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§1.' Introduction and Results.

~ We consider the initial boundary value problem for the equations of ideal
magneto-hydrodynamics :

(a) pp(B+ (uV))p+p div u=0

1.1 (b) p@e+(uV)u+Vp+uH Xcurl H=0 ‘
(¢) oH—curl (uxH)=0 in [0, T]xQ,

<1~2> (p’ u,- H>|t=0:<p0, Uy, ]{0> in Q’

(1.3) u-n=0, Hxn=g on [0, T]xT.

Here Q is a bounded domain in R* with C* boundary I', T a given positive
constant and n=n(x)=!(m, n, n;) denotes the unit outward normal at x&
. Pressure p=p (¢ x), velocity u=u(t, x)='(u;, u,, u3) and the magnetic
field H=H ({, x)=*(H,, H,, H;) are unknowns. The permeability u is sup-
posed to be constant. We also suppose that density p >0 is a smooth known

function of p>0 i.e. p=p(p); and p,=0p/3p. g=g(t, x)="(g1, g2, g3) Is a
given function on [0, T ] xT'. 9,=9/0f, a,:a/axi(z‘:l,z,z;), v:(al, S, 3a),

3
(u-V) = 2‘1 u;+9; and -, X denote scalar and vector product, respectively.
We assume that the initial data p, and H, satisfy

1.4 inf P, pr(P)}Zc1>0,

(1.5 div H,=0 in Q,
(1.6) Lreli |Hyen

;Cz>0.

Here ¢ and ¢, are positive constants. The assumptions (1.4), (1.5) guar-
antee the equations (1.1) to be a quasilinear symmetric hyperbolic system.

Our purpose of this paper is to show a local in time existence theorem for
the initial boundary value problem (1.1)-(1.3).

THEOREM. Let m be an integer =3. Assume that g€ Yn(T) and the
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mitial data (p, uy, H)=H™(Q) satisfies ‘the assumptions (1.4), (1.5), (1.6)
and the compatibility conditions of ovder m.

Then there exists a positive constant Ty depending only on ||(ps, 4o, H)\n,
gl ymry, €1, 2o m, Q such that the initial boundary value problem (1,1), (1.2)
and (1.3) has a unique solution which belongs to X,(T).

As to the definitions of the compatibility conditions and the function
spaces X,(T) and Y,(T), see (2. 3), (2.4), (2.5) and (2.6) in § 2.

We remark that this result can be extended to the nonisentropic case
without any essential modification of the proof.

The initial boundary value problem for the compressible Euler equations
under the solid-wall boundary condition #-%z=0 (i.e. (1.1)-(1.3) with H =
0) is a typical characteristic initial boundary value problem for quasilinear
symmetric hyperbolic systems and has been studied by many authors. (For
example, c.f. [1], [3], and [11].

If one takes account of the effect of the magnetic field, one must consider
the equations (1.1). However there seems to be no literature on the exis-
tence problem for (1.1). Here, we make some remarks on the boundary
conditions. As the boundary conditions for H, we take H X n= g so that the
solution is unique (see, Lemma 5.3). The assumption (1.6), imposed on
H,, is needed to guarantee the rank of the boundary matrix to be 6 on the
boundary (see,i (3.8)). It should be remarked that the assumptions (1.5)
and (1.6) imply that Q¢ consists of at least two components.

The proof of proceeds via iteration scheme which involves the
following steps. At first, following [10], we modify the equations (1.1) to
make the boundary noncharacteristic (see, (3.9).). We next establish the
uniform estimates of the solution of the modified equations under the same
initial boundary conditions (1.2) and (1.3). These uniform estimates are
achieved by making use of a special structure of the modified equations and
the fact that the rank of the boundary matrix is 6 on the boundary. Finally
by taking a limit of these solutions, we get the solution of the original initial
boundary value problem (1.1)-(1.3).

§ 2. Preliminaries.

In this section, we define some function spaces and the compatibility
conditions and present the basic inequalities used in this paper.

H™(Q) denotes a usual scalar or vector valued Sovolev space of order m
equipped with inner product (,), and norm ||,

, g)m:mZS‘.m 9 -0% dx,
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=3, [P d

where 09=09{' 9%* 95® for a= (a1, @, @), |a|=a1+ ar+ as.

We also use Sobolev space of order s (s: real number) on the boundary
Hs(T) with norm |«|gs.

The following well-known inequalities in three dimension are basic in

this paper (c. f. and Appendix B of [10]):
2.0 fle@=clf |42 for fEH*2(Q) with j=0,

and
((a) [ fglln=cUfln-lgln+1nlgln-0
for £, g€ H™(Q) with m =3,
(b)) fgle=clflalgln for £ g H™(Q) with m<2,
Furthermore
2.2) ’
Igllo= cll flullgl
(c) [AWD|n=cloA/df|cmrcnlflIn
for a smooth function A on a phase space G and f € H™(Q)
with m =2 such that f (x) =G, G,CG
Here ||+| ¢csx) denotes C’ norm on the set K and c is a constant depending only

on m and Q.

For a Banach space B, let C’ (0, T ; B) be the set consisting of j-times
continuously differentiable functions of t&[0, 7] with values in B. Then
we define

2.3) X (T)=() C0, T; H™(Q)),

Jj=0

(24) Y”’<T>:j(”jo Cj<0’ T : Hm—j+1/2<1-\>> ﬂ Cm+1(0, T : H1/2<1-\>>’

with norms

|l xmry= sup [lu(t)||l»= sup (X2 |03 () |m-s),
te[0, T] te[0, T] j=0
”gHY"'(“:tS[%pﬂ<§) ||ajig(t)||Hm-f+l'2<r)+”a?"Hg(t)”H“zwD:
where #(t) stands for «(¢, x) for fixed £. Moreover we define
(2.5) Yu(T)={ge Yu(T); g-n=0o0n [0, T]XT}

Finally we say that the initial data (p,, #,, H,) satisfy the compatibility
conditions of order m for the equations (1.1) and the boundary conditions
(1.3), if
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(2.6) tu(0)en=0, orH(0) Xn=09%g(0) on T,
for £=0, 1,..., m—1.

Here the terms 9% (0), 9%H(0). are calculated from (1.1) and (1. 2&), and
are then expessed by initial data and their derivatives. For instance,

O (0) = — (to* V) ttg— p (o) "' (Vo + uHy X curl Hy),
o.Hy=curl (uyx H,).

§ 3. A modification of the equations (1.1) to the noncharacteristic case.
At first, we remark that (1.1)(c) is equivalent to
(L.DCc) (B¢t (uV)H—-(H-V)u+H div u=0in [0, T]XQ,

under the first condition of (1.3) and (1.5); This can be seen from well-
known formulae from vector analysis

—curl (uxXH)=wV)H—-(HV)u+H div u—u div H,
div curl=0.

Thus we consider the system of the equations (1.1)(a)(b)( ¢ )’ which is
symmetric.

In order to make the boundary conditions homogeneous we construct an
extension G of g as follows.

LEmMA 3.1.  For a function g€ Y, (T), there exists an extension GE
0 C0O, T Hm @) NC™ 0, T ; H'(Q)) such that

(a) div G=0in [0, T]XxQ,
(b) Gen=0, GXn=gon [0, T]xT,

(c) Sup <J§o 10iG (D |lm-ss1 F TGO = cll gl ymir)-

Proor. Since (nXxg)+n=0, it follows from the results of L.
Cattabriga that there exists an extension Ge '60 C’(0, T ; H™1(Q))

NC™10, T; H'(Q)) satisfying G=unXg on [0, T]xT, (a) and (c).
Furthermore since ge#n=0 we can see that (nX g) X n=g, which completes

the proof of (b).
Set H=H —G. Then (p, u, H) is a solution of the initial boundary

value problem:
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(a) pp(8,+ (uV))p+p div 7:t:0 o
(b)) p(3;+uV)u+Vp+(H+G)xcurl H+H Xcurl G

3. 3 =—GXcurl G
(¢) (B4 (uVH—(H+G) - Vu+(H+Gdiv u+ (u-V)G
=—03,G
in [0, T]xQ,

3.2) @t H|ieo= 0, o, B, Hy=Hy—G(0) in Q,
(3.3) u.n=0, Hxn=0on [0, T]xT.

Here we assumed,‘without loss of generality, that x=1; take a normaliza-
tion if necessary.

By (1.5), (1.~6), (2.6) and Lemma 3.1, we know that the initial
data U,= (po, uy, Hy) satisfy (1.4) and

(3.4) div H,=01in Q,
(3.5) inf |Hyen|=c,,

(3.6) b () n=0, 3H (0)xn=0onT, for k=0, 1,..., m—1.

For simplicity we will write again H instead of H. To clarify the
structure of this initial boundary value problem it is convenient to express the
system (3.1) in the matrix form:

3.1 ADAU+E ANJU+BEL DU=F 2.

Here U=!(p, u, H) and A,(U), A,;(U)(U=1,2,3.), F(t x) are given
explicitly by

{p‘lpp 0 Y
Ay (U)= Pl , A;(U) = €; pu;l; *D; |,
0 13 [ 0 Dj uj]3
0 0 0 3 —H,— G, H+G 0
Di=|H+G —H—G 0 , D= 0 0 0 ]
H;+ G 0 —H— G 0 H+G —H—G
(—H;— Gy 0 H + G\ 0
D;= 0 —H,— Gy H,+ Gy |, F(4, x)—[—churl G,
§ 0 0 0 —o,G

where I, is the Xk unit matrix, ¢=(1,0,0) e. t. c, and B(¢ x) is the
matrix which consists of first order derivatives of G.
By definition, the boundary matrix A,(U) is given by
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3.8 AD=3 neAU)

P tppiten ‘n 0
= n pu-nly ‘D, | onT,
0 D, u-nl;

where D,=(—(H+G)ndy;+n,(H;+G)li—1, 2,3, 711, 2, 3). Because
of the boundary condition u+n=0, A,(U) is singular on I, namely the
boundary is characteristic for (3.1). Thus we consider the modified equa-
tions of (3.1) with a positive parameter & under the same initial boundary

conditions (3.2) and (3.3) (cf. [T0]):

((a) Ope/ 3P (O + (Ue*V)) P+ pe div . =0,

(b) /Je(at+(%e'V))MmLVpE—I-(HE—i—G)><cur1 HE

(3.9 +H.Xcurl G=—GXcurl G,

() @it (ue*V)H:— ((H+G)Vu+(H.A4G) div u.
+ (e V)G+e(nV)H.=—3,G+e(n-V)H

pe=p (b0,

Here n is an extension in C*(Q) of normal vector # to Q:; and He
H™([0, T]xQ) is an extension of 9%H (0)e H™*(Q), k=0, 1,...,m—1, to
[0, T]1XQ such that

9H (0)=0*H (0) on Q for k=0, 1,..., m—1,
L H |l simeto, 11x0y = €| bl m,

30

where 9%H (0) is recursively defined through the equations (3.1) and the
data (3.2). (For the construction of this extension, see Theorem 2. 5. 7 of

[51)

REMARK 3.1.  We note that the compatbility conditions (3.6) is still
satisfied for (3.9)..

Now the boundary matrix A5(U) for the modified equations (3.9 1s
expressed by

P pptten n 0
As(U) = n pute nl; tD, )
0 D, (uen+e)l

We shall show that the A5(U) has the following properties.
LemMa 3.2, Let U'(t, x)=t(p'(t, x), w(t x), H' (£ x)) satisfy that
wen|r=0, H Xn|;=0 and in£ |H’+n|=¢>0 on [0, T].
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Then the following holds :

(1) For >0, AS(U") is nonsingular on T'.

(2) For e=0 and fixed (t, x)E[0, T XT, the linear subspace,
N={U="(p, u, H)|lu-n(x)=0, Hxn(x)=0.} of R" is wmaximally non-
negative with respect to AS(U'(t, x)).

Proor. Let U=%(p, u, H) satisfy A5(U)DU=0on [0, T]xT. Since

neu
m—(H - n)H+((H'+G)-H)n
—(H wu+n-uw)(H+G)+eH

by (b); G+n=0 and the assumption «’+%=0, we get

{ (i) pn—H  nm)H+((H'+G)-H)n=0,
(ii) —(H s n)u+eH=0.

A(UHU=

First taking inner product of (ii) with » yields H+»n=0. Next taking
inner product of (i) with »n gives, by the assumption H’'X#n=0, we have
p=—G+H. The substitution of this into (i) yields (H’+n)H =0. From
the assumption )i(ng’-sz on [0, T], it follows that H =0. Hence using

(1) and (ii) just proved, we can see p=0 and #=0. This completes the
proof of (1).
Next we prove the statement of (2). If U=%(p, u, H)EN,

tUASUHYU=2[p(un)+{(H'+G)H} usn)—(H’+n)(H+u)]
+e|HPP=¢|H|*=0.

Namely N is nonnegative with respect to A5(U’(¢ x)) if e=0. To show
“maximally ” part, we consider the linear subspaces properly incluuding N
which are divided into the following cases: (&) For the space generated by
N and the element such that #+»n(x)+0 and H X n(x) =0, we can choose U =
(1, —n(x), n(x)) in it, then *UA(U")HU=-2<0, because Gen=0 from
(b). (B) For the space generated by N and the element such
that H X»n(x)#+0 and #u+n(x)=0, we can choose U=(, (e+1)7/2¢,
r/(H’+n(x)) in it, where 7 is a unit vector orthogonal to »(x), then
tUAS(UHYU=—(e+1)/%+¢&/|H +n(x)|?<0, because the assumption

inf|[H’+n|=¢. (y) For the space generated by N and the elements such that

x&el

un(x)+0and H X n(x)=+0, we can choose U=(G+7, —(e+1)n(x)/G-7, )
in it if G=0, then ‘UA,(U)U=—3e—4<0, because H'xXn=0. If G=0,
we can choose U=(e—1, n(x), 7) in it, then ‘UA,(U)HU=—¢e—2<0.
Hence if € =0, the null space of the boundary condition, N, is maximally
nonnegative. The proof of is completed.
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Thus the added terms & (n-V) H. in the left side of (3.9).(c )’ make the
boundary matrix nonsingular, keeping the boundary conditions maximally
nonnegative.

§4. Iteration Scheme.

To define the iteration scheme for the initial boundary value problem
(1. 1)-(1.3), we first approximate the initial data Uy H"(Q) by the func-
tions Uje H™*2(Q) that satisfy the compatibility conditions of order mz+1.
Before constructing these approximations of U,, we take the molifier, G*&
C=([0, T]xQ) of G for k=0, 1, -, so that there exists a positive constant
y’<1 such that

sup (3! |94 G* = G) (D nesr+]27(GH— G) (DD <727+

tel0,T] j=0

and G*<n=0 on [0, T]XT for =0, 1,---. For this G* we construct the
approximations of Uy, {U}5=, as follows.

LEmMA 4.1.  There exists a sequence {U{ 5= in H™2(Q) such that each
Ui satisfies the compatibility conditions of ovder m+1 in the following
meanings :

U$ satisfies the compatibility conditions of ovder m+1 for the equations

(3.1) in which G is replaced by G° and the boundary conditions (3.3).

Ui (G=1, 2,--+) satisfies the compatibility conditions of ovder m+1 for

the equations A(,(Uj‘l)atU—f—i}1 A;(UHo,U+BU=F in which G is

replaced by G’ and the boundary conditions (3.3), where U’ satisfies
that ofUF~1(0)=0%U{™"* for k=1, 2,---, m+1 and 9fU{™' denotes k-th
time derivatives of U§™" which ave determined in the preceding steps and
the estimates hold :

[Uo—=Uilln<y27 for j=0, 1, ---, where y is a positive constant.

Proor. In Lemma 3.3 of [9], such approximations has been
constructed for the linear equations with the nonsingular boundary matrix.
The method given there can be extended to the present case by the same
arguments as in pp. 52-53 in [10], if we can check the relation

Range M =Range M (A,(U))* onT for k=1, 2,---, m, where M is the
matrix giving the boundary conditions (3. 3):

0 v 0
M_[O 0 nx]’

where
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0 N3 —
nX=| —n 0 7y
(2] — O

~ Since A,(U,) is a symmetric matrix, Range (A,(Uy))*=Range A,(Up)
for k=1, 2,---. So it is sufficient to show that

Range M =Range MA,(U,) onT.

We easily know that Range M =R?*. Since G+n=0 on T, straightforward
computations yield

n 0 bk
0 H, 0

where h,=(—(H +n)n;+|n]*(H;+ G,)|i—1,2,3) and H,= (n;((H+G) Xn) |
—1,2,3,jl1, 2, 3)— (Hen)nx. Therefore we can see from routine
calculations Range MA,(U,) =R?® on T, since inf|Hy+n|=c,. Now the proof

XET
of is completed.

Let us make some remarks which are necessary to construct an invariant
subset for iteration scheme in § 5. At first, let R be an arbitrary small but
fixed constant. Next, let U=%(p, u, H) be any function on [0, 7] XxQ
satisfying

MAn(U):[I ] onT,

4.1 Sug|1>o—P|<R, sugIHo—H|<R, sugluo—u|<R,

for fixed t< [0, T].
Then, from the assumptions (1.4), (3.5) and (3.6) together with Lemma
3.1 (b), there exist a positive constant k,, depending only on ¢, and an

open covering, {Q}5, of Q with QoNT'=¢, Q;NT*¢ for i=1, 2,--- N,
such that

(a) hh=A(UW)<k:]; in O,
4.2) (b)) inf (H+G)(Denlza/2  fori=1, 2, N,

=C for i=1, 2,--- N.

(¢) sup |lu(t)+n
x€QNQ;

Here n is the extended one and ¢, is the constant in (1.6), and ¢ a positive
constant which will be determined later. We also may take y in
so that y=c¢™'R/2 for Rin (4.1). Then the estimates for {U{}5, in Lemmal
4.1 become

(4.3) | Up— Ui|n=c'R2777! for j=0, 1, ---.

Furthermore from the estimates of G* and (4.2)(b), we can see that for
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any function H which satisfies (4.1) the following estimates hold :

4. inf [(H+GH W n

=¢/4 for i=1, 2,--- N, k=0, 1, ---.

Hereafter ﬁ’EH”’*Z([O, T1xQ) denotes the function in [0, T]XQ
which is constructed by the same manner as (3.10), where we use Uj instead
of U,. Then we rewrite the modified equations (3.9). in the matrix form,
which corresponds to (3.7) :

A0<Ue> atU€+ % Azs',kCUs> aiUe+Bk<t) x) Ue:Fe,k<t; x>

Here G is replaced by G* and U.=¢(p., u., H.). For the AS ,(U.) and B,({,
x), we define for convenience the following differential operator L., ,(U) :

3
Lew(U)=Ao(U)0,+ 25 ALk(U)0i+ Bt ).

We also use the notation FZ ,(t, x) to denote the term F ({4, x) with e(n-
V)H replaced by e(n-V)H7. We remark that this F 1 »(t, x) belongs to
H™([0, T]xQ).

Next we construct the first approximating solution U° of the iteration
scheme as follows.

Lemma 4.2.  There exists U=t(p°, u®, HE X, .1(T) such that

(uen=0, H°Xn=0 on T'x [0, T],
o*U(0)=09%US3 for k=0, 1,..., m, where 0tU} denotes k-th time

(4.5) derivative at t=0 of a solution for the Cauchy problem
(3.1, in which G is replaced by Gy, with the initial
data US.

REMarx 4.1. It follows from (4.3) and (4.5) that there exists a posi-
tive constant 7 so that for R in (4. 1)

suplpo—p°| <R, sup|Ho— H°| <R, sup|luy—u°|<R, on [0, T'].
eQ

xEQ X xEQ

Proor oF LEMMA 4.2. Let & be a positive constant, and U° a solution
of the following linear mixed problem :

Lé‘,O(Ug) U0:K5<t, x) in [0) T] XQ,
U0|t:0:U8 in Q,
uen=0, H°x»n=0 on [0, T]xT.

Here K. is a function in [0, 7] X Q which satisfies the following equality at
t=0,
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a? E(O)Za?Fg,()<0)—[a?’ A0<U0>]atU0|t=0
3
— 38", LU0 o for k=0, 1, m,

where [, ] denotes commutator. The K. is constructed by the same manner
as (3.10) ; and belongs to H™([0, T]1xXQ) since the right side of (4.5)
belongs at least to H"*'"*~12(Q). Since U°(t)=UJ), it follows, by induc-
tions, from the definition of F'¢ ,(0) and the above equality of K, at =0 that
9:U°(0)=0%Uj} for k=1, ---, m. Therefore, according to the results of the
linear hyperbolic mixed problems, we can show from [Cemma 3. 2 and Lemma
4.1 together with (4.2)(a), (4.3) and the inequality (2.1) that there
exists a unique solution of the mixed problem (4.4) belonging to X,,..(T).
(c. f. [9] and Appendix A of [10].) The proof of Lemmad. 2 is completed.
Now we can define iteration scheme.

Lff,j<U{;;—11>Uéj:FJ€.j,j in [0’ T]X‘Q)
(4.6),- Ujéjlt=0: Uj in Q,
ul,n=0, Hi,xn=0 on [0, T]XT,
for j=1, 2, ---.

Here U{,='(pi,, ui,, Hi), U%=U"inLemma 4.2 and &;=2"76(j)"!, where
6(7) is a positive monotone increasing function, tending to infinity as j - oo,
such that [|U|n2=< 0G| Uyl m-

REMARK 4.2. We can show from the construction of H’ and the
definition of () that

4.7 &l <n‘V)ﬁj||Hm+l([o, 11x0) = &C| Ul maz= 27| Upflm -
§ 5. Proof of Theorem.

To construct invariant set for iteration scheme, we define for positive
constants 7' and M S

ST, M)={U="p, u, )| UE Xpr (T, |Ulxmn <M, u+n=0, HXn=0
on [0, T]xT, U satisfies (4.1) for all tefo, T1).

We now state the main Lemma.

LemMMA 5.1, There exist positive constants Ty and My depending only
on Uslm, ko, ¢, |gllymr), m and Q such that if therve exist a solution U*, of
(4.6), for k=0,...,7—1 which belongs to S(Ty, My) then there exists a
unique solution UL, of (4.6); which again belongs to S(Ty, My).

Proor.  Suppose that UZ;LeS(T’, M), where T’ is the positive con-
stant in REMARK 4.1 and M is a positive constant such that | Uy, =M.
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Then, it is easy to see from Lemma 3.7, Lemma 4.1, Lemma 4.2 and (4.2)
(a) for UZ;} on [0, T7] that there exists a unique local in time solution U¢,
for the linear equations (4.6); belonging to X,..(T").

Therefore we have only to show the following key a priori estimate for
Ui,:
5.1 N UL(On<S Cha+Estdexp(ket) for 0<t<min(T", T,, 1),
where k,, k, and k. are positive constants independent of j. The constant &,
depends only on |Uslm, %, ¢, |gllymm, m and Q. Moreover, k, and k.
depend only on M, |Uollm, lgllymz), %0, ¢, m and Q. Furthermore, 7, is a
positive constant depending only on M, |Uplm, |gllymm, ko, ¢, &, m and Q.
Then, taking My=max (6k,, M) and Ty=min (ky'(Ms)ks, k'(My),
T.(My, T’, 1), where ky(My), k.(My), T,(M,) denotes k,, k. and T,
with M replaced by My, we can see from the estimate (5.1) that

WU %M smerny =M «.

Therefore this estimate together with (2.1) leads that there exists a positive
constant T 4« independent of 7 such that

suplpi—pL|<R/2, suplHi—HL|<R/2,

stég|u{;—ui,|<R/2 on [0, T4],
because for example pi,— {;:A‘tarpé,(r)dr and ts[lolglllatpéj(t)llm_léM*.
Accordingly, from (4.3) and (2.1) we see that

(5.2)  suplp—pL|<KR, sxlégIH)—H’;jKR»

slég|uo—u§ji<R on [0, T4]

and U,eS(Ty, M.

Now we begin to establish the estimate (5.1). For simplicity we use
such abbreviations as U’ for U, and use k(M, ky, ---) (¢=1, 2,---) as a
positive constant independent of j which depends on M, kA, ---.

At first, we give the estimate of div H’ which is uniform with respect to
7 by making use of a special structure of (3.9)..

Note that the equations of H’ corresponding to (3.9).(c)” are

(3 + (V) H = (H7'+ GV + (H 7'+ GDdiv o’
+ (V)G +&;(nV)H =¢;(n-V)H — 3,

Accordingly, it follows from a well-known formula from vector analysis that
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e+ (V) H — (V) (H '+ G+ uw div (H '+ G?)
—curl(#’ ><A(Hj“+ G+ V)G +¢;,(nV)H’
=¢&;(nV)H’—9,G°.

Therefore taking the divergence of these equations and noting that div curl=
0, we get

(5.3) o, div H'+ (7 'V)div H'+¢&;(n.V)div H' + /. 0. ¢t
=div(e;(n-V)H’—3,G%),

where /. o. f. means the lower order terms of H’ and #’. We remark that
their coefficients contain at most first order derivatives of U’~! and second
order derivatives of G’ because the terms which contain second order deriva-
tives of H’~' are canceled each other. Operating 8¢ on (5.3) (this o¢
contains both time and space derivatives), multiplying (5. 3) by 204div H,
summing over all @ wth |a|<m—1, and applying integration by parts and

inequalities (2.1), (2.2), we obtain by [Lemma 3. 1(c¢)

(5.4 Bldiv H () ||z-s
< (M, \gllymr), m, DU )| .
+ R gl vmry, m, D)+ &||div((n-V)H ) |- Idiv H? (8] -

e /Faaa div H[? dr,

lalsm—1

since #’~'+n=0 on I'. Therefore we get the following estimate of div H’
which is crucial in this proof:

6.5 |div HOlnar=ks( U, m, Q)+ kst
+[<klm U () I+ & ldiv((r-V) A (D|n_)dz for 0<t<T".
Because of (4.7), this estimate is uniform with respect to j.
Next, let us take a partition of unity, {¢,}',, with respect to the open
covering {Q;}'_, in (4.2)(b) such that é ¢%(x)=1 in a neighborhood of Q

and each ¢; is C™-function with compact support in Q;. Then we may
suppose that I'NQ; (7=0) is given by the smooth function ¥, such that

FNQ={(n, %, %,)|%=y:(0, %)},
QNQ={(x, %, %,)|%=9:(a, B))}.

For this v, we define the change of independent variables in Q, :

Mh=x,
(56) yZZxZ)
B=xm—19:(0, %).
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Then we see easily that there exists a positive smooth function »;(x) in
(i=1, 2,---, N) such that

w;()nx)=(—:;, —¥:, D on QNQ,,

and T'NQ; is mapped to the subset of {(3, 3, 3)|3s=0}. Moreover we
change the dependent variables ¢;U’ by an orthogonal matrix valued trans-
form 7T,(x) which makes the boundary operator M constant on T' (c.f.
Proposition 3.1 of [6]), and rewrite for simplicity this new variables T;¢;U’
by U’ in Q;. Then note that this U’ satisfies the following equations in

Q;:
5.7 AU a,0/+As;(U8,, U+ Ag,(U1 3,0
o A, (U0, 0+ BT~ 3 Ak (U8, T) U
—x; A (U0 8,,{¢:THU =F1, 5,
where 8,,=8/8y;, Ay (U =TAy ,(U™)T, for k=0, 1, 2, n, B;=T:B/T,

Fi ,=T.¢:Fi,;. Applying tangential derivative operator Ofan with |a|=m
to the equations (5.7), we get

(5.8) AU 8,048+ A5 ,(U™ 8, Uisd + A, (U V) 8y, Ui
+ x; Afl].7<UJ 1>ay3Utan+B Utan+l 0. ZL—atanFe,J,

where U{ég: agan(]j; Ofan= 0¢°95, 95, for a=(a, a1, @), lal =atata.
And here L. 0. t. means the lower order terms of U’ with their coefficients
which contain at most m-th order derivatives of U’~! and (m+1)-th order
derivatives of G’. Multiplying (5.8) by U{.¢ and integrating over x lead to

at(U{ég; AO<Uj_1> Utan)o
= Utan x; A5/1<UJ D Utan dF“‘( {an {atAO<UJ D

y3=0
+ay~1Af,J<UJ 1>+ayer,jj(U]_l>+ay3(Ki Afan(UJ_l))
2B} U)o+ (Ul L o, t)o+2(Udk, 0t FL, 5.

Here we note that U8 x; A5 ;(U)) U#2=0 on =0, because the null space
of the boundary conditions is nonnegative with respect to Ag/;(U’™H) (cf.
Lemma 3.2). We also note that M 9&, U= 8%, M {7=0 on y;,=0 since the
transformed M is constant. Summing over all @ with |@|<m, applying the
inequalities (2.1) and (2.2), we can get by (¢c)

(5.9) 2 <A0<U] 1) Utan, (7{5@0

§<k4<||g|| rmcrrs M Q)+ &l Tepi (e V) A7 (D, ton
+ks(M, Nglymery, . DITONNT Dllm, e,
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where || Uj(t)lllfn,tan:l é‘, logs T/(H)|3. Therefore (4.2)(a) yields

(5.100 1T Dllm tan
<ks(|Upllm, m, Q)+ko'kyt

bt [ U/ Dl N T B e for 05 ¢S T

Here and hereafter we use U’ again to represent ¢,U’ instead of T;¢,;U".
Next we shall give the estimates of normal derivatives of U’ which are
independent of 7. For this purpose we should note that the rank of the
boundary matrix A;(U?") is 6 on T" because of (4.4) for*H%%. There-
fore we can see the estimate for the normal derivatives of U7 by returning to
the equations (5.7) and combining the uniform estimates (5.5) and (5. 10).
To see this procedure precisely, we first note that divergent operator can be

locally written as
diV Hj: a}’lg‘{—'— ayz 1 %—I— 8y3H§— alwiaysﬁ{
— a0y, H3 in QN Q..
Hence we get the identity :

(5.11) m(nlaysFIHnzayaf?é+~ngaysﬁg>
=div H'— 9, H{—9,,H% in QNQ,.

Moreover, the equations for U’ are written as
~ . ~ . . ~ ., 2 ~ . ~ .
(6.12)  x A (U8, 0= (AU D807+ 3 Ag, (U8, 0%

+élﬁzfj<Uf‘1>ay,,{¢i} Ui+ AU, {¢) U+ Fi, ;in QN Q..

Then the equations of the second, the third, the fourth lines of (5.12) and
the identity (5.11) can be written as

(5.13)  E.dy,' 7, Hi, H3, A
= (4-dimensional vector valued functions consisting of the right
side of (5.11) and corresponding lines of (5.1) and p(p’~") (u’~ '+
n)9,,u’ for i=1, 2, 3).

Here
- n -1
:d:%i[o l)tn J’
n

where, D77 = (= (H’ 7'+ G+ nd,ptn(H{'+GD|1—-1, 2,3, k11,2, 3).
Then from (4.4) and the assumption sup|H’'—Hy|<R, it follows that
Pa=1¢)
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inf |(H'+G")+n
xEQNQ;

=¢/4 on [0, T’], which implies

det Eo=wi((H' 7'+ G")+n)’*=xic3/16
in [0, T’] XQﬂQz

Next note that the equations of the first, the fifth, the sixth line of (5.12)
can be written as

(5.14) By, (i, i, i)
= (3-dimensional vector valued functions consisting of the right
side of corresponding lines of (5.12),
&0y, Hi+ (uw'en)8,,H% for i=1, 2 and
P DT D07 (w7 e ) Bysp?).

Here
n n; n;
By=x;| —(H'"'4+G)en+(H{ '+ GO (H{ '+ G)n, (H{'+G)ns|,
(Hi'+Gm —(H7'4G)en+H '+ Gn, (Hi'+G)ny

where G=G’. Then eigrgﬂ_l(Hj"1+Gj)-n =¢,/4 on [0, T7] again yields

det Bp=x?((H’7'+ G+ n)?*=x%c3/16 in [0, T']XQNQ;.

Then, taking ¢ in (4.2)(c) small enough for given |Uyln, lglymr, c3%
and &y, taking a positive constant 7, small enough for this #and M, and then
applying the mean value theorem and the inequalities (2.1) and (2.2), we
can show from (5.13) and (5.14) that

(5.15)  NT/ O In
<k(cily U Ollnr, lglimr m, Q)
X (ldiv H O llm-1+ 11U O lm, tan+ 1 U7 (Dllm-1)
<k X (|div H’ () ||lm-1+1 U’ &)l m.1an

+ k(| Upllm, m, Q>+[|||Uf<r>|||mdr> for 0<t<min(T", T,).

Here the constant %, depends smoothly on ||U"*(¢)||»-:. Therefore we get

koCez', WU O lm-1s glymery, m D
ék{)(CZ_l) ”(]0"7") “g“Ym(T); m, Q)+k10<62_11 M, “g”Ym(T)) m, Q>t

On the other hand, in the same arguments as in the case of Cauchy
problem, we can show from (4.7) :



The Initial Boundary Value Problem for the Equations
of Ideal Magneto-Hydrodynamics 311

t .
(5.16)  l¢bo Uj(D”'méku‘f‘klzt‘*‘kls/(;“'UJ(T)”IdT
for 0<¢t<min(7T7, 1),

Where kllzku(” (]()”TIZ) m} Q)) k12:k12<M’ kaly ” (]0"7)1) ”g”}’m(T), m; Q) and k13
:kISCM; kal) “g"Ym(T), m, ‘Q>

Accordingly, since

U OIE=Ndo U Ol 2 I T U DI,

it follows from (4.7), (5.5), (5.10), (5.15), and Gronwall’s inequality that
5.1 WU DONn= (kutkist)exp(hist)  for 0=t<min(7", T,, 1),

where ku=kiu(c3', | Udln, |glymay, m Q), kis=kis(M, k', c3', | Uo
lgllymry, m, Q) and ke=hre(M, ki', c3',
proof of Lemma 5.1 is completed.

Next we show that the sequence {U4%,}5, converges strongly in X,(T)
for a sufficiently small constant7.

m>

m, Q). Therefore the

LemMA 5.2.  There exists a positive constant Ty such that

(5.18)  sup ZIIU (D —=ULE(D]e< 0.

To]l j=1
Proor. For simplicity, we also use U’ for U, in this proof. Direct
computations yields the equations for U’— U’

A (U H e, (U'=U" ‘)+Z A;(UHe,(U=UH

+B,(U'-U""Y—(Fi,;—F7 ;. :“A0<UJ_1>ZI<Ai,j(Uj—I)‘"
A3, (U72) 0,U 1 — Ao(U ™ (A (U D B,— AW (U8 B,_) U’™!
+Ay(UHFGY (A (UTH = At (U2)),

where A%, (U*1)= Az (U A(U*"). Noting that the estimates (4.7)
and

1O N xmrn =M, U xnao= M, R<Ag(U™) <ki'l,

n [0, T4]XQ, we conclude by standard energy estimates for symmetric
hyperbolic systems and the mean value theorem that
sup [U(2) = U (D)= (U= Ut o

7€[0, To]

+e' @7+ sup |UTHD =TTy exp ¢! Ty
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for T,< T4, where ¢’ and ¢” are positive constants depending only on M,
1Usllm» gl ymry, %0, m, and Q. Therefore taking T, small enough, we have,
by (4.3)

sup_ I Uj(f)—U"‘l(r)lloéarg[tolpT] U () — U 2(D) o+ B;,

[0, To

where 0<a <1 and {8;}%, with i}z |B;|<oo. This estimate immediately

yields (5.18).

By and Lemma 5.7, together with the sobolev space
interpolation inequalities (c.f. pp. 39 of [8]), we can conclude that there
exists a function U such that for any positive constant ¢ the sequence {U
1,J70 converges to U strongly in H™%(Q) uniformly on [0, 7;] and the
sequence {9,U%,}%, converges to 8,U strongly in H™'-%(Q) unifomly on [0,
Ty]. Accordingly, we get

(5.19) UeC°(0, To; H™°(Q))NCH0, To; H™'7°(Q)).

Because of m =3, this U is a classical solution of the initial boundary
value problem (1.1)-(1.3).

The uniqueness of the solution of (1.1)-(1.3) follows directly from the
next a priori estimate.

LEMMA 5.3.  Assume that U and U’'=t(p’, w', H") are solutions of
(1.1) belonging to X,(T) (m=3) which satisfy only the solid boundary
condition u-n=0 on [0, T]XT.

Then the following a priovi estimate holds :

5.200 U - U DR aexplatd (U0 —U O
+ [ [1CH (o) {(H (0~ H () - (u(2) — ()] dTd )

Jor 0=t=<T, where cs, ¢, are positive constants which depend on |p|,- and

\VU|i=, [VU'|.=, respectively. Here |s|.~ denotes essential supremum novm on
[0, T]xQ. '

Proor. Direct computations yield the equations for U—U":
3
A()(U) at<U—‘ U,> +J§1 AJ<U> aJ<U_ U/> — (A()(U)) atU/
+ 3 AU —AUNBY,

where A,(U), A,;(U) are the matrices of (3.7)with G=0.
Note that under the condition #+#=0 on T"
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frth— U’)A,,(U)(U—U’)dI‘:Z_/;H-n{(H—H’)-(u—u’)}dr‘

(c.f. proof of Lemma 3.2). Then (5.20) follows from the standard
method for symmetric hyperbolic systems.

Finally we shall remove ¢ in (5.19). Since {UZ%}3, converges to U
strongly in H™%(Q) uniformly on [0, 73] and | Ui xure<=M for j=0, 1, -
and since (H™°(Q))" is dense in (H™(Q))’, (the dual space of H"(Q);
c.f. pp. 84 of [7]), we can show by an elementary argument that
(5.2 UeC0, To; H™(Q)),

where C, means continuity on the interval [0, 7;] with values in the weak

topology of H™(Q) (c.f. pp. 40 of [8]).
Next, we obtain from (1.1)(c), (1.5) and div curl=0 that

div H(t)=0 for 0=t Ty.

Furthermore, applying the tangential molifier for the principal parts of the
equations corresponding to (5.7), carrying out the similar estimates to
(5.9) for ¢;T;U (i=1,--- N), we obtain the following estimate: for some
positive constant £,

l: T:U (O, ton— N : T:U () ||, tan
<k(M, |glymn, kst m, QD|t—s| for 0=t, s<Tp, 1=1,-, N,

since |U|xmro=<M. Accordingly, we get from (5.21)
Otn(d, T;UH)=C (0, Tp; L*(Q)) with la'lém for i=1,---,N.

Hence, by using the similar relations to (5.13) and (5.14) for U we can
show that

¢ UcC, To; H"(Q)) for i=1,---, N,

since 77! are smooth. Since ¢; are smooth and since $Ue&C0, Ty,
H™(Q)), we get

veC, To; H™(D))
Therefore, by returning to the equations (1.1) we get
UeX.(Tp).

Now the proof of TuroreEM 1.1 is completed.
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