Complex powers of a class of pseudodifferential operators in \mathbb{R}^n and the asymptotic behavior of eigenvalues

Junichi ARAMAKI (Received January 18, 1985, Revised September 24, 1986)

§0. Introduction

In the previous paper [2], we constructed complex powers for some hypoelliptic pseudodifferential operators P in $OPL^{m,M}(\Omega; \Sigma)$ (for the notation, see Sjöstrand [18]) on a compact manifold Ω of dimension nwithout boundary and examined the asymptotic behavior of the eigenvalues of P. Here the principal symbol vanished exactly to M-th order on the characteristic set Σ of codimension d in $T^*\Omega \setminus 0$. The hypoellipticity of these operators is well known by Boutet de Monvel [3] for M=2 and Helffer [6] for general M. Moreover Menikoff-Sjöstrand [11], [12], [13], Sjöstrand [19] and Iwasaki [9] studied the asymptotic behavior of eigenvalues of P under various assumptions on Σ in the case M=2. Their methods are based on the constructions of heat kernel and an application of Karamata's Tauberian theorem. For general M, Mohamed [14], [15] and [16] gave the asymptotic formula for the eigenvalues of P by using Carleman's method in which the Hardy-Littlewood Tauberian theorem was used.

However the method in [2] was essentially due to Minakshinsundaram's method (c. f. Seeley [17] and Smagin [20]). The essentials of the theory in [2] were as follows: At first we construct complex powers $\{P^z\}_{z \in C}$ of P. When the real part of z is negative and |z| is sufficiently large, P^z is of trace class and the trace is extended to a meromorphic function in C which is written by $\operatorname{Trace}(P^z)$. Secondly we examine the first singularity of $\operatorname{Trace}(P^z)$. Finally we apply the extended Ikehara Tauberian theorem. (See [2: Lemma 5.2] and Wiener [21]). Here since $\operatorname{Trace}(P^z)$ is a meromorphic function in C, we call the pole with the smallest real part the first singularity throughout this paper. More precisely, denoting the counting function of eigenvalues by $N(\lambda)$, the first term of the asymptotic behavior of $N(\lambda)$ as λ tends to infinity is closely related to the position and the order of the pole at the first singularity. In the case where n/m = d/M, the first singularity situates at z = -n/m and is a double pole and then we have for a constant c

$$N(\boldsymbol{\lambda}) = c \ \boldsymbol{\lambda}^{nm} \log \boldsymbol{\lambda} + o(\boldsymbol{\lambda}^{nm} \log \boldsymbol{\lambda}) \text{ as } \boldsymbol{\lambda} \rightarrow \infty.$$

In the other cases they are only simple poles and log λ does not appear in the first term of $N(\lambda)$.

However in the framework of [2], for example, we can not treat the following operator on \mathbf{R}^3 :

$$P = (D_{x_1}^2 + x_1^2)^2 (D_{x_2}^2 + x_2^2)^2 (|D_x|^2 + |x|^2)^2 + \mu (D_{x_1}^2 + D_{x_2}^2 + x_1^2 + x_2^2)^2 (|D_x|^2 + |x|^2)^3 + \nu (|D_x|^2 + |x|^2)^4 (\mu, \nu > 0)$$

Our purpose in the present paper is to study the asymptotic behavior of $N(\lambda)$ for such operators. In order to do so we consider a class $OPL^{m, M_1, M_2}(\sum_1, \sum_2)$ where the characteristic set Σ is a union of two closed submanifolds \sum_1 and \sum_2 of codimension d_1 and d_2 in $\mathbb{R}^{2n}\setminus 0$ and the principal symbol vanishes exactly to M_i -th order on $\sum_i (i=1,2)$ respectively. Under some appropriate conditions, we construct complex powers $\{P^z\}$ and examine the first singularity of Trace (P^z) in the same way as [2]. But it is necessary to construct different symbols of P^z according to the order relations among real numbers 2n/m, d_1/M_1 and d_2/M_2 . In particular, we have a new result that for the case $2n/m = d_1/M_1 = d_2/M_2$ with a constant c

$$N(\lambda) = c \lambda^{2n/m} (\log \lambda)^2 + o(\lambda^{2n/m} (\log \lambda)^2)$$
 as $\lambda \to \infty$.

The plan of this paper is as follows. In § 1 we give the precise definition of the operators mentioned above and give some hypotheses. In § 2 we introduce two classes of operators in which we construct the parametrices of $P-\zeta$ for some $\zeta \in C$. By taking an application in § 5 and § 6 into consideration, we construct in § 3 various parametrices of $P-\zeta$ for some $\zeta \in C$. In § 4 we construct symbols of complex powers corresponding to parametrices in § 3 respectively. In § 5 we examine the first singularity of the trace of complex powers. Finally in § 6 we study asymptotic behavior of the eigenvalues using the results in § 5 and give some examples.

For brevity of the notations, we use the followings which are held from 1 to 5:

$$M_0 = M_1 + M_2$$
, $d_0 = d_1 + d_2$
 $\Sigma_0 = \Sigma_1 \cap \Sigma_2$, $\Sigma = \Sigma_1 \cup \Sigma_2$
 $N(a, b) = a - b/2$ for any real numbers *a* and *b*

§ 1. Definitions of operators and some hypotheses

In this section we introduce a class of pseudodifferential operators on \mathbb{R}^n and give our hypotheses.

Let \sum_{i} and \sum_{2} be closed conic submanifolds of codimension d_{1} and d_{2} in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ respectively such that $d_{0} = d_{1} + d_{2} < 2n$. Here the conicity of \sum_{i} means that $(x, \xi) \in \sum_{i}$ implies $(\lambda x, \lambda \xi) \in \sum_{i}$ for any $\lambda > 0$.

DEFINITION 1.1. (c. f. [1] and [18]) Let m be a real number and M_i (i=1,2) be non-negative integers. Then the space $OPL^{m, M_1, M_2}(\sum_1, \sum_2)$ is the set of all pseudodifferential operators $P(x, D) \in L^m(\mathbb{R}^n)$ (for the notation $L^m(\mathbb{R}^n)$ see Hörmander [7] and [8]) such that P(x, D) has a symbol $p(x, \xi) \in \mathbb{C}^{\infty}(\mathbb{R}^{2n})$ satisfying the following (1.1) and (1.2):

(1.1) There exists a sequence of functions $\{p_{m-j/2}(x, \boldsymbol{\xi})\}_{j=0,1,\ldots}$ such that $p(x, \boldsymbol{\xi}) \sim \sum_{j=0}^{\infty} p_{m-j/2}(x, \boldsymbol{\xi})$ where $p_{m-j/2}(x, \boldsymbol{\xi})$ are elements of $C^{\infty}(\mathbf{R}^{2n}\setminus 0)$ and positively homogeneous of degree m-j/2 in $(x, \boldsymbol{\xi}) \in \mathbf{R}^{2n}\setminus 0$. Here the asymptotic sum in (1.1) means that for every positive integer N and every multiindices α , β , there exists a constant $C_{\alpha, \beta, N} > 0$ such that

$$|D_{x}^{\alpha}D_{\xi}^{\beta}(p(x,\xi)-\sum_{j=0}^{N-1}p_{m-j/2}(x,\xi))| \leq C_{\alpha,\beta,N} r(x,\xi)^{m-N/2-|\alpha|-|\beta|}$$

for $r(x,\xi) \geq 1$ where $r=r(x,\xi)=(|x|^{2}+|\xi|^{2})^{1/2}.$

(1.2) There exists a positive constant C such that

$$\frac{|p_{m-j/2}(x,\xi)|}{r(x,\xi)^{m-j/2}} \leq C \sum_{\substack{k_1+k_2=j\\k_i\leq M_i}} d_{\Sigma_1}(x,\xi)^{M_1-k_1} d_{\Sigma_2}(x,\xi)^{M_2-k_2}, \ j=0, \ 1, \dots, \ M_0,$$

where $d_{\Sigma_i}(x,\xi) = \inf_{(x',\xi')\in\Sigma_i}(|x'-\frac{x}{\gamma}|+|\xi'-\frac{\xi}{\gamma}|), \ i=1, \ 2.$

The class of symbols satisfying (1.1) and (1.2) in an open conic set U in $\mathbb{R}^{2n}\setminus 0$ is denoted by $L^{m, M_1, M_2}(U; \Sigma_1, \Sigma_2)$. Finally we say that P(x, D) is regularly degenerate if moreover $p(x, \xi)$ satisfies:

(1.3)
$$\frac{|p_m(x,\xi)|}{r(x,\xi)^m} \ge C \ d_{\Sigma_1}(x,\xi)^{M_1} \ d_{\Sigma_2}(x,\xi)^{M_2}.$$

For brevity of the notations, we denote:

$$OPL^{m, M_1, 0}(\sum_1, \sum_2) = OPL^{m, M_1}(\sum_1)$$

$$OPL^{m, 0, M_2}(\sum_1, \sum_2) = OPL^{m, M_2}(\sum_2).$$

If necessary, by relabelling of \sum_i , we may assume:

$$(1.4) \qquad \frac{d_2}{M_2} \leq \frac{d_1}{M_1}.$$

For the construction of parametrices of $P(x, D) - \zeta$ as in introduction,

we have to keep the following hypotheses $(H. 1) \sim (H. 4)$.

(H.1) $P_m(x, \boldsymbol{\xi}) \ge 0$ for all $(x, \boldsymbol{\xi}) \in \boldsymbol{R}^{2n} \setminus 0$.

(H.2) Σ_1 and Σ_2 intersect transversally. That is, $\Sigma_0 = \Sigma_1 \cap \Sigma_2$ is a closed conic submanifold such that for every point $\rho \in \Sigma_0$,

 $T_{\rho}\sum_{0}=T_{\rho}\sum_{1}\cap T_{\rho}\sum_{2}.$

Now for every $\rho \in \Sigma_0$ and $j=0, 1, ..., M_0$, we can define a multi-linear form $\tilde{\tilde{\rho}}_{m-j/2}(\rho)$ on $N_{\rho} \Sigma_0 = \mathbf{R}^{2n} / T_{\rho} \Sigma_0$ which may be identified with $\mathbf{R}^{d_1} \times \mathbf{R}^{d_2}$: For $X_1, X_2, \ldots, X_{M_0-j} \in N_{\rho} \Sigma_0$,

$$\tilde{\tilde{p}}_{m-j/2}(\rho)(X_1,\ldots, X_{M_0-j}) = \frac{1}{(M_0-j)!}(\tilde{X}_1\ldots\tilde{X}_{M_0-j} p_{m-j/2})(\rho)$$

where \tilde{X} means a vector field extending X to a neighborhood of ρ . For every $\rho \in \sum_i \sum_{i=0,\ldots,M_i}$, we also define $\tilde{\tilde{p}}_{m-j/2}(\rho)$ similarly. Thus we define the followings: If $\rho \in \sum_{i=0}^{\infty}$,

$$\tilde{p}(\boldsymbol{\rho}, X) = \sum_{j=0}^{M_0} \tilde{p}_{m-j/2}(\boldsymbol{\rho})(X), X \in N_{\boldsymbol{\rho}} \sum_{0} N_{\boldsymbol{\rho}} \sum_{j=0} N_{\boldsymbol{\rho}} \sum_{j=0}$$

where $\tilde{p}_{m-j/2}(\rho)(X) = \tilde{\tilde{p}}_{m-j/2}(\rho)(X, \ldots, X)$ and similarly if $\rho \in \sum_i \sum_i n_i$

$$\tilde{p}(\boldsymbol{\rho}, X_i) = \sum_{j=0}^{M_i} \tilde{p}_{m-j/2}(\boldsymbol{\rho})(X_i), \ X_i \in N_{\boldsymbol{\rho}} \sum_i.$$

REMARK 1.2. For example, if $\rho \in \sum_{0}$ and W is a conic neighborhood of ρ , the class $\left[\sum_{j=0}^{M_{o}} p_{m-j/2}\right] \in L^{m, M_{1}, M_{2}}(W; \sum_{1}, \sum_{2})/L^{m, M_{1}+M_{2}+1}(W; \sum_{1} \cap \sum_{2})$ is invariant under a transformation of local coordinates. (c. f. [1] and Proposition 2.2). Therefore $\tilde{p}(\rho, X)$ is defined invariantly.

(H.3) There exists a positive constant δ such that for any $\rho \in \Sigma_0 \cap S^* \mathbb{R}^{2n}$ (where $S^* \mathbb{R}^{2n} = \{(x, \xi) \in \mathbb{R}^{2n}; r(x, \xi) = 1\}$)

$$\tilde{p}(\rho, X) \ge 2\delta(|X_1|^2+1)^{M_1/2}(|X_2|^2+1)^{M_2/2}$$
 for all $X = (X_1, X_2) \in \mathbf{R}^{d_1} \times \mathbf{R}^{d_2}$,

and for any $\rho \in (\sum_i \sum_{i \in I} S^* \mathbf{R}^{2n})$ (i=1,2),

$$\tilde{p}(\rho, X_i) \ge 2\delta(|X_i|^2 + 1)^{M_i/2} \text{ for all } X_i \in \mathbb{R}^{d_i}.$$

(H.4) M_1 and M_2 are positive integers and $m > M_0/2$.

REMARK 1.3. If $P(x, D) \in OPL^{m, M_1, M_2}(\sum_1, \sum_2)$ satisfies $(H.1) \sim (H.4)$, it is well known that P(x, D) is hypoelliptic with loss of $M_0/2$ -deriva-

tives. (c. f. [1]).

\S 2. The preparations for constructions of parametrices

In this section we introduce two classes of symbols in which we construct parametrices of $P(x, D) - \zeta I$ for some $\zeta \in C$ and complex powers of $P(x, D) \in OPL^{m, M_1, M_2}(\sum_1, \sum_2)$. In order to do, let $\rho \in \sum_0$. By (H.2) we can choose a local coordinate system in a conic neighborhood W of ρ : w = (u_1, u_2, v, r) where $u_1 = (u_{11}, u_{12}, \ldots, u_{1d_1})$, $u_2 = (u_{21}, u_{22}, \ldots, u_{2d_2})$, v = $(v_1, v_2, \ldots, v_{2n-d_0-1})$ such that u_{ij} , v_k are positively homogeneous functions of degree 0 with du_{ij} $(j=1, \ldots, d_i, i=1, 2)$, dv_k $(k=1, \ldots, 2n-d_0-1)$ being linearly independent and $\sum_i \cap W = \{u_i = 0\}$, i=1, 2. When $\rho \in \sum_i \setminus \sum_0$, we can choose a local coordinate system (u_i, v, r) in a conic neighborhood Wof $\rho \in \sum_i \setminus \sum_0$ such that $W \cap \sum_0 = \phi$ and $\sum_i \cap W = \{u_i = 0\}$, i=1, 2.

DEFINITION 2.1. (c. f. [2] and [3]) Let m, k_1 and k_2 be real numbers and W a conic neighborhood of $\rho \in \Sigma_0$. We denote by $S^{m, k_1, k_2}(W; \Sigma_1, \Sigma_2)$ the set of all C^{∞} functions a(w) defined in W such that for any non-negative integer p and any multi-indices $(\alpha_1, \alpha_2, \beta)$, there exists a constant C > 0 such that for all $r \ge 1$,

 $(2.1) \quad |(\frac{\partial}{\partial u_1})^{\alpha_1}(\frac{\partial}{\partial u_2})^{\alpha_2}(\frac{\partial}{\partial v})^{\beta}(\frac{\partial}{\partial r})^{p} \quad a(w)| \leq C \quad r^{m-p} \rho_{\Sigma_1}^{k_1-|\alpha_1|} \rho_{\Sigma_2}^{k_2-|\alpha_2|} \quad where$ $\rho_{\Sigma_i} = (d_{\Sigma_i}^2 + r^{-1})^{1/2}. \quad Similarly \quad if \quad W \quad is \quad a \quad conic \quad neighborhood \quad of \quad \rho \in \Sigma_i \setminus \Sigma_0$ such that $W \cap \Sigma_0 = \phi$, we also define $S^{m, k_i}(W; \Sigma_i).$

Note that $S^{m, k_i, k_i}(W; \Sigma_1, \Sigma_2)$ and $S^{m, k_i}(W; \Sigma_i)$ are Fréchet spaces when equipped with the semi-norms defined by the best possible constants in (2.1). Then we have:

PROPOSITION 2.2. If W is a conic neighborhood of $\rho \in \sum_{0}$ or $\rho \in \sum_{i} \setminus \sum_{0}$ such that $W \cap \sum_{0} = \phi$, then $\frac{\partial}{\partial x_{i}}$ and $\frac{\partial}{\partial \xi_{i}}$ are continuous from $S^{m, k_{1}, k_{2}}(W; \sum_{1}, \sum_{2})$ to $S^{m-1/2, k_{1}, k_{2}}(W; \sum_{1}, \sum_{2})$ or from $S^{m, k_{i}}(W; \sum_{4})$ to $S^{m-1/2, k_{i}}(W; \sum_{i})$ respectively.

In fact we can write $\frac{\partial}{\partial x_i} = \frac{\partial u_1}{\partial x_i} \frac{\partial}{\partial u_1} + \frac{\partial u_2}{\partial x_i} \frac{\partial}{\partial x_2} + \frac{\partial v}{\partial x_i} \frac{\partial}{\partial v} + \frac{\partial r}{\partial x_i} \frac{\partial}{\partial r}$. Thus it suffices to note that $\frac{\partial u_j}{\partial x_i}$, $\frac{\partial v}{\partial x_i}$ and $\frac{\partial r}{\partial x_i}$ are homogeneous of degree -1, -1 and 0 respectively and

$$S^{m, k_1, k_2} \subset S^{m+1/2, k_1+1, k_2} \cap S^{m+1/2, k_1, k_2+1}.$$

Let *W* be a conic neighborhood of $\rho \in \Sigma_0$. Then we need the following three propositions which follow from a routine consideration (c. f. [2], [3]).

PROPOSITION 2.3. For non-negative integers M_1 and M_2 , we have

 $L^{m, M_1, M_2}(W; \Sigma_1, \Sigma_2) \subset S^{m, M_1, M_2}(W; \Sigma_1, \Sigma_2).$

PROPOSITION 2.4. If

 $p_1 \in S^{m, M_1, M_2}(W; \Sigma_1, \Sigma_2)$ and $p_2 \in S^{m', M'_1, M'_2}(W; \Sigma_1, \Sigma_2)$, then we have $p_1 \# p_2 \in S^{m+m', M_1+M'_1, M_2+M'_2}(W; \Sigma_1, \Sigma_2)$ where # means the composition of the symbols:

$$p_1 # p_2 \sim \sum_{\alpha} \frac{1}{\alpha} \partial_{\xi}^{\alpha} p_1 D_x^{\alpha} p_2.$$

PROPOSITION 2.5. If $p \in S^{m, M_1, M_2}(W; \Sigma_1, \Sigma_2)$ satisfies

 $|p| \geq C r^{m} \rho_{\Sigma_1}^{M_1} \rho_{\Sigma_2}^{M_2}$

for a positive constant C, then we have

 $p^{-1} \in S^{-m, -M_1, -M_2}(W; \Sigma_1, \Sigma_2).$

Finally we define a symbol class with a parameter ζ in order to consider parametrices of $P(x, D) - \zeta$ for some $\zeta \in C$.

DEFINITION 2.6. Let m, M_1 and M_2 be fixed numbers as in (H. 4) and let l, k_1 and k_2 be real numbers, W a conic neighborhood of $\rho \in \Sigma_0$ and Λ an open set in the complex plane C. Then we denote by $S_{\Lambda}^{l, k_1, k_2}(W; \Sigma_1, \Sigma_2)$ the set of all $a(w, \zeta) \in C^{\infty}(W \times \Lambda)$ satisfying the following (i) and (ii),

(i) for every $\boldsymbol{\zeta} \in \boldsymbol{\Lambda}$, $a(w, \boldsymbol{\zeta}) \in S^{l, k_1, k_2}(W; \boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2)$

(ii) for every $\zeta \in \Lambda$, $|\zeta| a(w, \zeta) \in S^{m+l, M_1+k_1, M_2+k_2}(W; \Sigma_1, \Sigma_2)$ and for every non-negative integer p and multi-indices $(\alpha_1, \alpha_2, \beta)$, there exists a positive constant C independing in $\zeta \in \Lambda$ such that

$$\left| \left(\frac{\partial}{\partial u_1} \right)^{\alpha_1} \left(\frac{\partial}{\partial u_2} \right)^{\alpha_2} \left(\frac{\partial}{\partial v} \right)^{\beta} \left(\frac{\partial}{\partial r} \right)^{p} \left[\left| \zeta \right| a(w, \zeta) \right] \right| \leq Cr^{m+l-p} \rho_{\Sigma_1}^{M_1+k_1-|\alpha_1|} \rho_{\Sigma_2}^{M_2+k_2-|\alpha_2|} \text{ for all } (w, \zeta) \in W \times \Lambda.$$

§ 3. Constructions of parametrices

In this section we construct the parametrices of $P(x, D) - \xi I$ for some $\xi \in \Lambda$ with various top symbols where Λ is the union of a small open convex cone containing the negative real line and $\{\xi \in C; |\xi| < \delta\}$ where δ is as in (H. 3). Let $\rho \in \Sigma_0$ and $w = (u_1, u_2, v, r)$ be a local coordinate system in a small conic neighborhood W of ρ as in § 2. By (1.2) and Taylor's theorem,

we can write

$$(3.1) \qquad p_{m-j/2} = \sum_{\substack{|\alpha_1| + |\alpha_2| = M_0 - j \\ |\alpha_1| \le M_1, \ |\alpha_2| \le M_2}} a_{\alpha_1, \alpha_2}(u_1, u_2, v, r) u_1^{\alpha_1} u_2^{\alpha_2} \quad \text{in } W$$

Thus we have for $X = (X_1, X_2) \in N_{\rho} \sum_{0} = \mathbf{R}^{d_1} \times \mathbf{R}^{d_2}$,

$$\tilde{p}(\rho, X) = \sum_{j=0}^{M_0} \sum_{|\alpha_1|+|\alpha_2|=M_0-j, |\alpha_i|\leq M_i} a_{\alpha_1, \alpha_2}(\rho) X_1^{\alpha_1} X_2^{\alpha_2}.$$

Then we need the following three symbols which are needed in order to examine the first singularity in various cases.

PROPOSITION 3.1. Let $\rho \in \Sigma_0$. Then there exists a small conic neighborhood W of ρ and $a^{(j)}(x, \xi) \in S_{\Lambda}^{-m, -M_1, -M_2}(W; \Sigma_1, \Sigma_2)(j=1, 2, 3)$ such that

where $c_{\xi}^{(11)} \in S_{\Lambda}^{0, 1, 0}$, $c_{\xi}^{(12)}$, $c_{\xi}^{(22)} \in S_{\Lambda}^{0, 0, 1}$, $c_{\xi}^{(21)} \in S_{\Lambda}^{-1/2, -1, 0}$, $c_{\xi}^{(13)}$, $c_{\xi}^{(31)} \in S_{\Lambda}^{-1/2, 0, 0}$ and $c_{\xi}^{(23)} = c_{\xi}^{(32)} = c_{\xi}^{(33)} = 0$.

PROOF. We choose a function $\boldsymbol{\chi} \in \mathbb{C}^{\infty}(\boldsymbol{R}^{2n})$:

$$\chi(x, \xi) = 1$$
 if $|x| + |\xi| \ge 1$ and $= 0$ if $|x| + |\xi| \le 1/2$.

Existence of $a_{\xi}^{(1)}$: Let (u_1, u_2, v, r) be a local coordinate system in W as above. We identify (X_1, X_2) with (u_1, u_2) and ρ with (0, 0, v, r) and write $\tilde{p}(\rho, X) = \tilde{p}(u_1, u_2, v, r)$. Define for $\xi \in \Lambda$,

(3.2)
$$a_{\zeta}^{(1)}(u_1, u_2, v, r) = \chi(u_1, u_2, v, r) (f(u_1, u_2, v, r) - \zeta)^{-1}.$$

Then we have

$$(p-\xi) # a_{\xi}^{(1)} = \chi \{ (\tilde{p}-\xi) # (\tilde{p}-\xi)^{-1} + (p-\sum_{j=0}^{M_0} p_{m-j/2}) # (\tilde{p}-\xi)^{-1} + \sum_{j=0}^{M_0} (p_{m-j/2}-\tilde{p}_{m-j/2}) # (\tilde{p}-\xi)^{-1} \} + [p-\xi, \chi] (\tilde{p}-\xi)^{-1}.$$

Here we note that by Proposition 2.5 and (H. 3) we have

$$(\tilde{p}-\boldsymbol{\zeta})^{-1}\in S_{\Lambda}^{-m,-M_{1},-M_{2}}(W; \Sigma_{1},\Sigma_{2}).$$

Thus it suffices to apply Proposition 2.2 and 2.4. *Existence of* $a_{\xi}^{(2)}$: By (1.4) we have $\tilde{p}(u_1, u_2, v, r) - \tilde{p}_{\Sigma_2}(u_1, u_2, v, r) = r_1 + r_2$ where

$$\tilde{p}_{\Sigma_2} = \sum_{|\alpha_1|=M_1} \{ \sum_{j=0}^{M_2} \sum_{|\alpha_2|=M_2-j} a_{\alpha_1, \alpha_2}(u_1, 0, v, r) u_2^{\alpha_2} \} u_1^{\alpha_1},$$

 $r_1 \in S^{m-1/2, M_1-1, M_2}$ and $r_2 \in S^{m, M_1, M_2+1}$. On the other hand, by (H.3), we have for $\lambda > 0$,

$$\begin{split} \lambda^{-M_1} \tilde{p}(\lambda u_1, u_2, v, r) &= \sum_{|\alpha_1|=M_1} \{ \sum_{j=0}^{M_2} \sum_{|\alpha_2|=M_2-j} a_{\alpha_1, \alpha_2}(0, 0, v, r) u_2^{\alpha_2} \} u_1^{\alpha_1} + O(\lambda^{-1}) \\ &\geq 2\delta \lambda^{-M_1} r^{m}(|\lambda u_1|^2 + r^{-1})^{M_1/2} (|u_2|^2 + r^{-1})^{M_2/2}. \end{split}$$

Letting $\lambda \rightarrow \infty$, we see

$$\sum_{|\alpha_1|=M_1} \{ \sum_{j=0}^{M_2} \sum_{|\alpha_2|=M_2-j} a_{\alpha_1, \alpha_2}(0, 0, v, r) u_2^{\alpha_2} \} u_1^{\alpha_1} \\ \geq 2\delta r^m |u_1|^{M_1} (|u_2|^2 + r^{-1})^{M_2/2}.$$

Since W is small enough, for any $\varepsilon > 0$,

$$|a_{\alpha_1, \alpha_2}(u_1, 0, v, r) - a_{\alpha_1, \alpha_2}(0, 0, v, r)| \leq \varepsilon r^{m - (M_2 - |\alpha_2|)/2}$$

if $|\alpha_1| = M_1$. Therefore we have

$$\tilde{p}_{\Sigma_2}(u_1, u_2, v, r) \ge (3\delta/2) r^m |u_1|^{M_1} (|u_2|^2 + r^{-1})^{M_2/2}.$$

Thus it suffices to define for $\zeta \in \Lambda$,

(3.3)
$$a_{\zeta}^{(2)}(u_1, u_2, v, r) = \chi(u_1, u_2, v, r) [\tilde{p}_{\Sigma_2}(u_1, u_2, v, r) + r^{m-M_1/2}(|u_2|^2 + r^{-1})^{M_2/2} - \zeta]^{-1}.$$

Existence of $a_{\xi}^{(3)}$: Since W is small enough, it suffices to define

(3.4)
$$a_{\xi}^{(3)}(x, \xi) = \chi(x, \xi) (\sum_{j=0}^{M_0} p_{m-j/2}(x, \xi) - \xi)^{-1}.$$

This completes the proof.

Now we can construct microlocal parametrices of $P(x, D) - \xi I$, $\xi \in \Lambda$. Let $\psi(x, \xi)$ be a C^{∞} function of positively homogeneous of degree 0 and supp $\psi \in W$. We define

$$(3.5) \qquad P_{\zeta,0}^{(1)}(x, D) = \psi(x, D) a_{\zeta}^{(3)}(x, D)$$

(3.6)
$$P_{\zeta,0}^{(2)}(x, D) = \psi(x, D) \{ a_{\zeta}^{(1)}(x, D) - a_{\zeta}^{(3)}(x, D) (\sum_{i=1}^{3} c_{\zeta}^{(1i)}(x, D)) \}$$

(3.7)
$$P_{\xi,0}^{(3)}(x, D) = \psi(x, D) \{ a_{\xi}^{(2)}(x, D) - a_{\xi}^{(3)}(x, D) (\sum_{i=1}^{2} c_{\xi}^{(2i)}(x, D)) \}.$$

Then we have $(P(x, D) - \zeta I) P_{\zeta, 0}^{(j)}(x, D) = \psi(x, D) + d_{\zeta}^{(j)}(x, D)$ where $d_{\zeta}^{(j)}(x, \xi) \in S^{-1/2,0,0}$ for j=1, 2, 3. If we put

$$P_{\xi, l}^{(j)}(x, D) = P_{\xi, 0}^{(j)}(x, D) (-d_{\xi}^{(j)}(x, D))^{l}, \ l = 0, \ 1, \ 2, \dots$$

we see that $P_{\xi,l}^{(j)}(x, D) \in OPS_{\Lambda}^{-m-l/2, -M_1, -M_2}$ and there exist $q_{\xi}^{(j)}(x, D) \in OPS_{\Lambda}^{-m, -M_1, -M_2}$ such that for every N > 0,

$$q_{\xi}^{(j)}(\mathbf{x}, D) - \sum_{l=0}^{N-1} P_{\xi, l}^{(j)}(\mathbf{x}, D) \in OPS_{\Lambda}^{-m-N/2, -M_{1,}-M_{2}}, j=1, 2, 3.$$

Then we have $(P(x, D) - \zeta I)q_{\zeta}^{(j)}(x, D) \equiv \psi(x, D) \mod OPS_{\Lambda}^{-\infty} = \bigcap_{m>0} OPS_{\Lambda}^{-m, -M_{1, -M_{2}}}.$

Next we consider the case where W is a small conic neighborhood of $\rho \in \sum_i \sum_0$ such that $W \cap \sum_0 = \phi$, i=1, 2. In this case, we can write as in (3.1):

$$\tilde{p}(\rho, X_i) = \sum_{j=0}^{M_i} \sum_{|\alpha_i|=M_i-j} a_{\alpha_i}(\rho) X_i^{\alpha_i} \text{ for } X_i \in \mathbf{R}^{d_i}.$$

PROPOSITION 3.2. Let $\rho \in \Sigma_i \setminus \Sigma_0$. Then there exist a conic neighborhood W of ρ and $a_{\xi}^{(ij)}(x, \xi) \in S_{\Lambda}^{-m, -M_i}(W; \Sigma_i)(j=1,2)$ such that

$$(p-\xi) # a_{\xi}^{(ij)} = 1 + c_{\xi}^{(ij)}$$

where $c_{\xi}^{(i1)} \in S_{\Lambda}^{0, 1}(W; \Sigma_i)$ and $c_{\xi}^{(i2)} \in S_{\Lambda}^{-1/2, -1}(W; \Sigma_i)$.

PROOF. If we consider as in the proof of Proposition 3.1, it suffices to define as follows:

Existence of $a_{\xi}^{(i1)}$: $a_{\xi}^{(i1)}(u_i, v, r) = \chi(u_i, v, r)(\tilde{p}(u_i, v, r) - \xi)^{-1}$ Existence of $a_{\xi}^{(i2)}$: $a_{\xi}^{(i2)}(x, \xi) = \chi(x, \xi)(p_m(x, \xi) + r^{m-M_i/2} - \xi)^{-1}$. This completes the proof.

Let $\psi(x, \xi)$ be a C^{∞} function of positively homogeneous of degree 0 and supp $\psi \subset W$. Define

$$P_{\xi,0}^{(i1)}(x, D) = \psi(x, D) (a_{\xi}^{(i1)}(x, D) - a_{\xi}^{(i2)}(x, D) c_{\xi}^{(i1)}(x, D)),$$

$$P_{\xi,0}^{(i2)}(x, D) = \psi(x, D) (a_{\xi}^{(i2)}(x, D) - a_{\xi}^{(i1)}(x, D) c_{\xi}^{(i2)}(x, D)).$$

As the same way as the preceding arguments, we can construct $q_{\xi}^{(ij)}(x, D) \in OPS_{\Lambda}^{-m, -M_i}(i=1, 2 \text{ and } j=1, 2)$ such that for every N > 0, we have

$$q_{\xi}^{(ij)}(x, D) - \sum_{l=0}^{M-1} p_{\xi, l}^{(ij)}(x, D) \in OPS_{\Lambda}^{-m-N/2, -M_{l}}$$

and $(P(\mathbf{x}, D) - \boldsymbol{\zeta}I)q_{\boldsymbol{\zeta}}^{(ij)}(\mathbf{x}, D) \equiv \boldsymbol{\psi}(\mathbf{x}, D) \mod OPS_{\Lambda}^{-\infty}$.

Finally we have

PROPOSITION 3.3. Let W be an open cone such that $W \cap \Sigma = \phi$. Then there exists $a_{\xi}^{(3)}(x, \xi) \in S^{-m}(W)$ such that

$$(p-\xi) # a_{\xi}^{(3)} = 1 + c_{\xi}^{(3)} \text{ where } c_{\xi}^{(3)} \in S_{\Lambda}^{-1/2}.$$

PROOF. If necessary, we replace δ as in (H.3) with smaller one. So we may assume $p_m(x, \xi) \ge \delta$ in W. Thus if we put

$$a_{\xi}^{(3)}(x, \xi) = \chi(x, \xi) (p_m(x, \xi) - \zeta)^{-1},$$

the proof is complete.

§ 4. Construction of complex powers

In this section we consider complex powers of an operator P associated to P(x, D). Assume that $P(x, D) \in OPL^{m, M_1, M_2}(\sum_1, \sum_2)$ satisfies (1.3), (1.4) and (H.1)~(H.4). Moreover we assume:

(H. 5) P(x, D) is formally self-adjoint, i. e., for every $u, v \in \mathcal{G}(\mathbf{R}^n)$.

$$\int_{\mathbf{R}^n} P(x, D) u \ \bar{v} \ dx = \int_{\mathbf{R}^n} u \ \overline{P(x, D) v} \ dx.$$

Let P_0 be an operator on $L^2(\mathbb{R}^n)$ with the definition domain $D(P_0) = \mathscr{S}(\mathbb{R}^n)$ such that $P_0 \ u = P(x, D) u$ for $u \in D(P_0)$. By Remark 1.3 and (H. 4), P(x, D) is hypoelliptic with loss of $M_0/2$ -derivatives and $m - M_0/2 > 0$. Therefore P_0 is essentially self-adjoint and the closure P of P_0 is an unbounded self-adjoint operator with the definition domain $D(P) = \{u \in L^2(\mathbb{R}^n); P(x, D) u \in L^2(\mathbb{R}^n)\},$

$$P \ u = P(x, D)u$$
 for $u \in D(P)$.

Since P(x, D) has a parametrix $Q(x, D) \in OPS^{-m_r - M_1, -M_2}(\sum_1, \sum_2)$, *P* has a compact regularizer on $L^2(\mathbb{R}^n)$. (c. f. Kumano-go [10] and also Grushin [5]). Thus *P* has the spectrum consist only of eigenvalues of finite multiplicity. Finally we assume :

(H. 6) *P* is positive definite, i. e., there exists a positive real number γ such that $(P \ u, u) \ge \gamma \|u\|_{L^2(\mathbb{R}^n)}^2$ for all $u \in D(P)$.

Then we can define complex powers P^z by the spectral resolution of P. Let Γ be a curve beginning at infinity, passing along the negative real line to a circle $\{\zeta; |\zeta| = \delta\}$ (where δ is in (H. 3) and we may assume $\delta \leq \gamma$), then clockwise about the circle and back to infinity along the negative real line. For \Re , z < 0, we see

(4.1)
$$P^{z} = \frac{i}{2\pi} \int_{\Gamma} \zeta^{z} (P - \zeta)^{-1} d\zeta$$

where ζ^{z} takes the principal value in $C \setminus \mathbb{R}^{-}$. Here we note that $\|(P-\zeta)^{-1}\|_{\mathscr{L}(L^{2}, L^{2})} \leq [\operatorname{dist}(\zeta, [\gamma, \infty)]^{-1} = O(|\zeta|^{-1})$ as $|\zeta| \to \infty$ and $\zeta \in \Lambda$. Therefore the integral in the right hand side in (4.1) is convergent.

On the other hand we define operators $P_z(x, D)$ with the symbol $\sigma(P_z)$ by the formula :

(4.2)
$$\sigma(P_z)(x,\xi) = \frac{i}{2\pi} \int_{\Gamma} \xi^z q_{\xi}(x,\xi) d\xi.$$

Here for brevity of the notations we have dropped the upper indices of $q_{\xi}^{(j)}(x, D)(j=1, 2, 3)$ in § 3. Since $q_{\xi} \in S_{\Lambda}^{-m_{\star}-M_{1}, M_{2}}(\sum_{1}, \sum_{2})$, we see easily that the integral in (4.2) is absolutely convergent when $\mathcal{R}, z < 0$. For $\mathcal{R}, z \ge 0$, choose an integer k such that $-1 \le \mathcal{R}, z-k < 0$ and define

(4.3)
$$P_z(x, D) = P(x, D)^k P_{z-k}(x, D)$$

Then we have:

THEOREM 4.1. Assume that $P(x, D) \in OPL^{m, M_1, M_2}(\sum_1, \sum_2)$ satisfies (1.3), (1.4) and (H.1)~(H.6). Then we have the followings:

(i) $P^z \in OPS^{m,\mathcal{R},z, M_1,\mathcal{R},z, M_2,\mathcal{R},z}(\Sigma_1, \Sigma_2).$

(ii) For any negative real number a and real numbers m', k_1 and k_2 satisfying ma < m', $N(m, M_i)a < N(m', k_i)(i=1, 2)$ and $N(m, M_0)a < N(m', k_1+k_2)$, $\sigma(P^z)$ is holomorphic on any compact set in $\{z; \mathcal{R} \circ z < a\}$ with value in $S^{m', k_1, k_2}(\sum_{i}, \sum_{i})$.

Later from now we write such class of symbols satisfying (i) and (ii) by $S_0^{m,\mathcal{R},z, M_1,\mathcal{R},z, M_2,\mathcal{R},z}$.

PROOF. Let $\mathscr{R}_{\mathfrak{s}} z < 0$. Near Σ_0 , we see that by (H. 3), $q_{\xi}(x, \xi)$ is holomorphic in $\{\xi; \mathscr{I}_{\mathfrak{m}} \xi = 0, \mathscr{R}_{\mathfrak{s}} \xi \leq 0\} \cup \{\xi; |\xi| \leq \delta R(r, u_1, u_2)\}$ where

$$(4.4) \qquad R(r, u_1, u_2) = r^m \rho_{\Sigma_1}^{M_1} \rho_{\Sigma_2}^{M_2}.$$

So we may replace the contour Γ in (4.2) with $\Gamma' = \Gamma_1' + \Gamma_2' + \Gamma_3'$ where $\Gamma_1': \zeta = -s$ $\Gamma_2': \zeta = \delta R(r, u_1, u_2) e^{-i\theta}$ $\Gamma_3': \zeta = s$ $\delta R(r, u_1, u_2) \le s \le +\infty$, $\delta R(r, u_1, u_2) \le s \le +\infty$.

On the other hand since $q_{\xi}(x, \xi) \in S_{\Lambda}^{-m, -M_1, -M_2}(\sum_{1}, \sum_{2})$, for any multi-index $(\alpha_1, \alpha_2, \beta)$ and non-negative integer p there exists a constant $C = C_{\alpha_1, \alpha_2, \beta, p}$ such that

$$\left|\left(\frac{\partial}{\partial u_1}\right)^{\alpha_1}\left(\frac{\partial}{\partial u_2}\right)^{\alpha_2}\left(\frac{\partial}{\partial v}\right)^{\beta}\left(\frac{\partial}{\partial r}\right)^{\rho}q_{\zeta}(u_1, u_2, v, r)\right| \leq C \left|\zeta\right|^{-1}r^{-\rho}\rho_{\Sigma_1}^{-|\alpha_1|}\rho_{\Sigma_2}^{-|\alpha_2|}.$$

In order to estimate $\sigma(P^z)$, put for each j=1, 2, 3,

$$I_{j} = \frac{i}{2\pi} \int_{\Gamma_{j}} \mathcal{L}_{\tau_{j}} \left(\frac{\partial}{\partial u_{1}} \right)^{\alpha_{1}} \left(\frac{\partial}{\partial u_{2}} \right)^{\alpha_{2}} \left(\frac{\partial}{\partial v} \right)^{\beta} \left(\frac{\partial}{\partial r} \right)^{\beta} q_{\xi}(u_{1}, u_{2}, v, r) d\xi.$$

Then we have for j=1 or 3,

$$|I_{j}| \leq C r^{-p} \rho_{\Sigma_{1}}^{-|\alpha_{1}|} \rho_{\Sigma_{2}}^{-|\alpha_{2}|} \int_{\delta R(r,u_{1},u_{2})}^{\infty} S^{\mathscr{R}z-1} dS$$
$$\leq C_{z} R(r, u_{1}, u_{2})^{\mathscr{R}z} r^{-p} \rho_{\Sigma_{1}}^{-|\alpha_{1}|} \rho_{\Sigma_{2}}^{-|\alpha_{2}|}$$

where C_z is a constant depending on z. For j=2, we have easily

$$|I_j| \leq C'_z R(r, u_1, u_2)^{\mathscr{R} \cdot z} r^{-p} \rho_{\Sigma_1}^{-|\alpha_1|} \rho_{\Sigma_2}^{-|\alpha_2|}$$

where C'_z is a constant depending on z. Similarly we can estimate (4.2) also in the other cases of \sum_1 and \sum_2 . Thus we have

$$\sigma(P^z)(x, \xi) \in S_0^{m\mathcal{R}.z, M_1\mathcal{R}.z, M_2\mathcal{R}.z} (\Sigma_1, \Sigma_2).$$

Moreover since $(P-\xi)^{-1}-q_{\xi}(x, D) \in OPS_{\Lambda}^{-\infty}$, then we see that

$$\sigma(P^z) - \frac{i}{2\pi} \int_{\Gamma} \zeta^z q_{\zeta}(x, \xi) \ d\zeta \in S_0^{-\infty}.$$

Thus we have (i) for $\mathcal{R} \ z < 0$ and (ii). For $\mathcal{R} \ z \ge 0$, by Proposition 2. 4 and (4.3), (i) is clear. This completes the proof.

For the symbols of P^z we have the following Propositions corresponding to Proposition 3. 1, 3. 2 and 3. 3 respectively whose proofs are omitted. (c. f. [2]).

PROPOSITION 4.2. Let W be a small conic neighborhood of $\rho \in \Sigma_0$ and χ a function of positively homogeneous of degree 0 such that $\operatorname{supp} \chi \subset W$. Then we have in W

(i) $\sigma(P^z) = \chi \tilde{p}(u_1, u_2, v, r)^z + d_z^{(11)} + d_z^{(12)} + d_z^{(13)}$ where $d_z^{(11)} \in S_0^{m\mathcal{R}.z, M_1\mathcal{R}.z+1, M_2\mathcal{R}.z}$, $d_z^{(12)} \in S_0^{m\mathcal{R}.z, M_1\mathcal{R}.z, M_2\mathcal{R}.z+1}$ and $d_z^{(13)} \in S_0^{m\mathcal{R}.z-1/2, M_1\mathcal{R}.z, M_2\mathcal{R}.z}$.

(ii) $\sigma(P^z) = \chi [\tilde{p}_{\Sigma_2}(u_1, u_2, v, r) + r^{m-M_2/2}(|u_2|^2 + r^{-1})^{M_2/2}]^z + d_z^{(21)} + d_z^{(22)}$ where $d_z^{(21)} \in S_0^{m\mathcal{R}.z-1/2, M_1\mathcal{R}.z-1, M_2\mathcal{R}.z}$ and $d_z^{(22)} \in S_0^{m\mathcal{R}.z, M_1\mathcal{R}.z, M_2\mathcal{R}.z+1}$.

(iii)
$$\sigma(P^z) = (\sum_{j=0}^{M_0} p_{m-j/2})^z + d_z^{(3)} \text{ where } d_z^{(3)} \in S_0^{m\mathscr{R}\cdot z - 1/2, M_1\mathscr{R}\cdot z, M_2\mathscr{R}\cdot z}$$

Next for every $i=1, 2$, we have:

Next for every i=1, 2, we have:

PROPOSITION 4. $3_{(i)}$. Let W be a small conic neighborhood of $\rho \in \sum_i \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

such that $W \cap \Sigma_0 = \phi$. And also let χ be a function of positively homogeneous of degree 0 such that $\operatorname{supp} \chi \subset W$. Then we have in W:

(i) $\sigma(P^z) = \chi \tilde{p}(u_i, v, r)^z + d_z^{(i1)} + d_z^{(i2)}$ where $d_z^{(i1)} \in S_0^{m\mathscr{R}.z, M_i \mathscr{R}.z+1}(W; \Sigma_i)$ and $d_z^{(i2)} \in S_0^{m\mathscr{R}.z-1/2, M_i \mathscr{R}.z}$.

(ii) $\sigma(P^z) = \chi (p_m + r^{m-M_i/2})^z + d_z^{(i2)}$ where $d_z^{(i2)} \in S_0^{m, \mathcal{R}, z-1/2, M_i, \mathcal{R}, z-1} (W; \Sigma_i).$

PROPOSITION 4.4. Let W be an open cone such that $W \cap \Sigma = \phi$ and χ be a function of positively homogeneous of degree 0 such that supp $\chi \subset W$. Then we have in W,

$$\boldsymbol{\sigma}(P^z) = \boldsymbol{\chi} p_m^z + d_z$$

where $d_z \in S_0^{m \Re z - 1/2}(W)$.

§ 5. The first singularity of $Trace(\mathbf{P}^z)$

In this section we consider the first singularity of $\text{Trace}(P^z)$ and determine the order of the pole and the coefficient at the point. Let $p_z(x, \xi)$ be the symbol of P^z . It is well known that if

$$\int_{\boldsymbol{R}^n\times\boldsymbol{R}^n} |p_z(\boldsymbol{x},\boldsymbol{\xi})| \, d\boldsymbol{x} \, d\boldsymbol{\xi} \leq C_z$$

for some constant C_z , then P^z is an operator of trace class and the trace is given by :

$$\operatorname{Tr}(P^{z}) = (2\pi)^{-n} \int_{\mathbf{R}^{n} \times \mathbf{R}^{n}} p_{z}(x, \xi) dx d\xi.$$

Since

$$\int_{r\leq 1}p_z(x,\,\boldsymbol{\xi})\,dx\,\,d\boldsymbol{\xi}$$

is entire, we may consider :

$$I(z) = (2\pi)^{-n} \int_{r\geq 1} p_z(x, \xi) dx d\xi.$$

PROPOSITION 5.1. Let $p_z \in S_0^{m\mathcal{R}\cdot z-j, M_1\mathcal{R}\cdot z-k_1, M_2\mathcal{R}\cdot z-k_2}(\Sigma_1, \Sigma_2)$ and W be an open cone and χ a C^{∞} function of positively homogeneous of degree 0 such that supp $\chi \subset W$. Put

$$I_{\boldsymbol{x}}(z) = \int_{r\geq 1} \boldsymbol{\chi}(x,\boldsymbol{\xi}) p_{\boldsymbol{z}}(x,\boldsymbol{\xi}) dx d\boldsymbol{\xi}.$$

(I) The case: W is a small conic neighborhood of $\rho \in \Sigma_0$. Then $I_x(z)$ is

holomorphic in $\{z; \mathcal{R} \mid z < a\}$ if a satisfies any one of the followings.

$$(I.1) \quad a < -\frac{d_i - k_i}{M_i} (i = 1, 2) \text{ and } a < -\frac{N(2n - j, d_0 - k_1 - k_2)}{N(m, M_0)},$$

$$(I.2) \quad -\frac{d_1-k_1}{M_1} \le a < -\frac{d_2-k_2}{M_2} \text{ and } a < -\frac{N(2n-j, d_2-k_2)}{N(m, M_2)},$$

(I.3)
$$-\frac{d_2-k_2}{M_2} \le a < -\frac{d_1-k_1}{M_1} \text{ and } a < -\frac{N(2n-j, d_1-k_1)}{N(m, M_1)},$$

$$(I.4)$$
 $-\frac{d_i-k_i}{M_i} \le a \ (i=1,2) \ and \ a < -\frac{2n-j}{m}.$

(II)_(i) The case: W is a small conic neighborhood of $\rho \in \sum_i \sum_0 (i=1,2)$ such that $W \cap \sum_0 = \phi$. Then $I_x(z)$ is holomorphic in $\{z; \mathcal{R}, z < a\}$ if a satisfies any one of the followings.

(II.1.*i*)
$$a < -\frac{d_i - k_i}{M_i}$$
 and $a < -\frac{N(2n - j, d_i - k_i)}{N(m, M_i)}$,

(II.2.*i*)
$$-\frac{a_i-\kappa_i}{M_i} \le a \text{ and } a < -\frac{2n-j}{m}.$$

(III) The case: W is outside of Σ . Then $I_x(z)$ is holomorphic in $\{z; \mathcal{R}, z < a\}$ if $a < -\frac{2n-j}{m}$.

PROOF. (I) We choose a local coordinate system $w = (u_1, u_2, v, r)$ as in §2. We may assume that $W \subset \{w = (u_1, u_2, v, r); |u_i| \le 1, i = 1, 2\}$. Let *K* be an arbitrary compact set in $\{z; \mathcal{R}, z < a\}$. Then by Theorem 4. 1, there exists a constant *C* which is independent of $z \in K$ such that

$$|p_z(x, \xi)| \leq C R(r, u_1, u_2)^a r^{-j} (|u_1|^2 + r^{-1})^{-k_1/2} (|u_2|^2 + r^{-1})^{-k_2/2}.$$

Note that $dx d\xi = J(u_1, u_2, v, r) du_1 du_2 dv dr$ where $J(u_1, u_2, v, r) = |\det \frac{D(u_1, u_2, v, r)}{D(x, \xi)}|^{-1}$ is positively homogeneous of degree 2n-1. Thus if $\mathcal{R} \ z < a$, we have for some constants *C*, *C'* and *T*,

$$(5.1) \qquad \int_{r \ge 1} |\chi(x, \xi) p_{z}(x, \xi)| dx d\xi$$

$$\leq C \int_{1}^{\infty} \int_{|v| \le T, |u_{i}| \le 1}^{\infty} R(r, u_{1}, u_{2})^{a} r^{-j+2n-1} (|u_{1}|^{2} + r^{-1})^{-k_{1}/2} \times$$

$$(|u_{2}|^{2} + r^{-1})^{-k_{2}/2} du_{1} du_{2} dv dr$$

$$\leq C' \int_{1}^{\infty} r^{N(m, M_{0})a + N(2n, d_{0}) - 1 - j + (k_{1} + k_{2})/2} dr \prod_{i=1}^{2} \int_{0}^{r^{1/2}} (t_{i}^{2} + 1)^{(M_{i}a - k_{i})/2} t_{i}^{d_{i}-1} dt_{i}.$$

Here we have that if $M a = b + d < 0$

Here we have that if $M_i a - k_i + d_i < 0$,

$$\int_0^{r^{1/2}} (t_i^2 + 1)^{(M_i a - k_i)/2} t_i^{d_i - 1} dt_i \leq \int_0^\infty (t_i^2 + 1)^{(M_i a - k_i)/2} t_i^{d_i - 1} dt_i < \infty$$

and if $M_i a - k_i + d_i \ge 0$,

$$\int_0^{r^{1/2}} (t_i^2 + 1)^{(M_i a - k_i)/2} t_i^{d_i - 1} dt_i = O(r^{(M_i a + d_i - k_i)/2} \log r) \text{ as } r \to \infty.$$

Thus (I) holds. Also (II) and (III) follows from the same arguments, so we omit them.

Now we have results on the first singularity of $Tr(P^z)$ for each case.

PROPOSITION 5.2. When $\frac{d_1}{M_1} \ge \frac{d_2}{M_2} > \frac{2n}{m}$, $\operatorname{Tr}(P^z)$ is holomorphic in $\{z; \mathcal{R}: z < -\frac{2n}{m}\}$ and has a simple pole at $z = -\frac{2n}{m}$ as the first singularity with the residue $\operatorname{Res}(-\frac{2n}{m}) = \frac{2n}{m} \frac{A_1}{m}$ where

(5.2)
$$A_1 = (2\pi)^{-n} \int_{p_{\pi}(x,\xi) \leq 1} dx d\xi.$$

PROOF. That $\operatorname{Tr}(P^z)$ is holomorphic in $\{z; \mathscr{R} \mid z < -\frac{2n}{m}\}$ follows from Proposition 5. 1 with $j = k_1 = k_2 = 0$. In this case we use Proposition 4. 2(iii), 4. 3(ii), 4. 4 and slso 5. 1. Then we can write $\operatorname{Tr}(P^z) = I_0(z) + I_1(z)$ where

$$I_0(z) = (2\pi)^{-n} \int_{r \ge 1} (p_m + r^{m - \operatorname{Min}(M_1, M_2)/2})^z \, dx \, d\xi$$

and $I_1(z)$ is holomorphic in $\{z; \mathscr{R}, z \leq -\frac{2n}{m}\}$. Here by using the mean value theorem, for any a < 0 and any ε , $0 < \varepsilon < 1$, there exists a constant *C* such that

$$\begin{aligned} & \left| \int_{r \ge 1} \{ (p_m + r^{m - \operatorname{Min}(M_1, M_2)/2})^a - (p_m + 1)^a \} \, dx \, d\xi \, \right| \\ &= \left| \int_{r \ge 1} \left[a (r^{m - \operatorname{Min}(M_1, M_2)/2} - 1) \times \right]_{r \ge 1} \int_0^1 \{ p_m + 1 + \theta (r^{m - \operatorname{Min}(M_1, M_2)/2} - 1) \}^{a - 1} \, d\theta \, \right] \, dx \, d\xi \, | \\ &\le C \, \int_1^\infty r^{ma + 2n - 1 - \epsilon \operatorname{Min}(M_1, M_2)/2} \, dr \, \prod_{i=1}^2 \, \int_0^1 t_i^{M_i a - M_i \epsilon + d_i - 1} \, dt_i. \end{aligned}$$

Thus if we choose *a* such that $a > -\frac{2n}{m}$, we see that the integral is convergent. So we are reduced to (c. f. [2]):

$$\int (p_m+1)^z \, dx \, d\xi = \frac{2n}{m} \sigma(1) \frac{\Gamma(2n/m)\Gamma(-(z+2n/m))}{\Gamma(-z)}$$

where $\sigma(\lambda) = (2\pi)^{-n} \int_{p_{\pi}(x,\xi) \leq \lambda} dx d\xi.$

Therefore by the properties of Γ -function, we reach the conclusion.

PROPOSITION 5.3. When
$$\frac{N(2n, d_2)}{N(m, M_2)} > \frac{2n}{m}$$
, $\frac{d_1}{M_1}$, $\operatorname{Tr}(P^z)$ is holomorphic in $\{z \; ; \; \mathscr{R} \; z < -\frac{N(2n, d_0)}{N(m, M_0)}\}$ and has a simple pole at $z = -\frac{N(2n, d_0)}{N(m, M_0)}$ as the first singularity with the residue $\operatorname{Res}(-\frac{N(2n, d_0)}{N(m, M_0)}) = \frac{A_2}{N(m, M_0)}$ where

(5.3)
$$A_{2} = (2\pi)^{-n} \int_{(\Sigma_{0} \cap S^{*} \mathbf{R}^{2n}) \times \mathbf{R}^{d_{1}} \times \mathbf{R}^{d_{2}}} J(0, 0, v, 1) \times \tilde{p}(u_{1}, u_{2}, v, 1)^{-N(2n, d_{0})/N(m, M_{0})} du_{1} du_{2} dv.$$

PROOF. We have $\frac{N(2n, d_0)}{N(m, M_0)} > \frac{N(2n, d_i)}{N(m, M_i)}$ (i=1, 2) in this case. By Proposition 4. 2(i), 4. 3(i), 4. 4 and 5. 1, we may consider with W and χ as in Proposition 5. 1(I),

$$\int_{r\geq 1} h(u_1, u_2, v, r) \tilde{p}(u_1, u_2, v, r)^z du_1 du_2 dv dr$$

where $h(u_1, u_2, v, r) = \chi(u_1, u_2, v, r) J(u_1, u_2, v, r)$. Since we have $\{h(u_1, u_2, v, r) - h(0, 0, v, r)\} \tilde{p}(u_1, u_2, v, r)^z = r'_z + r'_z$ where $r'_z \in S_0^{m.R.z, M_1.R.z+1, M_2.R.z}$ and $r'_z \in S_0^{m.R.z, M_1.R.z, M_2.R.z+1}$, again by Proposition 5. 1 we are reduced to the integral I(z) =

$$(2\pi)^{-n}\int_{(\Sigma_0\cap\{r\geq 1\})\times \mathbf{R}^{d_1}\times \mathbf{R}^{d_2}} h(0,0,v,r)\tilde{p}(u_1,u_2,v,r)^z du_1 du_2 dv dr.$$

By quasi-homogeneity of \tilde{p} and the change of variable: $u_i \rightarrow r^{-1/2} u_i$ (i=1,2), we see that

$$I(z) = (2\pi)^{-n} \int_{1}^{\infty} r^{N(m, M_0)z + N(2n, d_0) - 1} dr I_1(z)$$

where

$$I_1(z) = \int_{(\Sigma_0 \cap S^* R^{2n}) \times R^{d_1} \times R^{d_2}} h(0, 0, v, 1) \tilde{p}(u_1, u_2, v, 1)^z du_1 du_2 dv.$$

Since it is clear that $I_1(z)$ is holomorphic in $\{z; \mathcal{R}, z \leq -\frac{N(2n, d_0)}{N(m, M_0)}\}$, we reach the conclusion.

Complex powers of a class of pseudodifferential operators in \mathbb{R}^n and the asymptotic behavior of eigenvalues

PROPOSITION 5.4. When $\frac{d_1}{M_1} > \frac{N(2n, d_2)}{N(m, M_2)} > \frac{2n}{m}$, $\operatorname{Tr}(P^z)$ is holomorphic

in $\{z; \mathcal{R}, z < -\frac{N(2n, d_2)}{N(m, M_2)}\}$ and has a simple pole at $z = -\frac{N(2n, d_2)}{N(m, M_2)}$ as the first singularity with the residue $\operatorname{Res}(-\frac{N(2n, d_2)}{N(m, M_2)}) = -\frac{A_3}{N(m, N_2)}$ where

(5.4)
$$A_3 = (2\pi)^{-n} \int_{(\Sigma_2 \cap S^* R^{2n}) \times R^{d_2}} (\tilde{p}(u_2, v, 1) + 1)^{-N(2n, d_2)/N(m, M_2)} J(0, v, 1) du_2 dv$$

PROOF That $\operatorname{Tr}(P^z)$ is holomorphic in $\{z ; \mathcal{R} : z < -\frac{N(2n, d_2)}{N(m, M_2)}\}$

follows from Proposition 5. 1. By Proposition 4. 2(ii), 4. $3_{(2)}(i)$, 4. $3_{(1)}(i)$, 4. 4 and 5. 1, we may consider the integral of $p_z(x, \xi)$ near Σ_2 . First let W and χ be as in Proposition 5. $1(II)_{(2)}$. Then by the same way as the proof of Proposition 5. 3, we have modulo holomorphic functions for $\Re_e \ z \leq -\frac{N(2n, d_2)}{N(m, M_2)}$,

$$I_{\mathbf{x}}(z) \equiv (2\pi)^{-n} \int_{r\geq 1} h(0, v, r) \{ \tilde{p}(u_2, v, r) + r^{m-M_1/2} (|u_2|^2 + r^{-1})^{M_2/2} \}^z du_2 dv dr.$$

Secondly let W and χ be as in Proposition 5. 1(I). Then we have

$$\tilde{p}(u_1, u_2, v, r)^z - \{ \tilde{p}_{\Sigma_2}(u_2, u_1, v, r) + r^{m-M_1/2} (|u_2|^2 + r^{-1})^{M_2/2} \}^z = r_z^1 + r_z^2$$

where $r_z^1 \in S_0^{m\mathcal{R}.z-1/2, M_1 \not \mathfrak{K}.z-1, M_2 \mathcal{R}.z}$ and $r_z^2 \in S_0^{m\mathcal{R}.z, M_1 \not \mathfrak{R}.z, M_2 \not \mathfrak{R}.z+1}$. So we have

$$I_{\mathbf{x}}(z) \equiv (2\pi)^{-n} \int_{r \ge 1} h(u_1, 0, v, r) \times \{ \tilde{p}_{\Sigma_2}(u_2, u_1, v, r) + r^{m-M_1/2} (|u_2|^2 + r^{-1})^{M_2/2} \}^z \, du_1 du_2 dv dr.$$

By the quasi-homogeneity of $\tilde{p}(u_2, v, r)$ and $\tilde{p}_{\Sigma_2}(u_2, u_1, v, r)$ and the change of variable $u_2 \rightarrow r^{-1/2}u_2$, we reach the conclusion.

PROPOSITION 5.5. When $\frac{d_1}{M_1} = \frac{d_2}{M_2} = \frac{2n}{m}$, $\operatorname{Tr}(P^z)$ is holomorphic in $\{z; \mathcal{R}, z < -\frac{2n}{m}\}$ and has a triple pole at $z = -\frac{2n}{m}$ as the first singularity with the coefficient of $(z + \frac{2n}{m})^{-3}$ equal to $-\frac{N(2m, M_0)A_4}{4mN(m, M_1)N(m, M_2)N(m, M_0)}$

where

(5.5)
$$A_4 = (2\pi)^{-n} \int_{(\Sigma_0 \cap S^* \mathbf{R}^{2n}) \times S^* \mathbf{R}^{d_1} \times S^* \mathbf{R}^{d_2}} \tilde{p}_m(\omega_1, \omega_2, v, 1)^{-2n/m} \times J(0, 0, v, 1) \ d\omega_1 d\omega_2 dv.$$

PROOF. In this proposition if a function f(z) is holomorphic in $\{z; \mathcal{R}, z < -\frac{2n}{m}\}$ and has at most a double pole at $z = -\frac{2n}{m}$ as the first singularity, we say that the function is negligible and write $f(z) \equiv 0$.

That $\operatorname{Tr}(P^z)$ is holomorphic in $\{z ; \mathcal{R}, z < -\frac{2n}{m}\}$ follows from Proposition 5. 1. Let W and χ be as in Proposition 5. 1(I). By Proposition 4. 2 (i), 4. $3_{(j)}(i)$ and 4. 4, we may consider

$$J(z) = (2\pi)^{-n} \int_{r\geq 1} h(u_1, u_2, v, r) \{ \tilde{p}(u_1, u_2, v, r)^z + d_z^{(1)} + d_z^{(2)} \} du_1 du_2 dv dr$$

where $d_z^{(1)} =$

$$=\{\sum_{\substack{|\alpha_1| \leq M_1 \\ |\alpha_2| \leq M_2}} a_{\alpha_1, \alpha_2}(u_1, u_2, v, r) u_1^{\alpha_1} u_2^{\alpha_2}\}^z - \{\sum_{\substack{|\alpha_1| \leq M_1 \\ |\alpha_2| \leq M_2}} a_{\alpha_1, \alpha_2}(0, u_2, v, r) u_1^{\alpha_1} u_2^{\alpha_2}\}^z$$

and
$$d_z^{(2)} = \{\sum_{\substack{|\alpha_1| \leq M_1 \\ |\alpha_2| \leq M_2}} a_{\alpha_1, \alpha_2}(0, u_2, v, r) u_1^{\alpha_1} u_2^{\alpha_2}\}^z - \{\sum_{\substack{|\alpha_1| \leq M_1 \\ |\alpha_2| \leq M_2}} a_{\alpha_1, \alpha_2}(0, 0, v, r) u_1^{\alpha_1} u_2^{\alpha_2}\}^z.$$

Here we may assume that $\operatorname{supp} h \subset \{(u_1, u_2, v, r); | u_i | \leq 1, i=1, 2\}$. Moreover we shall prove:

(5.6)
$$J(z) \equiv J_0(z)$$
 where $J_0(z) =$
= $(2\pi)^{-n} \int_{r \ge 1, r^{-1/2} \le |u_i| \le 1} h(0, 0, v, r) \tilde{p}(u_1, u_2, v, r)^z du_1 du_2 dv dr.$

In order to prove (5.6) we need the following lemmas.

LEMMA 5.6. If we put
$$J_1(z) =$$

= $\int_{|u_i| \le r^{-1/2}} h(u_1, u_2, v, r) \tilde{p}(u_1, u_2, v, r)^z du_1 du_2 dv dr$

then $J_1(z) \equiv 0$.

PROOF. By the preceding arguments, we have for $\mathscr{R}_{s} \ z < -\frac{N(2n, d_{0})}{N(m, M_{0})},$ $J_{1}(z) = \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} \ dr \times \int_{|u_{i}| \le 1} h(r^{-1/2}u_{1}, r^{-1/2}u_{2}, v, 1)\tilde{p}(u_{1}, u_{2}, v, 1)^{z} \ du_{1} \ du_{2} \ dv$

18

Complex powers of a class of pseudodifferential operators in \mathbb{R}^n and the asymptotic behavior of eigenvalues

$$= -\frac{1}{N(m, M_0)z + N(2n, d_0)} \int_{|u_i| \le 1} h(u_1, u_2, v, 1) \times \tilde{p}(u_1, u_2, v, 1)^z \, du_1 \, du_2 \, dv - \int_1^\infty r^{N(m, M_0)z + N(2n, d_0) - 3/2} \, dr \times \int_{|u_i| \le 1} \sum_{i=1}^2 u_i \, \tilde{h}_i(r^{-1/2}u_1, r^{-1/2}u_2, v, 1) \, \tilde{p}(u_1, u_2, v, 1)^z \, du_1 \, du_2 \, dv.$$

Thus we see that $J_1(z) \equiv 0$ and this completes the proof.

LEMMA 5.7. If we put $J_2(z) =$

$$\int_{\substack{|u_1| \leq r^{-1/2} \\ r^{-1/2} \leq |u_2| \leq 1}} h(u_1, u_2, v, r) \tilde{p}(u_1 u_2, v, r)^z du_1 dv dr,$$

then $J_2(z) \equiv 0$.

PROOF. 1^{st} -step: If we put $J_3(z) =$

$$\int_{\substack{|u_1| \leq r^{-1/2} \\ r^{-1/2} \leq |u_2| \leq 1}} \{h(u_1, u_2, v, r) - h(u_1, 0, v, r)\} \tilde{p}(u_1, u_2, v, r)^z du_1 du_2 dv dr,$$

we can prove $J_3(z) \equiv 0$. In fact, if we put $h(u_1, u_2, v, r) - h(u_1, 0, v, r) = u_2 \cdot \tilde{h}(u_1, u_2, v, r)$, we have

$$J_3(z) = \int_1^\infty r^{N(m, M_1)z + N(2n, d_1) - 1} J_4(r, z) dr.$$

Here $J_4(r, z) =$

$$\int_{\substack{|u_1|\leq 1\\r^{-1/2}\leq |u_2|\leq 1}} u_2 \cdot \tilde{h}(r^{-1/2}u_1, u_2, v, r) \{\sum_{i=1}^2 \hat{p}_i(u_1, u_2, v, r)\}^z du_1 du_2 dv dr$$

where $\hat{p}_1(u_1, u_2, v, r) = \sum_{\substack{|\alpha_2| = M_2 \\ |\alpha_1| \le M_1}} a_{\alpha_1, \alpha_2}(0, 0, v, r) \ u_1^{\alpha_1} \ u_2^{\alpha_2}$ and

$$\hat{p}_{2}(u_{1}, u_{2}, v, r) = \sum_{\substack{|\alpha_{2}| < M_{2} \\ |\alpha_{1}| \le M_{1}}} r^{(|\alpha_{2}| - M_{2})/2} a_{\alpha_{1}, \alpha_{2}}(0, 0, v, 1) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}.$$

Moreover we can write

$$J_4(r, z) = \int_{r^{-1/2}}^{1} t^{M_2 z + d_2} J_5(t, r, z) dt$$

where $J_5(t, r, z) =$

$$\int \omega_2 \cdot h(r^{-1/2}u_1, t\omega_2, v, 1) [\hat{p}_1(u_1, \omega_2, v, 1) + \hat{p}_2(u_1, \omega_2, v, t^2r)]^z du_1 d\omega_2 dv.$$

Thus by the integration by parts, we have $J_4(r, z) = \frac{1}{M_2 z + d_2 + 1} \times [J_5(1, r, z) - r^{-(M_2 z + d_2 + 1)/2} J_5(r^{-1/2}, r, z) - \int_{r^{-1/2}}^{1} t^{M_2 z + d_2 + 1} \frac{\partial}{\partial t} J_5(t, r, z) dt].$

Here we have

$$\frac{\partial}{\partial t} J_{5}(t, r, z) = \int \{ \tilde{h}_{1}(r^{-1/2}u_{1}, t\omega_{2}, v, 1) [\hat{p}_{1}(u_{1}, \omega_{2}, v, 1) + \hat{p}_{2}(u_{1}, \omega_{2}, v, t^{2}r)]^{z} + z\omega_{2} \cdot \tilde{h}_{2}(r^{-1/2}u_{1}, t\omega_{2}, v, 1) [\hat{p}_{1}(u_{1}, \omega_{2}, v, 1) + \hat{p}_{2}(u_{1}, \omega_{2}, v, t^{2}r)]^{z-1} \times r^{(|\alpha_{2}|-M_{2})/2} t^{|\alpha_{2}|-M_{2}-1} \} du_{1} d\omega_{2} dv$$

where $\tilde{h_1}$ and $\tilde{h_2}$ are bounded functions. Thus we have

$$J_{3}(z) = \frac{-1}{N(m, M_{1})z + N(2n, d_{1})} \int_{1}^{\infty} r^{N(m, M_{1})z + N(2n, d_{1})} \frac{\partial}{\partial r} J_{4}(r, z) dr.$$

Here we note

$$\frac{\partial}{\partial r} J_5(1, r, z) = O(r^{-3/2}), \quad \frac{\partial}{\partial r} [r^{-(M_2 z + d_2 + 1)/2} J_5(r^{-1/2}, r, z)] = O(r^{-(M_2 z + d_2 + 3)/2}) \text{ and}$$
$$\frac{\partial}{\partial r} [\int_{r^{-1/2}}^{1} t^{M_2 z + d_2 + 1} \frac{\partial}{\partial t} J_5(t, r, z) dt] = O(r^{-3/2})$$

as $r \to \infty$ uniformly on $\{z; \mathscr{R}, z \leq -\frac{2n}{m} + \varepsilon\}$ for any $\varepsilon > 0$. Therefore we see that $J_3(z)$ is negligible. $2^{nd} - step$: If we put $J_6(z) =$

$$\int_{\substack{|u_1| \leq r^{-1/2} \\ r^{-1/2} \leq |u_2| \leq 1}} h(u_1, 0, v, r) \quad \tilde{p}(u_1, u_2, v, r)^z \ du_1 \ du_2 \ dv \ dr_z$$

we can prove $J_6(z) \equiv 0$. In fact, we have $J_6(z) =$

$$\int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} dr \int_{\substack{|u_{1}| \leq 1 \\ 1 \leq |u_{2}| \leq r^{1/2}}} h(r^{-1/2}u_{1}, 0, v, 1) \tilde{p}(u_{1}, u_{2}, v, 1)^{z} du_{1} du_{2} dv.$$

Here if we write $\tilde{p}(u_1, u_2, v, 1)^z = \hat{p}_1(u_1, u_2, v, 1)^z + r_z(u_1, u_2, v)$, we have $|r_z(u_1, u_2, v)| \le C |u_2|^{M_2, g, z-1}$. Therefore we have $J_6(z)$

$$\equiv \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} dr \times \int_{\substack{|u_{1}| \leq 1 \\ 1 \leq |u_{2}| \leq r^{1/2}}} h(r^{-1/2}u_{1}, 0, v, 1) \hat{p}_{1}(u_{1}, u_{2}, v, r)^{z} du_{1} du_{2} dv dr$$
$$= \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} dr \int_{1}^{r^{1/2}} t^{M_{2}z + d_{2} - 1} dt$$

Complex powers of a class of pseudodifferential operators in \mathbb{R}^n and the asymptotic behavior of eigenvalues

$$\times \int_{|u_{1}|\leq 1, |\omega_{2}|=1} h(r^{-1/2}u_{1}, 0, v, 1) \hat{p}_{1}(u_{1}, \omega_{2}, v, r)^{z} du_{1} d\omega_{2} dv = \frac{1}{M_{2}z + d_{2}} \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} (r^{(M_{2}z + d_{2})/2} - 1) \times \int_{|u_{1}|\leq 1, |\omega_{2}|=1} h(r^{-1/2}u_{1}, 0, v, 1) \hat{p}_{1}(u_{1}, \omega_{2}, v, 1)^{z} du_{1} d\omega_{2} dv.$$

By the integration by parts with respect to r, we see that $J_6(z) \equiv 0$. This completes the proof.

Similarly we see that

$$\int_{\substack{r^{-1/2} \leq |u_1| \leq 1 \\ |u_2| \leq r^{-1/2}}} h(u_1, u_2, v, r) \quad \tilde{p}(u_1, u_2, v, r)^z \, du_1 \, du_2 \, dv \, dr \equiv 0.$$

Thus we are reduced to study $J_7(z)$ where

$$J_{7}(z) = \int_{r^{-1/2} \leq |u_{i}| \leq 1} h(u_{1}, u_{2}, v, r) \tilde{p}(u_{1}, u_{2}, v, r)^{z} du_{1} du_{2} dv dr.$$

However we have

LEMMA 5.8. If we put $J_7(z)$ as above, we have $J_7(z) \equiv J_0(z)$.

PROOF. We put $h(u_1, u_2, v, r) - h(0, 0, v, r) = u_1 \cdot h_1(u_1, u_2, v, r) + u_2 \cdot h_2(u_1, u_2, v, r)$. Then by the same way as the proof of Lemma 5.7 $(2^{nd}-\text{step})$, the proof is clear.

Finally we must prove

LEMMA 5.9. If we put

$$K_i(z) = \int_{r\geq 1} d_z^{(i)}(u_1, u_2, v, r) h(u_1, u_2, v, r) du_1 du_2 dv dr,$$

then we have $K_1(z) + K_2(z) \equiv 0$.

PROOF. By Proposition 3. 1 and the construction of parametrices (c. f. $[2; \S 4]$), we have $K_1(z) + K_2(z) =$

$$\int_{r\geq 1} h(u_1, u_2, v, r) \left[\{ \sum_{j=0}^{M_0} \tilde{p}_{m-j/2} \}^z - \{ \sum_{j=0}^{M_0} p_{m-j/2} \}^z \right] du_1 du_2 dv dr.$$

Here by the mean value theorem, we have $K_1(z) + K_2(z) =$

$$\int_{r\geq 1} h(u_1, u_2, v, r) \ z\{\sum_{j=0}^{M_0} (p_{m-j/2} - \tilde{p}_{m-j/2})\}$$
$$\times \int_0^1 \left[\sum_{j=0}^{M_0} \tilde{p}_{m-j/2} + \theta\{\sum_{j=0}^{M_0} (p_{m-j/2} - \tilde{p}_{m-j/2})\}^{z-1}\right] \ d\theta \ du_1 \ du_2 \ dv \ dr.$$

As the same way as the proof of Lemma 5.7 $(2^{nd}$ -step), we see that $K_1(z)$ +

 $K_2(z)$ is negligible. This completes the proof.

End of the proof of Proposition 5.5.

By (5.6), we may consider $J_0(z)$. If we write

 $\tilde{p}(u_1, u_2, v, 1)^z = \tilde{p}_m(u_1, u_2, v, 1)^z + r_z(u_1, u_2, v)$ for $1 \le |u_i| \le r^{1/2}$,

we have

$$|r_{z}(u_{1}, u_{2}, v)| \leq C |u_{1}|^{M_{1}, \Re, z-1} |u_{2}|^{M_{2}, \Re, z-1} (|u_{1}| + |u_{2}|).$$

So we can see that the integral corresponding to r_z is negligible. Therefore we have $J_0(z) \equiv (2\pi)^{-n} \times$

$$\int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} dr \int_{1 \le |u_{i}| \le r^{1/2}} h(0, 0, v, 1) \tilde{p}_{m}(u_{1}, u_{2}, v, 1)^{z} du_{1} du_{2} dv$$

$$= A_{4}'(z) \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} dr \prod_{i=1}^{2} \int_{1}^{r^{1/2}} t_{i}^{M_{i}z + d_{i} - 1} dt_{i}$$

$$= A_{4}'(z) \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} dr \prod_{i=1}^{2} \frac{(r^{(M_{i}z + d_{i})/2} - 1)}{M_{i}z + d_{i}}$$

where $A'_4(z)$ is defined by

$$(2\pi)^{-n}\int_{(\Sigma_0\cap S^*\boldsymbol{R}^{2n})\times S^*\boldsymbol{R}^{d_1}\times S^*\boldsymbol{R}^{d_2}}h(0,0,v,1) \quad \tilde{p}_m(\boldsymbol{\omega}_1,\boldsymbol{\omega}_2,v,1)^z\,d\boldsymbol{\omega}_1\,d\boldsymbol{\omega}_2\,dv.$$

and $A_4(z)$ is an entire function. By using an appropriate partition of unity, we reach the conclusion of Proposition 5.5.

PROPOSITION 5.10. When $\frac{d_1}{M_1} = \frac{N(2n, d_2)}{N(m, M_2)} > \frac{2n}{m}$, $\operatorname{Tr}(P^z)$ is holomorphic in $\{z; \mathscr{R}, z < -\frac{N(2n, d_2)}{N(m, M_2)}\}$ and has a double pole at $z = -\frac{N(2n, d_2)}{N(m, M_2)}$ as the first singularity with the coefficient of $(z + \frac{N(2n, d_2)}{N(m, M_2)})^{-2}$ equal to $\frac{A_5}{2(M_1d_2 - M_2d_1) N(m, M_2) N(m, M_0)}$ where $(5.7) \quad A_5 = (2\pi)^{-n} \times \int_{(\Sigma_0 \cap S^* \mathbf{R}^{2n}) \times S^* \mathbf{R}^{d_1} \times S^* \mathbf{R}^{d_1}} \widetilde{p}_m(\omega_1, \omega_2, v, 1)^{-N(2n, d_2)/N(m, M_2)} J(0, 0, v, 1) d\omega_1 d\omega_2 dv.$

PROOF. In this proposition if a function f(z) is holomorphic in $\{z; \mathcal{R}, z < -\frac{N(2n, d_2)}{N(m, M_2)}\}$ and has at most a simple pole at $z = -\frac{N(2n, d_2)}{N(m, M_2)}$ as the first singularity, we say that f(z) is negligible and write $f(z) \equiv 0$.

That $\operatorname{Tr}(P^z)$ is holomorphic in $\{z ; \mathscr{R} \mid z < -\frac{N(2n, d_2)}{N(m, M_2)}\}$ follows from Proposition 5.1. In $\sum_2 \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1$

$$A'_{5}(z) = \int_{(\Sigma_{0} \cap S^{*} \mathbf{R}^{2n}) \times S^{*} \mathbf{R}^{d_{1}} \times S^{*} \mathbf{R}^{d_{2}}} h(0, 0, v, 1) \quad \tilde{p}_{m}(\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, v, 1)^{z} d\boldsymbol{\omega}_{1} d\boldsymbol{\omega}_{2} dv,$$

then we have I(z) =

$$\begin{aligned} A_{5}'(z) & \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} dr \prod_{i=1}^{2} \int_{0}^{r^{1/2}} t_{i}^{M_{i}z + d_{i} - 1} dt_{i} \\ \equiv \frac{-A_{5}'(z)}{(M_{1}z + d_{1})(M_{2}z + d_{2})} \int_{1}^{\infty} r^{N(m, M_{0})z + N(2n, d_{0}) - 1} (r^{(M_{1}z + d_{1})/2} - 1) dr \end{aligned}$$

modulo negligible terms. This completes the proof.

PROPOSITION 5.11. When $\frac{d_1}{M_1} > \frac{d_2}{M_2} = \frac{2n}{m}$, $\operatorname{Tr}(P^z)$ is holomorphic in $\{z ; \mathcal{R} \mid z < -\frac{2n}{m}\}$ and has a double pole at $z = -\frac{2n}{m}$ as the first singularity with the coefficient of $(z + \frac{2n}{m})^{-2}$ equal to $\frac{A_6}{2m N(m, M_2)}$ where

(5.8)
$$A_{6} = (2\pi)^{-n} \int_{(\Sigma_{2} \cap S^{*} \mathbf{R}^{2n}) \times S^{*} \mathbf{R}^{d_{2}}} (\tilde{p}_{\Sigma_{2}, m}(\omega_{2}, v, 1) + 1)^{-2n/m} J(0, v, 1) \ d\omega_{2} \ dv$$

where $\tilde{p}_{\Sigma_{2}, m}(u_2, v, r) = \sum_{|\alpha_2| = M_2} a_{\alpha_2}(0, v, r) u_2^{\alpha_2}$.

PROOF. In this proposition if a function f(z) is holomorphic in $\{z; \mathcal{R}, z < -\frac{2n}{m}\}$ and has at most a simple pole at $z = -\frac{2n}{m}$ as the first singularity, we say that f(z) is negligible and write $f(z) \equiv 0$. That $\operatorname{Tr}(P^z)$ is holomorphic in $\{z; \mathcal{R}, z < -\frac{2n}{m}\}$ follows from Proposition 5.1. Outside \sum_{z} , by using the symbol $(p_m + r^{m-\operatorname{Min}(M_1, M_2)/2})^z$, we see that the corresponding integral is negligible. Thus we may consider I(z) =

$$\int_{r\geq 1, |u_2|\leq 1} h(u_2, v, r) \{ \tilde{p}_{\Sigma_2}(u_2, v, r) + r^{m-M_1/2} (|u_2|^2 + r^{-1})^{M_2/2} \}^z du_2 dv dr.$$

However by the way as the preceding arguments we have I(z) =

$$\int_1^\infty \gamma \, N(\textbf{\textit{m}}, \textbf{\textit{M}}_2) \textbf{\textit{z}} + N(2\textbf{\textit{n}}, \textbf{\textit{d}}_2) - 1 d \textbf{\textit{\gamma}} \times$$

$$\int_{1 \le |u_2| \le r^{1/2}} h(0, v, 1) \{ \sum_{|\alpha_2| = M_2} a_{\alpha_2}(0, v, 1) \ u_2^{\alpha_2} \}^z \ du_2 \ dv$$
$$= A_6'(z) \ \int_1^\infty r^{N(m, M_2)z + N(2n, d_2) - 1} \ dr \ \int_1^{r^{1/2}} t^{M_2 z + d_2 - 1} \ dt$$

where $A_6'(z) =$

$$\int_{(\Sigma_2 \cap S^* \mathbf{R}^{2n}) \times S^* \mathbf{R}^{d_*}} h(0, v, 1) \{ \sum_{|\alpha_2| = M_2} a_{\alpha_2}(0, v, 1) \omega_2^{\alpha_2} \}^z d\omega_2 dv.$$

Thus we have

$$I(z) \equiv \frac{A_{6}'(z)}{M_{2}z+d_{2}} \int_{1}^{\infty} r^{N(m, M_{2})z+N(2n, d_{2})-1} (r^{(M_{2}z+d_{2})/2}-1) dr.$$

This completes the proof.

\S 6. The asymptotic behavior of eigenvalues of P

Let $P(x, D) \in OPL^{m, M_1, M_2}(\sum_1, \sum_2)$. In this section we assume that P(x, D) satisfies (1.3), (1.4) and (H.1) \sim (H.6). As in §4, define an unbounded self-adjoint operator P in $L^2(\mathbb{R}^n)$. Then P has the spectrum consist only of eigenvalues of finite multiplicity. By (H.6), we can write the sequence of eigenvalues: $0 < \lambda_1 \leq \lambda_2 \dots$, $\lim_{k \to \infty} \lambda_k = +\infty$ with repetition according to multiplicity. Let $N(\lambda)$ be the counting function, i. e., $N(\lambda) = \sum_{\lambda_k \leq \lambda} 1$. Then we have

THEOREM 6.1. Let $P(x, D) \in OPL^{m, M_1, M_2}(\sum_{1}, \sum_{2})$. Assume that (1.3), (1.4) and (H.1)~(H.6) hold.

$$(I) \quad If \frac{d_1}{M_1} \ge \frac{d_2}{M_2} > \frac{2n}{m}, \text{ then we have } N(\lambda) = A_1 \ \lambda^{2n/m} + o(\lambda^{2n/m}), \ \lambda \to +\infty.$$

$$(II) \quad If \frac{d_1}{M_1} > \frac{d_2}{M_2} = \frac{2n}{m}, \text{ then we have }$$

$$N(\lambda) = \frac{A_6}{n(2m-M_2)} \lambda^{2n/m} (\log \lambda) + o(\lambda^{2n/m} \log \lambda), \ \lambda \to +\infty.$$

$$(III) \quad If \frac{d_1}{M_1} > \frac{4n-d_2}{2m-M_2} > \frac{2n}{m}, \text{ then we have }$$

$$N(\lambda) = \frac{2A_3}{4n-d_2} \lambda^{(4n-d_2)/(2m-M_2)} + o(\lambda^{(4n-d_2)/(2m-M_2)}), \ \lambda \to +\infty.$$

$$(IV) \quad If \frac{d_1}{M_1} = \frac{4n-d_2}{2m-M_2} > \frac{2n}{m}, \text{ then we have } N(\lambda) = \frac{2M_1 \ A_5}{(M_2d_1 - M_1d_2)(2m-M_1 - M_2)(4n-d_1 - d_2)} \lambda^{(4n-d_2)/(2m-M_2)} (\log \lambda) +$$

$$\begin{split} &o(\lambda^{(4n-d_2)/(2m-M_2)}\log \lambda), \ \lambda \to +\infty. \\ &(\nabla) \quad If \ \frac{4n-d_2}{2m-M_2} > \frac{2n}{m}, \ \frac{d_1}{M_1}, \ then \ we \ have \\ &N(\lambda) = \frac{2A_2}{4n-d_1-d_2} \lambda^{(4n-d_1-d_2)/(2m-M_1-M_2)} + o(\lambda^{(4n-d_1-d_2)/(2m-M_1-M_2)}), \\ &\lambda \to +\infty. \\ &(\nabla I) \quad If \ \frac{d_1}{M_1} = \frac{d_2}{M_2} = \frac{2n}{m}, \ then \ we \ have \ N(\lambda) = \\ &\frac{(4m-M_1-M_2)A_4}{4n(2m-M_1)(2m-M_2)(2m-M_1-M_2)} \ \lambda^{2n/m}(\log \lambda)^2 + \\ &o(\lambda^{2n/m}(\log \lambda)^2), \ \lambda \to +\infty. \\ Here \ A_1 \sim A_6 \ are \ defined \ by \ (5.2), \ (5.3), \ (5.4), \ (5.5), \ (5.7) \ and \ (5.8). \end{split}$$

REMARK 6.2. Since we see easily that $\frac{2n}{m} > \frac{d_2}{M_2}$ if and only if $\frac{4n-d_2}{2m-M_2} > \frac{2n}{m}$, taking (1.4) into consideration, this theorem covers all the cases.

For the proof, we use the following extended Ikehara's Tauberian theorem.

PROPOSITION 6.3. ([2; Proposition 5.3]) Let $\sum_{k=1}^{\infty} \lambda_k^z$ be convergent for $\mathscr{R}_* z < s_0(<0)$, hence holomorphic. Assume that there exist real numbers A_1 , A_2 , ..., A_p such that

$$\sum_{k=1}^{\infty} \lambda_k^z - \sum_{j=1}^p \frac{A_j}{(z-s_0)^j}$$

is continuous on $\{z ; \mathcal{R} : z \leq s_0\}$. Then we have

$$N(\lambda) = \frac{(-1)^{p-1}A_p}{(p-1)! s_0} \lambda^{-s_0} (\log \lambda)^{p-1} + o(\lambda^{-s_0} (\log \lambda)^{p-1}), \lambda \to +\infty$$

End of the proof of Theorem 6.1

It is well known that if $\mathscr{R} z < 0$ and |z| is large, $\operatorname{Tr}(P^z) = \sum_{k=1}^{\infty} \lambda_k^z$. For example, we consider the case (VI): $\frac{d_1}{M_1} = \frac{d_2}{M_2} = \frac{2n}{m}$. By Proposition 5.5, $\sum_{k=1}^{\infty} \lambda_k^z$ has a triple pole at $z = -\frac{2n}{m}$ as the first singularity with the coefficient of $(z + \frac{2n}{m})^{-3}$ equal to $A'_4 = -\frac{(4m - M_1 - M_2)A_4}{m(2m - M_1)(2m - M_2)(2m - M_1 - M_2)}$. Thus by Proposition 6.2, we have

$$N(\lambda) = \frac{-m A'_4}{4n} \lambda^{2n/m} (\log \lambda)^2 + o(\lambda^{2n/m} (\log \lambda)^2), \ \lambda \to +\infty.$$

Since the other case are proved similarly, we omit them.

EXAMPLE 6.4. (1) Let $P(x, D) = (D_{x_1}^2 + x_1^2)^2 (D_{x_2}^2 + x_2^2)^2 (|D_x|^2 + |x|^2)^2 + \mu (D_{x_1}^2 + D_{x_2}^2 + x_1^2 + x_2^2)^2 (|D_x|^2 + |x|^2)^3 + \nu (|D_x|^2 + |x|^2)^4$ on \mathbf{R}^3 for any positive numbers μ and ν . Then we can put $\sum_1 = \{x_1 = \xi_1 = 0\}, \ \sum_2 = \{x_2 = \xi_2 = 0\}$. Since $M_1 = M_2 = 4, \ d_1 = d_2 = 2, \ m = 12$ and n = 3, we have the case (VI), i. e.,

$$N(\lambda) = \frac{1}{3840} \lambda^{1/2} (\log \lambda)^2 + o(\lambda^{1/2} (\log \lambda)^2), \ \lambda \to +\infty.$$

(2) Let
$$P(x, D) = \frac{1}{2} (x_3^2 + D_{x_3}^2)^2 [(x_1^2 + x_2^2 + D_{x_1}^2)^2 (|D_x|^2 + |x|^2)^3 +$$

$$(|D_{x}|^{2}+|x|^{2})^{3}(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2})^{2}]+\frac{1}{2}[(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2})^{2}(|D_{x}|^{2}+|x|^{2})^{4}+(|D_{x}|^{2}+x_{2}^{2}+D_{x_{1}}^{2})^{2}]+(x_{3}^{2}+D_{x_{3}}^{2})^{2}(|D_{x}|^{2}+|x|^{2})^{4}+\mu(|D_{x}|^{2}+|x|^{2})^{5}$$

on \mathbb{R}^5 for any positive number μ . Then we can put $\sum_1 = \{x_1 = x_2 = \xi_1 = 0\},$ $\sum_2 = \{x_3 = \xi_3 = 0\}$. Since $M_1 = M_2 = 4$, $d_1 = 3$, $d_2 = 2$, m = 14 and n = 5, we have the case (IV), i. e.,

$$N(\lambda) = \frac{\pi}{625} \lambda^{3/4} \log \lambda + o(\lambda^{3/4} \log \lambda), \ \lambda \to +\infty.$$

(3) Let
$$P(x, D) = \frac{1}{2} [D_{x_1}^2 D_{x_2}^2 (|x|^2 + |D_x|^2)^3 + (|x|^2 + |D_x|^2)^3 D_{x_1}^2 D_{x_2}^2] + \mu (D_{x_1}^2 + D_{x_2}^2) (|x|^2 + |D_x|^2)^{7/2} + \mu (|x|^2 + |D_x|^2)^{7/2} (D_{x_1}^2 + D_{x_2}^2) + \nu (|x|^2 + |D_x|^2)^4$$

on \mathbb{R}^2 for any positive numbers μ and ν . Then we can put $\sum_1 = \{\xi_1 = 0\}, \sum_2 = \{\xi_2 = 0\}$. Since $M_1 \neq M_2 = 2, d_1 = d_2 = 1, m = 10$ and n = 2, we have the case (I), i. e.,

$$N(\boldsymbol{\lambda}) = \frac{5\{\Gamma(1/10)\}^2}{8\pi\Gamma(1/5)} \boldsymbol{\lambda}^{2/5} + o(\boldsymbol{\lambda}^{2/5}), \ \boldsymbol{\lambda} \to +\infty.$$

Finally we give a generalization.

REMARK 6.5. We can also define a symbol class which is an extension of Definition 1.1. Let $\sum_1, \sum_2, ..., \sum_p$ be closed conic submanifolds of codimension $d_1, d_2, ..., d_p$ in $\mathbb{R}^{2n}\setminus 0$ and m a real number and moreover $M_1, M_2, ..., M_p$ non-negative integers.

Then $OPL^{m, M_1, M_2, \ldots, M_p}(\sum_{1}, \sum_{2}, \ldots, \sum_{p})$ is a set of all pseudodifferential operators P(x, D) on \mathbb{R}^n whose symbol $p(x, \xi)$ satisfies (1.1) and Complex powers of a class of pseudodifferential operators in \mathbb{R}^n and the asymptotic behavior of eigenvalues

$$(6.2)' \quad \frac{|p_{m-j/2}(x,\xi)|}{r(x,\xi)^{m-j/2}} \leq C \sum_{\substack{k_1+\ldots+k_p=j\\k_i\leq M_i}} d_{\Sigma_1}^{M_1-k_1} \ldots d_{\Sigma_p}^{M_p-k_p},$$

for $j = 0, 1, ..., M_1 + M_2 + ... + M_p$. Here

$$d_{\Sigma_i} = \inf_{(x',\xi') \in \Sigma_i} (|x' - \frac{x}{r}| + |\xi' - \frac{\xi}{r}|), i = 1, 2, ..., p.$$

As in Definition 1.1, we say that P(x, D) is regularly degenerate if p satisfies

$$(6.3)' \quad \frac{|p_m(x, \boldsymbol{\xi})|}{r(x, \boldsymbol{\xi})^m} \geq C \ d_{\Sigma_1}^{M_1} \dots \ d_{\Sigma_p}^{M_p}.$$

We assume $(H. 1) \sim (H. 6)$. Here (H. 2), (H. 3) and (H. 4) are revised according to this case. Then in the particular case:

$$\frac{d_1}{M_1} = \frac{d_2}{M_2} = \dots = \frac{d_p}{M_p} = \frac{2n}{m}$$
, we have for some constant A

$$N(\lambda) = A \lambda^{2n/m} (\log \lambda)^{p-1} + o(\lambda^{2n/m} (\log \lambda)^{p-1}), \ \lambda \to +\infty.$$

References

- [1] ARAMAKI, J.: Hypoellipticity for a class of pseudo-differential operators, Hokkaido Math. J. Vol. XI No. 1 (1982), 15-28.
- [2] ARAMAKI. J.: Complex powers of a class of pseudodifferential operators and their applications, Hokkaido Math. J. Vol. XII No. 2 (1983), 199-225.
- [3] BOUTET DE MONVEL, L.: Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math. 27 (1974), 585–639.
- [4] DONOGHUE, W.: Distributions and Fourier transforms, Acad. Press, New York (1969).
- [5] GRUSHIN, V. V.: On the proof of the discreteness of the spectrum of a certain class of differential operators in *Rⁿ*, Func. Anal. Appl. 5 (1971), 58–59.
- [6] HELFFER, R.: Invariant associés à une classe d'opérateurs pseudodifférentiels et application à L'hypoellipticité, Ann. Inst. Fourier, Grenoble 26 (1976), 55-70.
- [7] HÖRMANDER, L.: Pseudodifferential operators and hypoelliptic equations, Amer. Math. Soc. Symp. Pure Math. 10 (1967), 138-183.
- [8] HÖRMANDER, L.: Fourier integral operators I, Acta Math. 127 (1971). 79-183.
- [9] IWASAKI, C. and IWASAKI, N.: Parametrix for a degenerate parabolic equation and its application to the asymptotic behavior of spectral functions for stationary problems, Publ. of RIMS, Kyoto Univ. 17 (1981), 577-655.
- [10] KUMANO-GO, H.: Pseudodifferential operators, The MIT Press (1981).
- [11] MENIKOFF, A. and SJÖSTRAND, J.: On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235 (1978), 55-85.
- [12] MENIKOFF, A. and SJÖSTRAND, J.: On the eigenvalues of a class of hypoelliptic operators II, Springer Lecture note 755 (1978), 201–247.
- [13] MENIKOFF, A. and SJÖSTRAND, J.: The eigenvalues of hypoelliptic operators III, The non-semibounded case, J. Analyse Math. 35 (1979), 123–150.

- [14] MOHAMED, A.: Etude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples, Jour. "Equations aux dérivées partielles" Saint Jean de Monts, Juin 1981.
- [15] MOHAMED, A.: Etude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples I, Ann. Inst. Fourier, Grenoble 32, 3 (1982), 39-90.
- [16] MOHAMED, A.: Etude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples II, Comm. in Partial Differential equations, 8 (3) (1983), 247-316.
- [17] SEELEY, R. T.: Complex powers of an elliptic operators, Singular integrals, Proc. Symposia Pure Math. 10 (1967), 288-307.
- [18] SJÖSTRAND, J.: Parametrices for pseudodifferential operators with multiple characteristics, Arkiv för Mat. 12 (1974), 85-130.
- [19] SJÖSTRAND, J.: On the eigenvalues of a class of hypoellptic operators IV, Ann. Inst. Fourier, Grenoble, 30-2 (1980), 109-169.
- [20] SMAGIN, S. A.: Fractional powers of hypoelliptic operators in \mathbb{R}^n , Soviet Math. Dokl. 14 (1973) No. 2, 585–588.
- [21] WIENER, N.: Tauberian theorems, Ann. of Math. 33 (1932), 1-100.

Department of Mathematical Science Faculty of Science and Engineering Tokyo Denki University