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0. Introduction

Pohl [9,10] and Feldman [2, 3] studied the differential geometry of
higher order. We know many informations on non-existences of higher
order non-singular immersions of projective spaces, lens spaces or Dold
manifolds into euclidean spaces, projective spaces or lens spaces. They are
seen in Suzuki [12,13], Kobayashi [5,6], Yoshioka and Oike [7].
We denote by V,(q¢) (g=1) a non-singular complex hypersurface of begree
g in the (n+1)-dimensional complex projective space P,,,. In this note, we
study non-existences of higher order non-singular immersions of V,(g) into
the N-dimensional euclidean space R™ by means of Stiefel-Whitney classes
of higher order tangent bundles of V,(q). Our main result is [Corollary 2. 4|
The computations of higher order tangent bundles of V,(¢) heavily depend
upon symmetric power operations in K-theory that Suzuki firstly used
to compute higher order tangent bundles of real projective spaces. On the
other hand, in [9] Pohl also formulated and studied the complex analytic
geometry of higher order. In Oike studied of non-existences of higher
order non-singular holomorphic immersions of P, and V, (¢) into P,.

1. Preliminaries

Let M" de a compact connected #n-dimensional smooth manifold and
(x', ..., x™ be a local coordinate of M". Let 7,(M™, (x&€M”, p=1) be
the real vector space spanned by

Ak
{axala axak ; lgkép’ 1§a1§...§a’k§n}

and put
(M= U 7,(M"),,
XeMmr

where 7,(M") =7(M™" is the tangent bundle of M”. Then we have that
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7,(M™) is a smooth vector bundle of rank v(#%, p) over M", where
v(n, p>:(”;p)—1.

7,(M™) 1is called the p-th order tangent bundle of M" (see [9, p.189]). For
a smooth vector bundle »—— M " of rank m, we denote the k-fold symmetric
thensor product of by O* (O°%9=1, O's=7%), where 1 is a trivial line
bundle over M”". We have a short exact sequence

O0—1p (M —7,(M")—> Oz (M) —>0,
for p=2 (see [9, Theorem 2.1]). Then we have the following lemma.
LEmMA 1.1  (Suzuki [12, Lemma 2.2])

(M +1=0(zr(M™+1).

Let f be a smooth map of M” into the N-dimensional euclidean space
RY . Let 7,(f): 7,(M™"——1,( RY) be the p-th order differential of f (see
[2, p190]) and D,:7.(RY)——7, ,(RY) (2<k) be the vector bundle
homomorphism which are defined by

ak
“ooxw... ox*

Dk(Vk—1+2 Ay, ... >= Vk—l,

where V., , €7, ,(RY) (see [9, p176]). Then & )=D.... Dr,(f) : 7
(MH——>7,(R¥)=7z(RY)= R" is a vector bundle homomorphism covering
/. where RY is a product bundle R x RY over RY. If §,(f) is of maximal
rank (i. e., of rank min {v(%n, p), N}) on each fibre, where 6, (f)=7.(f) =
7(f), we say that f is p-th order non-singular. If there exists a p-th order
non-singular immersion of M” into R”¥, we write M"C,R" and if there
exists no such immersion, we write M"Z,R”Y. We have the following
proposition by means of [2, p 217].

ProposITION 1.2.  If n>1, then M"C,R*™ P " aud if p>1, then M"
C_:pR"("’ p)—n.

Suppose that an immersion M"—— R" is p-th order non-singular. Then
the cokernel Coker &8,(f) or the kernel Ker 8,(f) of 8,(f) : 7,(M"H— RY
is a smooth vector bundle of rank N —v(#n, p) or v(n, p)—N over M”" as
vin, P )<N or v(m p)=N, respectively. Let w(z,(M™), w(z,(M™)),
wr(tp(M™) or w,(z.(M™) be the total, the total dual, the %£-th or the k-th
dual Stiefel-Whitney class of 7,(M"), respectively. Then the total Stiefel-
Whitney class of Coker 6,(f), Ker 8,(f) is given by
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w(Coker 6,(f)=w( RN —z,(M™)=w(—7,(M™)
= (w(zp(M™) =z, (M™),
w(Ker 6,(f)=w(ry(M" — BY)=w(z,(M"),

respectively, where RY is a product bundle over M” with fibore RY. Hence
we have the following proposition.

ProposITION 1.3.  Suppose that M™ is a compact connected n-dimen-
sional smooth manifold and that f: M™—— RY is a p-th order non-singular
immersion for p=2.

(i) If N=zv(n, p), then for k>N —v(n, p),
w,(Coker 6,(f)) =w,(z,(M™) =0,

where w,(Coker 6,(f)) 1s the k-th Stiefel-Whitney class of Coker 8,(f).

(ii) If N<v(m, p), then for k>v(n, p)— N,
we(Ker 6,(f)) = w,(z,(M™) =0,

where w,(Ker 8,(f)) 1s the k-th Stiefel-Whitney class of Ker 6,(f).

Let G be a compact connected Lie group and F be the real number field
R or the complex number field C. Let V be a finite dimensional G-vector
space over F and [ V] be a G-isomorphism class of V. The dimension of
V is said to be the degree of [ V]. We denote the k-fold symmetric tensor
product of V by O*V (0O°V =1, O'V =1V, where 1 is the 1-dimensional
G-vector space F' with a trivial G-action). Then O*V is regarded canonica-
lly as a G-vector space over F. Especially if V is a 1-dimensional G-vector
space, then O*V is G-isomorphic to the k-fold tensor product ®*V. Let
Mp(G) be a semiring which consists of all G-isomorphism classes of finite
dimensional G-vector spaces over F. The additon and multiplication in
Mz(G) are induced by the direct sum and tensor product of finite dimension-
al G-vector spaces over F. We define O* V] for [V]EM.(G) by
O* [ V]=[0*V], then O*(k=0,1,2,...) induce operations of M .(G)
having following properties :

i) O(x)=1, O'(x)=x for xEM.(G),

i) O*x+y) :H]Z_lk O'(x) O°(y) for x, yEM.(G),

iii) O*x)=x*for xEM.(G) : of degree 1.

Let R.(G) be a ring completion of M.(G) and a : M.(G)—>R-(G) be a
natural semiring homomorphism. We set
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0.(0)=3 (0*x)t*

k=0

for an indeterminate ¢ and each x&M.(G). Let Ap(G) denote the
multiplicative group of formal power series in ¢ with coefficients in R.(G)

and constant term 1. Then the properties i), ii) assert that O, defines a
homomorphism of M.(G) into A.(G) which turns the former addition into

the latter multiplication. Hence we get such a homomorphism O;: Rz(G)
——A.(G). Taking the coefficients of O, this defines operators O*: R.(G)
—R-(G)(k=0,1,2,...) which is called the symmetric power operations.

Properties i), ii) continue to hold for these O* but the property iii) holds
only in a(Mp(G)). Symmetric power operations O* are applied to
calculations of higher order tangent bundles of real projective spaces firstly
by Suzuki [12], complex and quaternion projective spaces thereafter by
Oike [7]. Note that for x€M.(G) of degree 1,

O,(x)=1—xt) .
Let 7, ¢, ¥¢' be the following operations

7v: Rc(G)—>Rg(G) real restriction,
c: Rg(G)—> R (G) complexification,
vl Re(G)—>R(G) complex conjugation.

Then we have the following lemma (see [1]).

LemMA 1.4. i) 7 is a group homomorphism and c, ¥ ¢'

homomorphisms.

are ring

i) rc=2, cr=1+v¢c.

iii) ¢ is itnjective.

iv) ¢O*=0*c.

The following proposition is obtained by means of [1, 3. 77 Corollary].

ProposITION 1.5. R J(U(1)) equals the rving Z|z z7'] of all finite
Laurent sevies with integer coefficients, where z is the U (1)-isomorphism class
of the 1-dimensional complex vector space C (the field of complex numbers)
with the natuval U (1)-action and z7'=v¢¢'(2).

Set =7(2)—2ERx(U(1)), then we have the following lemma (see
[7, Lemma 1.4] or [5, Lemma(4.3) and Appendix]).

LEmMA 1.6. i) Yh(p)=7rD—2, v%(n)=0, v ) =vk(n),
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o d i .
i) 7=5 o (Y Jyion,
iii) Mz(ﬂ)Zjé Ay’
iv) YR =VE @)+ ) —2(¢k(n) +¥k(n)),
where Y is the real Adams operation and

2 -l . k k—i—j—l)
k__ 2y
A3 @2n! ir:[0 (k2= J < 27—1 /"

The following lemma is Lemma 2.1 of [7].

LEmMmA 1.7.

O(n+2)7 () =F(m+(

2

2n+3+]'>
where
7] n+l+i\/m+1+j—1
Ea=2 (") j—i

Jwiericn).

2. Our results and their proofs.

Let yn.,.—— P, be the universal line bundle over P,,, and put &,=
Yni1l v We denote holomorphic tangent bundles of PB..., V,(¢) by
0( P, 0(V,(q)), respectively. Hirzebruch has shown that the holo-
morphic normal bundle v(V,(¢)) of V,(q) in P,,, is isomorphic to &,? (see
[4, p.69]). Hence we have a holomorphic short exact sequence

O—)0< Vn<q>>—’0<Pn+1> ’ Vn<q)—)§;q—‘“)0.

It is well known that (P,..)+1=(n+2)y:!, in K-group K(P,.,) of P,.,.
Thus we have that §(V,(¢))=(n+2)&,'—&>9—1 in K-group K(V,(¢q)) of
Va(q). Therefore the tangent bundle 7(V,(¢)) of V,(q) is given by
T(Val@) =+ 7§D —r(&xD—2 in KO-group KO(V,(q)) of V,(g).
Since 7 (&,*) =7 (&%) for each natural number £, we have that in KO( V,(¢))

T(Va(@)+1=n+2D7r (&) —r(EH -1

Set y=7(&,)—2. We show that the k-th order tangent bundle of V,(¢q) is
given by the following formula.

THEOREM 2. 1.
To(Va(@) +1=F(y) — (Forn () + G- (3))
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+ (Fo2()+Gi2(3)) —Frs(¥)

k—1
+<—1>k(n+[1k+[1]2 ])Zwﬂcyw(“,j ‘)
where
()= 2_ ]("“L;”)("*]l_*j o)
cz<y>:[§](”+§+’)("+jj; Npieacy

+YR T,

ProorF. O,(c(n+2)r(z2)—r:zHD-1))=0,(c(n+2)r(z2)))(1—tz9)(1—
21— =(1+ it"cOJ)(l—tc(r(z")+1)+t2c(r(z")+1)—t3), where

O'=0'"((n+2)r(z)). Hence by Lemma 1.7, we have O*((n+2)r(z)—
r(zN—D=0*~(rEZH+1D(0*'=0**) - 0**=F,() — (Y k() +3)

Fk_1<n>+<w&<n>+S>Fk-2<n>—FH<ﬂ>“(274;—1#)“(’7” (2;4; k>'

By iv) of Lemma 1.6, the following formula holds

(&) +DF;(p) =F;(p) + Gi(n)

I:] 1] n+l+i\/n+1+j5—
o (L

i=0

Nacn.

In general, for natural number j, we have that

5 [121]<n+21+z>(n+]1jlj— z) (2%—!-].34-]')’

if 7 is odd and that if ; is even,

eyl n+1+i\m+1+7—1
2 2( Z >( j—1 )

i=0



Non-Existence of Higher Ovder Now-Singular Immersions
of Complex Hypersurfaces Into Euclidean Spaces 197

<2n+3+j> 1’l+1+%>2

-

- J
J 2

These formulas complete the proof. q.e.d.

Now we caluculate the Stiefel-Whitney class of z,(V,(q)). Let x&
H*(V,.(@); Z) be the first Chern class of the complex line bundle &;'. Then
the additive order of x™ is infinite for 1< m=<w# and x*'=0. The following
proposition is shown in [11, p. 172].

ProrosiTioN 2.2.  Let j: V,(q)—— P, the canonical inclusion. Then

1) 7% H¥(Poy; 2)—H*(V,(q); Z) is an isomorphism if k<n
(similarly in homology) and if k+n, H*(V,(q); Z) is isomorphic to
H*P,; Z);

i) H™V.(q); Z) is a free abelian group and

(g—D"™—qg+1

. (n; odd),
rank(H*"(V,(q) ; Z))= ne2 _
Cind) q+2q 1 (n; even) :

i) x gemerates a truncated polynomial subalgebra of H*(V,(q); Z)
and x*=q-(generator of H*(V,(q); Z)), if 2k=n.

Set ¥=x (mod 2) €H?*V,(q); Z). Then we have that for -721—2 k<n,
fk{ +0, if g is odd,
=0, if ¢ is even.

The Stiefel-Whitney class of ¢&(y) =7(&3) —2 is given by w(y¢i(»)) =c (&%)
(mod 2) =1+ %, where ¢(&3) is the Chern class of &;. Hence we have

I+% (5; odd),
1 (J; even).

w k()= |
Therefore the following corollary is easily obtained with elementary
calculations from the above [Theorem 2. 1.

COROLLARY 2.3. i) If q is odd, then

(I+n*»2  (k; odd),
(14298 (k: even),

w(a(Vale))= |

where
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e

ii) If q is even, then

(A+n»  (k; odd),

w(z(Va(g))) = { (14+2)-9%» (kb even),

where

cn k)= 1 {<2n+3+k>+3<2n+1+k>}’

7\ 2
1 2n+2+k (2n+k>
aon =g (30 )

By this corollary, we have that
Woj1 (T (Va(@))) =0, w1 (7u(Vn(g))) =0,

<a'(7’l, k;+j_1>fj (k; odd),
W (zh( V(@) = (/3(7{, k>>x—j (k; even),
<a(n k>> (k; odd),
wZJ<Tk<Vn(q>>>: <ﬁ<1/l k>+] 1>xd (k’ even),

where a=a(q; odd) or c(q; even), B=b(q; odd) or d (q; even). In
case w(r.(V,(g)))*+1, we set

<<

1
Pin, = MAX atn, k> - )

1 (mod 2) },

1=j=n; (‘“" k>) 1 (mod ) |,

%; ( c(m, k;“"l)a (mod 2) |,
1§]<%; (C<n]i k>>51 (mod 2) }
n
2

1<j<—+; (d@;, k>> =1 (mod 2)},
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n . (d(n, k)+j—

nd(n,k):maX{1§j< D) ]

1) =1 (mod 2) } |

The following example is easily shown.
Example 1.

1) Wenw=nNann=n for n=27, k=2""142"—1 (r=1),
1]) nim,m:nzm,k):n for n:2’, k:2’“+2’ (7’21),

iii) nzm,k):nan,k)zg—l for n=27+2, k=2"142"2_5 (y=5),

iv) nz(n,k):n;(n,k):%'—l for n=2"+2, k=2""42"2—4 (r=5).

By the above [Corollary 2.3 and [Proposition 1.3, we have the following
corollary.

COROLLARY 2.4.  Suppose that w(z,(V,(@)))+1 and that natural
number N satisfys one of following inequalities
a) for q; odd and k; odd
v(2n, k) =204 <N <v(2wn k) +2nn 1,
b) for q; odd and k; even
v(2n, k) =204 <N <v(2n, R)+ 20150 n,
c) for q; even and k; odd
v(2n, k) =20 <N <v(@2n, B)+2nkn s,
d) for q; even and k; even
v(2n, k) —20g0n 0 <N <v(2wn )+ 20 1.

Then

V(@) g_kRN-

By [Proposition 1. 2, Example 1 and [Corollary 2. 4, we have the following
example.

Example 2.

V(@) SRR @ 0%2n Y (0 C Rv@n D21 (B> 1),

But if ¢ is odd, #=2", £k=2""4+2"—1 or 2""'4+2" (»=1), then
Va(@) L.RY

for v(2n, &) —2n< N <v(2n, k) +2n.
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