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§1. Introduction

Let R=(Ry)1<p q<a be an M (d ; C)-valued continuous and non-negative
definite function on R, that is, for any u=(wu, u,,"*", us) €C? (Ru, ) .=

d
D @uaRy, is a C-valued continuous and non-negative definite function on R,
b q=1

where d is a fixed integer through this paper and M (d ; C) denotes the set of
d X d-matrices over C. We define an M (d ; C)-valued holomorhic function
[R] on C* by

QD [RI© =g [FRMDL

Furthermore, let A=(A(t); tER) be any stationary curve in a Hilbert
space # ¢ with R as its covariance matrix :

((A,(D), Aq(s>)%)1§p,qsd:R<t_S>,
where A(t)=1(A,(t), A (t),---, A(1)).

In [II], we have treated the case where d=1 and R satisfies the
following conditions :

1.2) R(0)+0
(1.3 there exists a null set Az in R—{0} such that lifr(} [R](&+im)
n

exists for any & €R—A,

(1.4 there exist positive constants ¢ and m such that
I[R](E)|=c(1+|&|™! for any EEC™.

In the first half of [1I], we have obtained a complete structure of the
function [R] by introducing a second KMO-Langevin data (Theorems 4.1
and 4.2 in [I1]). In the last half of [II], by using a spectral representation
of the stationary curve 4, we have introduced a Kubo noise from the point
of view of Kubo’s linear response theory in statistical physics. And we have
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applied the complete form of the function [R] to derive an equation of
motion describing the time evolution of the stationary curve 4 with the Kubo
noise as the random force which we called a second KMO-Langevin equation
(Theorem 7.1 in [11]). We have found that such a second KMO-Langevin
equation gives a natural generalization of Stokes-Boussinesq-Langevin
equation which describes the time evolution of Brownian motion with Alder-
Wainwright effect (). Furthermore we have shown that Kubo’s fluctua-
tion-dissipation theorem holds on the basis of the second KMO-Langevin
equation with both a mathematical structure and a physical meaning
(Theorems 8.1, 8.2 and 8.4 in [II].

In the investigation of stated above, it was fundamental to obtain
a complete structure of the function [R]. For this reason, we shall in this
paper obtain a complete form of the function [R] for the d-dimensional case
in (1.1) under the following more general conditions (1.5) and (1.6) than
conditions (1.2), (1.3) and (1.4) assumed in case d=1:

(1.5) R0 eGL ; O)

and
(1.6) Dzlifr(} fme‘“R(t)dt exists and DeGL(d ; (),
& 0

where GL(d ; C) denotes the set of d X d-regular matrices over C.
We call the function [R](2zR(0))™ an M(d ;C)-valued mobility
function associated with R. We define two sets # and & by

Z={R;R is an M(d ;C)-valued continuous and non-negative
definite function on R satisfying conditions (1.5) and (1.6)}
and

z={(a,B,x);
(i) a€GLd;C), a*=a and « is positive definite
BEGL ;C)
m KE("pq)lsp, q<d
(a) for each p, q<{1, 2,-+-, d} xp is a C-valued Borel signed
measure on R
(b) for any u="uy, ts,"**, ug) €C*

d
xu= (xu, u)c.,:DE 112,,uqx,,q is a Borel measure on R
, 4=

(o [ ﬂl—-ﬁxumxoo for any u&C*
R
(d) x*==x



KMO-Langevin equation and Fluctuation-Dissipation Theorem (II) 319

(e) lim L 2x(dl)—ﬁ—(ﬁ-a+(ﬁ a)*)

€10 l+
1
(f) 1”1?3 qlflg € g A L (dr))=0
(iv) for any £ C*
Ay 1 B
A.D  Z©O=p-i—&lim [ A—am= .>x(dl)°(\/?7m)

eGLd; 0)
(v) Sli% Rtrace (Z(&E+in) ea+ (Z(E+in) tea)*)dé <oo}.

In § 2 we shall review Mori’s theory of generalized Brownian motion
([6]), which can be applied to the case where the stationary curve A is
differentiable. We shall in § 3 proceed a sort of renormalization to the
results in § 2 in order that we can treat the ¢lass #. By using the result in
§ 3 through an approximation procedure, we shall in § 4 and § 5 show the
following main theorems in this paper.

THEOREM 5.1  There exists a bijective mapping ® from # onto & such
that

[R](C)ZZ(C)'I.—/‘;:” for any & ECH,
where RE % and (a, B, x) =0(R) €Z.

Furthermore, we shall give a formula by which the triple (@, 8, x)=
®(R) can be represented in terms of R.

THEOREM 5.2 Let R and (a, B, x) be any element of # and &,
respectively, such that ®(R)=(a, B, x). Then

R0
( ) a_J—_
(ii) B=R0)-D
(iii) x(dt‘f):%”)zl,i{rg RO)([RI(E+ )+ ([R](E+in)™)*)R(0)dE

n9'(R).
Let R and (a, 8, x) be any element of # and &, respectively, such that

®(R)=(a, B, x). Then we call the triple (a,8,x) a second KMO-
Langevin data associated with R.

ReMARk 1.1 Let (a,8,x) €% be a second KMO-Langevin data
associated with Re#. We note that, for d=1, the triple (a,f8, x-
(/2za)™") corresponds to the second KMO-Langevin data associated with
R given in Definition 4.1 of [11].




320 Y. Okabe

Under the general framework carried out in §5, we shall in §6
characterize a set ®(#,,) of second KMO-Langevin data associated with
elements of #s» which were treated in § 3 (I'heorem 6.1)) :

Bm={RER; [ 1U@)u, wp<oo  for any ueC?,

where 4 is a spectral measure matrix of R}.
Furthermore, by combining Theorem 6.1 with Theorems and B£. 2, we
shall give a continued fraction expansion of the function [R] for REZ;,
(Theorems 6.2 and 6. 3).

Finally, we shall in § 7 characterize a set ®(%#,) of second KMO-
Langevin data associated with elements of .# ;s which have spectral density

matrices (Theorem 7.1 :
Ras={REZ; R has a spectral density matrix}.

Simultaneously, the intersection ®(Zsn) N®(Lus) =D(PsnN.Ras) Will be
characterized (Theorem 7.2).

In a forthcoming paper, we shall consider a stationary curve A in a
Hilbert space #¢ whose covariance matrix R belongs to the set #4. And
we shall derive a differential-integral equation which R satisfies and then an
equation of motion describing the time evolution of the stationary curve A by
introducing a Kubo noise as a random force, which will be called a second-
KMO-Langevin equation. Furthermore, we shall find that Kubo’s fluctua-
tion-dissipation theorem holds on the basis of the second-KMO-Langevin
equation, which gives a justification of the nomenclature of the M (d ;C)
-valued mobility function [R](2zR(0))' and the second KMO-Langevin
data (a,pB, x).

§ 2. Mori’s theory of generalized Brownian motion

Let &# be a Hilbert space with an inner product (¢,x), and L a
self-adjoint operator on#. Wedenote by (U(?) ; t €R) a strongly continu-
ous one-parameter group of unitary operators on # whose infinitesimal
generator is equal to iL:

2.D U)=eé".

Furthermore we are given d vectors A,€%# (1<p=<d), where d is a fixed
positive integer. Then we define a stationary curve A=(A(¢t) ; tER) in#“
by
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A, (1) U(A,

A, (1) Ut A,
e Awb=| ., | =| |

A, (L) U(t)As

and then a covariance matrix R, on R by
(2.3) Ry(O=((Ax®), A0 )1<pq<a-
In this section we suppose the following conditions:
Q2.4 {A,;1<p<d} is linearly independent in #
and
(2.5 {Ap;1sp<d}iCco(l).
We note that condition (2.4) is equivalent to the following condition :
(2.6) R,(0)eGLU, 0).

It follows from (2.1), (2.2) and (2.5) that A(¢) satisfies the following
equation :

LA, (1)
. 1LA,(t)
2.7 A= , for any ¢t ER,

iLA,(t)
where /i(t) E%A(t).

We shall remind of Mori’s theory of generalized Brownian motion ([6]).
The object of Mori’s theory is to rewrite a sort of partial differential equation
(2.7 into an ordinary differential-integral equation, which is divided into a
dissipative part and a fluctuating part from the point of view of a
fundamental principle in statistical physics. And these parts are related
each other through Mori’s fluctuation-dissipation theorem.

Let #, be the closed subspace generated by {A,;1<p<d} and #, be
the orthogonal complementary subspace of #, in #. We denote by F, the
projection operator on #,. Then we define a linear operator L, in #°, by

{@(Ll)E%ﬂ@(L)

(2.8 Lu=U—-P)Lu (ucs2(L,)).
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The fundamental point in the so-called projection method which is used in
Mori’s theory lies in the following

Lemma 2.1 ([6]) L. is a self-adjoint operator on %, .
We define an element w of M(d ;C) by
(2.9 w=i"R(0)+R,(0)".

Furthermore, by virtue of Lemma 2. 1, we can define a stationary curve I,,=
(I,(t) ; tER) in #4% by

Ly (D) V() —B)A(0)

Ly (D) Vi) I-PF)A,(0) 1
2.100 I,(H= = . ,

Iy /(D V() — Py Aa(0)

where (V(#);tER) is a strongly continuous one-parameter group of
unitary operators on #, whose infinitesimal generator is equal to 7L, :

(2.1 V() =é".
We define an M (d ;C)-valued function ¢,, on R by

2.1 ¢y D=y , (D), Ly (005 )12 g=a* Ry (D)7

Now we can state Mori’s theory of generalized Brownian motion.
Concerning the covariance matrix R,, we have

THeOREM 2.1 ([6])
(i) For any tER

Ry()=iw-Ry()— [ ¢y, (t=5)+Ry(s)ds
(ii) For any E€Ct
[ER(Ddt=(iw—it+ [ &y (D dD R, (0.

Next, an equation of motion which describes the time evolution of
(A(t) ;t<R) is given in

Tueorem 2.2 ([6]) For any t<R
A =iw AW~ [ ¢y(t—5)+A)ds+1,,(D.

Furthermore, by (2.9), (2.10), (2.11) and (2.12), we have the
following Mori’s fluctuation-dissipation theorem.
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THEOREM 2.3 ([6])

(i) w=i"R0)-R,O"

(ii) For any tER and p, q<i{1,2, -, d}
(A(0), Iy, (1) =0

(iii)  For any s, tER
<<[M,1><t)’ IM,q(s>>;¢>lsp,qsd:¢M(t‘—S)' A(O)

DerFINITION 2.1 (i) An equation in Theorem 2. 2 is said to be Mori’s
memory kernel equation.

(ii) Wecall w, ¢, and I, in Mori’s memory kernel equation frequency
matrix, memory kernel matrix and Mori noise, respectively.

Immediately from (2.7), Theorems 2.3 (i) and 2.3 (ii), we have

ProrosiTiON 2.1

(i) (w*R4(0))*=w+R,(0)

(i) @y ()R (0) is an M(d; C)-valued continuous and non-
negative definite function on R.

§3. A renormalization of Mori’s theory

In this section we shall treat the same situation as § 2 and call it a smooth
case. By (2.3) and Proposition 2.1 (ii), we can apply Bochner’s theorem
to see that there exist two bounded Borel spectral measure matrices 4 and
x on R such that

B.D  Ru(B=[ e 400
and
3.2 du(D RO =] e ™x(dh).

We define two M (d ; C)-valued holomorphic functions [R,] and [¢,] on R
by

3.3 [RJ® 521; [ Rat dt :7}; A %—c Atd)
and

B0 [ul© =g [y Ddt=5r [ T ex(@)-RuO™

Besides conditions (2.4) and (2.5), we shall put the following con-
dition (3.5) on R,:
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(3.5) DElifl;)l 2z[R,](ie) exists and DEGL(d ; C).

Then we define an element 8 of GL(d ;C) by
(3.6) B=R,(0)+D,

Now, we see from [Theorem 2.1 (ii), (3.5) and (3.6) that
LEMMA 3.1

(i) [¢M](0+i0)_=_lei?g[¢M](ie) exists

(1) —tw+2x[é,]100+:0)=4.

Next we define for each ¢ >0 an M (d ; C)-valued function y, on R by

B y.(D)=—go.m(D) ft e, (s)ds.

A direct calculation yields

LemMa 3.2

(i) For any e>0 and p, q={1,2,---, d}
(¥e) g EL'(R)

(ii) For any >0 and & C*

(i) [y (Ddt =22 [ $1 )+ —[$y] Cie))
(iii) For any € >0 and & C*
oo't . 1 .
L at=] qas ek (@) R,

Furthermore we define for each ¢ > 0 two M (d ; C)-valued functions K,
and L, on C*UR by

(3.8 K©=[ qrasiriy F @Ry

and

3.9  LE=(—iK.(D.

It then follows from Lemmas 2.1 (i), 3.2 (ii) and 3.2 that

LemMmA 3.3
(1) For each € >0
(a) K, and L, are holomorphic on C*
(b) K, and L, are continuous on C*UR
(ii) For any EC*
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(a) K& Eli{l(')l K, (&) exists
(b) L(C}Eli?g L.(§) exists and L(E)=(—i&)K (&).
Immediately from (3.8), (3.9) and Lemma 3.3 (ii) (b), we have

LEmMmA 3.4
(i) For any >0 and £C*

1 11 . L
L= gmg— 1o )% (@) Ry
(ii) For any €¢>0, £EC* and 7,>0

_ . 1 g—iﬂo . -1
Le<§>—Le<mo>+7fRu_C_Z.em_l.<”o+e>)x<da> R,(0)

(iii) For any £ €C* and 770>O

1 — 7 . ,
L= Ll + [ =gy gy % () Ry(0)
(iv) K and L are holomorphic on C*.

By using § in (3.6), we see from Lemmas 3.1 (ii), 3.2 (ii), 3.2 (i)
and 3.3 (ii) that Theorem 2.1 can be renormalized into the following

THEOREM 3.1  For any ¢ C*

[R(E)=(B—iE+L(E)) "

For future use, we shall investigate some properties of the spectral
measure matrix x» in (3.2).

A(O)
71.'

LEmMma 3.5
(i) Ll{rg L(in)ZLi{rOl 7K (in) =0
(ii) For any E=&+inC
) = @O=[84) (O Ra()+ (4] &)+ Ry (0)*

G tim - [, ok () =5 (8 Ry(0)+ (8- Ry (0

7l0 T

(v) = ({0 =0.

RrooF (i) follows from (3.5), (3.6) and Lemma 3.3 (ii) (b).
For the proof of (ii), let any é=&+ iy &C* be fixed. Since x is a bounded
spectral measure matrix, we see from (3.2) that

1
et gy W)

. —i(A—&—in)t mi(/\.—f+i )t
R(foe Digt foe D (dL)
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=2i,r< Jeermig, (D Ry(Odt+ OB RN
=[] (&) RO+ [y ]8R (0D,
which gives (ii). By Lemma 3.1 (i),

(3.10) [¢M](0+i0)-RA(0):%(ﬁ-RA(0)+iw-RA(O)).

Therefore, combining (3.10) with Proposition 2.1 (i), we find that (iii)
follows from (ii). In particular, (iii) implies (iv). (Q.E.D.)

§4. A mobility function [R.](2wR (0))~! of a stationary curve A

In this section we shall consider a stationary curve A=(A(¢) ;tER) in
(2.2) with covariance matrix R, in (2.3) satisfying conditions (2.6) and
(3.5) only. The difference between § 3 and § 4 is that we do not suppose
condition (2.5) in § 2. For this reason we define for each n&EN and p &{1,
2,---, d} avector A, in # by

4D Awp=n [ emUDAOA

and a vector A, in #¢ by

Ann
A
4.2  Aa

An,d

(Step 1) From a general theory of semi-groups of linear operators, we
have

LEMmMA 4.1
(i) For each neN
{Anp:1<p<d} is linearly independent
For each nEN
{Anp;1=p<d}CZ(L)
lim A,=A0) inH#°

n— 00

For each n &N we define a covariance matrix R, on Rand an M (d ; C)
-valued holomorphic function [R,] on C* by
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(4.3) Rn<t>5((U(t>An.p, An,q);f)lsp,qsd

and
4.0 [Rn]@szi” [ Rt

Immediately from Lemma 4.1 [(iii), we have
LEMMA 4.2
(i) lim R.,(t)=R,(t) for any tER

GO lim [R(O=[R,](  for amy ¢€C*.

(Step 2) Similarly as in for one-dimensional case, we
have

LemMMA 4.3 For each nEN and any € C* with Im E+mn,

n 1 —nlt n ® -nt
(R =gt 55t Jre RO+ Qa[ RO — [Te R D).

By condition (3.5) and Lemma 4. 3, we have

LemmA 4.4
(i) For each neEN

D,=2x lifrol[Rn](ie) exists

(i) lim D,=D.

n—>00

On the other hand, it is easy to see

LEMMAA4. 5
; . R,(0
lim u[RA](m):—;Q.
7—>C0 7[

Therefore, by using conditions (2. 6) and (3.5) again, we find from
Lemmas 4.4 (ii) and 4.5 that

LEMMA 4.6  There exist T,>0, e,>0 and 1 €N such that
(i) [Ry]Un)EGL(d ;C) for any 70, 26]U[T5, )
(i) D.eGL(d ;C) for any neNN (ny, ©).

We define elements a, a,, 8 and 8,(n>n,) of GL(d ;C) by

_R,(0) RO
(45) a—/z\” and n—-m
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and
(4.6) B=R,(0)D™" and B,=R.(0) D3
It then follows from Lemmas 4.2 (i) and 4.4 (i) that

Lemma 4.7
(i) a*=a and a=ar, (n=n,)

lim a,=«a

n— 00

(iii) lim B,=g8.
(Step 3) By virtue of Lemmas 4.1 (i), 4.4 (i) and (4.6) (;ii), we can
apply [Iheorem 2.1 (ii), Proposition 2.1, (3.2), Lemmas 3.1 and 3.5 (iv)
to stationary curves A, (#=#n,) in order to find that

LEMMA 4.8  There exist for each n=wn, a frequency wmatrvix wn, a
memory kernel matrix ¢, and a bounded Borvel spectral measure matvix xn
such that

(1) (@neRa(0)*= 040 Ru(0)
(i) $(DRAD= e Mun(dd) (t€R)
i) xn({0D)=0

(iv) xh=x,
(v) for any E€C
dn

~ia)n—i§'+27t[¢n] &= /2—7['[Rn] &

(Vi) —iwat2z[$a]0+i0)=8,
(vi)  for any EC
an

ﬁn_i§+27[<[¢"](§>_[¢n]<0+i0>>:ﬂ°[Rn]<C>_l-

(Step 4) We define for each #=>wn, a bounded Borel symmetric spectral
measure matrix »¢¥ on R by

4. x‘ns’(dl)E%(xn(a’/l)—kxn(—dl)).

Lemma 4.9
(i) For any tER

FHBn(D R0 + (80 Ru(0)*) = [ e Px89(a1)

(ii) For any EEC
7 {[$2](§)* R, (0)+ ([ ] (£)+ R,(0))*}
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=0, s o

(iii) For any >0

,,{[¢n](z};)-R,,(m+([¢n]<z‘n>-l€n<0>>*}=fR ,12”

D (dL)

(iv) For any n>0
o 2n{[@n] (im) s Ra(0) + ([ ] (img) s R (0))*}
=an ([Ra] Gn)) e ant (ans ([ R (i) e an)*— 27 /21 an.

Proor (i) follows from Lemmas 4.8 (ii) and 4.8 (iv). By (i), we
see that

the left hand side of <ﬁ>:—1i-fk L 1 FxPCd)

—i _1— (s) 1 (S)
=5 e+ [ (=)
=the right hand side of (ii ).

In particular, follows immediately from (ii). By operating both hand
sides of for £=1i5 to R,(0) and then noting (4.5), we have

(4.8) —1wn* R0+ 7/ 2n ant+2n[$n] (i) e Ra(0) = ans [Ra] (i) e

By taking the adjoint of both hands sides of (4.8) and then noting Lemmas
4.7 (i) and 4.8 (i), we have

(4.9 W RO +7/27 ant2x([¢n] i) R(0))* = (ans [ Rn] (in) lan)*.
Therefore, by summing up (4.8) and (4.9), we obtain (iv). Q. E.D)

(Step 5) Let any u="“Cuy, tz, --- , uy) €C?be fixed. We define for each n>
7, a bounded Borel measure x‘s) (a’/l) on [—o0,c0] by

4.10)  #.(d) = zilz St KD (—00, 00) ML),

LemMma 4.10
(i) sup #2n([—co, 00]) <o
- (i1)  There exist a subsequence (n,; kEN) (gim e =00) and a bounded

Borel measure %, on [—o0, o] such that

w—limix,S, =k, on [—o0, ].

k—»oo

Proor By Lemmas 4.9 (iii) and (iv), we have
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(4 11) 2507‘2(22)71([_00, OO]) = <(a’n' [Rn] <i€0>_l’an+ (an' [Rn] <i£0>_1'an>*
—2&0/ 21 an)u, U) ca.

Therefore, by Lemmas 4.2 (ii), 4.6 (i) and4.7 (ii), we find that (4.11)
implies (i). Since for any ¢>0 {m ; Borel measure on [ —oo0,c0] with m
([—oo, c0])<c} is relative compact, (ii) follows immediately from (i ).

(Q.E.D)
LEmMA 4.11  #%,({—00,0, +00})=0

Proor For each >0 we define a bounded continuous function g( » ; )
on [—oo,00] by

/12‘+‘£o
. f cR
(4.12) {g(l =0 ya e forh
g(£oo;n)=n.

By (4.10) and Lemma 4. 10 (ii), we have, for any » >0,

(4.13) '/[‘_oo’ g(A ; p)ie.(dr)=1lim 2 upuqf

k—oo p,g=1

7 (s)
/12_+_772<’fnk Doa(dL).

Therefore, by Lemmas 4.2 (ii), 4.6 (i), 4.7 (ii), 4.9(Gii) and 4.9 (iv),
we see from (4.12) and (4.13) that for any (0, 2&,] U [ 75, o©)

/12+£§}~‘
R—(0}A249*"

1 . )
:7((61'-[RA](Zn)“l-a-l-(aro[RA](zn)"1°a)*
—25 Y 2za) u, ) ca.
By dividing both hand sides of (4.14) by #, for any &0, 2&,] U [ 75, o0),

U418 (oo, +oo}>+%r<u<{0}>+n ()

/12+80~
R—{0) A2+ 72 Hu

=2+ ([ Ry Gin) o+ (@ (g [ Ry) (i) Hea)®
—2./2% a)u, u)ca.

Therefore, by letting tend #» to infinity in (4.15), we see from Lemma 4.5,
(4.5) and Lemma 4.7 (i) that #,({—co,00})=0. On the other hand, by
multiplying both hand sides of (4.14) by 7, we have

4.15)  #u({—co, oo}>+#fcu<{o>>+ (@

(4.16) 20D <T-(a+ [R] (i) sar+ (a+[Ry) (i) "ea)*
—27 /2% a)u, u)ce.



KMO-Langevin equation and Fluctuation-Dissipation Theorem (II) 331

Therefore, by letting » tend to zero in (4. 16), we see from condition (3.5)
and (i) that #%,({0})=0. Thus we have completed the proof of
Lemma 4. 11| (Q.E.D.)

(Step 6) Letany u=(uy, u, -+, uy) €C?be fixed. We define for each n=>
1o two bounded Borel measures x4 and %), on [0, +co] by

>(+) =
1D ELBY= R m [ o) mdL)

b a=1
and

d
(4.18)  #H(B)= 3 bt [

B N[0, ] eo-l-/lzoc")m( a)
for any Borel set B in [0, co].

LEMMA 4. 12

(i) G+ 7DD <7,

(ii) There exist a subsequence (m,;kEN) of (n.;kEN) in Lemma
4.10 (ii) (lim m,=00), two bounded Borel measures & and & on [0, 0]

k—oc0
such that

(a) w—lim £, =70

k——»oo

(b) w—lim 2 ,,=#%.

k—»OO

ProorF (i) follows from (4.7), (4.10), (4.17) and (4.18). By
(1) and Lemma 4.10 (i), we have (ii), similarly as Lemma 4. 10 (ii).

(Q.E.D)

LEmMa 4.13
( ) x(+) {O,OO})ZO
(i) #70{0,00})=0.

Proor Let f be any non-negative element of C([—o0,]). By
Lemmas £ 10 (i), 4.12 (i) and 4.12 (ii), we have

(4.19) j{lw _ fdxu—gin; o fd“ﬁ?mk
>1lim fais,,,

E—=co [0, o]
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1.
>_— ~(+) >(—)
h—me[o,m] fdxu,m~+f[0ym] SR m,)

> lim
1 )
=1 f[ | S+ f[o, ., S,

Therefore, by taking a sequence (f,;# EN) in C([—o0,00]) such that 0<f£,<1
and lim f,=x 0., we find from (4.19) that

n—co

S0, D) +2(10, 00)) <70, 00,

which completes the proof of Lemma 4. 13, by noting Lemma 4. 11. (Q.E.D.)

(Step 7) Let any u=*(u,, p, -+~ , us) =C?® be fixed. We define bounded

Borel measures i, .(n>n,), %, on [—o0, 0] and a Borel measure x, on R
by

420 Rn(B)= 3w [ e (L)
(4.2 %u(B)=xP(BN[0,00]) +#’((—B)N[0,])
for any Borel set B in [—co, o], and
(4.22)  xu(dA)=(e§+2Dx(RNAL).

LEmMa 4. 14
(1) #,.({0))=0
(i) #,({—00,0,00})=0

w— lim ’zu, m,.:)zfu

k—00

(iv) %, ({0})=0
(v) '/I;%qu(dl)<oo.

Proor (i) follows from Lemma 4.8 (i) and (4.20). (ii) follows
from Lemma 4. 13 and (4.21). For the proof of [(Gii), let f be any element

of C([—o0,]). By noting (i), we see from (4.17), (4.18) and (4.20)
that

423 oo M= Fiant S oy il

= o R+ [, FERCAL.
Therefore, by letting » tend to infinity along the sequence (m,;kEN) in
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(4.23), we find from Lemma 4. 10 (ii), (4.21) and Lemma 4.14 (ii) that

lim fd%., m,

k—oo J[—o0, o]

- f[o,w] f(=2)#)(dA)+ f[o,m] FORP(L)
= f[_m,(,] f(Dxu(dd)+ f[o,m] F ) #,(dL)

= [ . FORLaD),

which gives [Gii). (iv) and (v) follow immediately from (4.22) and
Lemma 4.14 (ii). (Q.E.D)
(Step 8) We define a finite subset E ={e,, epg, & ; 1<p<qg=d} of C*by

(424) epEt(Os"'vO’/];’ 09 )O>

Y
(4.25) epqup+ eq

and
(426) Cra=ept ieq.

Furthermore we choose simultaneously the subsequence (#,;k€N) in
Lemma 4.10 (ii) and the subsequence (m, ; k&N) in Lemma 4.12 (ii)
for elements of E. Then we define C-valued signed Borel measures xpp, xpq
and »x, (1<p<qg=<d) on R by

(427) Kpp=X,,

(428) KPCJE%{ Koy~ Ko, — Ko, — i(xépqﬂkep_xeq) }

and

(4.29)  xop=¥kpq

And we define x by
(4.300 % =0xp)1=p g=a-

LemMMA 4.15  For any element f of C([—o0,00])
lim [ LA, (= S cany.

koo Jp A2+ €ET™ Ai+¢€3

Proor From the manner of choosing a subsequence (m,; k<EN), we
see from (4.20), Lemmas 4.14 (ii) and 4. 14 (iii) that
for any v="%v, 05, =+, vg) Of E
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. d A =

In particular, we have, for 1<p<qg<d,
3D fim [ S ,),@0= [ F0F,ED
. A
.30 Tim [ L0604 Gt Oendsgt Gt (1)

= [ FOR (a0

and

(4.33) hm {2(_;_1>2 { (xm,,>pp+ (Km.>qq+ i<"m..>z>q_

1(Hm,) gp } (AL

It then follows from (4.31), (4.32) and (4.33) that for 1<p<g<d

. f(a)
(4.34) 1152 3,12+£g<"m~>m<d’l>

1 ~ = =~ . = = ~
S {COE T N S e -

%)} (dL)
ey

(435) 111_’1‘2 » 12+£g(km‘>qp<dl)
= [ F O R~ R i G~ R} ().

Therefore, we can see from (4.22), (4.27), (4.28), (4.29), (4.31), (4.34)
and (4.35) that Lemma 4. 15 holds. (Q.E.D.

LEmMA 4. 16
d
2
el

For any u="(u,, w,, -+, uy) of C¢

apuqkpq: xu.

b, 1

Proor By choosing the subsequence (m, ; k= N) in Lemma 4.12 (i)
for # from the subsequence (m, ; k& N) in Lemma 4. 15, we find from (4
20), (4.22), Lemmas 4.14 (iii) and 4. 15 that for any f €C([—o0, ])

JACY)

fQ)
R112+£2( qE_ Uphakpg) (AL ) flz-l—eﬁk"(dl)’

which completes the proof of Lemma 4. 14. (Q.E.D).
By Lemmas 4.8 (iii), 4.8 (iv) and 4. 15, we obtain
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LEmma 4.17
(i) »x{0})=0

(ii) x*==x.
(Step 90 We define for each n=#n, and ¢>0 an M(d:C)-valued
holomorphic function L, . on C*UR by

430 L (©=-0)f, s asrrmgey (@ (/T ™

&

Immediately from (ii), we have

LemmA 4.18  For any n=n,, € >0 and & C*
L, (&) =2x([¢n](§+ie)—[$n](ie)).

Now we shall show the following key lemma.
LemMmA 4.19  For any >0 with 0<z <e,
lim (lim Ln,e(iry)):lifrg(lim L, Gn)).

n—oo €0 n—co

Proor By Lemmas 4.8 (vii) and 4.18, we see that for any #>,
(4.37) 11{1;1 L, Gn)= 2% an[R.](in) ™' —Bn—nl
and so by Lemmas 4.2 (ii), 4.6 (i), 4.7 (ii) and 4.7 [(iii),
(4.38) ’111752(161{1;1 L, .(in))=2x a+[R](in)"'—B—nl

On the other hand, by using Lemmas .8 (vii) and 4. 18 again, we see that
for any n=>#, and € >0

(4.39) L, () ={Br—i(i(n+e))+2x([$:] (i(n+&)) —[$a] (0+i0)))
— (Bn—1(ie) +2m ([$n] (&) —[$2] (0+70)) } — 7L
=V 2r an ([R,)(i(n+e)) "' —[Ry] (&)™) —9l.

Therefore, by using Lemmas 4.2 (ii), 4.6 (i) and 4.7 (ii) again and
letting # tend to infinity in (4.39) for any fixed £ >0

(4.40) lim L, .(Gp) =27 a~([R](i(n+e))"'—[R]1(ie)™) -7l

Nn—00

Furthermore, by letting & tend to zero in (4. 40), we see from (4.5) and (4.
6) that
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4D lim(lim L, (i) =2z a-[R] (i)' =B —nl.

Thus, by (4.38) and (4.41), we have lemma 4. 19. (Q.E.D)

(Step 10) We define for each e >0 two M (d ; C)-valued functions K, and
L, on C*UR by

2 K©=[ g .i>(l_l.e>x(d/1)-(/§r @)

Z
and
(4.43) L(OH=(—i5)K. (5.
By Lemmas 4.2 (i) and 4.15, we have
LEmMmA 4.20 For any e >0 and & <C*
lgg L,, (&=L (5.

Similarly as LemmasB.4 (i) and 3.4 (ii), it follows from (4.42) and
(4.43) that

Lemma 4.21

(i) For any e>0 and <C*

1 1 1 -1
L©=5 ) G 1o (@) (V2r @)
(ii) For any e>0 and & <C*

_ Loy, 1 §—ieo . -1
L(§)=LGie) 7 fy =i s itengeyy < (@) (Vom0

By combining (4.41) with Lemmas 4.20 and 4.21 (ii), we can define
an M (d ; C)-valued function L on C* by

(4.4 L&) E£ifr01 L.(&.

By noting Lemmas 4.14 (v) and 4. 16, we can show that

Lemma 4. 22
(i) For any E€C™
. 1 —1 0 -1
L =Ll +f =gy * (@) (V22 @)
(ii) L is holomorphic on C*.

Now we shall show the following main lemma.

Lemma 4.23  For any §C*
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(i) B—i€+L(&eGL;0)
(i) [RuJ(OO=B—E+L(E)

(44

J2n
Proor We define an M (d ; C)-valued function F on C* by
(4.45) F(&O=@B—i6+L(EN[R(D.

It follows from Lemma 4.22 (ii) that F is holomorphic on C*. By Lemmas
4.2 (i), 4.6 (i), 4.7 (ii), 4.7 (i), 4.8 (viD), 4.18, 4.19, 4.20 and (4.
44), we find that

F(z};):% for any 7 €(0, &].

Therefore, by the theorem of identity, we have [Lemma 4. 23. (Q.E.D.)
By using Lemma 4. 23, we shall show

LEmMmA 4.24 li{rg L(in)=0.
”n

Proor By substituting €=1i7 (% >0) into both hand sides of Lemma 4.
23 (ii) and then letting # tend to zero, we see from condition (3.5), (4.5)

and (4.6) that li?g L(in) exists and then
n

(ﬁ+lifr(} L(n)) =87,

which gives [Lemma 4. 24. (Q.E.D.)

(Step 11) Finally, by collecting the results which we have investigated into
Step 1 to Step 10, we shall show the following

THEOREM 4.1 Let A=(A(t) ; tER) be any stationary curve in (2.2)
with covariance matrix R, in (2.3) satisfying conditions (2.6) and (3.5).
Then there exists a unique triple (a, B, x) such that for any & C*

(4.46)  [R)(©=B—it+L(E) =,
where

BV 1 . »
4AD)  LO=(=Olm [ me sk (@) (V2 )

Here
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(1) a€GLd;0), a*=a and a is positive definite
(ii) BeEGLd ;O
(iii) KZ("M)lsp,qsd;

(a) for each p, q={1,2,--, d} xpq is a C-valued Bovrel signed
measure on R

(b) for any u="(u,, wp, -+, uy) €C*

d
Xu= D) Uplakpe 1S a Borvel measure on R

b q=1
(c) /; I—:f_l—ﬁxu(dl)<oo for any ucC?
(d) x*==x
1 I3

(e) £iw w7 157 zx(dl)—/—(ﬂ°a+(ﬁ°a)*)

() }’iflg(ll?;)lf( - l —)x(d1))=0

(v) Z(&)=p—it+L(&E) EGL(d ¥ 8 for any € C*
(v) supftrace (ZE+ip) tea+(Z(E+in) " ea)*)dE <oo.
7>0JR
ReEmARK 4.1 It will be shown in the proof of Theorem 4. 1 that, for any
triple (a, B, x) satisfying conditions (i), (i) and [Gi) in [Theorem 4.1,

L(&) in (4.47) is always well-defined and Z(&)Tea+(Z(E)ea)* is a
non-negative definite matrix for any ¢ €C*.

Proor At first we shall show that the triple (@, 8, x) in (4. 5), (4.6)
and (4.30) is our desired one. (i) and (ii) are clear. By Lemmas 4. 14
(v), 4.16, 4.17 (ii) and 4.23, it suffices to prove (iii-e), (iii-f) and (v).
By (4.22), Lemma 4.14 (iii), (4.20) and (4.7), we see that for any & (0
2e0) and any u="(u,, y, -+ , uy) =C?

’

> . £
JeamerdO= 5 g im [ G, (d0)

k—co

= 2 Hipig hmfler () pa(dL) .

Furthermore it follows from Lemmas 4.2, £.6 (i), 4.9 and 4.9 (iv)
that

S rald) =5 (@ [Ry) Gie) et (ae [R,]Gie) Moa)®
—2¢ /27 a)u, u) .
and so by Lemma 4. 16, for any & €(0, 2¢,),
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448 [ e (@) =@ [Ry] () e+ (@ [Ry] (o) ™ a)*
—2¢ /27 a}.

By letting € tend to zero in (4. 48), we see from condition (3.5), (4.5) and
(4.6) that (iii-e) holds. By Lemma 4.21 (i), for any e >0 and # >0,

4.49) L= J ~— i(ﬂ+i))(l Z-ﬂ)x(d/l)

[ G — ) ().

By Lemma 4.14 (v ), we can apply Lebesgue’s convergence theorem to the
first term in the right hand side of (4.49) to obtain

(4.50) L(zn)——llm <_m A —x(dL)

for any #>0. Therefore, by Lemma 4.24, we have (iii-f). By (3.3), for
any §=&+1in €C",

1 R | 7
U5D  (R)OH[RIOD=g [ m o a@b.

Hence, by [Lemma 4. 23,

(4.52) Z(C)_‘-a/-l-(Z(é')‘l'a)*———/—Z—fRU—_—%—Z_*_—#A(dl).

Since 4 is a spectral measure matrix of the covariance matrix R,, it follows
that for any u=""(uy, s, .-+ , ug) €C?

(4.53) Z‘, @ity A pq is a bounded Borel measure on R.
pa=1

Therefore, by (4.52) and (4.53), we find that for any £ €C*
(4.54) Z(&)lea+(Z(E)tea)* is a non-negative definite matrix and for
any 7>0 and u="(w, tt, --- , ug) €C?

4.55) [ ((Z(E+ip eat(ZE+in ) 0 ol

:/zp§~ pthq 4 pa(R).

By using the same consideration as Lemma 4. 15 we see from (4.54) and
(4.55) that (v) holds.

Finally we shall show the uniqueness of the triple (a, 8, x). Let (a, B,
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%) be another triple satisfying (4.46), (i), (ii), [Gii), (iv) and (v).
By Lemma 4.22 (i), for any >0,

(4.56)  n[R,](n)
. lim L, (ieo)

. ﬂ el0 ~ . ~N—11-1

L
J2r’
where  L(6)=(~i0) [ gy o=y .

By letting # tend to infinity in (4.\ 56), we see from Lemma 4.5 and (jii-¢)
that

. R0
(4.57) a—m.

By noting (4.49) and (4.50), we find that (iii-f) is equivalent to

(4.58) lim(lim L, (in))=0.
710 €10

Therefore, it follows from condition (3.5), (4.46) and (4.57) that
(4.59) B=R,(0)-D™.

Since for any =&+ ip €C*

T n+e
L(g)—lelfrgjl;{((l —&) 4+ (n+e)? /12+52>
A-&

—Z<<l_£>2+<’7+8>2_12_*_82)})?(611)'(\/2‘7[ C~l’>_l,

we see from (i), (iii-c), (iii-d) and (iii-e) that

(4.60) & .Z(¢>+<07—1-Z<§>>*
=@ B+ (@ D*+2na

Hf‘u S, A (VI 7
~2%" /2 (Beat B (V2 D

Y, SO 2 . . n = o A1
—27761! 1+ /;a' ! Lmk(dk) a

where  Z(&)=g—ic+L(&).
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By (4.46) and (4.59), we find that for any £=&+ i €C*

1 i o
WD gD
L ARG +im + (RN +iy HDa— [ Lna.

By noting (iii-c), we can apply Lemma 4. 27 in [11] to (4.6) to find that for
any f €G(R)

(4.62) fRf()l);Z(dA)

:zioz-um [((IR(&+im + (R G +in) ™D dga

T 710

Thus, it follows from (4.57), (4.59) and (4.62) that the triple (a,jf, %)
can be uniquely determined by the covariance matrix R,. (Q.E.D.)

By taking account of Kubo’s linear response theory in statistical physics

(2], [3]. and [5]), we shall give

DerFINITION 4.1  We call the function [R,](2zR(0))™' an M(d;C)
-valued mobility function of the stationary curve A.

§5. # and ¥—a second KMO-Langevin data

In the previous sections § 2, § 3 and § 4, we have considered a stationary
curve A in a Hilbert space #® and obtained a representation of the M (d ; C)
-valued mobility function [R,]*(2zR(0))~' of A by introducing a triple (a,
B, x). In this section, apart from stationary curves in Hiblert spaces, we
shall obtain a characterization of such triples (a, S, x), which gives a
converse statement to [Theorem 4. 1. For that purpose, we define two sets #
and < by

5.1) #={R:R—>M(d;C);
(i) R is a continuous and non-negative definite function
R0 eGL ; C)

Dslifrol ]:o e “'R(t)dt exists and DeGL(d ; C)}

and

5.2) <={(a,B,x); (i), (i), (i), (iv) and (v) in [Theorem 4.1
hold}.

For any R €% we define an M (d ; C)-valued holomorphic function [R]
on C* by )
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_1 1~
5.3 [RKC)—Z—;: e R(t)dt.
We denote by 4 a bounded Borel spectral measure matrix of R on R:
6.4  R®O=[ e ™ 40a0).

Then we see that for any £ C*

(5.5) [R]@:Zim.f“%g_ 40d0).

Now we shall show the following main theorem in this paper.

THEOREM 5.1  There exists a bijective mapping ® from # onto & such
that

a

5.6 [R](O=@B—&+L(E)" Ner for any & <CT,

where Re#, (a, B, x) =®(R) € and

I 1 .
6.1 LO=lim [ ae s () (VT @)

Proor Let R be any element of .#. We take a C%valued stationary
process X =(X(¢);t<R) on a probability space (Q, %, P) such that
E(X,(1))=0 and E(X,()X,(8)) =Rp(t—s)(1<p, q<d, s, tER), where
X=X, Xa(t), -, X4(8)). Denoting by s the Hilbert space defined
by

(5.8) & =the closed linear hull of {X,(¢);1<p<d t<R} in
L*Q,#, P),

we can obtain a strongly continuous one-parameter group of unitary
operators (U(?) ;tER) on # such that

We define a stationary curve A=(A(t) ; tER) in#*by A(t) =(U () X,(0),
U(t)X(0), -, U(t)X,(0)). Then, since the covariance matrix of A4 is
equal to R, we can apply [Theorem 4. I to obtain a mapping ® from .# into
& satisfying relation (5.6). By using the uniqueness of Laplace transform,
we see that @ is injective. '

In order to show that @ is surjective, we take any element (a, 8, x) of
#. As we have shown in the proof of [Theorem 4.1, we note that L is
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well-defined as an M (d ; C)-valued holomorphic function on C*. We define
an M (d ; C)-valued holomorphic function Z on C* by

(5.100  Z(§=p—i&+L(E.
Then we can define for each #&C¢ a holomorphic function %, on C* by

o

(5.11) hu(C)E<Z(C>—l° m u, u>C“'

Since for any ¢ €C*

(512) Z(C)_loa+(2<g>_loa>*
S Z(O Mearla  Z(O)+ (@ Z(E)* )+ (Z(O ),

we see from (4.60) in the proof of [Theorem 4.1 and condition (v) in &
that

(5.13) Re h, is a non-negative harmonic function on C*

and
(5.14) supf|Re h(&+in) | dE <co.
7n>0 /R

Therefore, we find ([1]) that there exists a unique bounded Borel measure
4, on R such that for any é=&+ i €C*

(5.15) Re hu(g+in>:2—1;[flemaucdn.

By using vectors e, ep and &, (1<p<qg<d) in (4.24), (4.25) and (4. 26),
we define C-valued bounded signed measures d,,, dp and d,(1<p<qg=<d)
on R by

(5.16) 4d,=4,,
61D dp=gl Ao Ao 4.~ i(dp— 4.~ 4))

and

(5.18)  dw= dw

And we define 4 by

(5.19)  4=(dp)1<p=<q=a

and then an M (d ; C)-valued continuous function R on R by

G.200 R(O= [,e=™ acan).
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Then we shall show that R&.# and ®(R)=(a, 8, x).
At first we prove that for any u="(w,, wz, **- , ) €C*

(5.2D) 2 Upthg dpg= A u.

pg=1

We denote by u the left hand side of (5.21). We note that 4 is an R-valued
bounded signed measure on R. Then it follows from (5. 15) that for any {=
E+ipeC”

1 7
(5.22) ?;t'/l;mﬂ(dl)

_ < 2, 1 n
= 2 w5, [ =gy deldl)
_ 1 i
+2Re<1sp§q5d Urha 2_7!-[12(/1-5)2+772<< Aoy de= 4o
—i(ds— do— 4,))(dL))
—Re( 3w/, (O+2 T aa(Re b, (§)—Re h (&)

—Re £, (§)—i(Re h,, (&) —Re h, (&) —Re k. (£)))}.

On the other hand, we see from (4.24), (4.25), (4.26) and (5.11) that for
any £C* and 1<p<qg=<d

.28 Re ho(§)~Re ho(O)=Re h(§)—i(Re k(€)= Re (&) ~Re b (6
1 -1
=g (ZO™ =

/2 )*)eq, ep)cd
Therefore, by (5.11), (5.22) and (5.23), for any £=& +in =C*,

1 n
(5.24) Z{Amﬂ(dk)

= 8 |0 Re(Z(O) = en @)
FRe( B (2Nt (2 Ve, e

1<p<qg=d

= i dputg Re(Z(§)71e /2—7[ €p, €q) ce

pg=1

=Re(Z(&) e /"% ", 1) ge.

Thus, it follows from (5.11), (5.15) and (5.24) that for any é=&+ iy €C*

7 _ n
(5.25) /I;Q——f)z—-l-ﬂ—?ﬂ<d/l>_ Rmdu(dl).



KMO-Langevin equation and Fluctuation-Dissipation Theorem (II) 345

By using the same consideration as (4.62), we find that (5.25) gives u= 44
and so (5.21) holds. In particular, we find (5.20) and (5. 21) that

(5.26) R is an M(d ;C)-valued continuous and non-negative definite
function.

Next we shall show
(5.2) RO EGLU ;0.
By using (5.20) and (5.21) again, we note that for any uesC*
(5.28) (ROu, u)e.= 4.(B.
Let # be any vector in C? such that (R(0)u, #)c.=0. It then follows from
(5.11), (5.12), (5.15) and (5.28) that for any §&C*

Re(Z(&)7

;2-; u, u)c.=0,

which implies #=0. Hence we have (5.27).
Next we claim that for any £ C”

(5.29) [R](E)=Z(&) /“2—7[

Similarly as (5.5), we see from (5.20) and (5.21) that for any ucsC?

1 1

Au(dl)

and so by (5.15)
(5.30) Re([R]1(&u, u)co)=Re h,)(8).
Similarly as Lemma 4.22 (i), we see that for any >0

(5.3D  Lli=LG)+ [T —sx(d)- (/2 )
and so
.30 lim L

n—>c0

By (5.10), (5.11) and (5.32), we have

(5.33) lim # h,(in)= (/——u ") ca for any ueC.

7n—>C0
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On the other hand, similarly as Lemma 4.5, we have

(5.340)  lim #([R]1Gpu, u) o= (RZLn(_Du, U) ce for any w<C<
7’—>OO

Since R(0)*=R(0) and a*=a, it follows from (5.30), (5.33) and (5.34)
that

a R0
(5.35) N

Therefore, since ([R]( + )u, u). and h, are holomorphic on C* for any u €

C? we can apply Cauchy-Riemann’s relation to (5.30), (5.33), (5.34) and
(5.35) to find that for any u<C*

([R]( . )u; u)cd:hu on C+,

which with (5.11) gives (5.29).
Finally we shall show

o

Ven

As we have seen in (4.57) in the proof of [Theorem 4. I, condition [(iii)|(f) in
% is equivalent to

(5.36) li{rol[R](ie):ﬁ‘l- €GL ; 0).

(5.3 lim L(i)=0,

which with (5.10) and (5.20) gives (5. 36).
Thus, we find from (5.26), (5.27), (5.29) and (5.36) that Re.# and
®(R)=(a, B, x), that is, ® is surjective. (Q.E.D)

REMARK 5.1 By (4.54) and (4.55) in the proof of Theorems & 1 and
b.1, we note that the following conditions (5.38) and (5.39) are equivalent
to condition (v) in &:

(5.39) [ trace (Z(&+in)ea+(Z(&+ip)"a))dE is independent of

7n>0.
(5.39) Forany p, ¢q&{1,2,--,d} and >0

(Z(CAip)ea+ (Z+in) " ea)*) el (R)

and

_/R(Z(E+i?;)‘l-cH—(Z(§+if7)‘l-a)*)md£ is independent of 7.
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By combining [Theorem 5. 1 with [I'Theorem 4. 1 and then noting (4.57),
(4.59) and (4.62), we have

THEOREM 5.2 Let R and (a, B, x) be any element of % and &,
respectively, such that ®(R)=(a, B, x). Then,
) _R(0)
G =
(ii) B=R)+D!

(i) #(d§) = grsilim REO)+([R1GE +in) '+ ([RI(§+ i)™ ")+ R(O)dg
in 9'(R).
By taking account of Definition 3.1 in [10], we shall give

DerINITION 5.1  We call such a triple (a,8,x) €% that & («a, S,
x))=R&% a second KMO-Langevin data associated with R.

§6. #,,and &Z,,

By using [Theorem 5.1, we shall characterize the set of second
KMO-Langevin data associated with covariance matrices of smooth
stationary curves treated in § 2 and § 3. For that purpose, we shall define
two subsets #Zs» and &5, of # and &, respectively, by

6.1) %smE{RES’;fRAZ(A(dA)u, u) < 0o for any u€C?,
where 4 is a spectral measure matrix of R}

and

(62) %smE{(a’,ﬂ’x>eg;
(iii-a)” each component of x is a C-valued bounded Borel measure
on R

Git-H)' lim [ e (dh) exists

(iv) lim (limfR (mnA&Htrace(Z(E+ipg) tea+ (Z(E+in) tea)*dE)

n—oo 71,0

exists}
At first we shall prepare

LEmMMA 6.1 Let R and (a, B, x) be any element of # and &,
respectively, such that ®(R)=(a, 8, x). Then, we have, for any
pE{l,2,---,d} and neN
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6.3) 1 [ (nAEH(Z(E+im a+(Z(E+in) a)®) ik
:fR<nA52> App(dM).
Proor By (4.52), we have, for any p&{1,2,---,d}, nENand >0,

6.0 [ (nAENZ(E+in) eat (Z(E+in) oa)*) e
=V [ 2

Since for any n€eN

WWA‘EZ) d&) A,p(dM).

1 ) _ ) .
}71{% s —_(A g s(nANEDHIE=nAL? boundedly in A ER,
we see that (6.3) follows from (6.4). (Q.E.D.)

Now we shall show
THEOREM 6.1 ®(Psm) =L sm.

Proor Let R be any element of #, and (a, B, x) =®(R). We take
a stationary curve A=(A(t) ; t €R) with covariance matrix R constructed
in the proof of [Theorem 5.1. Since R&E%s, implies that A(¢) is
differentiable at ¢, we can apply (3.2), TheoremsB.1 and to get (iii-a)’
in #sn. Therefore, we can rewrite Lemma 4. 21/( i ) into

6.5  L©=7 [, ;g (@) (VT "

1

R/l x(a’l) (/2z &) for any £ EC".

Since

6.6 hmfl e (= f gx (L) for any (C”,

we see from (4.44) and (6.5) that

6.7) llmf x(dl) exists.

A—
By combining (6.5) with (ii-e) in &, we find that (iii-f)” in Zs» holds.
By applying Lebesgue’s monotone convergence theorem to (6.3), we see
that R € %#s, implies (vi) In Fsm.

Conversely, let (a, 8, x) be any element of ¥, and R=®'((a, 8, x)).
By applying Lebesgue’s monotone convergence theorem to (6.3) again, we
see that condition (vi) in ¥, implies that
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d
(6.8) Z‘.faupp<d1><oo.
s=1JR

d
Since for any u= (uy, ts, -, ) €C* X ittty 4pg is a bounded Borel
pg=1

measure on R, we note that
d
(6.9 | 4p(B)|= 2 4-+(B) for any p, ¢&{1,2, -~ d}

and Borel set B in R.
Therefore, (6.8) with (6.9) gives that R belongs to Zsn. (Q.E.D.)

REMARK 6.1  We note that conditions (iii-f)’ in #s, with condition (iii
-e) in . implies condition (iii-f) in &Z.

Next we shall consider any element R €%, and obtain a continued
fraction expansion of [R]. Weset (a,8,x)=®(R). By condition (iii-e)
in # and (6.7), we have

LEmMA 6.2

1&1?017[1_Z (A= [ T(Bea+Bra)®)
—ilimfmx(dl).

el0JR

In the sequel in this section, we shall suppose the following condition :

6.10)  lim - f =—x(d0) EGL(d ; ©)

A—

REMARK 6.2 If x is a symmetric Borel measure on R, then, we see

from that

61D lim+ [ ox@= /S gat B,

We define an M (d ; C)-valued continuous function ¢ on R by
6.12)  $(DO= [ e ™x(dr)-RO)

Then we shall show

Lemma 6.3

(i) () =x(R)- R(O)_l
Cii) hm[qS](ze) —hm

Rl — x(a’l) RO
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(iii) ¢(C+ )*R(0)EZ.

Proor (i) and (ii) follow immediately from (6.12). Since x
satisfies condition (iii-b) in &, we see that ¢( « )« R(0) is an M(d ;C)
-valued non-negative definite function on R. Therefore, by condition
(6.10), (i) and (ii), for the proof of (iii), it suffices to prove

(6.13) x(ReGL ;).
Let # be any element of C? such that (x (R u, u)c.=0. By using condition

(iii-b) in ¥ again, we can see that Z Uplaxps(dA ) =0 and so for any £
» q=1
Ct

) Gytty | e (dA) =0,
MZil thptta | 17— équ( )=

By combining this with condition (6.10), we find that #=0 and so (6.12)
holds. (Q.E.D)

As we have seen in § 2 and § 3, it follows from Theorem 2.1, Lemma 3.
1(ii), Theorem 5.2( i) and Lemma 6. 3(ii) that

LEMMA 6.4  For any EC*
[R]<§> <ﬁ+l hmf)l x(d,l)_lg+27[[¢](§>) -1, ‘/_;

By virtue of Lemmas 6. 3(iii) and 6.4, we can apply Theorems 5.1 and 5. 2
(1) to the function ¢ ( « )+ R(0) to obtain the following continued fraction
expansion of the function [R] for R €%y,.

THEOREM 6.2 Let R be any element of #sm and (a, B, x) =P(R).
Furthermore we suppose condition (6.10). Then there exists a unique triple
(as, B2, x:) of & such that for any &<C*

6.1 [R](&

- a
=B+ £1{rg .

T (A — i — (B + () e o

where

ey 1 1
6.18)  L:(&)=(~iOlim [ ~—r— s m(d)- (/27 a)™

Finally we shall give an expression of the triple (a», 8., x.) in terms of
the second KMO-Langevin data («, 8, x) associated with R.

THEOREM 6. 3
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(i) a=22
2 m
(i) Be=x(B)+(VTx @) Clim [ 2w (1)
(iii) Kz(d";:)
1 1 7
=lim xR+ (f -y () f 1 o)
o —— ;H (@) ex(RdE  in 9'(R).

Proor  Since it follows from [Theorem 5.2( i) that afzz————————¢ <0;:2_§<0),

we find that (i) follows from Lemma 6.2( i ). By Theorem 5.2(ii), B.=
(0RO 2r[p](0+:0)+R(0))"". Therefore, we see from Theorems 5. 2
(i), (ii), Lemmas6.3(i) and6.3(ii) that (ii) holds. By Theorem 5.2
(iii), we have

(6.16) xz(df)
= )21111”1 $ (0RO« DRWO)](E+im)™!
+([C« DRO]E+m)D*)¢(0)-R(0)dE in 9'(R).
On the other hand, we can see from (6. lé) that for any §=&+4 iy C*
6.1  [o6C- °R(0)](§+iﬂ)'l+([¢( VeR(O)](&E+m)™D*
—(27z)2(f x(dr)) e —Wx(dr)'

rr (T

“( x(dr)).

1
RT—&+ 1y
Therefore, by Lemma 6.3( 1), (6.16) and (6.17), we have (iii). (Q.E.D.)

REMARK 6.3 Let R and (a,B,x) be any element of %, and &,
respectively, such that ®(R)=(a,B,x). We denote by ¢, a covariance
matrix whose spectral measure matrix is x.

(i) We note that ¢,*R(0) is equal to ¢,, in (2.12)

(ii) If ¢, belongs to #s», we can apply Theorem 2. 2 in Mori’s theory

to obtain a continued fraction expansion for [R], which is a fundamental
idea in [7].

§7. gds and L s

At first, we shall in this section characterize the set of second
KMO-Langevin data associated with elements of .# having spectral density



352 Y. Okabe

matrices. For that purpose, we shall define two subsets .# . and &4 of &
and .#, respectively, by

(7.1)  #={RE%; R has a spectral density matrix}

and

(7.2) Zau={(a,p,x)EZ;
(v)

(a) lifrg(Z(qwaz'n)‘l-a+(Z(&'+i77)‘1-a)*) exists for a.e. £ ER
(b) thrace (Z(E+im) T ea+(Z(&E+in) tea)*)dE

:lei{% trace (Z(&+ie) ea+(Z(E+ie) tea)*)dE <o
for any n>0}.
THEOREM 7.1 ®(Fys) =L us.

Proor Let R be any element of #,sand («,8,x)=®(R). Wedenote
by 4'=(dp)1<5 4<a a Spectral density matrix of R. We define for each €
C? a function 4, on R by

(7.3) 4,(E)=CA(E)u, u)ca.
Then we note that

(7.4 4.(8)=0 for a.e.£ER
(7.5) 4.€L'(R)

and
(7.6) (4d)u, u)c.= 4.,(&)dE.
By (4.51) and (7.6), for any u=C® and >0

1 7 , _ :
7.7 ”fRQ_QZHQAu(g)dg—z Re([R1(E+in)u, 1) ..
Therefore, it follows from (7.4), (7.5) and (7.7) that
(7.8) 4.,(&)=2 li{rg Re([R](&E+in)u, u) . for a.e.£ER
and

(7.9 4.0+ )=2 lifr(} Re([R]Ce+ump)u, u)c. in L'(R).
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In particular, we see from (7.7) and (7.9) that for any #€C? and >0
710 [ Re(([RIG+in)u, w)eddE
:./I;li?;)l Re(([R](E+in)u, u)¢.)dE.

On the other hand, by (5.6), for any £C*,

(71D  Z@)ea+(Z(E)ea)*=/2z ([R]I(O+[R]I™.

Therefore, we find from (7.8), (7.9), (7.10) and (7.11) that (v)’ in ZLus
holds.

Conversely, let (a, 8, x) be any element of ¥4 and R=®7'(a, B, x)).
We denote by 4 a spectral measure matrix of R. By condition (v)"in &g,
we can define m= (mpe(dE))1<p g<a DY

(7.11) m(dé& = /— llm(Z(E+m) ea+(Z(E+in) ' ra)*)dé.
In particular, we see from (4.54) that for any u="(w, w2, *** , Ua) e
d
(7.12) my= 2 1 UMy 1S @ bounded Borel measure on R.
b ga=

Let any #=C? be fixed. Since it follows from (4.54) that for any §EC™,

|[((Z() T ea+ (Z(E T a)Du, u)c.|
< (u, u)cotrace (Z()Tea+(Z(E) 7 a)®),

by condition (v”-b), we can apply a generalized Lebesgue’s convergence
theorem ([I3]) to find that, for any C-valued bounded Borel measurable
function f on R,

(7.1 lim [Fazatiertat(ZA+io ) u w)edh
=fRf<A>1ifr01<<Z<A+z'e>—1-a+<zu+z'e>-1-a>*>u, 1) o).
Therefore, by (7.11), (7.12) and (7.13), for any {=& +in €C",

1
T ;M (dA)

(7.14) R(—i—r";')__

=lim [ = 5= 5) o /—((Z(A+15) g+
F(ZA+ie) @) u, u) cdA.
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On the other hand, by (5.11) and (5.15), for any A €R and ¢ >0,
(7.15 ((ZA+ie)ea+(ZA+ie) e a))u, u)

=/ % = o
d

where 4,= 2} tpuy dpg.
bg=1

By substituting (7.15) into (7.14), we find that for any E=&+ el

1lr 7

7 R<l_§>2+ﬂ2mu(dl)

Y 1 € A 7

_lel?g R(R7[ (r—2A)*+e’ = (/1—6)2+772d/1>du(dr>

(1

7
B ACE RS a2

which gives
(7.16)  my,(dA)= 4,(dL).

Hence, it follows from (7.11) and (7.16) that R belongs to # 4. (Q.E.D.)
Finally, by noting (7.8), (7.9) and (7.11), we can characterize the set
O(FsmN Ras) as follows.

THEOREM 7.2
(I)(%smﬂﬂds)
:{(aaﬂ’ x>€gd6‘;

<Vi>'fR.521i?3 trace (Z(&+in) ea+(Z(E+ip) tea)*)dE<oo).
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