Complex powers of a class of pseudodifferential operators in R^{n} and the asymptotic behavior of eigenvalues

Junichi Aramaki
(Received January 18, 1985, Revised September 24, 1986)

§ 0. Introduction

In the previous paper [2], we constructed complex powers for some hypoelliptic pseudodifferential operators P in $O P L^{m, M}(\Omega ; \Sigma)$ (for the notation, see Sjöstrand [18]) on a compact manifold Ω of dimension n without boundary and examined the asymptotic behavior of the eigenvalues of P. Here the principal symbol vanished exactly to M-th order on the characteristic set Σ of codimension d in $T^{*} \Omega \backslash 0$. The hypoellipticity of these operators is well known by Boutet de Monvel [3] for $M=2$ and Helffer [6] for general M. Moreover Menikoff-Sjöstrand [11], [12], [13], Sjöstrand [19] and Iwasaki [9] studied the asymptotic behavior of eigenvalues of P under various assumptions on Σ in the case $M=2$. Their methods are based on the constructions of heat kernel and an application of Karamata's Tauberian theorem. For general M, Mohamed [14], [15] and [16] gave the asymptotic formula for the eigenvalues of P by using Carleman's method in which the Hardy-Littlewood Tauberian theorem was used.

However the method in [2] was essentially due to Minakshinsundaram's method (c. f. Seeley [17] and Smagin [20]). The essentials of the theory in [2] were as follows : At first we construct complex powers $\left\{P^{z}\right\}_{z \in C}$ of P. When the real part of z is negative and $|z|$ is sufficiently large, P^{z} is of trace class and the trace is extended to a meromorphic function in \boldsymbol{C} which is written by Trace $\left(P^{z}\right)$. Secondly we examine the first singularity of Trace $\left(P^{z}\right)$. Finally we apply the extended Ikehara Tauberian theorem. (See [2: Lemma 5.2] and Wiener [21]). Here since Trace $\left(P^{z}\right)$ is a meromorphic function in \boldsymbol{C}, we call the pole with the smallest real part the first singularity throughout this paper. More precisely, denoting the counting function of eigenvalues by $N(\boldsymbol{\lambda})$, the first term of the asymptotic behavior of $N(\lambda)$ as λ tends to infinity is closely related to the position and the order of the pole at the first singularity. In the case where $n / m=d / M$, the first singularity situates at $z=-n / m$ and is a double pole and then we have for a constant c

$$
N(\boldsymbol{\lambda})=c \lambda^{n m} \log \lambda+o\left(\lambda^{n m} \log \lambda\right) \text { as } \lambda \rightarrow \infty .
$$

In the other cases they are only simple poles and $\log \lambda$ does not appear in the first term of $N(\lambda)$.

However in the framework of [2], for example, we can not treat the following operator on \boldsymbol{R}^{3} :

$$
\begin{aligned}
P= & \left(D_{x_{1}}^{2}+x_{1}^{2}\right)^{2}\left(D_{x_{2}}^{2}+x_{2}^{2}\right)^{2}\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{2}+ \\
& \mu\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}+x_{1}^{2}+x_{2}^{2}\right)^{2}\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{3}+v\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{4}(\mu, \nu>0) .
\end{aligned}
$$

Our purpose in the present paper is to study the asymptotic behavior of $N(\boldsymbol{\lambda})$ for such operators. In order to do so we consider a class $O P L^{m, M_{1}, M_{2}}\left(\Sigma_{1}, \Sigma_{2}\right)$ where the characteristic set Σ is a union of two closed submanifolds Σ_{1} and Σ_{2} of codimension d_{1} and d_{2} in $\boldsymbol{R}^{2 n} \backslash 0$ and the principal symbol vanishes exactly to M_{i}-th order on $\sum_{i}(i=1,2)$ respectively. Under some appropriate conditions, we construct complex powers $\left\{P^{z}\right\}$ and examine the first singularity of $\operatorname{Trace}\left(P^{z}\right)$ in the same way as [2]. But it is necessary to construct different symbols of P^{z} according to the order relations among real numbers $2 n / m, d_{1} / M_{1}$ and d_{2} / M_{2}. In particular, we have a new result that for the case $2 n / m=d_{1} / M_{1}=d_{2} / M_{2}$ with a constant c

$$
N(\boldsymbol{\lambda})=c \lambda^{2 n / m}(\log \lambda)^{2}+o\left(\lambda^{2 n m}(\log \lambda)^{2}\right) \text { as } \lambda \rightarrow \infty .
$$

The plan of this paper is as follows. In § 1 we give the precise definition of the operators mentioned above and give some hypotheses. In § 2 we introduce two classes of operators in which we construct the parametrices of $P-\xi$ for some $\xi \in \boldsymbol{C}$. By taking an application in $\S 5$ and $\S 6$ into consideration, we construct in $\S 3$ various parametrices of $P-\xi$ for some $\xi \in \boldsymbol{C}$. In $\S 4$ we construct symbols of "complex powers corresponding to parametrices in § 3 respectively. In § 5 we examine the first singularity of the trace of complex powers. Finally in $\S 6$ we study asymptotic behavior of the eigenvalues using the results in § 5 and give some examples.

For brevity of the notations, we use the followings which are held from § 1 to §5:

$$
\begin{aligned}
& M_{0}=M_{1}+M_{2}, \quad d_{0}=d_{1}+d_{2} \\
& \sum_{0}=\sum_{1} \cap \sum_{2}, \quad \sum=\sum_{1} \cup \Sigma_{2} \\
& N(a, b)=a-b / 2 \text { for any real numbers } a \text { and } b .
\end{aligned}
$$

§ 1. Definitions of operators and some hypotheses

In this section we introduce a class of pseudodifferential operators on \boldsymbol{R}^{n} and give our hypotheses.

Let Σ_{1} and Σ_{2} be closed conic submanifolds of codimension d_{1} and d_{2} in $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ respectively such that $d_{0}=d_{1}+d_{2}<2 n$. Here the conicity of \sum_{i} means that $(x, \boldsymbol{\xi}) \in \sum_{i}$ implies $(\lambda x, \lambda \boldsymbol{\xi}) \in \sum_{i}$ for any $\lambda>0$.

Definition 1.1. (c. f. [1] and [18]) Let m be a real number and M_{i} $(i=1,2)$ be non-negative integers. Then the space $O P L^{m}, M_{1}, M_{2}\left(\Sigma_{1}, \Sigma_{2}\right)$ is the set of all pseudodifferential operators $P(x, D) \in L^{m}\left(\boldsymbol{R}^{n}\right)$ (for the notation $L^{m}\left(\boldsymbol{R}^{n}\right)$ see Hörmander [7] and [8]) such that $P(x, D)$ has a symbol $p(x, \boldsymbol{\xi}) \in \boldsymbol{C}^{\infty}\left(\boldsymbol{R}^{2 n}\right)$ satisfying the following (1.1) and (1.2):
(1.1) There exists a sequence of functions $\left\{p_{m-j / 2}(x, \xi)\right\}_{j=0,0,1}$. such that $p(x, \boldsymbol{\xi}) \sim \sum_{j=0}^{\infty} p_{m-j / 2}(x, \boldsymbol{\xi})$ where $p_{m-j / 2}(x, \xi)$ are elements of $C^{\infty}\left(\boldsymbol{R}^{2 n} \backslash 0\right)$ and positively homogeneous of degree $m-j / 2$ in $(x, \boldsymbol{\xi}) \in \boldsymbol{R}^{2 n} \backslash 0$. Here the asymptotic sum in (1.1) means that for every positive integer N and every multiindices α, β, there exists a constant $C_{\alpha, \beta, N}>0$ such that

$$
\begin{aligned}
& \left|D_{x}^{\alpha} D_{\xi}^{\beta}\left(p(x, \xi)-\sum_{j=0}^{N-1} p_{m-j / 2}(x, \xi)\right)\right| \leq C_{\alpha, \beta, N} r(x, \xi)^{m-N / 2-|\alpha|-|\beta|} \\
& \text { for } r(x, \xi) \geq 1 \text { where } r=r(x, \xi)=\left(|x|^{2}+|\xi|^{2}\right)^{1 / 2} .
\end{aligned}
$$

(1.2) There exists a positive constant C such that

$$
\begin{aligned}
& \frac{\left|p_{m-j / 2}(x, \xi)\right|}{r(x, \xi)^{m-j / 2}} \leq C \sum_{\substack{k_{1}+k_{2}=j \\
k_{i} \leq M_{i}}} d_{\Sigma_{1}}(x, \xi)^{M_{1}-k_{1}} d_{\Sigma_{2}}(x, \xi)^{M_{2}-k_{2}}, j=0,1, \ldots, M_{0} \\
& \text { where } d_{\Sigma_{i}}(x, \xi)=\inf _{\left(x^{\prime}, \xi\right) \in \Sigma_{i}}\left(\left|x^{\prime}-\frac{x}{r}\right|+\left|\xi^{\prime}-\frac{\xi}{r}\right|\right), i=1,2
\end{aligned}
$$

The class of symbols satisfying (1.1) and (1.2) in an open conic set U in $\boldsymbol{R}^{2 n} \backslash 0$ is denoted by $L^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)$. Finally we say that $P(x, D)$ is regularly degenerate if moreover $p(x, \boldsymbol{\xi})$ satisfies:

$$
\begin{equation*}
\frac{\left|p_{m}(x, \boldsymbol{\xi})\right|}{r(x, \xi)^{m}} \geq C \quad d_{\Sigma_{1}}(x, \xi)^{M_{1}} d_{\Sigma_{2}}(x, \xi)^{M_{2}} . \tag{1.3}
\end{equation*}
$$

For brevity of the notations, we denote:

$$
\begin{aligned}
& O P L^{m, M_{1}, 0}\left(\Sigma_{1}, \Sigma_{2}\right)=O P L^{m, M_{1}}\left(\Sigma_{1}\right) \\
& O P L^{m, 0, M_{2}}\left(\Sigma_{1}, \Sigma_{2}\right)=O P L^{m_{2}, M_{2}}\left(\Sigma_{2}\right) .
\end{aligned}
$$

If necessary, by relabelling of Σ_{i}, we may assume:
(1.4) $\frac{d_{2}}{M_{2}} \leq \frac{d_{1}}{M_{1}}$.

For the construction of parametrices of $P(x, D)-\xi$ as in introduction,
we have to keep the following hypotheses (H.1) $\sim(H .4)$.
(H.1) $\quad P_{m}(x, \boldsymbol{\xi}) \geq 0$ for all $(x, \boldsymbol{\xi}) \in \boldsymbol{R}^{2 n} \backslash 0$.
(H.2) $\quad \Sigma_{1}$ and Σ_{2} intersect transversally. That is, $\Sigma_{0}=\Sigma_{1} \cap \Sigma_{2}$ is a closed conic submanifold such that for every point $\rho \in \Sigma_{0}$,

$$
T_{\rho} \Sigma_{0}=T_{\rho} \Sigma_{1} \cap T_{\rho} \Sigma_{2} .
$$

Now for every $\rho \in \sum_{0}$ and $j=0,1, \ldots, M_{0}$, we can define a multi-linear form $\tilde{p}_{m-j / 2}(\rho)$ on $N_{\rho} \Sigma_{0}=\boldsymbol{R}^{2 n} / T_{\rho} \Sigma_{0}$ which may be identified with $\boldsymbol{R}^{d_{1}} \times \boldsymbol{R}^{d_{2}}$: For $X_{1}, X_{2}, \ldots, X_{M_{0}-j} \in N_{\rho} \Sigma_{0}$,

$$
\tilde{p}_{m-j / 2}(\rho)\left(X_{1}, \ldots, X_{M_{0}-j}\right)=\frac{1}{\left(M_{0}-j\right)!}\left(\tilde{X}_{1} \ldots \tilde{X}_{M_{0}-j} p_{m-j / 2}\right)(\rho)
$$

where \tilde{X} means a vector field extending X to a neighborhood of ρ. For every $\rho \in \sum_{i} \backslash \Sigma_{0}$ and $j=0, \ldots, M_{i}$, we also define $\tilde{\tilde{p}}_{m-j / 2}(\rho)$ similarly. Thus we define the followings : If $\rho \in \Sigma_{0}$,

$$
\tilde{p}(\rho, X)=\sum_{j=0}^{M_{0}} \tilde{p}_{m-j / 2}(\rho)(X), X \in N_{\rho} \Sigma_{0}
$$

where $\tilde{p}_{m-j / 2}(\rho)(X)=\tilde{p}_{m-j / 2}(\rho)(X, \ldots, X)$ and similarly if $\rho \in \sum_{i} \backslash \sum_{0}$,

$$
\tilde{p}\left(\rho, X_{i}\right)=\sum_{j=0}^{M} \tilde{p}_{m-j / 2}(\rho)\left(X_{i}\right), \quad X_{i} \in N_{\rho} \Sigma_{i} .
$$

Remark 1.2. For example, if $\rho \in \Sigma_{0}$ and W is a conic neighborhood of ρ, the class $\left[\sum_{j=0}^{\mathrm{M}_{0}} \mathrm{p}_{m-j / 2}\right] \in \mathrm{L}^{\mathrm{m}, \mathrm{M}_{1}, \mathrm{M}_{2}}\left(\mathrm{~W} ; \Sigma_{1}, \Sigma_{2}\right) / L^{m, M_{1}+M_{2}+1}\left(W ; \Sigma_{1} \cap \Sigma_{2}\right)$ is invariant under a transformation of local coordinates. (c.f. [1] and Proposition 2.2). Therefore $\tilde{p}(\rho, X)$ is defined invariantly.
(H.3) There exists a positive constant δ such that for any $\rho \in \Sigma_{0} \cap S^{*} \boldsymbol{R}^{2 n}$ (where $S^{*} \boldsymbol{R}^{2 n}=\left\{(x, \boldsymbol{\xi}) \in \boldsymbol{R}^{2 n} ; r(x, \boldsymbol{\xi})=1\right\}$)

$$
\begin{aligned}
& \tilde{p}(\rho, X) \geq 2 \delta\left(\left|X_{1}\right|^{2}+1\right)^{M_{1} / 2}\left(\left|X_{2}\right|^{2}+1\right)^{M_{2} / 2} \text { for all } \\
& X=\left(X_{1}, X_{2}\right) \in \boldsymbol{R}^{d_{1}} \times \boldsymbol{R}^{d_{2}},
\end{aligned}
$$

and for any $\rho \in\left(\Sigma_{i} \backslash \Sigma_{0}\right) \cap S^{*} \boldsymbol{R}^{2 n} \quad(i=1,2)$,

$$
\tilde{p}\left(\rho, X_{i}\right) \geq 2 \delta\left(\left|X_{i}\right|^{2}+1\right)^{M_{/ / 2}} \text { for all } X_{i} \in \boldsymbol{R}^{d_{i}} .
$$

(H.4) $\quad M_{1}$ and M_{2} are positive integers and $m>M_{0} / 2$.

Remark 1.3. If $P(x, D) \in O P L^{m, M_{1}, M_{2}}\left(\Sigma_{1}, \Sigma_{2}\right)$ satisfies (H.1)~ (H. 4), it is well known that $P(x, D)$ is hypoelliptic with loss of $M_{0} / 2$-deriva-
tives. (c.f. [1]).

§ 2. The preparations for constructions of parametrices

In this section we introduce two classes of symbols in which we construct parametrices of $P(x, D)-\xi I$ for some $\xi \in C$ and complex powers of $P(x, D)$ $\in O P L^{m, M_{1}, M_{2}}\left(\sum_{1}, \sum_{2}\right)$. In order to do, let $\rho \in \sum_{0}$. By (H.2) we can choose a local coordinate system in a conic neighborhood W of $\rho: w=$ $\left(u_{1}, u_{2}, v, r\right)$ where $u_{1}=\left(u_{11}, u_{12}, \ldots, u_{1 d_{1}}\right), u_{2}=\left(u_{21}, u_{22}, \ldots, u_{2 d_{2}}\right), v=$ ($v_{1}, v_{2}, \ldots, v_{2 n-d_{0}-1}$) such that $u_{i j}, v_{k}$ are positively homogeneous functions of degree 0 with $d u_{i j}\left(j=1, \ldots, d_{i}, i=1,2\right), d v_{k}\left(k=1, \ldots, 2 n-d_{0}-1\right)$ being linearly independent and $\sum_{i} \cap W=\left\{u_{i}=0\right\}$, $i=1$, 2. When $\rho \in \sum_{i} \backslash \sum_{0}$, we can choose a local coordinate system $\left(u_{i}, v, r\right)$ in a conic neighborhood W of $\rho \in \sum_{i} \backslash \sum_{0}$ such that $W \cap \Sigma_{0}=\phi$ and $\sum_{i} \cap W=\left\{u_{i}=0\right\}, i=1,2$.

Definition 2.1. (c.f. [2] and [3]) Let m, k_{1} and k_{2} be real numbers and W a conic neighborhood of $\rho \in \Sigma_{0}$. We denote by $S^{m_{1}, k_{1}, k_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right)$ the set of all C^{∞} functions $a(w)$ defined in W such that for any non-negative integer p and any multi-indices $\left(\alpha_{1}, \alpha_{2}, \beta\right)$, there exists a constant $C>0$ such that for all $r \geq 1$,

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial u_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial u_{2}}\right)^{\alpha_{2}}\left(\frac{\partial}{\partial v}\right)^{\beta}\left(\frac{\partial}{\partial r}\right)^{p} \quad a(w)\right| \leq C \quad r^{m-p} \rho \sum_{\Sigma_{1}-\left|\alpha_{1}\right|}^{k_{1}} \rho_{\Sigma_{2}}^{k_{2}-\left|\alpha_{2}\right|} \quad \text { where } \tag{2.1}
\end{equation*}
$$ $\rho_{\Sigma_{i}}=\left(d_{\Sigma_{i}}^{2}+r^{-1}\right)^{1 / 2}$. Similarly if W is a conic neighborhood of $\rho \in \Sigma_{i} \backslash \Sigma_{0}$ such that $W \cap \sum_{0}=\phi$, we also define $S^{m, k_{i}}\left(W ; \sum_{i}\right)$.

Note that $S^{m, k_{1}, k_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right)$ and $S^{m, k_{i}}\left(W ; \Sigma_{i}\right)$ are Fréchet spaces when equipped with the semi-norms defined by the best possible constants in (2.1). Then we have:

Proposition 2.2. If W is a conic neighborhood of $\rho \in \sum_{0}$ or $\rho \in \sum_{i} \backslash \sum_{0}$ such that $W \cap \Sigma_{0}=\phi$, then $\frac{\partial}{\partial x_{i}}$ and $\frac{\partial}{\partial \xi_{i}}$ are continuous from $S^{m, k_{1}, k_{2}}\left(W ; \Sigma_{1}, \sum_{2}\right)$ to $S^{m-1 / 2, k_{1}, k_{2}}\left(W ; \sum_{1}, \sum_{2}\right)$ or from $S^{m, k_{i}}\left(W ; \sum_{4}\right)$ to $S^{m-1 / 2, k_{i}}\left(W ; \sum_{i}\right)$ respectively.

In fact we can write $\frac{\partial}{\partial x_{i}}=\frac{\partial u_{1}}{\partial x_{i}} \frac{\partial}{\partial u_{1}}+\frac{\partial u_{2}}{\partial x_{i}} \frac{\partial}{\partial x_{2}}+\frac{\partial v}{\partial x_{i}} \frac{\partial}{\partial v}+\frac{\partial r}{\partial x_{i}} \frac{\partial}{\partial r}$. Thus it suffices to note that $\frac{\partial u_{j}}{\partial x_{i}}, \frac{\partial v}{\partial x_{i}}$ and $\frac{\partial r}{\partial x_{i}}$ are homogeneous of degree $-1,-1$ and 0 respectively and

$$
S^{m, k_{1}, k_{2}} \subset S^{m+1 / 2, k_{1}+1, k_{2}} \cap S^{m+1 / 2, k_{1}, k_{2}+1} .
$$

Let W be a conic neighborhood of $\rho \in \Sigma_{0}$. Then we need the following three propositions which follow from a routine consideration (c.f. [2], [3]).

Proposition 2.3. For non-negative integers M_{1} and M_{2}, we have

$$
L^{m, M_{1}, M_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right) \subset S^{m, M_{1}, M_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right)
$$

Proposition 2.4. If

$$
p_{1} \in S^{m, M_{1}, M_{2}}\left(W ; \sum_{1}, \Sigma_{2}\right) \quad \text { and } \quad p_{2} \in S^{m^{\prime}, M_{1}, M_{2}}(W ;
$$

$\left.\Sigma_{1}, \Sigma_{2}\right)$, then we have $p_{1} \# p_{2} \in S^{m+m^{\prime}, M_{1}+M_{i}, M_{2}+M_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right)$ where $\#$ means the composition of the symbols:

$$
p_{1} \# p_{2} \sim \sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} p_{1} D_{x}^{\alpha} p_{2}
$$

Proposition 2.5. If $p \in S^{m, M_{1}, M_{2}}\left(W ; \sum_{1}, \sum_{2}\right)$ satisfies

$$
|p| \geq C r^{m} \rho \sum_{\Sigma_{1}}^{M_{1}} \rho \sum_{\Sigma_{2}}^{M_{2}}
$$

for a positive constant C, then we have

$$
p^{-1} \in S^{-m,-M_{1},-M_{2}}\left(W ; \sum_{1}, \sum_{2}\right) .
$$

Finally we define a symbol class with a parameter ξ in order to consider parametrices of $P(x, D)-\xi$ for some $\xi \in \boldsymbol{C}$.

Definition 2.6. Let m, M_{1} and M_{2} be fixed numbers as in (H. 4) and let l, k_{1} and k_{2} be real numbers, W a conic neighborhood of $\rho \in \Sigma_{0}$ and Λ an open set in the complex plane \boldsymbol{C}. Then we denote by $S_{\Lambda}^{l_{1}, k_{1}, k_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right)$ the set of all $a(w, \xi) \in C^{\infty}(W \times \Lambda)$ satisfying the following (i) and (ii),
(i) for every $\xi \in \Lambda, a(w, \xi) \in S^{l, k_{1}, k_{2}}\left(W ; \sum_{1}, \Sigma_{2}\right)$
(ii) for every $\xi \in \Lambda,|\xi| a(w, \xi) \in S^{m+l, M_{1}+k_{1}, M_{2}+k_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right)$ and for every non-negative integer p and multi-indices $\left(\alpha_{1}, \alpha_{2}, \beta\right)$, there exists a positive constant C independing in $\xi \in \Lambda$ such that

$$
\begin{aligned}
& \left|\left(\frac{\partial}{\partial u_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial u_{2}}\right)^{\alpha_{2}}\left(\frac{\partial}{\partial v}\right)^{\beta}\left(\frac{\partial}{\partial r}\right)^{p}[|\xi| a(w, \xi)]\right| \leq \\
& C r^{m+l-p} \rho_{\sum_{1}}^{M_{1}+k_{1}-\left|\alpha_{1}\right|} \rho_{\Sigma_{2}}^{M_{2}+k_{2}-\left|\alpha_{2}\right|} \text { for all }(w, \xi) \in W \times \Lambda .
\end{aligned}
$$

§ 3. Constructions of parametrices

In this section we construct the parametrices of $P(x, D)-\xi I$ for some ξ $\in \Lambda$ with various top symbols where Λ is the union of a small open convex cone containing the negative real line and $\{\boldsymbol{\xi} \in \boldsymbol{C} ;|\boldsymbol{\xi}|<\boldsymbol{\delta}\}$ where δ is as in (H.3). Let $\rho \in \sum_{0}$ and $w=\left(u_{1}, u_{2}, v, r\right)$ be a local coordinate system in a small conic neighborhood W of ρ as in $\S 2$. By (1.2) and Taylor's theorem,
we can write

$$
\begin{equation*}
p_{m-j / 2}=\sum_{\substack{\left|\alpha_{1}\right|| | \alpha_{2}\left|=M_{0}-j\\\right| \alpha_{1}\left|\leq M_{1},\left|\alpha_{2}\right| \leq M_{2}\right.}} a_{\alpha_{1}, \alpha_{2}}\left(u_{1}, u_{2}, v, r\right) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} \text { in } W . \tag{3.1}
\end{equation*}
$$

Thus we have for $X=\left(X_{1}, X_{2}\right) \in N_{\rho} \sum_{0}=\boldsymbol{R}^{d_{1}} \times \boldsymbol{R}^{d_{2}}$,

$$
\tilde{p}(\rho, X)=\sum_{j=0}^{M_{0}} \sum_{\left|\alpha_{1}\right|+\left|\alpha_{2}\right|=M_{0}-j,\left|\alpha_{i}\right| \leq M_{i}} a_{\alpha_{1}, \alpha_{2}}(\rho) X_{1}^{\alpha_{1}} X_{2}^{\alpha_{2}}
$$

Then we need the following three symbols which are needed in order to examine the first singularity in various cases.

Proposition 3.1. Let $\rho \in \Sigma_{0}$. Then there exists a small conic neighborhood W of ρ and $a^{(j)}(x, \xi) \in S_{\Lambda}^{-m,-M_{1},-M_{2}}\left(W ; \sum_{1}, \sum_{2}\right)(j=1,2,3)$ such that

$$
(p-\xi) \# a_{\xi}^{(j)}=1+\sum_{i=1}^{3} c_{\xi}^{(i i)}
$$

where $c_{\xi}^{(11)} \in S_{\Lambda}^{0,1,0}, c_{\xi}^{(12)}, c_{\xi}^{(22)} \in S_{\Lambda}^{0,0,1}, c_{\xi}^{(21)} \in S_{\Lambda}^{-1 / 2,-1,0}, c_{\xi}^{(13)}, c_{\xi}^{(31)} \in S_{\Lambda}^{-1 / 2,0,0}$ and $c_{\xi}^{(23)}=c_{\xi}^{(32)}=c_{\xi}^{(33)}=0$.

Proof. We choose a function $\boldsymbol{\chi} \in \mathrm{C}^{\infty}\left(\boldsymbol{R}^{2 n}\right)$:

$$
\boldsymbol{\chi}(x, \boldsymbol{\xi})=1 \text { if }|x|+|\boldsymbol{\xi}| \geqslant 1 \text { and } \quad=0 \text { if }|x|+|\boldsymbol{\xi}| \leq 1 / 2
$$

Existence of $a_{\xi}^{(1)}$: Let $\left(u_{1}, u_{2}, v, r\right)$ be a local coordinate system in W as above. We identify $\left(X_{1}, X_{2}\right)$ with $\left(u_{1}, u_{2}\right)$ and ρ with $(0,0, v, r)$ and write $\tilde{p}(\rho, X)=\tilde{p}\left(u_{1}, u_{2}, v, r\right)$. Define for $\xi \in \Lambda$,

$$
\begin{equation*}
a_{\zeta}^{(1)}\left(u_{1}, u_{2}, v, r\right)=\chi\left(u_{1}, u_{2}, v, r\right)\left(\tilde{p}\left(u_{1}, u_{2}, v, r\right)-\xi\right)^{-1} \tag{3.2}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
(p-\xi) \# a_{\xi}^{(1)}= & \chi\left\{(\tilde{p}-\xi) \#(\tilde{p}-\xi)^{-1}+\left(p-\sum_{j=0}^{M_{0}} p_{m-j / 2}\right) \#(\tilde{p}-\xi)^{-1}+\right. \\
& \left.+\sum_{j=0}^{M_{0}}\left(p_{m-j / 2}-\tilde{p}_{m-j / 2}\right) \#(\tilde{p}-\xi)^{-1}\right\}+[p-\xi, \chi](\tilde{p}-\xi)^{-1}
\end{aligned}
$$

Here we note that by Proposition 2.5 and (H.3) we have

$$
(\tilde{p}-\xi)^{-1} \in S_{\Lambda}^{-m_{1}-M_{1},-M_{2}}\left(W ; \Sigma_{1}, \Sigma_{2}\right)
$$

Thus it suffices to apply Proposition 2.2 and 2.4.
Existence of $a_{\zeta}^{(2)}$: By (1.4) we have $\tilde{p}\left(u_{1}, u_{2}, v, r\right)-\tilde{p}_{\Sigma_{2}}\left(u_{1}, u_{2}, v, r\right)=r_{1}+r_{2}$ where

$$
\tilde{p}_{\Sigma_{2}}=\sum_{\left|\alpha_{1}\right|=M_{1}}\left\{\sum_{j=0}^{M_{2}} \sum_{\left|\alpha_{2}\right|=M_{2}-j} a_{\alpha_{1}, \alpha_{2}}\left(u_{1}, 0, v, r\right) u_{2}^{\left.\alpha_{2}\right\}} u_{1}^{\alpha_{1}}\right.
$$

$r_{1} \in S^{m-1 / 2, M_{1}-1, M_{2}}$ and $r_{2} \in S^{m, M_{1}, M_{2}+1}$. On the other hand, by (H.3), we have for $\lambda>0$,

$$
\begin{aligned}
\lambda^{-M_{1}} \tilde{p}\left(\lambda u_{1}, u_{2}, v, r\right) & =\sum_{\left|\alpha_{1}\right|=M_{1}}\left\{\sum_{j=0}^{M_{2}} \sum_{\left|\alpha_{2}\right|} a_{M_{2}-j} a_{\alpha_{1}, \alpha_{2}}(0,0, v, r) u_{2}^{\alpha_{2}}\right\} u_{1}^{\alpha_{1}}+O\left(\lambda^{-1}\right) \\
& \geq 2 \delta \lambda^{-M_{1}} r^{m}\left(\left|\lambda u_{1}\right|^{2}+r^{-1}\right)^{M_{1} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2} .
\end{aligned}
$$

Letting $\lambda \rightarrow \infty$, we see

$$
\begin{aligned}
& \sum_{\left|\alpha_{1}\right|=M_{1}}\left\{\sum_{j=0}^{M_{2}} \sum_{\left|\alpha_{2}\right|=M_{2}-j} a_{\alpha_{1}, \alpha_{2}}(0,0, v, r) u_{2}^{\alpha_{2}}\right\} u_{1}^{\alpha_{1}} \\
& \geq 2 \delta r^{m}\left|u_{1}\right|^{M_{1}}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2} .
\end{aligned}
$$

Since W is small enough, for any $\varepsilon>0$,

$$
\left|a_{\alpha_{1}, \alpha_{2}}\left(u_{1}, 0, v, r\right)-a_{\alpha_{1}, \alpha_{2}}(0,0, v, r)\right| \leq \varepsilon r^{m-\left(M_{2}-\left|\alpha_{2}\right|\right) / 2}
$$

if $\left|\boldsymbol{\alpha}_{1}\right|=M_{1}$. Therefore we have

$$
\tilde{p}_{\Sigma_{2}}\left(u_{1}, u_{2}, v, r\right) \geq(3 \delta / 2) r^{m}\left|u_{1}\right|^{M_{1}}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2}
$$

Thus it suffices to define for $\xi \in \Lambda$,

$$
\begin{align*}
a_{\xi}^{(2)}\left(u_{1}, u_{2}, v, r\right)=\boldsymbol{\chi} & \left(u_{1}, u_{2}, v, r\right)\left[\tilde{p}_{\Sigma_{2}}\left(u_{1}, u_{2}, v, r\right)+\right. \tag{3.3}\\
& \left.+r^{m-M_{1} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2}-\xi\right]^{-1}
\end{align*}
$$

Existence of $a_{\xi}^{(3)}$: Since W is small enough, it suffices to define

$$
\begin{equation*}
a_{\xi}^{(3)}(x, \xi)=\boldsymbol{\chi}(x, \xi)\left(\sum_{j=0}^{M_{0}} p_{m-j / 2}(x, \xi)-\xi\right)^{-1} \tag{3.4}
\end{equation*}
$$

This completes the proof.
Now we can construct microlocal parametrices of $P(x, D)-\xi I, \xi \in \Lambda$. Let $\psi(x, \boldsymbol{\xi})$ be a C^{∞} function of positively homogeneous of degree 0 and $\operatorname{supp} \psi \in W$. We define

$$
\begin{align*}
& P_{\xi, 0}^{(1)}(x, D)=\psi(x, D) a_{\xi}^{(3)}(x, D) \tag{3.5}\\
& P_{\zeta, 0}^{(2)}(x, D)=\psi(x, D)\left\{a_{\xi}^{(1)}(x, D)-a_{\xi}^{(3)}(x, D)\left(\sum_{i=1}^{3} c_{\xi}^{(1 i)}(x, D)\right)\right\} \tag{3.6}\\
& P_{\xi, 0}^{(3)}(x, D)=\psi(x, D)\left\{a_{\xi}^{(2)}(x, D)-a_{\xi}^{(3)}(x, D)\left(\sum_{i=1}^{2} c_{\xi}^{(2 i)}(x, D)\right)\right\} \tag{3.7}
\end{align*}
$$

Then we have $(P(x, D)-\xi I) P_{\xi, 0}^{(j)}(x, D)=\psi(x, D)+d_{\xi}^{(j)}(x, D)$ where $d_{\xi}^{(j)}(x, \xi) \in S^{-1 / 2,0,0}$ for $j=1,2,3$. If we put

$$
P_{\xi, l}^{(j)}(x, D)=P_{\xi, 0}^{(j)}(x, D)\left(-d_{\xi}^{(j)}(x, D)\right)^{l}, l=0,1,2, \ldots,
$$

we see that $P_{5, l}^{(j)}(x, D) \in O P S_{\Lambda}^{-m-l / 2,-M_{1},-M_{2}}$ and there exist $q_{\xi}^{(j)}(x, D) \in$ $O P S_{\Lambda}^{-m,-M_{1},-M_{2}}$ such that for every $N>0$,

$$
q_{\xi}^{(j)}(x, D)-\sum_{l=0}^{N-1} P_{5, l}^{(j)}(x, D) \in O P S_{\Lambda}^{-m-N / 2,-M_{1},-M_{2}}, j=1,2,3 .
$$

Then we have $(P(x, D)-\xi I) q_{\xi}^{(j)}(x, D) \equiv \psi(x, D) \bmod O P S_{\Lambda}^{-\infty}=$ $\bigcap_{m>0} O P S_{\Lambda}^{-m,-M_{1},-M_{2}}$.

Next we consider the case where W is a small conic neighborhood of $\rho \in \sum_{i} \backslash \sum_{0}$ such that $W \cap \sum_{0}=\phi, i=1,2$. In this case, we can write as in (3.1):

$$
\tilde{p}\left(\rho, X_{i}\right)=\sum_{j=0}^{M_{i}} \sum_{\left|\alpha_{i}\right|=M_{i}-j} a_{\alpha_{i}}(\rho) X_{i}^{\alpha_{i}} \text { for } X_{i} \in \boldsymbol{R}^{d_{i}} .
$$

Proposition 3.2. Let $\rho \in \sum_{i} \backslash \sum_{0}$. Then there exist a conic neighborhood W of ρ and $a_{\xi}^{(i j)}(x, \xi) \in S_{\Lambda}^{-m,-M_{i}}\left(W ; \sum_{i}\right)(j=1,2)$ such that

$$
(p-\xi) \# a_{\xi}^{(i j)}=1+c_{\xi}^{(i j)}
$$

where $c_{\xi}^{(i 1)} \in S_{\Lambda}^{0,1}\left(W ; \sum_{i}\right)$ and $c_{\zeta}^{(i 2)} \in S_{\Lambda}^{-1 / 2,-1}\left(W ; \sum_{i}\right)$.
Proof. If we consider as in the proof of Proposition 3.1, it suffices to define as follows:
Existence of $a_{\xi}^{(i 1)}: a_{\xi}^{(i 1)}\left(u_{i}, v, r\right)=\boldsymbol{\chi}\left(u_{i}, v, r\right)\left(\tilde{p}\left(u_{i}, v, r\right)-\xi\right)^{-1}$
Existence of $a_{\xi}^{(i 2)}: a_{\xi}^{(i 2)}(x, \xi)=\boldsymbol{\chi}(x, \xi)\left(p_{m}(x, \xi)+r^{m-M_{i} / 2}-\xi\right)^{-1}$.
This completes the proof.
Let $\psi(x, \xi)$ be a C^{∞} function of positively homogeneous of degree 0 and supp $\psi \subset W$. Define

$$
\begin{aligned}
& P_{\zeta, 0}^{(i 1)}(x, D)=\psi(x, D)\left(a_{\xi}^{(i 1)}(x, D)-a_{\xi}^{(i 2)}(x, D) c_{\xi}^{(i 1)}(x, D)\right), \\
& P_{\zeta, 0}^{(i 2)}(x, D)=\psi(x, D)\left(a_{\xi}^{(i 2)}(x, D)-a_{\xi}^{(i 1)}(x, D) c_{\xi}^{(i 2)}(x, D)\right) .
\end{aligned}
$$

As the same way as the preceding arguments, we can construct $q_{\xi}^{(i j)}(x, D) \in$ $O P S_{\Lambda}^{-m,-M_{i}}(i=1,2$ and $j=1,2)$ such that for every $N>0$, we have

$$
q_{\zeta}^{(i j)}(x, D)-\sum_{l=0}^{M-1} p_{\zeta}^{(i j)}(x, D) \in O P S_{\Lambda}^{-m-N / 2,-M_{i}}
$$

and $(P(x, D)-\xi I) q_{\xi}^{(i j)}(x, D) \equiv \psi(x, D) \bmod O P S_{\Lambda}^{-\infty}$.
Finally we have

Proposition 3.3. Let W be an open cone such that $W \cap \Sigma=\phi$. Then there exists $a_{\xi}^{(3)}(x, \xi) \in S^{-m}(W)$ such that

$$
(p-\xi) \# a_{\xi}^{(3)}=1+c_{\xi}^{(3)} \text { where } c_{\xi}^{(3)} \in S_{\Lambda}^{-1 / 2} .
$$

Proof. If necessary, we replace δ as in (H.3) with smaller one. So we may assume $p_{m}(x, \xi) \geq \delta$ in W. Thus if we put

$$
a_{\xi}^{(3)}(x, \xi)=\boldsymbol{\chi}(x, \xi)\left(p_{m}(x, \xi)-\xi\right)^{-1},
$$

the proof is complete.

§ 4. Construction of complex powers

In this section we consider complex powers of an operator P associated to $P(x, D)$. Assume that $P(x, D) \in O P L^{m, M_{1}, M_{2}}\left(\sum_{1}, \sum_{2}\right)$ satisfies (1.3), (1.4) and (H.1) $\sim($ H. 4). Moreover we assume:
(H. 5) $P(x, D)$ is formally self-adjoint, i. e., for every $u, v \in \mathscr{S}\left(\boldsymbol{R}^{n}\right)$.

$$
\int_{\boldsymbol{R}^{n}} P(x, D) u \bar{v} d x=\int_{\boldsymbol{R}^{n}} u \overline{P(x, D) v} d x
$$

Let P_{0} be an operator on $L^{2}\left(\boldsymbol{R}^{n}\right)$ with the definition domain $D\left(P_{0}\right)=$ $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ such that $P_{0} u=P(x, D) u$ for $u \in D\left(P_{0}\right)$. By Remark 1.3 and (H. 4), $P(x, D)$ is hypoelliptic with loss of $M_{0} / 2$-derivatives and $m-M_{0} / 2>0$. Therefore P_{0} is essentially self-adjoint and the closure P of P_{0} is an unbounded self-adjoint operator with the definition domain $D(P)=\left\{u \in L^{2}\left(\boldsymbol{R}^{n}\right) ; P(x, D) u \in L^{2}\left(\boldsymbol{R}^{n}\right)\right\}$,

$$
P u=P(x, D) u \text { for } u \in D(P)
$$

Since $P(x, D)$ has a parametrix $Q(x, D) \in O P S^{-m,-M_{1},-M_{2}}\left(\Sigma_{1}, \Sigma_{2}\right), P$ has a compact regularizer on $L^{2}\left(\boldsymbol{R}^{n}\right)$. (c. f. Kumano-go [10] and also Grushin [5]). Thus P has the spectrum consist only of eigenvalues of finite multiplicity. Finally we assume:
(H. 6) P is positive definite, i. e., there exists a positive real number γ such that $(P u, u) \geq \gamma\|u\|_{L^{2}\left(\boldsymbol{R}^{n}\right)}^{2}$ for all $u \in D(P)$.

Then we can define complex powers P^{z} by the spectral resolution of P. Let Γ be a curve beginning at infinity, passing along the negative real line to a circle $\{\boldsymbol{\xi} ;|\boldsymbol{\xi}|=\delta\}$ (where δ is in (H. 3) and we may assume $\delta \leq \gamma$), then clockwise about the circle and back to infinity along the negative real line. For $\mathscr{R}_{0} z<0$, we see

$$
\begin{equation*}
P^{z}=\frac{i}{2 \pi} \int_{\Gamma} \xi^{z}(P-\xi)^{-1} d \xi \tag{4.1}
\end{equation*}
$$

where ζ^{z} takes the principal value in $\boldsymbol{C} \backslash \boldsymbol{R}^{-}$. Here we note that
 Therefore the integral in the right hand side in (4.1) is convergent.

On the other hand we define operators $P_{z}(x, D)$ with the symbol $\sigma\left(P_{z}\right)$ by the formula:

$$
\begin{equation*}
\sigma\left(P_{z}\right)(x, \xi)=\frac{i}{2 \pi} \int_{\Gamma} \xi^{z} q_{\xi}(x, \xi) d \xi . \tag{4.2}
\end{equation*}
$$

Here for brevity of the notations we have dropped the upper indices of $q_{\xi}^{(j)}(x, D)(j=1,2,3)$ in $\S 3$. Since $q_{5} \in S_{\Lambda}^{-m_{1}, M_{1}, M_{2}}\left(\Sigma_{1}, \Sigma_{2}\right)$, we see easily that the integral in (4.2) is absolutely convergent when $\mathscr{R}_{0} z<0$. For $\mathscr{R}_{0} z$ ≥ 0, choose an integer k such that $-1 \leq \mathscr{R}_{\circ} z-k<0$ and define

$$
\begin{equation*}
P_{z}(x, D)=P(x, D)^{k} P_{z-k}(x, D) . \tag{4.3}
\end{equation*}
$$

Then we have:
Theorem 4.1. Assume that $P(x, D) \in O P L^{m_{2}, M_{1}, M_{2}}\left(\boldsymbol{\Sigma}_{1}, \Sigma_{2}\right)$ satisfies (1.3), (1.4) and (H.1)~(H.6). Then we have the followings:
(i) $P^{z} \in O P S^{m g g_{2}, M_{1} M_{2} . z, M_{2} g_{2} z}\left(\Sigma_{1}, \Sigma_{2}\right)$.
(ii) For any negative real number a and real numbers m^{\prime}, k_{1} and k_{2} satisfying $m a<m^{\prime}, \quad N\left(m, M_{i}\right) a<N\left(m^{\prime}, k_{i}\right)(i=1,2) \quad$ and $\quad N\left(m, M_{0}\right) a<$ $N\left(m^{\prime}, k_{1}+k_{2}\right), \sigma\left(P^{z}\right)$ is holomorphic on any compact set in $\left\{z ; \mathscr{R}_{0} z<a\right\}$ with value in $S^{m^{\prime}, k_{1}, k_{2}}\left(\Sigma_{1}, \Sigma_{2}\right)$.
Later from now we write such class of symbols satisfying (i) and (ii) by

Proof. Let $\mathscr{R}_{0} z<0$. Near Σ_{0}, we see that by (H. 3), $q_{\xi}(x, \xi)$ is holomorphic in $\left\{\xi ; \mathscr{g}_{m} \xi=0, \mathscr{R}_{0} \zeta \leq 0\right\} \cup\left\{\xi ;|\xi| \leq \delta R\left(r, u_{1}, u_{2}\right)\right\}$ where

$$
\begin{equation*}
R\left(r, u_{1}, u_{2}\right)=r^{m} \rho_{\sum_{1}}^{\frac{M}{1}}, \rho \rho_{\Sigma_{2}}^{M_{2}} . \tag{4.4}
\end{equation*}
$$

So we may replace the contour Γ in (4.2) with $\Gamma^{\prime}=\Gamma_{1}{ }^{\prime}+\Gamma_{2}{ }^{\prime}+\Gamma_{3}{ }^{\prime}$ where $\Gamma_{1}{ }^{\prime}: \xi=-s \quad \delta R\left(r, u_{1}, u_{2}\right) \leq s \leq+\infty$,

$$
\begin{array}{ll}
\Gamma_{2}^{\prime}: \xi=\delta R\left(r, u_{1}, u_{2}\right) e^{-i \theta} & -\pi \leq \theta \leq \pi \\
\Gamma_{3}^{\prime}: \xi=s & \delta R\left(r, u_{1}, u_{2}\right) \leq s \leq+\infty .
\end{array}
$$

On the other hand since $q_{\xi}(x, \xi) \in S_{\Lambda}^{-m_{1}-M_{1},-M_{2}}\left(\Sigma_{1}, \Sigma_{2}\right)$, for any multi-index ($\alpha_{1}, \alpha_{2}, \beta$) and non-negative integer p there exists a constant $C=C_{\alpha_{1}, \alpha_{2}, \beta, p}$ such that

$$
\left|\left(\frac{\partial}{\partial u_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial u_{2}}\right)^{\alpha_{2}}\left(\frac{\partial}{\partial v}\right)^{\beta}\left(\frac{\partial}{\partial r}\right)^{p} q_{\xi}\left(u_{1}, u_{2}, v, r\right)\right| \leq C|\xi|^{-1} r^{-p} \rho_{\Sigma_{1}^{-1}}^{\left|\alpha_{1}\right|} \rho_{\Sigma_{2}^{-}}^{\left|\alpha_{2}\right|} .
$$

In order to estimate $\sigma\left(P^{z}\right)$, put for each $j=1,2,3$,

$$
I_{j}=\frac{i}{2 \pi} \int_{\Gamma_{j}}, \xi^{z}\left(\frac{\partial}{\partial u_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial u_{2}}\right)^{\alpha_{2}}\left(\frac{\partial}{\partial v}\right)^{\beta}\left(\frac{\partial}{\partial r}\right)^{p} q_{\xi}\left(u_{1}, u_{2}, v, r\right) d \xi
$$

Then we have for $j=1$ or 3 ,

$$
\begin{aligned}
\left|I_{j}\right| & \leq C r^{-p} \rho_{\Sigma_{1}^{-}}^{-\left|\alpha_{1}\right|} \rho_{\Sigma_{2}}^{-\left|\alpha_{2}\right|} \int_{\delta R\left(r, u_{1}, u_{2}\right)}^{\infty} s^{\mathscr{G} \cdot z-1} d s \\
& \leq C_{z} R\left(r, u_{1}, u_{2}\right)^{\mathscr{G} z} r^{-p} \rho_{\Sigma_{1}^{\mid}}^{-\alpha_{1} \mid} \rho_{\Sigma_{2}^{-\left|\alpha_{2}\right|}}^{-\mid \alpha_{2}}
\end{aligned}
$$

where C_{z} is a constant depending on z. For $j=2$, we have easily

$$
\left|I_{j}\right| \leq C_{z}^{\prime} R\left(r, u_{1}, u_{2}\right)^{\mathscr{A} z} r^{-p} \rho_{\Sigma_{1}}^{-\left|\alpha_{1}\right|} \rho_{\Sigma_{2}}^{-\left|\alpha_{2}\right|}
$$

where C_{z}^{\prime} is a constant depending on z. Similarly we can estimate (4.2) also in the other cases of Σ_{1} and Σ_{2}. Thus we have

$$
\sigma\left(P^{z}\right)(x, \xi) \in S_{0}^{m \mathscr{S}_{2} z, M_{1} \mathscr{A} z, M_{2} \mathscr{G}_{2} z}\left(\Sigma_{1}, \Sigma_{2}\right) .
$$

Moreover since $(P-\xi)^{-1}-q_{\xi}(x, D) \in O P S_{\Lambda}^{-\infty}$, then we see that

$$
\sigma\left(P^{z}\right)-\frac{i}{2 \pi} \int_{\Gamma} \xi^{z} q_{\xi}(x, \xi) d \xi \in S_{0}^{-\infty}
$$

Thus we have (i) for $\mathscr{R}_{0} z<0$ and (ii). For $\mathscr{R}_{0} z \geq 0$, by Proposition 2. 4 and (4.3), (i) is clear. This completes the proof.

For the symbols of P^{z} we have the following Propositions corresponding to Proposition 3.1,3.2 and 3. 3 respectively whose proofs are omitted. (c.f. [2]).

Proposition 4.2. Let W be a small conic neighborhood of $\rho \in \Sigma_{0}$ and $\boldsymbol{\chi}$ a function of positively homogeneous of degree 0 such that $\operatorname{supp} \boldsymbol{\chi} \subset W$. Then we have in W
(i) $\sigma\left(P^{z}\right)=\chi \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z}+d_{z}^{(11)}+d_{z}^{(12)}+d_{z}^{(13)}$
 $d_{z}^{(13)} \in S_{0}^{m \mathscr{M}, z-1 / 2, M_{1} \mathscr{G}, z, M_{2} \mathscr{M}, z}$.
(ii) $\sigma\left(P^{z}\right)=\chi\left[\tilde{p}_{\Sigma_{2}}\left(u_{1}, u_{2}, v, r\right)+r^{m-M_{2} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2}\right]^{z}+d_{z}^{(21)}+d_{z}^{(22)}$

(iii) $\sigma\left(P^{z}\right)=\left(\sum_{j=0}^{M_{0}} p_{m-j / 2}\right)^{z}+d_{z}^{(3)}$ where $d_{z}^{(3)} \in S_{0}^{m \mathscr{C}_{2} z-1 / 2, M_{1} \mathscr{P r}_{2}, M_{2} \mathscr{A}, z}$.

Next for every $i=1,2$, we have:
Proposition 4. $3_{(i)}$. Let W be a small conic neighborhood of $\rho \in \sum_{i} \backslash \Sigma_{0}$
such that $W \cap \sum_{0}=\phi$ ．And also let $\boldsymbol{\chi}$ be a function of positively homogeneous of degree 0 such that supp $\chi \subset W$ ．Then we have in W ：
（i）$\sigma\left(P^{z}\right)=\chi \tilde{p}\left(u_{i}, v, r\right)^{z}+d_{z}^{(i 1)}+d_{z}^{(i 2)}$
where $d_{z}^{(i 1)} \in S_{0}^{m \mathscr{R}_{2}, M_{i} M_{R} z+1}\left(W ; \Sigma_{i}\right)$ and $d_{z}^{(i 2)} \in S_{0}^{M_{\mathscr{R}} z-1 / 2, M_{i} \mathscr{G} \cdot z}$ ．
（ii）$\sigma\left(P^{z}\right)=\boldsymbol{x}\left(p_{m}+r^{m-M_{i} / 2}\right)^{z}+d_{z}^{(i 2)}$
where $d_{z}^{(i 2)} \in S_{0}^{\text {m⿻彐丨．z－1／2，} M_{i} \mathscr{G}: z-1}\left(W ; \sum_{i}\right)$ ．
Proposition 4．4．Let W be an open cone such that $W \cap \Sigma=\phi$ and χ be a function of positively homogeneous of degree 0 such that $\operatorname{supp} \boldsymbol{\chi} \subset W$ ． Then we have in W ，

$$
\sigma\left(P^{z}\right)=\chi p_{m}^{z}+d_{z}
$$

where $d_{z} \in S_{0}^{m \text { S．z } z-1 / 2}(W)$ ．

§ 5．The first singularity of $\operatorname{Trace}\left(\mathbf{P}^{z}\right)$

In this section we consider the first singularity of Trace $\left(P^{z}\right)$ and determine the order of the pole and the coefficient at the point．Let $p_{z}(x, \xi)$ be the symbol of P^{z} ．It is well known that if

$$
\int_{\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}}\left|p_{z}(x, \xi)\right| d x d \xi \leq C_{z}
$$

for some constant C_{z} ，then P^{z} is an operator of trace class and the trace is given by ：

$$
\operatorname{Tr}\left(P^{z}\right)=(2 \pi)^{-n} \int_{\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}} p_{z}(x, \xi) d x d \xi
$$

Since

$$
\int_{r \leq 1} p_{z}(x, \xi) d x d \xi
$$

is entire，we may consider ：

$$
I(z)=(2 \pi)^{-n} \int_{r \geq 1} p_{z}(x, \xi) d x d \xi
$$

PROPOSITION 5．1．Let $p_{z} \in S_{0}^{m \mathscr{g}_{2} z-j, M_{1} \mathscr{g}_{2} z-k_{1}, M_{2} \mathscr{g}_{z} z-k_{2}}\left(\sum_{1}, \Sigma_{2}\right)$ and W be an open cone and χ a C^{∞} function of positively homogeneous of degree 0 such that supp $\chi \subset W$ ．Put

$$
I_{\chi}(z)=\int_{r \geq 1} \boldsymbol{\chi}(x, \boldsymbol{\xi}) p_{z}(x, \xi) d x d \boldsymbol{\xi}
$$

（ I ）The case：W is a small conic neighborhood of $\rho \in \Sigma_{0}$ ．Then $I_{\chi}(z)$ is
holomorphic in $\left\{z ; \mathscr{R}_{0} z<a\right\}$ if a satisfies any one of the followings.
(I .1) $a<-\frac{d_{i}-k_{i}}{M_{i}}(i=1,2)$ and $a<-\frac{N\left(2 n-j, d_{0}-k_{1}-k_{2}\right)}{N\left(m, M_{0}\right)}$,
(I .2) $-\frac{d_{1}-k_{1}}{M_{1}} \leq a<-\frac{d_{2}-k_{2}}{M_{2}}$ and $a<-\frac{N\left(2 n-j, d_{2}-k_{2}\right)}{N\left(m, M_{2}\right)}$,
(I .3) $-\frac{d_{2}-k_{2}}{M_{2}} \leq a<-\frac{d_{1}-k_{1}}{M_{1}}$ and $a<-\frac{N\left(2 n-j, d_{1}-k_{1}\right)}{N\left(m, M_{1}\right)}$,
(I .4) $\quad-\frac{d_{i}-k_{i}}{M_{i}} \leq a(i=1,2)$ and $a<-\frac{2 n-j}{m}$.
(II) ${ }_{(i)}$ The case: W is a small conic neighborhood of $\rho \in \Sigma_{i} \backslash \Sigma_{0}(\mathrm{i}=1,2)$ such that $W \cap \Sigma_{0}=\phi$. Then $I_{x}(z)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<a\right\}$ if a satisfies any one of the followings.
(II.1.i) $a<-\frac{d_{i}-k_{i}}{M_{i}}$ and $a<-\frac{N\left(2 n-j, d_{i}-k_{i}\right)}{N\left(m, M_{i}\right)}$,
(II .2.i) $-\frac{d_{i}-k_{i}}{M_{i}} \leq a$ and $a<-\frac{2 n-j}{m}$.
(III) The case: W is outside of Σ. Then $I_{x}(z)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<a\right\}$ if $a<-\frac{2 n-j}{m}$.

Proof. (I) We choose a local coordinate system $w=\left(u_{1}, u_{2}, v, r\right)$ as in $\S 2$. We may assume that $W \subset\left\{w=\left(u_{1}, u_{2}, v, r\right) ;\left|u_{i}\right| \leq 1, i=1,2\right\}$. Let K be an arbitrary compact set in $\left\{z ; \mathscr{R}_{0} z<a\right\}$. Then by Theorem 4. 1, there exists a constant C which is independent of $z \in K$ such that

$$
\left|p_{z}(x, \boldsymbol{\xi})\right| \leq C R\left(r, u_{1}, u_{2}\right)^{a} r^{-j}\left(\left|u_{1}\right|^{2}+r^{-1}\right)^{-k_{1} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{-k_{2} / 2} .
$$

Note that $d x d \xi=J\left(u_{1}, u_{2}, v, r\right) d u_{1} d u_{2} d v d r$ where $J\left(u_{1}, u_{2}, v, r\right)$ $=\left|\operatorname{det} \frac{D\left(u_{1}, u_{2}, v, r\right)}{D(x, \xi)}\right|^{-1}$ is positively homogeneous of degree $2 n-1$. Thus if $\mathscr{R}_{0} z<a$, we have for some constants C, C^{\prime} and T,

$$
\begin{equation*}
\int_{r \geq 1}\left|x(x, \xi) p_{z}(x, \xi)\right| d x d \xi \tag{5.1}
\end{equation*}
$$

$$
\leq C \int_{1}^{\infty} \int_{|v| \leq T,\left|u_{1}\right| \leq 1} R\left(r, u_{1}, u_{2}\right)^{a} r^{-j+2 n-1}\left(\left|u_{1}\right|^{2}+r^{-1}\right)^{-k_{1} / 2} \times
$$

$\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{-k_{2} / 2} d u_{1} d u_{2} d v d r$

$$
\leq C^{\prime} \int_{1}^{\infty} r^{N\left(m, M_{0}\right) a+N\left(2 n, d_{0}\right)-1-j+\left(k_{1}+k_{2}\right) / 2} d r \prod_{i=1}^{2} \int_{0}^{r^{\prime / 2}}\left(t_{i}^{2}+1\right)^{\left(M, a-k_{i}\right) / 2} t_{i}^{d_{i}-1} d t_{i} .
$$

Here we have that if $M_{i} a-k_{i}+d_{i}<0$,

$$
\int_{0}^{r^{1 / 2}}\left(t_{i}^{2}+1\right)^{\left(M_{i} a-k_{i}\right) / 2} t_{i}^{d_{i}-1} d t_{i} \leq \int_{0}^{\infty}\left(t_{i}^{2}+1\right)^{\left(M_{i} a-k_{i}\right) / 2} t_{i}^{d_{i}-1} d t_{i}<\infty
$$

and if $M_{i} a-k_{i}+d_{i} \geq 0$,

$$
\int_{0}^{r^{1 / 2}}\left(t_{i}^{2}+1\right)^{\left(M_{i} a-k_{i}\right) / 2} t_{i}^{d_{i}-1} d t_{i}=O\left(r^{\left(M_{i} a+d_{i}-k_{i}\right) / 2} \log r\right) \text { as } r \rightarrow \infty
$$

Thus (I) holds. Also (II) and (III) follows from the same arguments, so we omit them.

Now we have results on the first singularity of $\operatorname{Tr}\left(P^{z}\right)$ for each case.
Proposition 5.2. When $\frac{d_{1}}{M_{1}} \geq \frac{d_{2}}{M_{2}}>\frac{2 n}{m}, \operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{2 n}{m}\right\}$ and has a simple pole at $z=-\frac{2 n}{m}$ as the first singularity with the residue $\operatorname{Res}\left(-\frac{2 n}{m}\right)=\frac{2 \mathrm{nA}_{1}}{m}$ where
(5.2) $\quad A_{1}=(2 \pi)^{-n} \int_{p_{m}(x, \xi) \leq 1} d x d \xi$.

Proof. That $\operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z\right.$; $\left.\mathscr{R}_{0} z<-\frac{2 n}{m}\right\}$ follows from Proposition 5. 1 with $j=k_{1}=k_{2}=0$. In this case we use Proposition 4. 2(iii), 4. 3 (ii), 4. 4 and slso 5. 1. Then we can write $\operatorname{Tr}\left(P^{z}\right)=I_{0}(z)+I_{1}(z)$ where

$$
I_{0}(z)=(2 \pi)^{-n} \int_{r \geq 1}\left(p_{m}+r^{m-\operatorname{Min}\left(M_{1}, M_{2}\right) / 2}\right)^{z} d x d \xi
$$

and $I_{1}(z)$ is holomorhic in $\left\{z ; \mathscr{R}_{0} z \leq-\frac{2 n}{m}\right\}$. Here by using the mean value theorem, for any $a<0$ and any $\varepsilon, 0<\varepsilon<1$, there exists a constant C such that

$$
\begin{aligned}
& \left|\int_{r \geq 1}\left\{\left(p_{m}+r^{m-\operatorname{Min}\left(M_{1}, M_{2}\right) / 2}\right)^{a}-\left(p_{m}+1\right)^{a}\right\} d x d \xi\right| \\
& =\mid \int_{r \geq 1}\left[a\left(r^{m-\operatorname{Min}\left(M_{1}, M_{2}\right) / 2}-1\right) \times\right. \\
& \left.\int_{0}^{1}\left\{p_{m}+1+\theta\left(r^{m-\operatorname{Min}\left(M_{1}, M_{2}\right) / 2}-1\right)\right\}^{a-1} d \theta\right] d x d \xi \mid \\
& \leq C \int_{1}^{\infty} r^{m a+2 n-1-\varepsilon \operatorname{Min}\left(M_{1}, M_{2}\right) / 2} d r \prod_{i=1}^{2} \int_{0}^{1} t_{i}^{M_{i} a-M_{i} \varepsilon+d_{i}-1} d t_{i} .
\end{aligned}
$$

Thus if we choose a such that $a>-\frac{2 n}{m}$, we see that the integral is convergent. So we are reduced to (c.f. [2]) :

$$
\int\left(p_{m}+1\right)^{z} d x d \xi=\frac{2 n}{m} \sigma(1) \frac{\Gamma(2 n / m) \Gamma(-(z+2 n / m))}{\Gamma(-z)}
$$

where $\sigma(\boldsymbol{\lambda})=(2 \pi)^{-n} \int_{p_{m}(x, \xi) \leq \lambda} d x d \xi$.
Therefore by the properties of Γ-function, we reach the conclusion.
Proposition 5. 3. When $\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}>\frac{2 n}{m}, \frac{d_{1}}{M_{1}}, \operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{N\left(2 n, d_{0}\right)}{N\left(m, M_{0}\right)}\right\}$ and has a simple pole at $z=-\frac{N\left(2 n, d_{0}\right)}{N\left(m, M_{0}\right)}$ as the first singularity with the residue $\operatorname{Res}\left(-\frac{N\left(2 n, d_{0}\right)}{N\left(m, M_{0}\right)}\right)=\frac{A_{2}}{N\left(m, M_{0}\right)}$ where

$$
\begin{align*}
A_{2}=(2 \pi)^{-n} & \int_{\left(\Sigma_{0} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times \boldsymbol{R}^{d,} \times \boldsymbol{R}^{d .}} J(0,0, v, 1) \times \tag{5.3}\\
& \tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{-N\left(2 n, d_{1}\right) / N\left(m, M_{0}\right)} d u_{1} d u_{2} d v .
\end{align*}
$$

Proof. We have $\frac{N\left(2 n, d_{0}\right)}{N\left(m, M_{0}\right)}>\frac{N\left(2 n, d_{i}\right)}{N\left(m, M_{i}\right)}(i=1,2)$ in this case. By Proposition 4. 2(i), 4. 3(i), 4. 4 and 5. 1, we may consider with W and χ as in Proposition 5. 1(I),

$$
\int_{r \geq 1} h\left(u_{1}, u_{2}, v, r\right) \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r
$$

where $\quad h\left(u_{1}, u_{2}, v, r\right)=\chi\left(u_{1}, u_{2}, v, r\right) J\left(u_{1}, u_{2}, v, r\right)$. Since we have $\left\{h\left(u_{1}, u_{2}, v, r\right)-h(0,0, v, r)\right\} \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z}=r_{z}^{\prime}+r_{z}^{\prime \prime}$
 Proposition 5. 1 we are reduced to the integral $I(z)=$

$$
(2 \boldsymbol{\pi})^{-n} \int_{\left(\Sigma_{0} \cap\{r \geq 1\}\right) \times \boldsymbol{R}^{d} \times \boldsymbol{R}^{d=}} h(0,0, v, r) \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r
$$

By quasi-homogeneity of \tilde{p} and the change of variable: $u_{i} \rightarrow r^{-1 / 2} u_{i}(i=1,2)$, we see that

$$
I(z)=(2 \pi)^{-n} \int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1} d r I_{1}(z)
$$

where

$$
I_{1}(z)=\int_{\left(\Sigma_{0} \cap S^{*} R^{2 n}\right) \times \boldsymbol{R}^{d, \times \boldsymbol{R}^{d}}} h(0,0, v, 1) \tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{z} d u_{1} d u_{2} d v
$$

Since it is clear that $I_{1}(z)$ is holomorphic in $\left\{z ; \mathscr{R} . z \leq-\frac{N\left(2 n, d_{0}\right)}{N\left(m, M_{0}\right)}\right\}$, we reach the conclusion.

Proposition 5.4. When $\frac{d_{1}}{M_{1}}>\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}>\frac{2 n}{m}, \operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}\right\}$ and has a simple pole at $z=-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}$ as the first singularity with the residue $\operatorname{Res}\left(-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}\right)=-\frac{A_{3}}{N\left(m, N_{2}\right)}$ where (5.4) $A_{3}=(2 \pi)^{-n} \int_{\left(\Sigma_{2} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times \boldsymbol{R}^{d,}}\left(\tilde{p}\left(u_{2}, v, 1\right)+1\right)^{-N\left(2 n, d_{2}\right) / N\left(m, M_{2}\right)} J(0, v, 1) d u_{2} d v$

Proof That $\operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}\right\}$
follows from Proposition 5. 1. By Proposition 4. 2(ii), 4. $3_{(2)}$ (i), 4. $3_{(1)}$ (ii), 4. 4 and 5. 1, we may consider the integral of $p_{z}(x, \xi)$ near \sum_{2}. First let W and $\boldsymbol{\chi}$ be as in Proposition 5. 1(II) (2). Then by the same way as the proof of Proposition 5. 3, we have modulo holomorphic functions for $\mathscr{R}_{0} z \leq-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}$,

$$
\begin{aligned}
& I_{\chi}(z) \equiv \\
& (2 \pi)^{-n} \int_{r \geq 1} h(0, v, r)\left\{\tilde{p}\left(u_{2}, v, r\right)+r^{m-M_{1} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2}\right\}^{z} d u_{2} d v d r
\end{aligned}
$$

Secondly let W and $\boldsymbol{\chi}$ be as in Proposition 5. 1(I). Then we have

$$
\begin{aligned}
& \left.\tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z}-\left\{\tilde{p}_{\Sigma_{2}}\left(u_{2}, u_{1}, v, r\right)+r^{m-M_{1} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2}\right)\right\}^{z} \\
& =r_{z}^{1}+r_{z}^{2}
\end{aligned}
$$

where $\quad r_{z}^{1} \in S_{0}^{m \mathscr{P L}_{2} z-1 / 2, M_{1} \mathscr{S i}_{2} z-1, M_{2} \mathscr{G}_{1} z}$ and $r_{z}^{2} \in S_{0}^{m \mathscr{P}_{2}, M_{1} M_{1} \mathscr{P}_{2}, M_{2} \mathscr{P}_{2} . z+1}$. So we have

$$
\begin{aligned}
& I_{x}(z) \equiv(2 \pi)^{-n} \int_{r \geq 1} h\left(u_{1}, 0, v, r\right) \times \\
& \left\{\tilde{p}_{\Sigma_{2}}\left(u_{2}, u_{1}, v, r\right)+r^{m-M_{1} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2}\right\}^{z} d u_{1} d u_{2} d v d r .
\end{aligned}
$$

By the quasi-homogeneity of $\tilde{p}\left(u_{2}, v, r\right)$ and $\tilde{p}_{\Sigma_{2}}\left(u_{2}, u_{1}, v, r\right)$ and the change of variable $u_{2} \rightarrow r^{-1 / 2} u_{2}$, we reach the conclusion.

Proposition 5.5. When $\frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\frac{2 n}{m}, \operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{2 n}{m}\right\}$ and has a triple pole at $z=-\frac{2 n}{m}$ as the first singularity with the coefficient of $\left(z+\frac{2 n}{m}\right)^{-3}$ equal to $-\frac{N\left(2 m, M_{0}\right) A_{4}}{4 m N\left(m, M_{1}\right) N\left(m, M_{2}\right) N\left(m, M_{0}\right)}$ where

$$
\begin{align*}
A_{4}= & (2 \pi)^{-n} \int_{\left(\Sigma_{0} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times S^{*} \boldsymbol{R}^{d} \times S^{*} \boldsymbol{R}^{d}} \tilde{p}_{m}\left(\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, v, 1\right)^{-2 n / m} \times \tag{5.5}\\
& J(0,0, v, 1) d \omega_{1} d \omega_{2} d v .
\end{align*}
$$

Proof. In this proposition if a function $f(z)$ is holomorphic in $\left\{z ; \mathscr{R} . z<-\frac{2 n}{m}\right\}$ and has at most a double pole at $z=-\frac{2 n}{m}$ as the first singularity, we say that the function is negligible and write $f(z) \equiv 0$.

That $\operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{2 n}{m}\right\}$ follows from Proposition 5. 1. Let W and χ be as in Proposition 5.1 (I). By Proposition 4. 2 (i), 4. $3_{(. j)}$ (i) and 4. 4, we may consider

$$
J(z)=(2 \pi)^{-n} \int_{r \geq 1} h\left(u_{1}, u_{2}, v, r\right)\left\{\tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z}+d_{z}^{(1)}+d_{z}^{(2)}\right\} d u_{1} d u_{2} d v d r
$$ where $d_{z}^{(1)}=$

$$
=\left\{\sum_{\substack{\left|\alpha_{1}\right| \leq M_{1} \\\left|\alpha_{2}\right| \leq M_{2}}} a_{\alpha_{1}, \alpha_{2}}\left(u_{1}, u_{2}, v, r\right) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}\right\} z-\left\{\sum_{\substack{\alpha_{1} \\\left|\alpha_{2}\right| \leq M_{2}}} a_{\alpha_{1}, \alpha_{2}}\left(0, u_{2}, v, r\right) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}\right\}^{z}
$$

and $d_{z}^{(2)}=\left\{\sum_{\substack{\left|\alpha_{1}\right| \leq M_{1} \\ \alpha_{2} \mid \leq M_{2}}} a_{\alpha_{1}, \alpha_{2}}\left(0, u_{2}, v, r\right) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}\right\}^{z}-\left\{\sum_{\substack{\alpha_{1} \\\left|\alpha_{2}\right| \leq M_{2}}} a_{\alpha_{1}, \alpha_{2}}(0,0, v, r) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}\right\}^{z}$.
Here we may assume that $\operatorname{supp} h \subset\left\{\left(u_{1}, u_{2}, v, r\right) ;\left|u_{i}\right| \leq 1, i=1,2\right\}$. Moreover we shall prove:

$$
\begin{align*}
& J(z) \equiv J_{0}(z) \text { where } J_{0}(z)= \tag{5.6}\\
& =(2 \pi)^{-n} \int_{r \geq 1, r^{-1 / 2} \leq\left|u_{i}\right| \leq 1} h(0,0, v, r) \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r
\end{align*}
$$

In order to prove (5.6) we need the following lemmas.
Lemma 5.6. If we put $J_{1}(z)=$

$$
=\int_{\left|u_{i}\right| \leq r^{-1 / 2}} h\left(u_{1}, u_{2}, v, r\right) \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r,
$$

then $J_{1}(z) \equiv 0$.
Proof. By the preceding arguments, we have for $\mathscr{R}_{0} z<-\frac{N\left(2 n, d_{0}\right)}{N\left(m, M_{0}\right)}$, $J_{1}(z)=\int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1} d r \times$

$$
\times \int_{\left|u_{i}\right| \leq 1} h\left(r^{-1 / 2} u_{1}, r^{-1 / 2} u_{2}, v, 1\right) \tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{z} d u_{1} d u_{2} d v
$$

$$
\begin{gathered}
=-\frac{1}{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)} \int_{\left|u_{i}\right| \leq 1} h\left(u_{1}, u_{2}, v, 1\right) \times \\
\tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{z} d u_{1} d u_{2} d v-\int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-3 / 2} d r \times \\
\\
\int_{\left|u_{i}\right| \leq 1} \sum_{i=1}^{2} u_{i} \tilde{h_{i}}\left(r^{-1 / 2} u_{1}, r^{-1 / 2} u_{2}, v, 1\right) \tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{z} d u_{1} d u_{2} d v .
\end{gathered}
$$

Thus we see that $J_{1}(z) \equiv 0$ and this completes the proof.
Lemma 5.7. If we put $J_{2}(z)=$

$$
\int_{\substack{\left|u_{1}\right| \leq r^{-1 / 2} \\ r^{-1 / 2} \leq\left|u_{2}\right| \leq 1}} h\left(u_{1}, u_{2}, v, r\right) \tilde{p}\left(u_{1} u_{2}, v, r\right)^{z} d u_{1} d v d r
$$

then $J_{2}(z) \equiv 0$.
Proof. $1^{\text {st }}$-step : If we put $J_{3}(z)=$

$$
\int_{\substack{\left|u_{1}\right| \leq r^{-1 / 2} \\ r^{-1 / 2} \leq\left|u_{2}\right| \leq 1}}\left\{h\left(u_{1}, u_{2}, v, r\right)-h\left(u_{1}, 0, v, r\right)\right\} \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r
$$

we can prove $J_{3}(z) \equiv 0$. In fact, if we put $h\left(u_{1}, u_{2}, v, r\right)-h\left(u_{1}, 0, v, r\right)=$ $u_{2} \cdot \tilde{h}\left(u_{1}, u_{2}, v, r\right)$, we have

$$
J_{3}(z)=\int_{1}^{\infty} r^{N\left(m, M_{1}\right) z+N\left(2 n, d_{1}\right)-1} J_{4}(r, z) d r
$$

Here $J_{4}(r, z)=$

$$
\int_{\substack{\left|u_{1}\right| \leq 1 \\ r^{-1 / 2} \leq\left|u_{2}\right| \leq 1}} u_{2} \cdot \tilde{h}\left(r^{-1 / 2} u_{1}, u_{2}, v, r\right)\left\{\sum_{i=1}^{2} \hat{p}_{i}\left(u_{1}, u_{2}, v, r\right)\right\}^{z} d u_{1} d u_{2} d v d r
$$

where $\hat{p}_{1}\left(u_{1}, u_{2}, v, r\right)=\sum_{\substack{\alpha_{2} \\\left|\alpha_{1}\right| \leq M_{2}}} a_{\alpha_{1}, \alpha_{2}}(0,0, v, r) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}}$ and

$$
\hat{p}_{2}\left(u_{1}, u_{2}, v, r\right)=\sum_{\substack{\left|\alpha_{2}\right| \leq M_{2} \\\left|\alpha_{1}\right| \leq M_{1}}} r^{\left(\left|\alpha_{2}\right|-M_{2}\right) / 2} a_{\alpha_{1}, \alpha_{2}}(0,0, v, 1) u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} .
$$

Moreover we can write

$$
J_{4}(r, z)=\int_{r^{-1 / 2}}^{1} t^{M_{2} z+d_{2}} J_{5}(t, r, z) d t
$$

where $J_{5}(t, r, z)=$

$$
\int \omega_{2} \cdot h\left(r^{-1 / 2} u_{1}, t \omega_{2}, v, 1\right)\left[\hat{p}_{1}\left(u_{1}, \omega_{2}, v, 1\right)+\hat{p}_{2}\left(u_{1}, \omega_{2}, v, t^{2} r\right)\right]^{z} d u_{1} d \omega_{2} d v
$$

Thus by the integration by parts, we have $J_{4}(r, z)=\frac{1}{M_{2} z+d_{2}+1} \times$
$\left[J_{5}(1, r, z)-r^{-\left(M_{2} z+d_{2}+1\right) / 2} J_{5}\left(r^{-1 / 2}, r, z\right)-\int_{r^{-1 / 2}}^{1} t^{M_{2} z+d_{2}+1} \frac{\partial}{\partial t} J_{5}(t, r, z) d t\right]$.

Here we have

$$
\begin{aligned}
& \frac{\partial}{\partial t} J_{5}(t, r, z)=\int\left\{\tilde { h } _ { 1 } (r ^ { - 1 / 2 } u _ { 1 } , t \omega _ { 2 } , v , 1) \left[\hat{p}_{1}\left(u_{1}, \omega_{2}, v, 1\right)+\right.\right. \\
& \left.\hat{p}_{2}\left(u_{1}, \omega_{2}, v, t^{2} r\right)\right]^{z}+z \omega_{2} \cdot \tilde{h}_{2}\left(r^{-1 / 2} u_{1}, t \omega_{2}, v, 1\right)\left[\hat{p}_{1}\left(u_{1}, \omega_{2}, v, 1\right)+\right. \\
& \left.\left.\hat{p}_{2}\left(u_{1}, \omega_{2}, v, t^{2} r\right)\right]^{z-1} \times r^{\left(\left|\alpha_{2}\right|-M_{2}\right) / 2} t^{\left|\alpha_{2}\right|-M_{2}-1}\right\} d u_{1} d \omega_{2} d v
\end{aligned}
$$

where $\tilde{h_{1}}$ and $\tilde{h_{2}}$ are bounded functions. Thus we have

$$
J_{3}(z)=\frac{-1}{N\left(m, M_{1}\right) z+N\left(2 n, d_{1}\right)} \int_{1}^{\infty} r^{N\left(m, M_{1}\right) z+N\left(2 n, d_{1}\right)} \frac{\partial}{\partial r} J_{4}(r, z) d r
$$

Here we note

$$
\begin{aligned}
& \frac{\partial}{\partial r} J_{5}(1, r, z)=O\left(r^{-3 / 2}\right), \frac{\partial}{\partial r}\left[r^{-\left(M_{2} z+d_{2}+1\right) / 2} J_{5}\left(r^{-1 / 2}, r, z\right)\right]= \\
& O\left(r^{-\left(M_{2} z+d_{2}+3\right) / 2}\right) \text { and } \\
& \frac{\partial}{\partial r}\left[\int_{r^{-1 / 2}}^{1} t^{M_{2} z+d_{2}+1} \frac{\partial}{\partial t} J_{5}(t, r, z) d t\right]=O\left(r^{-3 / 2}\right)
\end{aligned}
$$

as $r \rightarrow \infty$ uniformly on $\left\{z ; \mathscr{R}_{0} z \leq-\frac{2 n}{m}+\varepsilon\right\}$ for any $\varepsilon>0$. Therefore we see that $J_{3}(z)$ is negligible.
$2^{\text {nd }}-$ step : If we put $J_{6}(z)=$

$$
\int_{\substack{\left|u_{1}\right| \leq r^{-1 / 2} \\ r^{-1 / 2} \leq\left|u_{2}\right| \leq 1}} h\left(u_{1}, 0, v, r\right) \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r
$$

we can prove $J_{6}(z) \equiv 0$. In fact, we have $J_{6}(z)=$

$$
\int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{1}\right)-1} d r \int_{\substack{\left|u_{1}\right| \leq 1 \\ 1 \leq\left|u_{2}\right| \leq r^{1 / 2}}} h\left(r^{-1 / 2} u_{1}, 0, v, 1\right) \tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{z} d u_{1} d u_{2} d v
$$

Here if we write $\tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{z}=\hat{p}_{1}\left(u_{1}, u_{2}, v, 1\right)^{z}+r_{z}\left(u_{1}, u_{2}, v\right)$, we have $\left|r_{z}\left(u_{1}, u_{2}, v\right)\right| \leq C\left|u_{2}\right|^{M_{2} \mathscr{Z}_{2}, z-1}$. Therefore we have $J_{6}(z)$

$$
\begin{aligned}
& \equiv \int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1} d r \times \\
& \quad \int_{\substack{\left|u_{1}\right| \leq 1 \\
1 \leq\left|u_{2}\right| \leq r^{1 / 2}}} h\left(r^{-1 / 2} u_{1}, 0, v, 1\right) \hat{p}_{1}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r \\
& =\int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1} d r \int_{1}^{r^{1 / 2}} t^{M_{2} z+d_{2}-1} d t
\end{aligned}
$$

$$
\begin{aligned}
& \times \int_{\left|u_{1}\right| \leq 1,\left|\omega_{2}\right|=1} h\left(r^{-1 / 2} u_{1}, 0, v, 1\right) \hat{p}_{1}\left(u_{1}, \omega_{2}, v, r\right)^{z} d u_{1} d \omega_{2} d v \\
& =\frac{1}{M_{2} z+d_{2}} \int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1}\left(r^{\left(M_{2} z+d_{2}\right) / 2}-1\right) \\
& \times \int_{\left|u_{1}\right| \leq 1,\left|\omega_{2}\right|=1} h\left(r^{-1 / 2} u_{1}, 0, v, 1\right) \hat{p}_{1}\left(u_{1}, \omega_{2}, v, 1\right)^{z} d u_{1} d \omega_{2} d v
\end{aligned}
$$

By the integration by parts with respect to r, we see that $J_{6}(z) \equiv 0$. This completes the proof.

Similarly we see that

$$
\int_{\substack{r^{-1 / 2} \leq\left|u_{1}\right| \leq 1 \\\left|u_{2}\right| \leq r^{-1 / 2}}} h\left(u_{1}, u_{2}, v, r\right) \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r \equiv 0
$$

Thus we are reduced to study $J_{7}(z)$ where

$$
J_{7}(z)=\int_{r^{-1 / 2} \leq\left|u_{i}\right| \leq 1} h\left(u_{1}, u_{2}, v, r\right) \tilde{p}\left(u_{1}, u_{2}, v, r\right)^{z} d u_{1} d u_{2} d v d r
$$

However we have
Lemma 5.8. If we put $J_{7}(z)$ as above, we have $J_{7}(z) \equiv J_{0}(z)$.
Proof. We put $h\left(u_{1}, u_{2}, v, r\right)-h(0,0, v, r)=u_{1} \cdot h_{1}\left(u_{1}, u_{2}, v, r\right)+$ $u_{2} \cdot h_{2}\left(u_{1}, u_{2}, v, r\right)$. Then by the same way as the proof of Lemma 5.7 ($2^{\text {nd }}-$ step), the proof is clear.

Finally we must prove
Lemma 5.9. If we put

$$
K_{i}(z)=\int_{r \geq 1} d_{z}^{(i)}\left(u_{1}, u_{2}, v, r\right) h\left(u_{1}, u_{2}, v, r\right) d u_{1} d u_{2} d v d r
$$

then we have $K_{1}(z)+K_{2}(z) \equiv 0$.
Proof. By Proposition 3. 1 and the construction of parametrices (c.f. [2; §4]), we have $K_{1}(z)+K_{2}(z)=$

$$
\int_{r \geq 1} h\left(u_{1}, u_{2}, v, r\right)\left[\left\{\sum_{j=0}^{M_{0}} \tilde{p}_{m-j / 2}\right\}^{z}-\left\{\sum_{j=0}^{M_{0}} p_{m-j / 2}\right\}^{z}\right] d u_{1} d u_{2} d v d r .
$$

Here by the mean value theorem, we have $K_{1}(z)+K_{2}(z)=$

$$
\begin{aligned}
& \int_{r \geq 1} h\left(u_{1}, u_{2}, v, r\right) z\left\{\sum_{j=0}^{M_{0}}\left(p_{m-j / 2}-\tilde{p}_{m-j / 2}\right)\right\} \\
\times & \int_{0}^{1}\left[\sum_{j=0}^{M_{0}} \tilde{p}_{m-j / 2}+\theta\left\{\sum_{j=0}^{M_{0}}\left(p_{m-j / 2}-\tilde{p}_{m-j / 2}\right)\right\}^{z-1}\right] d \theta d u_{1} d u_{2} d v d r .
\end{aligned}
$$

As the same way as the proof of Lemma 5.7 (2 $2^{\text {nd }}$-step), we see that $K_{1}(z)+$
$K_{2}(z)$ is negligible. This completes the proof.
End of the proof of Proposition 5. 5.
By (5.6), we may consider $J_{0}(z)$. If we write
$\tilde{p}\left(u_{1}, u_{2}, v, 1\right)^{z}=\tilde{p}_{m}\left(u_{1}, u_{2}, v, 1\right)^{z}+r_{z}\left(u_{1}, u_{2}, v\right)$ for $1 \leq\left|u_{i}\right| \leq r^{1 / 2}$,
we have

$$
\left|r_{z}\left(u_{1}, u_{2}, v\right)\right| \leq C\left|u_{1}\right|^{M_{1} \mathscr{P} . z-1}\left|\mathrm{u}_{2}\right|^{\mathrm{M}_{2} \cdot \mathscr{A}, z-1}\left(\left|u_{1}\right|+\left|u_{2}\right|\right) .
$$

So we can see that the integral corresponding to r_{z} is negligible. Therefore we have $J_{0}(z) \equiv(2 \pi)^{-n} \times$

$$
\begin{gathered}
\int_{1}^{\infty} r N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1 d r \int_{1 \leq\left|u_{i}\right| \leq r^{1 / 2}} h(0,0, v, 1) \tilde{p}_{m}\left(u_{1}, u_{2}, v, 1\right)^{z} d u_{1} d u_{2} d v \\
=A_{4}^{\prime}(z) \int_{1}^{\infty} r N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1 d r \prod_{i=1}^{2} \int_{1}^{r^{1 / 2}} t_{i}^{M_{i} z+d_{i}-1} d t_{i} \\
=A_{4}^{\prime}(z) \int_{1}^{\infty} r^{N\left(m, M_{0}\right) z+N\left(2 n, d_{0}\right)-1} d r \prod_{i=1}^{2} \frac{\left(r^{\left.\left(M_{i} z+d_{i}\right) / 2-1\right)}\right.}{M_{i} z+d_{i}}
\end{gathered}
$$

where $A_{4}^{\prime}(z)$ is defined by

$$
(2 \pi)^{-n} \int_{\left(\Sigma_{0} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times S^{*} \boldsymbol{R}^{d_{1} \times S^{*} \boldsymbol{R}^{d_{2}}}} h(0,0, v, 1) \quad \tilde{p}_{m}\left(\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, v, 1\right)^{z} d \boldsymbol{\omega}_{1} d \omega_{2} d v
$$

and $A_{4}(z)$ is an entire function. By using an appropriate partition of unity, we reach the conclusion of Proposition 5.5.

Proposition 5. 10. When $\frac{d_{1}}{M_{1}}=\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}>\frac{2 n}{m}, \operatorname{Tr}\left(P^{z}\right)$ is holomor. phic in $\left\{z ; \mathscr{R}_{0} z<-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}\right\}$ and has a double pole at $z=-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}$ as the first singularity with the coefficient of $\left(z+\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}\right)^{-2}$ equal to $\frac{A_{5}}{2\left(M_{1} d_{2}-M_{2} d_{1}\right) N\left(m, M_{2}\right) N\left(m, M_{0}\right)}$ where

$$
\begin{equation*}
A_{5}=(2 \pi)^{-n} \times \tag{5.7}
\end{equation*}
$$

$\int_{\left(\Sigma_{0} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times S^{*} \boldsymbol{R}^{d_{1} \times S^{*} \boldsymbol{R}^{d_{2}}}} \tilde{p}_{m}\left(\boldsymbol{\omega}_{1}, \omega_{2}, v, 1\right)^{-N\left(2 n, d_{2}\right) / N\left(m, M_{2}\right)} J(0,0, v, 1) d \omega_{1} d \omega_{2} d v$.
Proof. In this proposition if a function $f(z)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}\right\}$ and has at most a simple pole at $z=-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}$ as the first singularity, we say that $f(z)$ is negligible and write $f(z) \equiv 0$.

That $\operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{N\left(2 n, d_{2}\right)}{N\left(m, M_{2}\right)}\right\}$ follows from Proposition 5.1. In $\sum_{2} \mid \sum_{1}$, by using $\tilde{p}_{\Sigma_{2}}^{z}$, we see that the corresponding integral is negligible. Also outside Σ_{2}, by using p_{m}^{z}, we see that the corresponding integral is negligible. Near \sum_{0} by the same way as the proof of Proposition 5. 5, we see that if we define an entire function

$$
A_{5}^{\prime}(z)=\int_{\left(\Sigma_{0} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times S^{*} \boldsymbol{R}^{d_{1} \times S^{*} \boldsymbol{R}^{d_{2}}}} h(0,0, v, 1) \tilde{p}_{m}\left(\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, v, 1\right)^{z} d \omega_{1} d \omega_{2} d v
$$

then we have $I(z)=$

$$
\begin{aligned}
& A_{5}^{\prime}(z) \int_{1}^{\infty} r^{N\left(m_{,}, M_{0} z+N\left(2 n, d_{0}\right)-1\right.} d r \prod_{i=1}^{2} \int_{0}^{r^{1 / 2}} t_{i}^{M_{i} z+d_{i}-1} d t_{i} \\
& \equiv \frac{-A_{5}^{\prime}(z)}{\left(M_{1} z+d_{1}\right)\left(M_{2} z+d_{2}\right)} \int_{1}^{\infty} r^{N\left(m_{1}, M_{0}\right) z+N\left(2 n, d_{0}\right)-1}\left(r^{\left(M_{i} z+d_{1}\right) / 2}-1\right) d r
\end{aligned}
$$

modulo negligible terms. This completes the proof.
Proposition 5.11. When $\frac{d_{1}}{M_{1}}>\frac{d_{2}}{M_{2}}=\frac{2 n}{m}, \operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{2 n}{m}\right\}$ and has a double pole at $z=-\frac{2 n}{m}$ as the first singularity with the coefficient of $\left(z+\frac{2 n}{m}\right)^{-2}$ equal to $\frac{A_{6}}{2 m N\left(m, M_{2}\right)}$ where

$$
\begin{equation*}
A_{6}=(2 \pi)^{-n} \int_{\left(\Sigma_{2} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times S^{*} \boldsymbol{R}^{4}}\left(\tilde{p}_{\Sigma_{2}, m}\left(\boldsymbol{\omega}_{2}, v, 1\right)+1\right)^{-2 n m} J(0, v, 1) d \omega_{2} d v \tag{5.8}
\end{equation*}
$$

where $\tilde{p}_{\Sigma_{2}, m}\left(u_{2}, v, r\right)=\sum_{\left|\alpha_{2}\right|=M_{2}} a_{\alpha_{2}}(0, v, r) u_{2}^{\alpha_{2}}$.
Proof. In this proposition if a function $f(z)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{2 n}{m}\right\}$ and has at most a simple pole at $z=-\frac{2 n}{m}$ as the first singularity, we say that $f(z)$ is negligible and write $f(z) \equiv 0$. That $\operatorname{Tr}\left(P^{z}\right)$ is holomorphic in $\left\{z ; \mathscr{R}_{0} z<-\frac{2 n}{m}\right\}$ follows from Proposition 5.1. Outside Σ_{2}, by using the symbol ($\left.p_{m}+r^{m-\operatorname{Min}\left(M_{1}, M_{2} / 2\right.}\right)^{z}$, we see that the corresponding integral is negligible. Thus we may consider $I(z)=$

$$
\int_{r \geq 1,\left|u_{z}\right| \leq 1} h\left(u_{2}, v, r\right)\left\{\tilde{p}_{\Sigma_{2}}\left(u_{2}, v, r\right)+r^{m-M_{1} / 2}\left(\left|u_{2}\right|^{2}+r^{-1}\right)^{M_{2} / 2}\right\}^{z} d u_{2} d v d r .
$$

However by the way as the preceding arguments we have $I(z)=$

$$
\int_{1}^{\infty} r^{N\left(m, M_{2}\right) z+N\left(2 n, d_{2}\right)-1} d r \times
$$

$$
\begin{aligned}
& \int_{1 \leq\left|u_{2}\right| \leq r^{1 / 2}} h(0, v, 1)\left\{\sum_{\left|\alpha_{2}\right|=M_{2}} a_{\alpha_{2}}(0, v, 1) u_{2}^{\alpha_{2}}\right\}^{z} d u_{2} d v \\
= & A_{6}^{\prime}(z) \int_{1}^{\infty} r^{N\left(m, M_{2}\right) z+N\left(2 n, d_{2}\right)-1} d r \int_{1}^{r^{1 / 2}} t^{M_{2} z+d_{2}-1} d t
\end{aligned}
$$

where $A_{6}^{\prime}(z)=$

$$
\int_{\left(\Sigma_{2} \cap S^{*} \boldsymbol{R}^{2 n}\right) \times S^{*} \boldsymbol{R}^{\alpha_{2}}} h(0, v, 1)\left\{\sum_{\left|\alpha_{2}\right|=M_{2}} a_{\alpha_{2}}(0, v, 1) \omega_{2}^{\alpha_{2}}\right\}^{z} d \omega_{2} d v
$$

Thus we have

$$
I(z) \equiv \frac{A_{6}^{\prime}(z)}{M_{2} z+d_{2}} \int_{1}^{\infty} r^{N\left(m, M_{2}\right) z+N\left(2 n, d_{2}\right)-1}\left(r^{\left(M_{2} z+d_{2}\right) / 2}-1\right) d r
$$

This completes the proof.

§ 6. The asymptotic behavior of eigenvalues of \mathbf{P}

Let $P(x, D) \in O P L^{m, M_{1}, M_{2}}\left(\Sigma_{1}, \sum_{2}\right)$. In this section we assume that $P(x, D)$ satisfies (1.3), (1.4) and (H.1) $\sim(H .6)$. As in $\S 4$, define an unbounded self-adjoint operator P in $L^{2}\left(\boldsymbol{R}^{n}\right)$. Then P has the spectrum consist only of eigenvalues of finite multiplicity. By (H.6), we can write the sequence of eigenvalues : $0<\lambda_{1} \leq \lambda_{2} \ldots, \lim _{k \rightarrow \infty} \lambda_{k}=+\infty$ with repetition according to multiplicity. Let $N(\boldsymbol{\lambda})$ be the counting function, i. e., $N(\lambda)=\sum_{\lambda_{k} \leq \lambda} 1$. Then we have

Theorem 6.1. Let $P(x, D) \in O P L^{m, M_{1}, M_{2}}\left(\sum_{1}, \Sigma_{2}\right)$. Assume that (1.3), (1.4) and (H.1) ~(H.6) hold.
(I) If $\frac{d_{1}}{M_{1}} \geq \frac{d_{2}}{M_{2}}>\frac{2 n}{m}$, then we have $N(\lambda)=A_{1} \lambda^{2 n / m}+o\left(\lambda^{2 n / m}\right), \lambda \rightarrow+\infty$.
(II) If $\frac{d_{1}}{M_{1}}>\frac{d_{2}}{M_{2}}=\frac{2 n}{m}$, then we have
$N(\lambda)=\frac{A_{6}}{n\left(2 m-M_{2}\right)} \lambda^{2 n / m}(\log \lambda)+o\left(\lambda^{2 n / m} \log \lambda\right), \lambda \rightarrow+\infty$.
(III) If $\frac{d_{1}}{M_{1}}>\frac{4 n-d_{2}}{2 m-M_{2}}>\frac{2 n}{m}$, then we have
$N(\boldsymbol{\lambda})=\frac{2 A_{3}}{4 n-d_{2}} \lambda^{\left(4 n-d_{2}\right) /\left(2 m-M_{2}\right)}+o\left(\lambda^{\left(4 n-d_{2}\right) /\left(2 m-M_{2}\right)}\right), \lambda \rightarrow+\infty$.
(IV) If $\frac{d_{1}}{M_{1}}=\frac{4 n-d_{2}}{2 m-M_{2}}>\frac{2 n}{m}$, then we have $N(\lambda)=$
$\frac{2 M_{1} A_{5}}{\left(M_{2} d_{1}-M_{1} d_{2}\right)\left(2 m-M_{1}-M_{2}\right)\left(4 n-d_{1}-d_{2}\right)} \lambda^{\left(4 n-d_{2}\right) /\left(2 m-M_{2}\right)}(\log \lambda)+$
$o\left(\lambda^{\left(4 n-d_{2}\right) /\left(2 m-M_{2}\right)} \log \lambda\right), \lambda \rightarrow+\infty$.
(V) If $\frac{4 n-d_{2}}{2 m-M_{2}}>\frac{2 n}{m}, \frac{d_{1}}{M_{1}}$, then we have
$N(\boldsymbol{\lambda})=\frac{2 A_{2}}{4 n-d_{1}-d_{2}} \lambda^{\left(4 n-d_{1}-d_{2}\right) /\left(2 m-M_{1}-M_{2}\right)}+o\left(\boldsymbol{\lambda}^{\left(4 n-d_{1}-d_{2}\right) /\left(2 m-M_{1}-M_{2}\right)}\right)$,
$\lambda \rightarrow+\infty$.
(VI) If $\frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\frac{2 n}{m}$, then we have $N(\lambda)=$
$\frac{\left(4 m-M_{1}-M_{2}\right) A_{4}}{4 n\left(2 m-M_{1}\right)\left(2 m-M_{2}\right)\left(2 m-M_{1}-M_{2}\right)} \lambda^{2 n / m}(\log \lambda)^{2}+$
$o\left(\lambda^{2 n / m}(\log \lambda)^{2}\right), \lambda \rightarrow+\infty$.
Here $A_{1} \sim A_{6}$ are defined by (5.2), (5.3), (5.4), (5.5), (5.7) and (5.8).
REMARK 6.2. Since we see easily that $\frac{2 n}{m}>\frac{d_{2}}{M_{2}}$ if and only if $\frac{4 n-d_{2}}{2 m-M_{2}}>$ $\frac{2 n}{m}$, taking (1.4) into consideration, this theorem covers all the cases.

For the proof, we use the following extended Ikehara's Tauberian theorem.

Proposition 6.3. ([2; Proposition 5.3]) Let $\sum_{k=1}^{\infty} \lambda_{k}^{z}$ be convergent for $\mathscr{R}_{0} z<s_{0}(<0)$, hence holomorphic. Assume that there exist real numbers A_{1}, A_{2}, \ldots, A_{p} such that

$$
\sum_{k=1}^{\infty} \lambda_{k}^{z}-\sum_{j=1}^{p} \frac{A_{j}}{\left(z-s_{0}\right)^{j}}
$$

is continuous on $\left\{z ; \mathscr{R}_{0} z \leq s_{0}\right\}$. Then we have

$$
N(\boldsymbol{\lambda})=\frac{(-1)^{p-1} A_{p}}{(p-1)!s_{0}} \lambda^{-s_{o}}(\log \lambda)^{p-1}+o\left(\lambda^{-s_{0}}(\log \lambda)^{p-1}\right), \lambda \rightarrow+\infty
$$

End of the proof of Theorem 6.1
It is well known that if $\mathscr{R}_{0} z<0$ and $|z|$ is large, $\operatorname{Tr}\left(P^{z}\right)=\sum_{k=1}^{\infty} \lambda_{k}^{z}$. For example, we consider the case (VI) : $\frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\frac{2 n}{m}$. By Proposition 5.5, $\sum_{k=1}^{\infty} \lambda_{k}^{z}$ has a triple pole at $z=-\frac{2 n}{m}$ as the first singularity with the coefficient of $\left(z+\frac{2 n}{m}\right)^{-3}$ equal to $A_{4}^{\prime}=-\frac{\left(4 m-M_{1}-M_{2}\right) A_{4}}{m\left(2 m-M_{1}\right)\left(2 m-M_{2}\right)\left(2 m-M_{1}-M_{2}\right)}$. Thus by Proposition 6.2, we have

$$
N(\lambda)=\frac{-m A_{4}^{\prime}}{4 n} \lambda^{2 n / m}(\log \lambda)^{2}+o\left(\lambda^{2 n / m}(\log \lambda)^{2}\right), \lambda \rightarrow+\infty
$$

Since the other case are proved similarly, we omit them.
Example 6.4. (1) Let $P(x, D)=\left(D_{x_{1}}^{2}+x_{1}^{2}\right)^{2}\left(D_{x_{2}}^{2}+x_{2}^{2}\right)^{2}\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{2}+$ $\mu\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}+x_{1}^{2}+x_{2}^{2}\right)^{2}\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{3}+\nu\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{4}$
on \boldsymbol{R}^{3} for any positive numbers μ and ν. Then we can put $\Sigma_{1}=\left\{x_{1}=\xi_{1}=0\right\}, \Sigma_{2}=\left\{x_{2}=\xi_{2}=0\right\}$. Since $M_{1}=M_{2}=4, d_{1}=d_{2}=2, m=12$ and $n=3$, we have the case (VI), i. e.,

$$
N(\lambda)=\frac{1}{3840} \lambda^{1 / 2}(\log \lambda)^{2}+o\left(\lambda^{1 / 2}(\log \lambda)^{2}\right), \lambda \rightarrow+\infty .
$$

$$
\begin{equation*}
\text { Let } P(x, D)=\frac{1}{2}\left(x_{3}^{2}+D_{x_{x}}^{2}\right)^{2}\left[\left(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2}\right)^{2}\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{3}+\right. \tag{2}
\end{equation*}
$$

$$
\left.\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{3}\left(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2}\right)^{2}\right]+\frac{1}{2}\left[\left(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2}\right)^{2}\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{4}+\right.
$$

$$
\left.\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{4}\left(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2}\right)^{2}\right]+\left(x_{3}^{2}+D_{x_{0}}^{2}\right)^{2}\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{4}+\mu\left(\left|D_{x}\right|^{2}+|x|^{2}\right)^{5}
$$

on \boldsymbol{R}^{5} for any positive number μ. Then we can put $\Sigma_{1}=\left\{x_{1}=x_{2}=\xi_{1}=0\right\}$, $\Sigma_{2}=\left\{x_{3}=\xi_{3}=0\right\}$. Since $M_{1}=M_{2}=4, d_{1}=3, d_{2}=2, m=14$ and $n=5$, we have the case (IV), i. e.,

$$
N(\lambda)=\frac{\pi}{625} \lambda^{3 / 4} \log \lambda+o\left(\lambda^{3 / 4} \log \lambda\right), \lambda \rightarrow+\infty .
$$

$$
\begin{equation*}
\text { Let } P(x, D)=\frac{1}{2}\left[D_{x_{1}}^{2} D_{x_{2}}^{2}\left(|x|^{2}+\left|D_{x}\right|^{2}\right)^{3}+\left(|x|^{2}+\left|D_{x}\right|^{2}\right)^{3} D_{x_{1}}^{2} D_{x_{1}}^{2}\right]+ \tag{3}
\end{equation*}
$$

$\mu\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}\right)\left(|x|^{2}+\left|D_{x}\right|^{2}\right)^{7 / 2}+\mu\left(|x|^{2}+\left|D_{x}\right|^{2}\right)^{7 / 2}\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}\right)+\nu\left(|x|^{2}+\left|D_{x}\right|^{2}\right)^{4}$
on \boldsymbol{R}^{2} for any positive numbers μ and ν. Then we can put $\Sigma_{1}=\left\{\boldsymbol{\xi}_{1}=0\right\}, \Sigma_{2}=\left\{\boldsymbol{\xi}_{2}=0\right\}$. Since $M_{1}=M_{2}=2, d_{1}=d_{2}=1, m=10$ and $n=2$, we have the case (I), i. e.,

$$
N(\lambda)=\frac{5\{\Gamma(1 / 10)\}^{2}}{8 \pi \Gamma(1 / 5)} \lambda^{2 / 5}+o\left(\lambda^{2 / 5}\right), \lambda \rightarrow+\infty .
$$

Finally we give a generalization.
Remark 6.5. We can also define a symbol class which is an extension of Definition 1.1. Let $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{\rho}$ be closed conic submanifolds of codimension $d_{1}, d_{2}, \ldots, d_{p}$ in $\boldsymbol{R}^{2 n} \backslash 0$ and m a real number and moreover $M_{1}, M_{2}, \ldots, M_{p}$ non-negative integers.

Then $O P L^{m^{m}, M_{1}, M_{2}, \ldots, M_{p}}\left(\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{p}\right)$ is a set of all pseudodifferential operators $P(x, D)$ on \boldsymbol{R}^{n} whose symbol $p(x, \boldsymbol{\xi})$ satisfies (1.1) and

for $j=0,1, \ldots, M_{1}+M_{2}+\ldots+M_{p}$. Here

$$
d_{\Sigma_{i}}=\inf _{\left(x^{\prime}, \xi^{\prime}\right) \in \Sigma_{i}}\left(\left|x^{\prime}-\frac{x}{r}\right|+\left|\xi^{\prime}-\frac{\xi}{r}\right|\right), i=1,2, \ldots, p .
$$

As in Definition 1.1, we say that $P(x, D)$ is regularly degenerate if p satisfies
(6.3) $\quad \frac{\left|p_{m}(x, \xi)\right|}{r(x, \xi)^{m}} \geq C d_{\Sigma_{1}}^{M_{1}} \ldots d_{\Sigma_{p}}^{M_{p}}$.

We assume (H. 1)~(H.6). Here (H. 2), (H.3) and (H. 4) are revised according to this case. Then in the particular case :
$\frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\ldots=\frac{d_{p}}{M_{p}}=\frac{2 n}{m}$, we have for some constant A

$$
N(\lambda)=A \lambda^{2 n / m}(\log \lambda)^{p-1}+o\left(\lambda^{2 n / m}(\log \lambda)^{p-1}\right), \lambda \rightarrow+\infty .
$$

References

[1] ARAMAKI, J.: Hypoellipticity for a class of pseudo-differential operators, Hokkaido Math. J. Vol. XI No. 1 (1982), 15-28.
[2] ARAMAKI. J.: Complex powers of a class of pseudodifferential operators and their applications, Hokkaido Math. J. Vol. XII No. 2 (1983), 199-225.
[3] BOUTET DE MONVEL, L. : Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math. 27 (1974), 585-639.
[4] Donoghue, W.: Distributions and Fourier transforms, Acad. Press, New York (1969).
[5] Grushin, V. V.: On the proof of the discreteness of the spectrum of a certain class of differential operators in \boldsymbol{R}^{n}, Func. Anal. Appl. 5 (1971), 58-59.
[6] HELFFER, R.: Invariant associès à une classe d'opérateurs pseudodifférentiels et application à L'hypoellipticité, Ann. Inst. Fourier, Grenoble 26 (1976), 55-70.
[7] HÖRMANDER, L.: Pseudodifferential operators and hypoelliptic equations, Amer. Math. Soc. Symp. Pure Math. 10 (1967), 138-183.
[8] HÖrmander, L.: Fourier integral operators I, Acta Math. 127 (1971). 79-183.
[9] IWASAKI, C. and Iwasaki, N.: Parametrix for a degenerate parabolic equation and its application to the asymptotic behavior of spectral functions for stationary problems, Publ. of RIMS, Kyoto Univ. 17 (1981), 577-655.
[10] Kumano-go, H.: Pseudodifferential operators, The MIT Press (1981).
[11] Menikoff, A. and Sjöstrand, J.: On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235 (1978), 55-85.
[12] Menikoff, A. and Sjöstrand, J.: On the eigenvalues of a class of hypoelliptic operators II, Springer Lecture note 755 (1978), 201-247.
[13] Menikoff, A. and Sjöstrand, J.: The eigenvalues of hypoelliptic operators III, The non-semibounded case, J. Analyse Math. 35 (1979), 123-150.
[14] MOhamed, A. : Etude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples, Jour. "Equations aux dérivées partielles" Saint Jean de Monts, Juin 1981.
[15] MOнAmed, A.: Etude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples I, Ann. Inst. Fourier, Grenoble 32, 3 (1982), 39-90.
[16] MOHAMED, A. : Etude spectrale d'opérateurs hypoelliptiques à caractéristiques multiples II, Comm. in Partial Differential equations, 8 (3) (1983), 247-316.
[17] Seeley, R. T.: Complex powers of an elliptic operators, Singular integrals, Proc. Symposia Pure Math. 10 (1967), 288-307.
[18] SJÖSTRAND, J. : Parametrices for pseudodifferential operators with multiple characteristics, Arkiv för Mat. 12 (1974), 85-130.
[19] SJÖSTRAND, J.: On the eigenvalues of a class of hypoellptic operators IV, Ann. Inst. Fourier, Grenoble, 30-2 (1980), 109-169.
[20] Smagin, S. A.: Fractional powers of hypoelliptic operators in \boldsymbol{R}^{n}, Soviet Math. Dokl. 14 (1973) No. 2, 585-588.
[21] Wiener, N.: Tauberian theorems, Ann. of Math. 33 (1932), 1-100.
Department of Mathematical Science Faculty of Science and Engineering Tokyo Denki University

