1}{\lambda - i\varepsilon}\right) \kappa(d\lambda)$$

for any $\eta > 0$. Therefore, by Lemma 4.24, we have (iii-f). By (3.3), for any $\xi = \xi + i\eta \in \mathbb{C}^+$,

(4.51)
$$\frac{1}{2}([R_A](\xi) + [R_A](\xi)^*) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\eta}{(\lambda - \xi)^2 + \eta^2} \Delta(d\lambda).$$

Hence, by Lemma 4.23,

$$(4.52) Z(\xi)^{-1} \cdot \alpha + (Z(\xi)^{-1} \cdot \alpha)^* = \sqrt{\frac{2}{\pi}} \int_{\mathbb{R}} \frac{\eta}{(\lambda - \xi)^2 + \eta^2} \Delta(d\lambda).$$

Since Δ is a spectral measure matrix of the covariance matrix R_A , it follows that for any $u = {}^t(u_1, u_2, \dots, u_d) \in \mathbb{C}^d$

(4.53)
$$\sum_{p,q=1}^{d} \bar{u}_p u_q \Delta_{pq} \text{ is a bounded Borel measure on } \mathbf{R}.$$

Therefore, by (4.52) and (4.53), we find that for any $\boldsymbol{\xi} \in \boldsymbol{C}^+$

(4.54) $Z(\xi)^{-1} \cdot \alpha + (Z(\xi)^{-1} \cdot \alpha)^*$ is a non-negative definite matrix and for any $\eta > 0$ and $u = {}^t(u_1, u_2, \cdots, u_d) \in C^d$

$$(4.55) \int_{\mathbf{R}} ((Z(\boldsymbol{\xi} + i\boldsymbol{\eta})^{-1} \cdot \boldsymbol{\alpha} + (Z(\boldsymbol{\xi} + i\boldsymbol{\eta})^{-1} \cdot \boldsymbol{\alpha})^*) u, u)_{C^d} d\boldsymbol{\xi}$$

$$= \sqrt{\frac{2}{\pi}} \sum_{p, q=1}^{d} \bar{u}_p u_q \Delta_{pq}(\mathbf{R}).$$

By using the same consideration as Lemma 4.15, we see from (4.54) and (4.55) that (v) holds.

Finally we shall show the uniqueness of the triple (α, β, κ) . Let $(\tilde{\alpha}, \tilde{\beta}, \tilde$

 $\tilde{\kappa}$) be another triple satisfying (4.46), (i), (ii), (iii), (iv) and (v). By Lemma 4.22 (i), for any $\eta > 0$,

$$(4.56) \quad \eta[R_A](i\eta)$$

$$= \{\frac{\tilde{\beta}}{\eta} + (\frac{\lim_{\epsilon \downarrow 0} \tilde{L}_{\epsilon}(i\epsilon_{0})}{\eta} + \int_{R} \frac{\eta - \epsilon_{0}}{\eta(\lambda - i\eta)(\lambda - i\epsilon_{0})} \tilde{\kappa}(d\lambda)) \cdot (\sqrt{2\pi} \ \tilde{\alpha})^{-1}\}^{-1} \cdot$$

•
$$\frac{\tilde{\alpha}}{\sqrt{2\pi}}$$
,

where $\tilde{L}_{\varepsilon}(\zeta) = (-i\zeta) \int_{\mathbb{R}} \frac{1}{(\lambda - \zeta - i\varepsilon)(\lambda - i\varepsilon)} \tilde{\kappa}(d\lambda).$

By letting η tend to infinity in (4.56), we see from Lemma 4.5 and (iii-c) that

$$(4.57) \qquad \tilde{\alpha} = \frac{R_A(0)}{\sqrt{2\pi}}.$$

By noting (4.49) and (4.50), we find that (iii-f) is equivalent to

(4.58)
$$\lim_{\eta \downarrow 0} (\lim_{\varepsilon \downarrow 0} \tilde{L}_{\varepsilon}(i\eta)) = 0.$$

Therefore, it follows from condition (3.5), (4.46) and (4.57) that

(4.59)
$$\tilde{\beta} = R_A(0) \cdot D^{-1}$$
.

Since for any $\zeta = \xi + i\eta \in C^+$

$$\begin{split} \tilde{L}(\xi) = & \lim_{\epsilon \downarrow 0} \int_{\mathbf{R}} \{ (\frac{\eta + \epsilon}{(\lambda - \xi)^2 + (\eta + \epsilon)^2} - \frac{\epsilon}{\lambda^2 + \epsilon^2}) \\ & - i (\frac{\lambda - \xi}{(\lambda - \xi)^2 + (\eta + \epsilon)^2} - \frac{\lambda}{\lambda^2 + \epsilon^2}) \} \tilde{\kappa}(d\lambda) \cdot (\sqrt{2\pi} \ \tilde{\alpha})^{-1}, \end{split}$$

we see from (i), (iii-c), (iii-d) and (iii-e) that

$$\begin{split} (4.60) \qquad & \tilde{\boldsymbol{\alpha}}^{-1} \boldsymbol{\cdot} \tilde{\boldsymbol{Z}}(\boldsymbol{\xi}) + (\tilde{\boldsymbol{\alpha}}^{-1} \boldsymbol{\cdot} \tilde{\boldsymbol{Z}}(\boldsymbol{\xi}))^* \\ &= \tilde{\boldsymbol{\alpha}}^{-1} \boldsymbol{\cdot} \tilde{\boldsymbol{\beta}} + (\tilde{\boldsymbol{\alpha}}^{-1} \boldsymbol{\cdot} \tilde{\boldsymbol{\beta}})^* + 2\eta \tilde{\boldsymbol{\alpha}}^{-1} \\ &\qquad \qquad + 2\tilde{\boldsymbol{\alpha}}^{-1} \boldsymbol{\cdot} \int_{\boldsymbol{R}} \frac{\eta}{(\lambda - \boldsymbol{\xi})^2 + \eta^2} \tilde{\boldsymbol{\kappa}}(d\lambda) \boldsymbol{\cdot} (\sqrt{2\pi} \ \tilde{\boldsymbol{\alpha}})^{-1} \\ &\qquad \qquad - 2\tilde{\boldsymbol{\alpha}}^{-1} \boldsymbol{\cdot} \sqrt{\frac{\pi}{2}} (\tilde{\boldsymbol{\beta}} \boldsymbol{\cdot} \tilde{\boldsymbol{\alpha}} + (\tilde{\boldsymbol{\beta}} \boldsymbol{\cdot} \tilde{\boldsymbol{\alpha}})^*) \boldsymbol{\cdot} (\sqrt{2\pi} \ \tilde{\boldsymbol{\alpha}})^{-1} \\ &= 2\eta \tilde{\boldsymbol{\alpha}}^{-1} + \sqrt{\frac{2}{\pi}} \tilde{\boldsymbol{\alpha}}^{-1} \boldsymbol{\cdot} \int_{\boldsymbol{R}} \frac{\eta}{(\lambda - \boldsymbol{\xi})^2 + \eta^2} \tilde{\boldsymbol{\kappa}}(d\lambda) \boldsymbol{\cdot} \boldsymbol{\cdot} \tilde{\boldsymbol{\alpha}}^{-1}, \\ \text{where} \qquad & \tilde{\boldsymbol{Z}}(\boldsymbol{\xi}) = \tilde{\boldsymbol{\beta}} - i \boldsymbol{\xi} + \tilde{\boldsymbol{L}}(\boldsymbol{\xi}). \end{split}$$

By (4.46) and (4.59), we find that for any $\xi = \xi + i\eta \in C^+$

$$(4.61) \frac{1}{\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} \tilde{\kappa}(d\lambda)$$

$$= \frac{1}{2\pi} \tilde{\alpha}([R_{A}](\xi + i\eta)^{-1} + ([R_{A}](\xi + i\eta)^{-1})^{*}) \tilde{\alpha} - \sqrt{\frac{2}{\pi}} \eta \tilde{\alpha}.$$

By noting (iii-c), we can apply Lemma 4. 27 in [11] to (4. 6) to find that for any $f \in C_0(\mathbf{R})$

$$(4.62) \int_{\mathbf{R}} f(\lambda) \tilde{\kappa}(d\lambda)$$

$$= \frac{1}{2\pi} \tilde{\alpha} \cdot \lim_{\eta \downarrow 0} \int_{\mathbf{R}} ([R_A] (\boldsymbol{\xi} + i\eta)^{-1} + ([R_A] (\boldsymbol{\xi} + i\eta)^{-1})^*) d\boldsymbol{\xi} \cdot \tilde{\alpha}.$$

Thus, it follows from (4.57), (4.59) and (4.62) that the triple $(\tilde{\alpha}, \tilde{\beta}, \tilde{\kappa})$ can be uniquely determined by the covariance matrix R_A . (Q. E. D.)

By taking account of Kubo's linear response theory in statistical physics ([2], [3], [4] and [5]), we shall give

DEFINITION 4.1 We call the function $[R_A](2\pi R(0))^{-1}$ an M(d; C)-valued *mobility function* of the stationary curve A.

§ 5. \mathscr{R} and \mathscr{L} —a second KMO-Langevin data

In the previous sections § 2, § 3 and § 4, we have considered a stationary curve A in a Hilbert space \mathcal{H}^d and obtained a representation of the M(d; C)-valued mobility function $[R_A] \cdot (2\pi R(0))^{-1}$ of A by introducing a triple (α, β, κ) . In this section, apart from stationary curves in Hiblert spaces, we shall obtain a characterization of such triples (α, β, κ) , which gives a converse statement to Theorem 4.1. For that purpose, we define two sets \mathcal{R} and \mathcal{L} by

- $(5.1) \qquad \mathscr{R} \equiv \{R : \mathbf{R} \longrightarrow M(d; \mathbf{C});$
 - (i) R is a continuous and non-negative definite function
 - (ii) $R(0) \in GL(d; \mathbf{C})$
 - (iii) $D \equiv \lim_{\epsilon \downarrow 0} \int_0^\infty e^{-\epsilon t} R(t) dt$ exists and $D \in GL(d; \mathbb{C})$

and

(5.2) $\mathcal{L} \equiv \{(\alpha, \beta, \kappa); (i), (ii), (ii), (iv) \text{ and } (v) \text{ in Theorem 4.1 hold}\}.$

For any $R \in \mathcal{R}$ we define an M(d; C)-valued holomorphic function [R] on C^+ by

(5.3)
$$[R](\zeta) \equiv \frac{1}{2\pi} \int_0^\infty e^{i\zeta t} R(t) dt.$$

We denote by Δ a bounded Borel spectral measure matrix of R on R:

(5.4)
$$R(t) = \int_{\mathbf{R}} e^{-it\lambda} \Delta(d\lambda).$$

Then we see that for any $\zeta \in C^+$

(5.5)
$$[R](\xi) = \frac{1}{2\pi i} \int_{R} \frac{1}{\lambda - \xi} \Delta(d\lambda).$$

Now we shall show the following main theorem in this paper.

Theorem 5.1 There exists a bijective mapping Φ from $\mathscr R$ onto $\mathscr L$ such that

(5.6)
$$[R](\zeta) = (\beta - i\zeta + L(\zeta))^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}}$$
 for any $\zeta \in C^+$,

where $R \in \mathcal{R}$, $(\alpha, \beta, \kappa) = \Phi(R) \in \mathcal{L}$ and

(5.7)
$$L(\zeta) \equiv (-i\zeta) \lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} \frac{1}{(\lambda - \zeta - i\varepsilon)(\lambda - i\varepsilon)} \kappa (d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1}.$$

PROOF Let R be any element of \mathscr{R} . We take a C^d -valued stationary process $X = (X(t); t \in \mathbb{R})$ on a probability space (Ω, \mathscr{B}, P) such that $E(X_p(t)) = 0$ and $E(X_p(t)\overline{X_q(s)}) = R_{pq}(t-s)(1 \leq p, q \leq d, s, t \in \mathbb{R})$, where $X(t) = {}^t(X_1(t), X_2(t), \cdots, X_d(t))$. Denoting by \mathscr{H} the Hilbert space defined by

(5.8)
$$\mathscr{H} \equiv \text{the closed linear hull of } \{X_p(t); 1 \leq p \leq d, t \in \mathbb{R}\} \text{ in } L^2(\Omega, \mathscr{B}, P).$$

we can obtain a strongly continuous one-parameter group of unitary operators $(U(t); t \in \mathbb{R})$ on \mathscr{H} such that

(5.9)
$$U(t)(X_p(s)) = X_p(s+t) \quad (1 \le p \le d, s, t \in \mathbb{R}).$$

We define a stationary curve $A = (A(t); t \in \mathbb{R})$ in \mathscr{H}^d by $A(t) \equiv^t (U(t)X_1(0), U(t)X_2(0), \dots, U(t)X_d(0))$. Then, since the covariance matrix of A is equal to R, we can apply Theorem 4.1 to obtain a mapping Φ from \mathscr{R} into \mathscr{L} satisfying relation (5.6). By using the uniqueness of Laplace transform, we see that Φ is injective.

In order to show that Φ is surjective, we take any element (α, β, κ) of \mathcal{L} . As we have shown in the proof of Theorem 4.1, we note that L is

well-defined as an M(d; C)-valued holomorphic function on C^+ . We define an M(d; C)-valued holomorphic function Z on C^+ by

(5.10)
$$Z(\zeta) \equiv \beta - i\zeta + L(\zeta)$$
.

Then we can define for each $u{\in}C^d$ a holomorphic function h_u on C^+ by

(5.11)
$$h_u(\xi) \equiv (Z(\xi)^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}} u, u)_{C^d}.$$

Since for any $\zeta \in C^+$

$$(5.12) Z(\xi)^{-1} \cdot \alpha + (Z(\xi)^{-1} \cdot \alpha)^*$$

= $Z(\xi)^{-1} \cdot \alpha \cdot \{\alpha^{-1} \cdot Z(\xi) + (\alpha^{-1} \cdot Z(\xi))^*\} \cdot (Z(\xi)^{-1} \cdot \alpha)^*,$

we see from (4.60) in the proof of Theorem 4.1 and condition (v) in $\mathscr L$ that

(5.13) Re h_u is a non-negative harmonic function on C^+ and

(5.14)
$$\sup_{n>0} \int_{\mathbf{R}} |\operatorname{Re} h_u(\boldsymbol{\xi} + i\boldsymbol{\eta})| d\boldsymbol{\xi} < \infty.$$

Therefore, we find ([1]) that there exists a unique bounded Borel measure Δ_u on R such that for any $\xi = \xi + i\eta \in C^+$

(5.15) Re
$$h_u(\boldsymbol{\xi} + i\boldsymbol{\eta}) = \frac{1}{2\pi} \int_{\boldsymbol{R}} \frac{\boldsymbol{\eta}}{(\lambda - \boldsymbol{\xi})^2 + \boldsymbol{\eta}^2} \Delta_u(d\lambda).$$

By using vectors e_p , e_{pq} and $\tilde{e}_{pq}(1 \le p < q \le d)$ in (4.24), (4.25) and (4.26), we define C-valued bounded signed measures Δ_{pp} , Δ_{pq} and $\Delta_{qp}(1 \le p < q \le d)$ on R by

$$(5.16) \qquad \Delta_{pp} \equiv \Delta_{e_p}$$

$$(5.17) \qquad \Delta_{pq} \equiv \frac{1}{2} \{ \Delta_{e_{pq}} - \Delta_{e_{p}} - \Delta_{e_{q}} - i(\Delta_{\tilde{e}_{pq}} - \Delta_{e_{p}} - \Delta_{e_{q}}) \}$$

and

$$(5.18) \qquad \Delta_{qp} \equiv \bar{\Delta}_{pq}$$

And we define ⊿ by

$$(5.19) \qquad \Delta \equiv (\Delta_{pq})_{1 \le p \le q \le d}$$

and then an M(d; C)-valued continuous function R on R by

(5.20)
$$R(t) \equiv \int_{R} e^{-it\lambda} \Delta(d\lambda).$$

Then we shall show that $R \in \mathcal{R}$ and $\Phi(R) = (\alpha, \beta, \kappa)$. At first we prove that for any $u = {}^{t}(u_1, u_2, \dots, u_d) \in \mathbb{C}^d$

$$(5.21) \qquad \sum_{p,q=1}^{d} \bar{u}_p u_q \, \Delta_{pq} = \Delta_u.$$

We denote by μ the left hand side of (5.21). We note that μ is an R-valued bounded signed measure on R. Then it follows from (5.15) that for any $\xi = \xi + i\eta \in C^+$

$$(5.22) \frac{1}{2\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} \mu(d\lambda)$$

$$= \sum_{p=1}^{d} |u_{p}|^{2} \cdot \frac{1}{2\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} \Delta_{e_{p}}(d\lambda)$$

$$+ 2\operatorname{Re}(\sum_{1 \leq p < q \leq d} \bar{u}_{p} u_{q} \frac{1}{2\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} ((\Delta_{e_{pq}} - \Delta_{e_{p}} - \Delta_{e_{q}}) - \lambda_{e_{q}})$$

$$- i(\Delta_{\tilde{e}_{pq}} - \Delta_{e_{p}} - \Delta_{e_{q}}) (d\lambda))$$

$$= \operatorname{Re}\{\sum_{p=1}^{d} |u_{p}|^{2} h_{e_{p}}(\xi) + 2 \sum_{1 \leq p < q \leq d} \bar{u}_{p} u_{q} (\operatorname{Re} h_{e_{pq}}(\xi) - \operatorname{Re} h_{e_{p}}(\xi) - \operatorname{Re} h_{e_{q}}(\xi))\}.$$

$$- \operatorname{Re} h_{e_{q}}(\xi) - i(\operatorname{Re} h_{\tilde{e}_{pq}}(\xi) - \operatorname{Re} h_{e_{q}}(\xi)) - \operatorname{Re} h_{e_{q}}(\xi))\}.$$

On the other hand, we see from (4.24), (4.25), (4.26) and (5.11) that for any $\xi \in C^+$ and $1 \le p < q \le d$

(5.23) Re
$$h_{e_{pq}}(\xi)$$
 - Re $h_{e_{p}}(\xi)$ - Re $h_{e_{q}}(\xi)$ - Re $h_{e_{q}}(\xi)$

Therefore, by (5.11), (5.22) and (5.23), for any $\zeta = \xi + i\eta \in C^+$,

$$(5.24) \frac{1}{2\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} \mu(d\lambda)$$

$$= \sum_{p=1}^{d} |u_{p}|^{2} \operatorname{Re}(Z(\xi)^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}} e_{p}, e_{p})_{C^{d}}$$

$$+ \operatorname{Re}(\sum_{1 \leq p < q \leq d} \bar{u}_{p} u_{q} ((Z(\xi)^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}} + (Z(\xi)^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}})^{*}) e_{q}, e_{p})_{C^{d}}$$

$$= \sum_{p, q=1}^{d} \bar{u}_{p} u_{q} \operatorname{Re}(Z(\xi)^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}} e_{p}, e_{q})_{C^{d}}$$

$$= \operatorname{Re}(Z(\xi)^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}} u, u)_{C^{d}}.$$

Thus, it follows from (5.11), (5.15) and (5.24) that for any $\xi = \xi + i\eta \in C^+$

$$(5.25) \int_{\mathbf{R}} \frac{\eta}{(\lambda - \boldsymbol{\xi})^2 + \eta^2} \mu(d\lambda) = \int_{\mathbf{R}} \frac{\eta}{(\lambda - \boldsymbol{\xi})^2 + \eta^2} \Delta_u(d\lambda).$$

By using the same consideration as (4.62), we find that (5.25) gives $\mu = \Delta u$ and so (5.21) holds. In particular, we find (5.20) and (5.21) that

(5.26) R is an M(d; C)-valued continuous and non-negative definite function.

Next we shall show

$$(5.27)$$
 $R(0) \in GL(d; C).$

By using (5.20) and (5.21) again, we note that for any $u \in \mathbb{C}^d$

$$(5.28) (R(0)u, u)_{C^a} = \Delta_u(R).$$

Let u be any vector in C^d such that $(R(0)u, u)_{C^d} = 0$. It then follows from (5.11), (5.12), (5.15) and (5.28) that for any $\xi \in C^+$

$$\operatorname{Re}(Z(\zeta)^{-1} \bullet \frac{\alpha}{\sqrt{2\pi}} u, u)_{C^d} = 0,$$

which implies u=0. Hence we have (5.27).

Next we claim that for any $\xi \in C^+$

$$(5.29) \qquad [R](\xi) = Z(\xi)^{-1} \bullet \frac{\alpha}{\sqrt{2\pi}}$$

Similarly as (5.5), we see from (5.20) and (5.21) that for any $u \in \mathbb{C}^d$

$$([R](\xi)u, u)_{C^a} = \frac{1}{2\pi i} \int_R \frac{1}{\lambda - \xi} \Delta_u(d\lambda)$$

and so by (5.15)

(5.30)
$$\operatorname{Re}([R](\xi)u, u)_{C^d}) = (\operatorname{Re} h_u)(\xi).$$

Similarly as Lemma 4.22 (i), we see that for any $\eta > 0$

(5.31)
$$L(i\eta) = L(i) + \int_{\mathbb{R}} \frac{\eta - 1}{(\lambda - i\eta)(\lambda - i)} \kappa(d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1}$$

and so

$$(5.32) \quad \lim_{\eta \to \infty} \frac{L(i\eta)}{\eta} = 0.$$

By (5.10), (5.11) and (5.32), we have

(5.33)
$$\lim_{n\to\infty} \eta \ h_u(i\eta) = (\frac{\alpha}{\sqrt{2\pi}}u, u)_{C^d} \quad \text{for any } u \in C^d.$$

On the other hand, similarly as Lemma 4.5, we have

$$(5.34) \quad \lim_{\eta \to \infty} \eta([R](i\eta)u, u)_{C^d} = (\frac{R(0)}{2\pi}u, u)_{C^d} \quad \text{for any } u \in C^d.$$

Since $R(0)^* = R(0)$ and $\alpha^* = \alpha$, it follows from (5.30), (5.33) and (5.34) that

$$(5.35) \qquad \frac{\alpha}{\sqrt{2\pi}} = \frac{R(0)}{2\pi}.$$

Therefore, since $([R](\cdot)u, u)_{C^d}$ and h_u are holomorphic on C^+ for any $u \in C^d$, we can apply Cauchy-Riemann's relation to (5.30), (5.33), (5.34) and (5.35) to find that for any $u \in C^d$

$$([R](\bullet)u,u)_{C^d}=h_u$$
 on C^+ ,

which with (5.11) gives (5.29).

Finally we shall show

(5.36)
$$\lim_{\epsilon \downarrow 0} [R](i\epsilon) = \beta^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}} \in GL(d; \mathbf{C}).$$

As we have seen in (4.57) in the proof of Theorem 4.1, condition (iii)(f) in $\mathscr L$ is equivalent to

(5.37)
$$\lim_{\eta \downarrow 0} L(i\eta) = 0,$$

which with (5.10) and (5.20) gives (5.36).

Thus, we find from (5.26), (5.27), (5.29) and (5.36) that $R \in \mathcal{R}$ and $\Phi(R) = (\alpha, \beta, \kappa)$, that is, Φ is surjective. (Q. E. D.)

REMARK 5.1 By (4.54) and (4.55) in the proof of Theorems 4.1 and 5.1, we note that the following conditions (5.38) and (5.39) are equivalent to condition (v) in \mathcal{L} :

(5.38)
$$\int_{R} \operatorname{trace} \left(Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^* \right) d\xi \text{ is independent of } \eta > 0.$$

(5.39) For any
$$p$$
, $q \in \{1, 2, \dots, d\}$ and $\eta > 0$

$$((Z(\bullet + i\eta)^{-1} \bullet \alpha + (Z(\bullet + i\eta)^{-1} \bullet \alpha)^*)_{pq} \in L^1(\mathbf{R})$$

and

$$\int_{\mathbf{R}} (Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^*)_{pq} d\xi \text{ is independent of } \eta.$$

By combining Theorem 5.1 with Theorem 4.1 and then noting (4.57), (4.59) and (4.62), we have

THEOREM 5.2 Let R and (α, β, κ) be any element of \mathcal{R} and \mathcal{L} , respectively, such that $\Phi(R) = (\alpha, \beta, \kappa)$. Then,

$$(i) \quad \alpha = \frac{R(0)}{\sqrt{2\pi}}$$

(ii)
$$\beta = R(0) \cdot D^{-1}$$

(iii)
$$\kappa(d\xi) = \frac{1}{(2\pi)^2} \lim_{\eta \downarrow 0} R(0) \cdot ([R](\xi + i\eta)^{-1} + ([R](\xi + i\eta)^{-1})^*) \cdot R(0) d\xi$$
 in $\mathscr{D}'(R)$.

By taking account of Definition 3.1 in [10], we shall give

DEFINITION 5.1 We call such a triple $(\alpha, \beta, \kappa) \in \mathcal{L}$ that $\Phi^{-1}(\alpha, \beta, \kappa) = R \in \mathcal{R}$ a second KMO-Langevin data associated with R.

§ 6. \mathcal{R}_{sm} and \mathcal{L}_{sm}

By using Theorem 5.1, we shall characterize the set of second KMO-Langevin data associated with covariance matrices of smooth stationary curves treated in § 2 and § 3. For that purpose, we shall define two subsets \mathcal{R}_{sm} and \mathcal{L}_{sm} of \mathcal{R} and \mathcal{L}_{sm} , respectively, by

(6.1)
$$\mathcal{R}_{sm} \equiv \{R \in \mathcal{L}; \int_{R} \lambda^{2} (\Delta(d\lambda)u, u) < \infty \text{ for any } u \in \mathbb{C}^{d}, \text{ where } \Delta \text{ is a spectral measure matrix of } R\}$$

and

(6.2)
$$\mathscr{R}_{sm} \equiv \{(\alpha, \beta, \kappa) \in \mathscr{L};$$
 (iii-a)' each component of κ is a C -valued bounded Borel measure on R

(iii-f)'
$$\lim_{\epsilon \downarrow 0} \int_{\mathbf{R}} \frac{\lambda}{\lambda^2 + \epsilon^2} \kappa(d\lambda)$$
 exists

(iv)
$$\lim_{n\to\infty} (\lim_{\eta\downarrow 0} \int_{\mathbf{R}} (n \wedge \xi^2) \operatorname{trace}(Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^* d\xi)$$
exists}

At first we shall prepare

LEMMA 6.1 Let R and (α, β, κ) be any element of \mathcal{R} and \mathcal{L} , respectively, such that $\Phi(R) = (\alpha, \beta, \kappa)$. Then, we have, for any $p \in \{1, 2, \dots, d\}$ and $n \in \mathbb{N}$

(6.3)
$$\lim_{\eta \downarrow 0} \int_{\mathbf{R}} (n \wedge \xi^{2}) (Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^{*})_{pp} d\xi$$
$$= \int_{\mathbf{R}} (n \wedge \xi^{2}) \Delta_{pp} (d\lambda).$$

PROOF By (4.52), we have, for any $p \in \{1, 2, \dots, d\}$, $n \in \mathbb{N}$ and $\eta > 0$,

(6.4)
$$\int_{R} (n \wedge \xi^{2}) (Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^{*})_{pp} d\xi$$

$$= \sqrt{2\pi} \int_{R} (\int_{R} \frac{1}{\pi} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} (n \wedge \xi^{2}) d\xi) \Delta_{pp} (d\lambda).$$

Since for any $n \in N$

$$\lim_{n\downarrow 0} \int_{R} \frac{1}{\pi} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} (n \wedge \xi^{2}) d\xi = n \wedge \lambda^{2} \text{ boundedly in } \lambda \in R,$$

we see that (6.3) follows from (6.4).

(Q. E. D.)

Now we shall show

THEOREM 6.1 $\Phi(\mathscr{R}_{sm}) = \mathscr{L}_{sm}$.

PROOF Let R be any element of \mathscr{R}_{sm} and $(\alpha, \beta, \kappa) \equiv \Phi(R)$. We take a stationary curve $A = (A(t); t \in R)$ with covariance matrix R constructed in the proof of Theorem 5.1. Since $R \in \mathscr{R}_{sm}$ implies that A(t) is differentiable at t, we can apply (3.2), Theorems 3.1 and 5.1 to get (iii-a)' in \mathscr{L}_{sm} . Therefore, we can rewrite Lemma 4.21(i) into

(6.5)
$$L_{\varepsilon}(\zeta) = \frac{1}{i} \int_{R} \frac{1}{\lambda - \zeta - i\varepsilon} \kappa (d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1} - \frac{1}{i} \int_{R} \frac{1}{\lambda - i\varepsilon} \kappa (d\lambda) \cdot (\sqrt{2\pi} \alpha)^{-1} \text{ for any } \zeta \in C^{+}.$$

Since

(6.6)
$$\lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} \frac{1}{\lambda - \zeta - i\varepsilon} \kappa(d\lambda) = \int_{\mathbf{R}} \frac{1}{\lambda - \zeta} \kappa(d\lambda) \quad \text{for any } \zeta \in C^+,$$

we see from (4.44) and (6.5) that

(6.7)
$$\lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} \frac{1}{\lambda - i\varepsilon} \kappa(d\lambda) \text{ exists.}$$

By combining (6.5) with (ii - e) in \mathcal{L} , we find that (iii - f)' in \mathcal{L}_{sm} holds. By applying Lebesgue's monotone convergence theorem to (6.3), we see that $R \in \mathcal{R}_{sm}$ implies (vi) in \mathcal{L}_{sm} .

Conversely, let (α, β, κ) be any element of \mathcal{L}_{sm} and $R \equiv \Phi^{-1}((\alpha, \beta, \kappa))$. By applying Lebesgue's monotone convergence theorem to (6.3) again, we see that condition (vi) in \mathcal{L}_{sm} implies that

(6.8)
$$\sum_{p=1}^{d} \int_{\mathbf{R}} \lambda^2 \Delta_{pp}(d\lambda) < \infty.$$

Since for any $u={}^t(u_1, u_2, \cdots, u_d) \in \mathbb{C}^d$ $\sum_{p, q=1}^d \bar{u}_p u_q \Delta_{pq}$ is a bounded Borel measure on \mathbb{R} , we note that

(6.9)
$$|\Delta_{pq}(B)| \leq \sum_{r=1}^{d} \Delta_{rr}(B)$$
 for any $p, q \in \{1, 2, \dots, d\}$

and Borel set B in R.

Therefore, (6.8) with (6.9) gives that R belongs to \mathcal{R}_{sm} . (Q. E. D.)

REMARK 6.1 We note that conditions (iii-f)' in \mathcal{L}_{sm} with condition (iii-e) in \mathcal{L} implies condition (iii-f) in \mathcal{L} .

Next we shall consider any element $R \in \mathcal{R}_{sm}$ and obtain a continued fraction expansion of [R]. We set $(\alpha, \beta, \kappa) \equiv \Phi(R)$. By condition (iii-e) in \mathcal{L} and (6.7), we have

LEMMA 6.2

$$\lim_{\varepsilon \downarrow 0} \frac{1}{i} \int_{R} \frac{1}{\lambda - i\varepsilon} \kappa(d\lambda) = \sqrt{\frac{\pi}{2}} (\beta \cdot \alpha + (\beta \cdot \alpha)^{*}) - i \lim_{\varepsilon \downarrow 0} \int_{R} \frac{\lambda}{\lambda^{2} + \varepsilon^{2}} \kappa(d\lambda).$$

In the sequel in this section, we shall suppose the following condition:

(6.10)
$$\lim_{\varepsilon \downarrow 0} \frac{1}{i} \int_{\mathbf{R}} \frac{1}{\lambda - i\varepsilon} \kappa(d\lambda) \in GL(d; \mathbf{C})$$

Remark 6.2 If κ is a symmetric Borel measure on R, then, we see from Lemma 6.2 that

(6.11)
$$\lim_{\varepsilon \downarrow 0} \frac{1}{i} \int_{\mathbf{R}} \frac{1}{\lambda - i\varepsilon} \kappa(d\lambda) = \sqrt{\frac{\pi}{2}} (\beta \cdot \alpha + (\beta \cdot \alpha)^*).$$

We define an M(d; C)-valued continuous function ϕ on R by

(6.12)
$$\phi(t) \equiv \int_{\mathbf{R}} e^{-it\lambda} \kappa(d\lambda) \cdot R(0)^{-1}.$$

Then we shall show

Lemma 6.3

$$(i)$$
 $\phi(0) = \kappa(\mathbf{R}) \cdot R(0)^{-1}$

(ii)
$$\lim_{\epsilon \downarrow 0} [\phi](i\epsilon) = \frac{1}{2\pi i} \lim_{\epsilon \downarrow 0} \int_{R} \frac{1}{\lambda - i\epsilon} \kappa(d\lambda) \cdot R(0)^{-1}$$

(iii)
$$\phi(\cdot) \cdot R(0) \in \mathcal{R}$$
.

PROOF (i) and (ii) follow immediately from (6.12). Since κ satisfies condition (iii-b) in \mathcal{L} , we see that $\phi(\cdot) \cdot R(0)$ is an M(d; C) -valued non-negative definite function on R. Therefore, by condition (6.10), (i) and (ii), for the proof of (iii), it suffices to prove

$$(6.13) \quad \kappa(\mathbf{R}) \in GL(d; \mathbf{C}).$$

Let u be any element of C^d such that $(\kappa(R)u, u)_{C^d} = 0$. By using condition (iii-b) in \mathcal{L} again, we can see that $\sum_{p, q=1}^d u_p \bar{u}_q \kappa_{pq}(d\lambda) = 0$ and so for any $\zeta \in C^+$

$$\sum_{p,q=1}^{d} \bar{u}_p u_q \int_{\mathbf{R}} \frac{1}{\lambda - \zeta} \kappa_{pq}(d\lambda) = 0.$$

By combining this with condition (6.10), we find that u=0 and so (6.12) holds. (Q. E. D.)

As we have seen in § 2 and § 3, it follows from Theorem 2.1, Lemma 3. 1(ii), Theorem 5. 2(i) and Lemma 6. 3(ii) that

Lemma 6.4 For any $\xi \in C^+$

$$[R](\xi) \! = \! (\beta + i \lim_{\varepsilon \downarrow 0} \int_{R} \! \frac{1}{\lambda - i\varepsilon} \kappa (d\lambda) - i\xi + 2\pi [\phi](\xi))^{-1} \bullet \frac{\alpha}{\sqrt{2\pi}}.$$

By virtue of Lemmas 6.3(iii) and 6.4, we can apply Theorems 5.1 and 5.2 (i) to the function $\phi(\cdot) \cdot R(0)$ to obtain the following continued fraction expansion of the function [R] for $R \in \mathcal{R}_{sm}$.

THEOREM 6.2 Let R be any element of \mathcal{R}_{sm} and $(\alpha, \beta, \kappa) \equiv \Phi(R)$. Furthermore we suppose condition (6.10). Then there exists a unique triple $(\alpha_2, \beta_2, \kappa_2)$ of \mathcal{L} such that for any $\xi \in \mathbb{C}^+$

(6.14)
$$[R](\xi) = (\beta + i \lim_{\epsilon \downarrow 0} \int_{\mathbf{R}} \frac{1}{\lambda - i\epsilon} \kappa(d\lambda) - i\xi - (\beta_2 - i\xi + L_2(\xi))^{-1} \cdot \alpha_2 \cdot \alpha^{-1})^{-1} \cdot \frac{\alpha}{\sqrt{2\pi}},$$

where

$$(6.15) L_2(\xi) = (-i\xi) \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}} \frac{1}{(\lambda - \xi - i\varepsilon)(\lambda - i\varepsilon)} \varkappa_2(d\lambda) \cdot (\sqrt{2\pi} \alpha_2)^{-1}.$$

Finally we shall give an expression of the triple $(\alpha_2, \beta_2, \kappa_2)$ in terms of the second KMO-Langevin data (α, β, κ) associated with R.

THEOREM 6.3

$$(i)$$
 $\alpha_2 = \frac{\kappa(\mathbf{R})}{\sqrt{2\pi}}$

(ii)
$$\beta_2 = \kappa(\mathbf{R}) \cdot (\sqrt{2\pi} \alpha)^{-1} \cdot (\lim_{\varepsilon \downarrow 0} \frac{1}{i} \int_{\mathbf{R}} \frac{1}{\lambda - i\varepsilon} \kappa(d\lambda))^{-1}$$

(iii)
$$\kappa_{2}(d\xi)$$

$$= \lim_{\eta \downarrow 0} \kappa(\mathbf{R}) \cdot \left(\int_{\mathbf{R}} \frac{1}{\tau - \xi - i\eta} \kappa(d\tau) \right)^{-1} \cdot \int_{\mathbf{R}} \frac{1}{\pi} \frac{\eta}{(\tau - \xi)^{2} + \eta^{2}} \kappa(d\tau) \cdot \left(\int_{\mathbf{R}} \frac{1}{\tau - \xi + i\eta} \kappa(d\tau) \right)^{-1} \cdot \kappa(\mathbf{R}) d\xi \quad in \ \mathcal{D}'(\mathbf{R}).$$

PROOF Since it follows from Theorem 5. 2(i) that $\alpha_2 = \frac{\phi(0) \cdot R(0)}{\sqrt{2\pi}}$, we find that (i) follows from Lemma 6. 2(i). By Theorem 5. 2(ii), $\beta_2 = \phi(0) \cdot R(0) \cdot (2\pi [\phi](0+i0) \cdot R(0))^{-1}$. Therefore, we see from Theorems 5. 2 (i), (ii), Lemmas 6. 3(i) and 6. 3(ii) that (ii) holds. By Theorem 5. 2 (iii), we have

(6.16)
$$\kappa_{2}(d\xi) = \frac{1}{(2\pi)^{2}} \lim_{\eta \downarrow 0} \phi(0) \cdot R(0) \cdot ([\phi(\cdot)R(0)](\xi + i\eta)^{-1} + ([\phi(\cdot)R(0)](\xi + i\eta)^{-1})^{*})\phi(0) \cdot R(0)d\xi \quad in \mathcal{D}'(R).$$

On the other hand, we can see from (6.12) that for any $\xi = \xi + i\eta \in C^+$

(6.17)
$$[\phi(\cdot) \cdot R(0)](\xi + i\eta)^{-1} + ([\phi(\cdot) \cdot R(0)](\xi + i\eta)^{-1})^*$$

$$= (2\pi)^2 \left(\int_{R} \frac{1}{\tau - \xi - i\eta} \kappa(d\tau) \right)^{-1} \cdot \int_{R} \frac{1}{\pi} \frac{\eta}{(\tau - \xi)^2 + \eta^2} \kappa(d\tau) \cdot$$

$$\cdot \left(\int_{R} \frac{1}{\tau - \xi + i\eta} \kappa(d\tau) \right)^{-1}.$$

Therefore, by Lemma 6.3(i), (6.16) and (6.17), we have (iii). (Q. E. D.)

REMARK 6.3 Let R and (α, β, κ) be any element of \mathcal{R}_{sm} and \mathcal{L}_{sm} , respectively, such that $\Phi(R) = (\alpha, \beta, \kappa)$. We denote by ϕ_{κ} a covariance matrix whose spectral measure matrix is κ .

- (i) We note that $\phi_{\kappa} \cdot R(0)$ is equal to ϕ_{M} in (2.12)
- (ii) If ϕ_{κ} belongs to \mathcal{R}_{sm} , we can apply Theorem 2.2 in Mori's theory to obtain a continued fraction expansion for [R], which is a fundamental idea in [7].

§ 7. \mathscr{R}_{ds} and \mathscr{L}_{ds}

At first, we shall in this section characterize the set of second KMO-Langevin data associated with elements of \mathcal{R} having spectral density

matrices. For that purpose, we shall define two subsets \mathcal{R}_{ds} and \mathcal{L}_{ds} of \mathcal{R} and \mathcal{L} , respectively, by

(7.1) $\mathscr{R}_{ds} \equiv \{R \in \mathscr{R}; R \text{ has a spectral density matrix}\}$

$$(7.2) \qquad \mathscr{L}_{ds} \equiv \{(\alpha, \beta, \kappa) \in \mathscr{L};$$

(a)
$$\lim_{\eta \downarrow 0} (Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^*)$$
 exists for a. e. $\xi \in \mathbb{R}$

(b)
$$\int_{\mathbf{R}} \operatorname{trace} \ (Z(\xi+i\eta)^{-1} \cdot \alpha + (Z(\xi+i\eta)^{-1} \cdot \alpha)^*) d\xi$$

$$= \int_{\mathbf{R}} \lim_{\epsilon \downarrow 0} \operatorname{trace} \ (Z(\xi+i\epsilon)^{-1} \cdot \alpha + (Z(\xi+i\epsilon)^{-1} \cdot \alpha)^*) d\xi < \infty$$
 for any $\eta > 0$.

THEOREM 7.1 $\Phi(\mathcal{R}_{ds}) = \mathcal{L}_{ds}$.

PROOF Let R be any element of \mathcal{R}_{ds} and $(\alpha, \beta, \kappa) \equiv \Phi(R)$. We denote by $\Delta' = (\Delta'_{pq})_{1 \leq p, q \leq d}$ a spectral density matrix of R. We define for each $u \in C^d$ a function Δ'_u on R by

(7.3)
$$\Delta'_{u}(\xi) \equiv (\Delta'(\xi)u, u)_{C^{d}}.$$

Then we note that

(7.4)
$$\Delta'_{u}(\xi) \ge 0$$
 for a. e. $\xi \in R$

$$(7.5) \qquad \Delta'_{u} \in L'(\mathbf{R})$$

and

$$(7.6) \qquad (\Delta(d\lambda)u, u)_{C^d} = \Delta'_u(\xi)d\xi.$$

By (4.51) and (7.6), for any $u \in \mathbb{C}^d$ and $\eta > 0$

(7.7)
$$\frac{1}{\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^2 + \eta^2} \Delta'_{u}(\xi) d\xi = 2 \operatorname{Re}([R](\xi + i\eta) u, u)_{C^d}.$$

Therefore, it follows from (7.4), (7.5) and (7.7) that

(7.8)
$$\Delta'_{u}(\xi) = 2 \lim_{\eta \downarrow 0} \operatorname{Re}([R](\xi + i\eta)u, u)_{C^{d}} \quad \text{for a. e. } \xi \in R$$

and

(7.9)
$$\Delta'_{u}(\bullet) = 2 \lim_{\eta \downarrow 0} \operatorname{Re}([R](\bullet + i\eta)u, u)_{C^{d}} \quad \text{in } L^{1}(R).$$

In particular, we see from (7.7) and (7.9) that for any $u \in \mathbb{C}^d$ and $\eta > 0$

(7.10)
$$\int_{R} \operatorname{Re}(([R](\xi + i\eta)u, u)_{C^{d}}) d\xi$$
$$= \int_{R} \lim_{\eta \downarrow 0} \operatorname{Re}(([R](\xi + i\eta)u, u)_{C^{d}}) d\xi.$$

On the other hand, by (5.6), for any $\xi \in C^+$,

$$(7.11) Z(\xi)^{-1} \cdot \alpha + (Z(\xi)^{-1} \cdot \alpha)^* = \sqrt{2\pi} ([R](\xi) + [R](\xi)^*).$$

Therefore, we find from (7.8), (7.9), (7.10) and (7.11) that (v)' in \mathcal{L}_{ds} holds.

Conversely, let (α, β, κ) be any element of \mathcal{L}_{ds} and $R = \Phi^{-1}(\alpha, \beta, \kappa)$. We denote by Δ a spectral measure matrix of R. By condition (v)' in \mathcal{L}_{ds} , we can define $m = (m_{pq}(d\xi))_{1 \le p, q \le d}$ by

$$(7.11) m(d\xi) \equiv \frac{1}{\sqrt{2\pi}} \lim_{\eta \downarrow 0} (Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^*) d\xi.$$

In particular, we see from (4.54) that for any $u=t(u_1, u_2, \dots, u_d) \in \mathbb{C}^d$

(7.12)
$$m_u \equiv \sum_{p, q=1}^d \bar{u}_p u_q m_{pq}$$
 is a bounded Borel measure on R .

Let any $u \in \mathbb{C}^d$ be fixed. Since it follows from (4.54) that for any $\zeta \in \mathbb{C}^+$,

$$|((Z(\xi)^{-1} \bullet \alpha + (Z(\xi)^{-1} \bullet \alpha)^*) u, u)_{C^d}|$$

$$\leq (u, u)_{C^d} \cdot \operatorname{trace} ((Z(\xi)^{-1} \bullet \alpha + (Z(\xi)^{-1} \bullet \alpha)^*),$$

by condition (v''-b), we can apply a generalized Lebesgue's convergence theorem ([13]) to find that, for any C-valued bounded Borel measurable function f on R,

(7.13)
$$\lim_{\varepsilon \downarrow 0} \int_{\mathbf{R}} f(\lambda) ((Z(\lambda + i\varepsilon)^{-1} \cdot \alpha + (Z(\lambda + i\varepsilon)^{-1} \cdot \alpha)^{*}) u, u)_{C^{d}} d\lambda$$
$$= \int_{\mathbf{R}} f(\lambda) \lim_{\varepsilon \downarrow 0} ((Z(\lambda + i\varepsilon)^{-1} \cdot \alpha + (Z(\lambda + i\varepsilon)^{-1} \cdot \alpha)^{*}) u, u)_{C^{d}} d\lambda.$$

Therefore, by (7.11), (7.12) and (7.13), for any $\zeta = \xi + i\eta \in C^+$,

$$(7.14) \frac{1}{\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} m_{u}(d\lambda)$$

$$= \lim_{\epsilon \downarrow 0} \int_{R} \frac{1}{\pi} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} \frac{1}{\sqrt{2\pi}} ((Z(\lambda + i\epsilon)^{-1} \cdot \alpha + (Z(\lambda + i\epsilon)^{-1} \cdot \alpha)^{*}) u, u)_{C^{d}} d\lambda.$$

On the other hand, by (5.11) and (5.15), for any $\lambda \in \mathbb{R}$ and $\varepsilon > 0$,

$$(7.15) \qquad ((Z(\lambda + i\varepsilon)^{-1} \cdot \alpha + (Z(\lambda + i\varepsilon)^{-1} \cdot \alpha)^*) u, u)_{C^d}$$

$$= \sqrt{\frac{2}{\pi}} \int_{R} \frac{\varepsilon}{(\tau - \lambda)^2 + \varepsilon^2} \Delta_u(d\tau),$$

where $\Delta_u \equiv \sum_{p, q=1}^d \bar{u}_p u_q \Delta_{pq}$.

By substituting (7.15) into (7.14), we find that for any $\zeta = \xi + i\eta \in C^+$

$$\frac{1}{\pi} \int_{R} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} m_{u}(d\lambda)$$

$$= \lim_{\varepsilon \downarrow 0} \int_{R} \left(\int_{R} \frac{1}{\pi} \frac{\varepsilon}{(\tau - \lambda)^{2} + \varepsilon^{2}} \cdot \frac{1}{\pi} \frac{\eta}{(\lambda - \xi)^{2} + \eta^{2}} d\lambda \right) \Delta_{u}(d\tau)$$

$$= \int_{R} \frac{1}{\pi} \frac{\eta}{(\tau - \xi)^{2} + \eta^{2}} \Delta_{u}(d\tau),$$

which gives

$$(7.16) m_u(d\lambda) = \Delta_u(d\lambda).$$

Hence, it follows from (7.11) and (7.16) that R belongs to \mathcal{R}_{ds} . (Q. E. D.) Finally, by noting (7.8), (7.9) and (7.11), we can characterize the set $\Phi(\mathcal{R}_{sm}\cap\mathcal{R}_{ds})$ as follows.

THEOREM 7.2
$$\Phi(\mathscr{R}_{sm} \cap \mathscr{R}_{ds})$$

$$= \{(\alpha, \beta, \kappa) \in \mathscr{L}_{ds};$$

$$(\text{vi})' \int_{R} \xi^{2} \lim_{\eta \downarrow 0} \operatorname{trace} (Z(\xi + i\eta)^{-1} \cdot \alpha + (Z(\xi + i\eta)^{-1} \cdot \alpha)^{*}) d\xi < \infty\}.$$

References

- [1] KOMATSU, H., Fourier Analysis, Fundamental Mathematics, Iwanami-Shoten, Tokyo, 1978 (in Japanese).
- [2] KUBO, R., Statistical mechanical theory of irreversible processes I, General theory and simple applications to magnetic and conduction problem, J. Phys. Soc. Japan, 12 (1957), 570–586.
- [3] KUBO, R., The Fluctuation-Dissipation Theorem and Brownian Motion, 1965 Tokyo Summer Lectures in Theoretical Physics, edited by R. KUBO (Part 1, Many-Body Theory), 1966 Syokabo (Tokyo) and Benjamin (New York), 1-16.
- [4] KUBO, R., The fluctuation-dissipation theorem, Reports on Progress in Physics, 29 (1966), 255-284.
- [5] KUBO, R., Statistical Physics, Foundation of Modern Physics 5, Iwanami-Shoten, Tokyo, 1972 (in Japanese).
- [6] MORI, H., Transport, collective motion and Brownian motion, Progr. Theor. Phys., 33 (1965), 423-455.

- [7] MORI, H., A continued-fraction representation of the time-correlation functions, Progr. Theor. Phys., 34 (1965), 399-416.
- [8] OKABE, Y., On a stochastic differential equation for a stationary Gaussian process with T-positivity and the fluctuation-dissipation theorem, J. Fac. Sci. Univ. Tokyo, Sect. IA 28 (1981), 169-213.
- [9] OKABE, Y., A generalized fluctuation-dissipation theorem for one-dimensional diffusion process, Comm. Math. Phys. 98 (1985), 449-468.
- [10] OKABE, Y., On KMO-Langevin equations for stationary Gaussian processes with T-positirity, J. Fac. Sci. Univ. Tokyo, Sect IA 33 (1986), 1–56.
- [11] OKABE, Y., KMO-Langevin equation and Fluctuation-Dissipation Theorem (I), Hokkaido Mathematical Journal, 15 (1986), 163-216.
- [12] OKABE, Y., On the theory of the Brownian motion with Alder-Wainwright effect, to appear in J. Statist. Phys. 45 (1986).
- [13] ROYDEN, H. L., Real Analysis, The Macmilian Company, 1963.

Department of Mathematics Faculty of Science Hokkaido University