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\S 0. Introduction

In the previous paper [2], we constructed complex powers for some
hypoelliptic pseudodifferential operators P in OPL^{m,M} (\Omega : \Sigma) (for the
notation, see Sj\"ostrand [18] ) on a compact manifold \Omega of dimension n
without boundary and examined the asymptotic behavior of the eigenvalues
of P . Here the principal symbol vanished exactly to M -th order on the
characteristic set \sum of codimension d in T^{*}\Omega|0 . The hypoellipticity of
these operators is well known by Boutet de Monvel [3] for M=2 and
He_{\sim}^{1_{1}^{t}}fer[6] for general M . Moreover Menikoff-Sj\"ostrand [11], [12], [13],
Sj\"ostrand [19] and Iwasaki [9] studied the asymptotic behavior of eigen-
values of P under various assumptions on \sum in the case M=2. Their
methods are based on the constructions of heat kernel and an application of
Karamata’s Tauberian theorem. For general M . Mohamed [14], [15] and
[16] gave the asymptotic formula for the eigenvalues of P by using Carle-
man’s method in which the Hardy-Littlewood Tauberian theorem was used.

However the method in [2] was essentially due to Minakshinsunda-
ram’s method (c . f . Seeley [17] and Smagin [20]). The essentials of the
theory in [2] were as follows: At first we construct complex powers \{ P^{z}\}_{z\in C}

of P . When the real part of z is negative and |z| is sufficiently large, P^{z} is
of trace class and the trace is extended to a meromorphic function in C which
is written by Trace(P^{z}) . Secondly we examine the first singularity of
Trace(P^{z}) . Finally we apply the extended Ikehara Tauberian theorem.
(See [2 : Lemma 5. 2] and Wiener [21]). Here since Trace(P^{z}) is a
meromorphic function in C, we call the pole with the smallest real part the
first singularity throughout this paper. More precisely, denoting the count-
ing function of eigenvalues by N(\lambda) , the first term of the asymptotic behav-
ior of N(\lambda) as \lambda tends to infinity is closely related to the position and the
order of the pole at the first singularity. In the case where n/m=d/M, the
first singularity situates at z=-n/m and is a double pole and then we have
for a constant c
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N(\lambda)=c\lambda^{nm} log \lambda+o ( \lambda^{nm} log \lambda ) as \lambdaarrow\infty .

In the other cases they are only simple poles and log \lambda does not appear in the
first term of N(\lambda) .

However in the framework of [2], for example, we can not treat the
following operator on R^{3} :

P=(D_{x_{1}}^{2}+x_{1}^{2})^{2}(D_{x_{2}}^{2}+x_{2}^{2})^{2}(|D_{X}|^{2}+|x|^{2})^{2}+

\mu(D_{x_{1}}^{2}+D_{x_{2}}^{2}+x_{1}^{2}+x_{2}^{2})^{2}(|D_{X}|^{2}+|x|^{2})^{3}+v(|D_{X}|^{2}+|x|^{2})^{4}(\mu, \nu>0) .

Our purpose in the present paper is to study the asymptotic behavior of N(\lambda)

for such operators. In order to do so we consider a class OPL^{m,M_{1}}M_{2}( \sum_{1}, \sum_{2})

where the characteristic set \sum is a union of two closed submanifolds \sum_{1} and
\sum_{2} of codimension d_{1} and d_{2} in R^{2n}|0 and the principal symbol vanishes
exactly to M_{l} -th order on \sum_{i}(i=1,2) respectively. Under some appr0-

priate conditions, we construct complex powers \{ P^{z}\} and examine the first
singularity of Trace(P^{z}) in the same way as [2]. But it is necessary to
construct different symbols of P^{z} according to the order relations among real
numbers 2 n/m, d_{1}/M_{1} and d_{2}/M_{2} . In particular, we have a new result that
for the case 2n/m=d_{1}/M_{1}=d_{2}/M_{2} with a constant c

N(\lambda)=c\lambda^{2nm}(\log\lambda)^{2}+o(\lambda^{2nm}(\log\lambda)^{2}) as \lambdaarrow\infty .

The plan of this paper is as follows. In \S 1 we give the precise definition
of the operators mentioned above and give some hypotheses. In \S 2 we
introduce two classes of operators in which we construct the parametrices of
P-\zeta for some \zeta\in C . By taking an application in \S 5 and \S 6 into consider
tion, we construct in \S 3 various parametrices of P-\zeta for some
\zeta\in C . In \S 4 we construct symbols of^{s} complex powers corresponding to
parametrices in \S 3 respectively. In \S 5 we examine the first singularity of
the trace of complex powers. Finally in \S 6 we study asymptotic behavior of
the eigenvalues using the results in \S 5 and give some examples.

For brevity of the notations, we use the followings which are held from
\S 1 to \S 5 :

M_{0}=M_{1}+M_{2} , d_{0}=d_{1}+d_{2}

\Sigma_{0}=\Sigma_{1}\cap\Sigma_{2} , \Sigma=\Sigma_{1}\cup\Sigma_{2}

N(a, b)=a-b/2 for any real numbers a and b .

\S 1. Definitions of operators and some hypotheses

In this section we introduce a class of pseudodifferential operators on R^{n}

and give our hypotheses.
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Let \sum_{1} and \sum_{2} be closed conic submanifolds of codimension d_{1} and d_{2} in
R^{n}\cross R^{n} respectively such that d_{0}=d_{1}+d_{2}<2n . Here the conicity of \Sigma_{\iota}.

means that (x, \xi)\in\Sigma_{i} implies (\lambda x, \lambda\xi)\in\Sigma_{i} for any \lambda>0 .

DEFINITION 1. 1. ( c. f. [1] and [18]) Let m be a real number and M_{I}

(i=1,2) be non-negative integers. Then the space OPL^{m,M_{1},M_{2}}(\Sigma_{1}, \Sigma_{2}) is
the set of all pseudodifferential operators P(x, D)\in L^{m}(R^{n}) (for the notation
L^{m}(R^{n}) see H\"ormander [7] and [8] ) such that P(x, D) has a symbol
p(x, \xi)\in C^{\infty}(R^{2n}) satisfying the following (1. 1) and (1. 2) :

(1. 1) There exists a sequence of functions \{ p_{m-j’ 2}(x, \xi)\}_{j=0,1} , such that

p(x, \xi)-\sum_{j=0}^{\infty}p_{m-j/2}(x, \xi) where p_{m}
-
j/2(x, \xi) arc elements of C^{\infty}(R^{2n}|0) and

positively homogeneous of degree m-j/2 in (x, \xi)\in R^{2n}|0 . Here the asymp-
totic sum in (1. 1) means that for every positive integer N and every multi-
indices \alpha , \beta, There exists a constanl C_{a,\beta}

, N>0 such that

|D_{x}^{a}D_{\xi}^{\beta}(p(x, \xi)-\sum_{j=0}^{N-1}p_{m-j/2}(x, \xi))|\leq C_{a,\beta}
,

Nr(x, \xi)^{m-N/2-|a|-|\beta|}

for r(x, \xi)\geq 1 where r=r(x, \xi)=(|x|^{2}+|\xi|^{2})^{1/2} .

(1.2) There exists a positive constant C such that

\frac{|p_{m-j/2}(x,\xi)|}{r(x,\xi)^{m-j2}}\leq C\sum_{k_{1}+k_{2}--j},d_{\Sigma l}(x, \xi)^{M_{1}-k_{1}}d_{\Sigma_{2}}(x, \xi)^{M_{2}-k_{2}} , j=0,1 , \ldots . M_{0} ,

where d_{\Sigma},(x, \xi)=(x\inf_{\xi\gamma\in\Sigma},(|x’-\frac{x}{r}|+|\xi’-\frac{\xi}{r}|), i=1,2 .

The class of symbols satisfying (1. 1) and (1. 2) in an open conic set U
in R^{2n}|0 is denoted by L^{m,M_{1},M_{2}}(U; \Sigma_{1}, \Sigma_{2}) . Finally we say that P(x, D)
is regularly degenerate if moreover p(x, \xi) satisfies:

(1. 3) \frac{|p_{m}(x,\xi)|}{r(x,\xi)^{m}}\geq Cd_{\Sigma_{1}}(x, \xi)^{M_{1}}d_{\Sigma_{2}}(x, \xi)^{M_{2}} .

For brevity of the notations, we denote:

OPL^{m,M_{1},0}(\Sigma_{1}, \Sigma_{2})=OPL^{m,M_{1}}(\Sigma_{1})

OPL^{m,0,M_{2}}(\Sigma_{1}, \Sigma_{2})=OPL^{m,M_{2}}(\Sigma_{2}) .

If necessary, by relabelling of \sum_{i} , we may assume:

(1. 4) \frac{d_{2}}{M_{2}}\leq\frac{d_{1}}{M_{1}} .

For the construction of parametrices of P(x, D)-\zeta as in introduction,
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we have to keep the following hypotheses (H. 1)–(H. 4).

(H. 1) P_{m}(x, \xi)\geq 0 for all (x, \xi)\in R^{2n}|0 .

(H. 2) \Sigma_{1} and \Sigma_{2} intersect transversally. That is, \Sigma_{0}=\Sigma_{1}\cap\Sigma_{2} is a
closed conic submanifold such that for every point \rho\in\sum_{0} ,

T_{\rho} \sum_{0}=T_{\rho}\sum_{1}\cap T_{\rho}\sum_{2} .

Now for every \rho\in\sum_{0} and j=0,1 , \ldots . M_{0} , we can define a multi-linear
form p_{m}^{\approx}

-

j/2(\rho) on N_{\rho}\Sigma_{0}=R^{2n}/T_{\rho}\Sigma_{0} which may be identified with R^{d_{1}}\cross R^{d_{2}} :
For X_{1} , X_{2} , . . X_{M_{0}-j}\in N_{\rho}\Sigma_{0} ,

p_{m-j/2}^{\approx}(\rho)(X_{1} , . . X_{M_{0}-j})= \frac{1}{(M_{0}-j)\prime}.(\tilde{X}_{1}. .^{\tilde{X}_{M_{0}-j}p_{m-j/2})(\rho)}

where \tilde{X} means a vector field extending X to a neighborhood of \rho . For
every \rho\in\Sigma_{i}|\Sigma_{0} and j=0, \ldots . M_{i} , we also define \overline{\tilde{p}}_{m}

-

j/2(\rho) similarly. Thus
we define the followings: If \rho\in\Sigma_{0} ,

\tilde{p}(\rho, X)=\sum_{j=0}^{M_{0}}\tilde{p}_{m-j/2}(\rho)(X) , X\in N_{\rho}\Sigma_{0}

where \tilde{p}_{m}

-
j/2(\rho)(X)=p_{m-j/2}(\rho)\approx(X, X) and similarly if \rho\in\Sigma_{i}|\Sigma_{0} ,

\tilde{p}(\rho, X_{i})=\sum_{j=0}^{M}’\tilde{p}_{m-j/2}(\rho)(X_{i}) , X_{i}\in N_{\rho}\Sigma_{i} .

REMARK 1. 2. For example, if \rho\in\Sigma_{0} and W is a conic neighborhood of

\rho , the class [ \sum_{j=0}^{M_{0}}p_{m-j/2}]\in L^{m,M_{1},M_{2}}(W;\Sigma_{1}, \Sigma_{2})/L^{m} , M_{1}+M_{2}+1(W : \Sigma_{1}\cap\Sigma_{2})

is invariant under a transformation of local coordinates, (c. f . [1] and
Proposition 2. 2). Therefore p(\rho, X) is defined invariantly.

(H. 3) There exists a positive constant \delta such that for any \rho\in\sum_{0}\cap S^{*}R^{2n}

(where S^{*}R^{2n}=\{(x, \xi)\in R^{2n} : r(x, \xi)=1\} )

\tilde{p}(\rho, X)\geq 2\delta(|X_{1}|^{2}+1)^{M_{1}/2}(|X_{2}|^{2}+1)^{M_{2}/2} for all
X=(X_{1}, X_{2})\in R^{d_{1}}\cross R^{d_{2}} ,

and for any \rho\in(\Sigma_{i}|\Sigma_{0})\cap S^{*}R^{2n} (i=1,2) ,

\tilde{p}(\rho, X_{l}\cdot)\geq 2\delta(|X_{i}|^{2}+1)^{M,/2} for all X_{i}\in R^{d}, .

(H. 4) M_{1} and M_{2} are positive integers and m>M_{0}/2 .

REMARK 1. 3. If P(x, D)\in OPL^{m} , M_{1\prime}M_{2}( \sum_{1}, \sum_{2}) satisfies (H. 1 ) \sim

(H. 4), it is well known that P(x, D) is hypoelliptic with loss of M_{0}/2 -deriva-
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tives. (c.f. [1]) .

\S 2. The preparations for constructions of parametrices

In this section we introduce two classes of symbols in which we construct
parametrices of P(x, D)-\zeta I for some \zeta\in C and complex powers of P(x, D)
\in OPL^{m,M_{1},M_{2}}(\Sigma_{1}, \Sigma_{2}) . In order to do, let \rho\in\Sigma_{0} . By (H. 2) we can
choose a local coordinate system in a conic neighborhood W of \rho : w=
(u_{1}, u_{2}, v, r) where u_{1}=(u_{11_{5}}u_{12}, \ldots u_{1d_{1}}) , u_{2}=(u_{21}, u_{22}, u_{2d_{2}}) , v=
(v_{1}, v_{2}, . v_{2n-d_{0}-1}) such that u_{ij} , v_{k} are positively homogeneous functions
of degree 0 with du_{ij} (j=1, \ldots, d_{i}, i=1,2) , dv_{k}(k=1, \ldots, 2n-d_{0}-1) being
linearly independent and \Sigma_{i}\cap W=\{u_{i}=0\} , i=1,2 . When \rho\in\Sigma_{i}|\Sigma_{0} , we
can choose a local coordinate system (u_{i}, v, r) in a conic neighborhood W

of \rho\in\Sigma_{i}|\Sigma_{0} such that W\cap\Sigma_{0}=\phi and \Sigma_{i}\cap W=\{u_{i}=0\} , i=1,2 .

DEFINITION 2. 1. ( c.f. [2] and [3]) Let m, k_{1} and k_{2} be real numbers
and W a conic neighborhood of \rho\in\Sigma_{0} . We denote by S^{m,k_{1\prime}k_{2}}(W : \Sigma_{1} , \Sigma_{2})

the set of all C^{\infty} functions a(w) defifined in W such that for any non-negative
integer p and any multi-indices (\alpha_{1}, \alpha_{2}, \beta) , there exists a constant C>0 such
that for all r\geq 1 ,

(2.1) |( \frac{\partial}{\partial u_{1}})^{a}’(\frac{\partial}{\partial u_{2}})^{a_{2}}(\frac{\partial}{\partial v})^{\beta}(\frac{\partial}{\partial r})^{p} a(w)|\leq C r^{m-p}\rho_{\Sigma_{1}}^{k_{1}-|a_{1}|}\rho_{\Sigma_{2}}^{k_{2}-|a_{2}|} where

\rho\Sigma_{\iota}=(d_{\Sigma}^{2},+r^{-1})^{1/2} . Similarly if W is a conic neighborhood of \rho\in\Sigma_{i}|\Sigma_{0}

such that W\cap\Sigma_{0}=\phi , we also defifine S^{m,k}, (W ; \Sigma_{i}) .

Note that S^{m,k_{1\prime}h}(W ; \Sigma_{1}, \Sigma_{2}) and S^{m,k},(W ; \Sigma_{i}) are Fr\’echet spaces
when equipped with the semi-norms defined by the best possible constants in
(2. 1). Then we have:

PROPOSITION 2. 2. If W is a conic neighborhood of \rho\in\Sigma_{0} or \rho\in\Sigma_{i}|\Sigma_{0}

such that W\cap\Sigma_{0}=\phi , then \frac{\partial}{\partial x_{i}} and \frac{\partial}{\partial\xi_{i}} are continuous from
S^{m,k_{1},k_{2}}(W,\cdot\Sigma_{1}, \Sigma_{2}) to S^{m-1/2,k_{1},k_{2}}(W ; \Sigma_{1}, \Sigma_{2}) or from S^{m,k},(W ; \Sigma_{4})

to S^{m-1/2,k}, ( W ; \Sigma_{i}) respectively.

In fact we can write \frac{\partial}{\partial x_{i}}=\frac{\partial u_{1}}{\partial x_{i}}\frac{\partial}{\partial u_{1}}+\frac{\partial u_{2}}{\partial x_{i}}\frac{\partial}{\partial x_{2}}+\frac{\partial v}{\partial x_{i}}\frac{\partial}{\partial v}+\frac{\partial r}{\partial x_{l}}

.
\frac{\partial}{\partial r} . Thus it

suffices to note that \frac{\partial u_{j}}{\partial x_{i}}, \frac{\partial v}{\partial x_{i}} and \frac{\partial r}{\partial x_{i}} are homogeneous of degree –1 -1 and

0 respectively and

S^{m}, k_{1} , k_{2}\subset S^{m+1/2,k_{1}+1,k}\cap S^{m+1/2,k_{1}} , k+1 .
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Let W be a conic neighborhood of \rho\in\sum_{0} . Then we need the following
three propositions which follow from a routine consideration (c. f. [2], [3]) .

PROPOSITION 2. 3. For non-negative integers M_{1} and M_{2} , we have
L^{m} , M_{1} , M_{2}(W ; \Sigma_{1}, \Sigma_{2})\subset S^{m,M_{1},M_{2}}(W ; \Sigma_{1}, \Sigma_{2}) .

PROPOSITION 2. 4. If
p_{1}\in S^{m,M_{1},M_{2}}( W : \Sigma_{1} , \Sigma_{2}) and p_{2}\in S^{m’}M_{1\prime}’M_{2}’(W ;

\Sigma_{1} , \Sigma_{2}) , then we have p_{1}\# p_{2}\in S^{m+m,M_{1}+M_{1}’,M_{2}+M_{2}’}( W ; \Sigma_{1}, \Sigma_{2}) where f1

means the composition of the symbols:

p_{1} \# a-\sum_{a}\frac{1}{\alpha!}\partial_{\xi}^{a}p_{1}D_{x}^{a}p_{2} .

PROPOSITION 2. 5. If p\in S^{m},
M_{1},

M_{2}( W ; \sum_{1}, \sum_{2}) satisfifies
|p|\geq Cr^{m}\rho_{\Sigma l}^{M_{1}}\rho_{\Sigma_{2}}^{M_{2}}

for a positive constant C, then we have

p^{-1}\in S^{-m} , -M_{1} , -M_{2}(W : \sum_{1}, \sum_{2}) .

Finally we define a symbol class with a parameter \zeta in order to consider
parametrices of P(x, D)-\zeta for some \zeta\in C .

DEFINITION 2. 6. Let m, M_{1} and M_{2} be fifixed numbers as in (H. 4) and
let l, k_{1} and k_{2} be real numbers, W a conic neighborhood of \rho\in\Sigma_{0} and \Lambda an
open set in the complex plane C. Then we denote by S_{\Lambda}^{l,k_{1},k_{2}} ( W ; \Sigma_{1}, \Sigma_{2})

the set of all a(w, \zeta)\in C^{\infty}(W\cross\Lambda) satisfying the following ( i) and ( ii) ,

(i) for every \zeta\in\Lambda , a(w, \zeta)\in S^{l,k,,h}( W : \Sigma_{1} , \Sigma_{2})

(ii) for every \zeta\in\Lambda , |\zeta|a(w, \zeta)\in S^{m+l,M_{1}+k_{1},M_{2}+h}( W ; \Sigma_{1}, \Sigma_{2}) and
for every non-negative integer p and multi-indices (\alpha_{1}, \alpha_{2}, \beta) , there exists a
positive constant C independing in \zeta\in\Lambda such that

|( \frac{\partial}{\partial u_{1}})^{a_{1}}(\frac{\partial}{\partial u_{2}})^{a_{2}}(\frac{\partial}{\partial v})^{\beta}(\frac{\partial}{\partial r})^{p}[|\zeta|a(w, \zeta)]|\leq

Cr^{m+l-p}\rho_{\Sigma_{1}}^{M_{1}+k_{1}-|a_{1}|}\rho_{\Sigma_{2}}^{M_{2}+k_{2}-|a_{2}|} for all (w, \zeta)\in W\cross\Lambda .

\S 3. Constructions of parametrices

In this section we construct the parametrices of P(x, D)-\zeta I for some \zeta

\in\Lambda with various top symbols where \Lambda is the union of a small open convex
cone containing the negative real line and \{\zeta\in C;|\zeta|<\delta\} where \delta is as in
(H. 3). Let \rho\in\sum_{0} and w=(u_{1}, u_{2}, v, r) be a local coordinate system in a
small conic neighborhood W of \rho as in \S 2. By (1. 2) and Taylor’s theorem,
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we can write

(3. 1) p_{m-j/2}=
|a_{1}| \leq M_{1},|a_{2}|\leq M_{2}\sum_{|a_{1}|+|a_{2}|=M_{0}-j},a_{a_{1\prime}a_{2}}(u_{1_{j}}u_{2}, v, r)u_{1}^{a_{1}}u_{2}^{a_{2}}

in W

Thus we have for X=(X_{1_{5}}X_{2})\in N_{\rho}\Sigma_{0}=R^{d_{1}}\cross R^{d_{2}} ,

\tilde{p}(\rho, X)=[mathring]_{\sum_{j=0}^{M}}\sum_{|a_{1}|+|a_{2}|=M_{0}-j}

, |a_{2}|\leq M ,

a_{a_{1},a_{2}}(\rho)X_{1}^{a_{1}}X_{2}^{a_{2}} .

Then we need the following three symbols which are needed in order to
examine the first singularity in various cases.

PROPOSITION 3. 1. Let \rho\in\Sigma_{0} . Then there exists a small conic neigh-

borhood W of \rho and a^{(y)}(x, \xi)\in S_{\Lambda}^{-m}
, -M_{1} , -M_{2} ( W : \Sigma_{1} , \Sigma_{2})(j=1,2,3) such

that

(p-\zeta) I a_{\zeta}^{(j)}=1+ \sum_{i=1}^{3}c_{\zeta}^{(ji)}

where c_{\zeta}^{(11)}\in S_{\Lambda}^{0,1,0} . c_{\zeta}^{(12)} . c_{\zeta}^{(22)}\in S_{\Lambda}^{0,0,1}, c_{\zeta}^{(21)}\in S_{\Lambda}^{-1/2,-1,0} . c_{\zeta}^{(13)} . c_{\zeta}^{(31)}\in S_{\Lambda}^{-1/2,0,0}

and c_{\zeta}^{(23)}=c_{\zeta}^{(32)}=c_{\zeta}^{(33)}=0 .

PROOF. We choose a function \chi\in C^{\infty}(R^{2n}) :

\chi(x, \xi)=1 if |x|+|\xi|\geq 1 and =0 if |x|+|\xi|\leq 1/2 .

Existence of a_{\zeta}^{(1)} : Let (u_{1}, u_{2}, v, r) be a local coordinate system in W as
above. We identify (X_{1}, X_{2}) with (u_{1}, u_{2}) and \rho with (0, 0, v, r) and
write p(\rho, X)=p(u_{1}, u_{2}, v, r) . Define for \zeta\in\Lambda ,

(3.2) a_{\zeta}^{(1)}(u_{1}, u_{2}, v, r)=\chi(u_{1x}u_{2}, v, r)(p(u_{1}, u_{2}, v, r)-\zeta)^{-1} .

Then we have

(p-\zeta)f1a_{\zeta}^{(1)}=\chi\{(\tilde{p}-\zeta) fl ( \tilde{p}-\zeta)^{-1}+(p-\sum_{j=0}^{M_{0}}p_{m-j/2})\#(\tilde{p}-\zeta)^{-1}+

+ \sum_{j=0}^{M_{0}}(p_{m-j/2}-\tilde{p}_{m-j/2})f(\tilde{p}-\zeta)^{-1}\}+[p-\zeta, \chi](\tilde{p}-\zeta)^{-1} .

Here we note that by Proposition 2. 5 and (H. 3) we have

(\tilde{p}-\zeta)^{-1}\in S_{\Lambda}^{-m}
, -M_{1} , -M_{2}(W ; \Sigma_{1}, \Sigma_{2}) .

Thus it suffices to apply Proposition 2. 2 and 2. 4.
Existence of a_{\zeta}^{(2)} : By (1. 4) we have p\sim(u_{1}, u_{2}, v, r)-\tilde{p}_{\Sigma_{2}}(u_{1}, u_{2}, v, r)=r_{1}+r_{2}

where
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\tilde{p}_{\Sigma_{2}}=\sum_{|a_{1}|=M_{1}}\{\sum_{j=0}^{M_{2}}\sum_{|a_{2}|=M_{2}-j}a_{a_{1},a_{2}}(u_{1},0, v, r)u_{2}^{a_{2}}\}u_{1}^{a_{1}} ,

r_{1}\in 5^{m-1/2,M_{1}-1,M_{2}} and r_{2}\in S^{n,M_{1\prime}M_{2}+1} . On the other hand, by (H. 3), we
have for \lambda>0 ,

\lambda^{-M_{1}}\tilde{p}(\lambda u_{1}, u_{2}, v, r)=\sum_{|a_{1}|=M_{1}}\{\sum_{j=0}^{M_{2}}\sum_{|a_{2}|=M_{2}-j}a_{a_{1},a_{2}}(0,0, v, r)u_{2}^{a_{2}}\}u_{1}^{a_{1}}+O(\lambda^{-1})

\geq 2\delta\lambda^{-M_{1}}r^{m}(|\lambda u_{1}|^{2}+r^{-1})^{M_{1}/2}(|u_{2}|^{2}+r^{-1})^{M_{2}/2} .

Letting \lambdaarrow\infty , we see

\sum_{|a_{1}|=M_{1}}\{\sum_{j=0}^{M_{2}}\sum_{|a_{2}|=M_{2}-j}a_{a_{1},a_{2}}(0,0, v, r)u_{2}^{a_{2}}\}u_{1}^{a_{1}}

\geq 2\delta r^{m}|u_{1}|^{M_{1}}(|u_{2}|^{2}+r^{-1})^{M_{2}/2} .

Since W is small enough, for any \epsilon>0 ,

|a_{a_{1},a_{2}}(u_{1},0, v, r)-a_{a_{1},a_{2}}(0,0, v, r)|\leq\epsilon V^{-(M_{2}-|a_{2}|)/2}

if |\alpha_{1}|=M_{1} . Therefore we have

\tilde{p}_{\Sigma_{2}}(u_{1}, u_{2}, v, r)\geq(3\delta/2)r^{m}|u_{1}|^{M_{1}}(|u_{2}|^{2}+r^{-1})^{M_{2}/2} .

Thus it suffices to define for \zeta\in\Lambda ,

(3.3) a_{\zeta}^{(2)}(u_{1}, u_{2}, v, r)=\chi(u_{1}, u_{2}, v, r)[\tilde{p}_{\Sigma_{2}}(u_{1}, u_{2}, v, r)+

+\sqrt{}^{n-M_{1}/2}(|u_{2}|^{2}+r^{-1})^{M_{2}/2}-\zeta]^{-1} .

Existence of a_{\zeta}^{(3)} : Since W is small enough, it suffices to define

(3. 4) a_{\zeta}^{(3)}(x, \xi)=\chi(x, \xi)(\sum_{j=0}^{M_{0}}p_{m-j/2}(x, \xi)-\zeta)^{-1} .

This completes the proof.
Now we can construct microlocal parametrices of P(x, D)-\zeta I, \zeta\in\Lambda .

Let \psi(x, \xi) be a C^{\infty} function of positively homogeneous of degree 0 and
supp \psi\in W We define

(3.5) P_{\zeta,0}^{(1)}(x, D)=\psi(x, D)a_{\zeta}^{(3)}(x, D)

(3.6) P_{\zeta,0}^{(2)}(x, D)=\psi(x, D) \{ a_{\zeta}^{(1)}(x, D)-a_{\zeta}^{(3)}(x, D)(\sum_{i=1}^{3}c_{\zeta}^{(1i)}(x, D))\}

(3.7) P_{\zeta,0}^{(3)}(x, D)=\psi(x, D) \{ a_{\zeta}^{(2)}(x, D)-a_{\zeta}^{(3)}(x, D)(\sum_{i=1}^{2}c_{\zeta}^{(2i)}(x, D))\} .

Then we have (P(x, D)-\zeta I)P_{\zeta,0}^{(j)}(x, D)=\psi(x, D)+d_{\zeta}^{(j)}(x, D) where
d_{\zeta}^{(j)}(x, \xi)\in S^{-1/2,0,0} for j=1,2,3. If we put



Complex powers of a class of pseudodijferential
operators in R^{n} and the asymptotic behavior of eigenvalues

P_{\zeta,l}^{(j)}(x, D)=P_{\zeta,0}^{(j)}(x, D)(-d_{\zeta}^{(j)}(x, D))^{l}, l=0,1,2 , \ldots

we see that P_{\zeta,l}^{(j)}(x, D)\in OPS_{\Lambda}^{-m-l/2}
, -M_{1} , -M_{2} and there exist q_{\zeta}^{(j)}(x, D)\in

OPS_{\Lambda}^{-m}
, -M_{1} , -M_{2} such that for every N>0 ,

q_{\zeta}^{(j)}(x, D)- \sum_{l=0}^{N-1}P_{\zeta,l}^{(j)}(x, D)\in OPS_{\Lambda}^{-m-N/2.-M_{1},-M_{2}} , j=1,2,3 .

Then we have (P(x, D)-\zeta I)q_{\zeta}^{(j)}(x, D)\equiv\psi(x, D) mod OPS_{\Lambda}^{-\infty}=

\bigcap_{m>0}OPS_{\Lambda}^{-m}

, -M_{1\prime}-M_{2} .

Next we consider the case where W is a small conic neighborhood of
\rho\in\Sigma_{i}|\Sigma_{0} such that W\cap\Sigma_{0}=\phi , i=1,2 . In this case, we can write as in
(3. 1) :

p( \rho, X_{i})=\acute{\sum_{j=0}^{M}}\sum_{|a,|=M,-j}a_{a},(\rho)X_{i}^{a} ’ for X_{i}\in R^{d}, .

PROPOSITION 3. 2. Let \rho\in\Sigma_{i}|\Sigma_{0} . Then there exist a conic neigh-
borhood W of \rho and a_{\zeta}^{(ij)}(x, \xi)\in S_{\Lambda}^{-m}

, -M, ( W ; \Sigma_{i})(j=1,2) such that

(p-\zeta)\# a_{\zeta}^{(ij)}=1+c_{\zeta}^{(ij)}

where c_{\zeta}^{(i1)}\in S_{\Lambda}^{0,1}( W : \Sigma_{i}) and c_{\zeta}^{(i2)}\in S_{\Lambda}^{-1/2,-1}( W : \Sigma_{i}) .

PROOF. If we consider as in the proof of Proposition 3. 1, it suffices to
define as follows:
Existence of a_{\zeta}^{(i1)} : a_{\zeta}^{(i1)}(u_{i}, v, r)=\chi(u_{i}, v, r)(p(u_{i}, v, r)-\zeta)^{-1}

Existence of a_{\zeta}^{(i2)} : a_{\zeta}^{(i2)}(x, \xi)=\chi(x, \xi)(p_{m}(x, \xi)+p^{\nearrow n-M,/2}-\zeta)^{-1} .
This completes the proof.

Let \psi(x, \xi) be a C^{\infty} function of positively homogeneous of degree 0 and
supp \psi\subset W Define

P_{\zeta,0}^{(i1)}(x, D)=\psi(x, D)(a_{\zeta}^{(i1)}(x, D)-a_{\zeta}^{(i2)}(x, D)c_{\zeta}^{(i1)}(x, D)) ,

P_{\zeta,0}^{(i2)}(x, D)=\psi(x, D)(a_{\zeta}^{(i2)}(x, D)-a_{\zeta}^{(i1)}(x, D)c_{\zeta}^{(i2)}(x, D)) .

As the same way as the preceding arguments, we can construct q_{\zeta}^{(ij)}(x, D)\in

OPS_{\Lambda}^{-m}
, -M, ( i=1,2 and j=1,2) such that for every N>0 , we have

q_{\zeta}^{(ij)}(x, D)- \sum_{l=0}^{M-1}p_{\zeta,l}^{(ij)}(x, D)\in OPS_{\Lambda}^{-m-N/2,-M}’

and (P(x, D)-\zeta I)q_{\zeta}^{(ij)}(x, D)\equiv\psi(x, D) mod OPS_{\Lambda}^{-\infty} .
Finally we have
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p_{ROPOSITION} 3 . 3. Let W be an open cone such that W\cap\Sigma=\phi . Then
there exists a_{\zeta}^{(3)}(x, \xi)\in S^{-m}(W) such that

(P-\zeta)\# a_{\zeta}^{(3)}=1+c_{\zeta}^{(3)} whcre c_{\zeta}^{(3)}\in S_{\Lambda}^{-1_{J}2} .

PROOF. If necessary, we replace \delta as in (H. 3) with smaller one. So
we may assume p_{m}(x, \xi)\geq\delta in W Thus if we put

a_{\zeta}^{(3)}(x, \xi)=\chi(x, \xi)(p_{m}(x, \xi)-\zeta)^{-1} ,

the proof is complete.

\S 4. Construction of complex powers

In this section we consider complex powers of an operator P associated
to P(x, D) . Assume that P(x, D)\in OPL^{m,M_{1},M_{2}}(\Sigma_{1}, \Sigma_{2}) satisfies (1. 3),
(1. 4) and (H. 1) – (H. 4). Moreover we assume:
(H. 5) P(x, D) is formally self-adjoint, i . e. , for every u, v\in \mathscr{L}(R^{n}) .

\int_{R^{n}}P(x, D)u\overline{v}dx=\int_{R^{n}}u\overline{P(x,D)v}dx.

Let P_{0} be an operator on L^{2}(R^{n}) with the definition domain D(P_{0})=

\mathscr{L}(R^{n}) such that P_{0}u=P(x, D)u for u\in D(P_{0}) . By Remark 1. 3 and (H. 4),

P(x, D) is hypoelliptic with loss of M_{0}/2 -derivatives and m-M_{0}/2>0 .
Therefore P_{0} is essentially self-adjoint and the closure P of P_{0} is an
unbounded self-adjoint operator with the definition domain
D(P)=\backslash u/\in L^{2}( R^{n}) : P(x, D)u\in L^{2}( R^{n})\} ,

Pu=P(x, D)u for u\in D(P) .

Since P(x, D) has a parametrix Q(x, D)\in OPS^{-m,-M_{1}} , -M_{2}(\Sigma_{1}, \Sigma_{2}) , P has
a compact regularizer on L^{2}(R^{n}) . (c. f . KumanO-go [10] and also Grushin
[5] ) . Thus P has the spectrum consist only of eigenvalues of finite
multiplicity. Finally we assume:
(H. 6) P is positive definite, i . e. , there exists a positive real number \gamma such
that (Pu, u)\geq\gamma||u||_{L^{2}(R^{n})}^{2} for all u\in D(P) .

Then we can define complex powers P^{z} by the spectral resolution of P .
Let \Gamma be a curve beginning at infinity, passing along the negative real line to
a circle \{\zeta : |\zeta|=\delta\} (where \delta is in (H. 3) and we may assume \delta\leq\gamma), then
clockwise about the circle and back to infinity along the negative real line.
For \mathscr{B}_{e}z<0 , we see

(4. 1) P^{z}= \frac{i}{2\pi}\int_{\Gamma}\zeta^{z}(P-\zeta)^{-1}d\zeta
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where \zeta^{z} takes the principal value in C|R^{-} Here we note that
||(P-\zeta)^{-1}||_{\mathscr{L}(L^{2}L^{2})}\leq[dist(\zeta, [\gamma, \infty)]^{-1}=O(|\zeta|^{-1}) as |\zeta|arrow\infty and \zeta\in\Lambda .

Therefore the integral in the right hand side in (4. 1) is convergent.
On the other hand we define operators P_{z}(x, D) with the symbol \sigma(P_{z})

by the formula:

(4. 2) \sigma(P_{z})(x, \xi)=\frac{i}{2\pi}\int_{\Gamma}\zeta^{z}q_{\zeta}(x, \xi)d\zeta .

Here for brevity of the notations we have dropped the upper indices of
q_{\zeta}^{(j)}(x, D)(j=1,2,3) in \S 3. Since q_{\zeta}\in S_{\Lambda}^{-m}

, -M_{1},
M_{2}(\Sigma_{1}, \Sigma_{2}) , we see easily

that the integral in (4. 2) is absolutely convergent when \mathscr{B}_{e}z<0 . For \mathscr{B}_{\theta}z

\geq 0 , choose an integer k such that -1\leq \mathscr{B}_{e}z-k<0 and define

(4.1) P_{z}(x, D)=P(x, D)^{k}P_{z-k}(x, D) .

Then we have:

THEOREM 4. 1. Assume that P(x, D)\in OPL^{m,M_{1\prime}M_{2}}(\Sigma_{1}, \Sigma_{2}) satisfifies
(1. 3), (1. 4) and (H. 1)–(H. 6). Then we have the fallowings:

(i) P^{z}\in OP\wp \mathscr{L},z, M_{1}\mathscr{L}_{\theta}z, M_{2}\mathscr{L},z(\Sigma_{1}, \Sigma_{2}) .
(ii) For any negative real number a and real numbers m_{-}’k_{1} and k_{2}

satisfying ma<m’ N(m, M_{i})a<N(m’k_{i})(i=1,2) and N(m, M_{0})a<

N(m’k_{1}+k_{2}) , \sigma(P^{z}) is holomorphic on any compact set in \{ z : ^{\mathscr{B}_{e}z}<a\}

with value in S^{m’,k_{1},h_{2}}(\Sigma_{1}, \Sigma_{2}) .
Later from now we write such class of symbols satisfying ( i) and ( ii) by
S_{0}^{m\mathscr{L}_{e}z}

, M_{1}\mathscr{L},z, M_{2}\mathscr{L}_{*}z

PROOF. Let \mathscr{B}_{e}z<0 . Near \Sigma_{0} , we see that by (H. 3), q_{\zeta}(x, \xi) is
holomorphic in \{\zeta: \mathscr{T}"\zeta=0, \mathscr{B}_{e}\zeta\leq 0\}\cup\{\zeta: |\zeta|\leq\delta R (r, u_{1}, u_{2})\} where

(4.4) R(r, u_{1}, u_{2})=r^{m}\rho_{\Sigma_{1}}^{M_{1}}\rho_{\Sigma_{2}}^{M_{2}} .

So we may replace the contour \Gamma in (4. 2) with \Gamma’=\Gamma_{1}’+\Gamma_{2}’+\Gamma_{3}^{r}

where \Gamma_{1}’ : \zeta=-s \delta R(r, u_{1}, u_{2})\leq s\leq+\infty ,

\Gamma_{2}’ : \zeta=\delta R(r, u_{1}, u_{2})e^{-i\theta} -\pi\leq\theta\leq\pi,

\Gamma_{3}’ : \zeta=s \delta R(r, u_{1}. u_{2})\leq s\leq+\infty .
On the other hand since q_{\zeta}(x, \xi)\in S_{\Lambda}^{-m}

, -M_{1} , -M_{2}(\Sigma_{1}, \Sigma_{2}) , for any multi-index
(\alpha_{1}, \alpha_{2}, \beta) and non-negative integer p there exists a constant C=C_{a_{1},a_{2},\beta.p}

such that

|( \frac{\partial}{\partial u_{1}})^{a_{1}}(\frac{\partial}{\partial u_{2}})^{a_{2}}(\frac{\partial}{\partial v})^{\beta}(\frac{\partial}{\partial r})^{p}q_{\zeta}(u_{1r}u_{2}, v, r)|\leq C|\zeta|^{-1}r^{-p}\rho_{\Sigma_{1}}^{-|a_{1}|}\rho_{\Sigma_{2}}^{-|a_{2}|} .
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In order to estimate \sigma(P^{z}) , put for each j=1,2,3,

I_{j}= \frac{i}{2\pi}\int_{\Gamma_{j}} \zeta^{z}(\frac{\partial}{\partial u_{1}})^{a_{1}}(\frac{\partial}{\partial u_{2}})^{a_{2}}(\frac{\partial}{\partial v})^{\beta}(\frac{\partial}{\partial r})^{p}q_{\zeta}(u_{1}, u_{2}, v, r)d\zeta.

Then we have for j=1 or 3,

|I_{j}| \leq Cr^{-p}\rho_{\Sigma_{1}}^{-|a_{1}|}\rho_{\Sigma_{2}}^{-|a_{2}|}\int_{8R(r,u_{1},u_{2})}^{\infty}s^{\mathscr{L},z-1}ds

\leq C_{z} R(r, u_{1}, u_{2})^{\mathscr{L},z}r^{-p}\rho_{\Sigma_{1}}^{-|a_{1}|}\rho_{\Sigma_{2}}^{-|a_{2}|}

where C_{z} is a constant depending on z . For j=2 , we have easily

|I_{j}|\leq C_{z}’R(r, u_{1}, u_{2})^{\mathscr{L}_{\partial}z}r^{-p}\rho_{\Sigma_{1}}^{-|a_{1}|}\rho_{\Sigma_{2}}^{-|a_{2}|}

where C_{z}’ is a constant depending on z . Similarly we can estimate (4. 2)
also in the other cases of \sum_{1} and \sum_{2} . Thus we have

\sigma(P^{z})(x, \xi)\in S_{0}^{m\mathscr{L}_{a}z,M_{1}\mathscr{L}_{\partial}z,M_{2}\mathscr{L}_{\wedge}z}(\Sigma_{1}, \Sigma_{2}) .

Moreover since (P-\zeta)^{-1}-q_{\zeta}(x, D)\in OPS_{\Lambda-}^{-\infty}

then we see that

\sigma(P^{z})-\frac{i}{2\pi}\int_{\Gamma}\zeta^{z}q_{\zeta}(x, \xi)d\zeta\in S_{0}^{-\infty} .

Thus we have ( i) for \mathscr{B}_{e}z<0 and ( ii) . For \mathscr{B}_{e}z\geq 0 , by Proposition 2. 4
and (4. 3), ( i) is clear. This completes the proof.

For the symbols of P^{z} we have the following Propositions corresponding
to Proposition 3. 1, 3. 2 and 3. 3 respectively whose proofs are omitted,
(c. f. [2]) .

PROPOSITION 4. 2. Let W be a small conic neighborhood of \rho\in\Sigma_{0} and
\chi a function of positively homogeneous of degree 0 such that supp\#\subset W.
Then we have in W

(i) \sigma(P^{z})=\chi\tilde{p}(u_{1}, u_{2}, v, r)^{z}+d_{z}^{(11)}+d_{z}^{(12)}+d_{z}^{(13)}

where d_{z}^{(11)}\in S_{0}^{m\mathscr{L},z,M_{1}\mathscr{L},z+1,M_{2}\mathscr{L},z} , d_{z}^{(12)}\in S_{0}^{m\mathscr{L},z,M_{1}\mathscr{L},z,M_{2}\mathscr{L},z+1} and
d_{z}^{(13)}\in S_{0^{m\mathscr{L},z-1/2,M_{1}\mathscr{L},z,M_{2}\mathscr{L},z}}

(ii) \sigma(P^{z})=\chi[\tilde{p}_{\Sigma_{2}}(u_{1_{f}}u_{2}, v, r)+V^{-M_{2}/2}(|u_{2}|^{2}+r^{-1})^{M_{2}/2}]^{z}+d_{z}^{(21)}+d_{z}^{(22)}

where d_{z}^{(21)}\in S_{0}^{m\mathscr{L},z-1/2,M_{1}\mathscr{L}z-1,M_{2}\mathscr{L}z},.amdd_{z}^{(22)}\in S_{0}^{m\mathscr{L},z,M_{1}\mathscr{L},z,M_{2}\mathscr{L},z+1}

(iii) \sigma(P^{z})=(\sum_{j=0}^{M_{0}}p_{m-j/2})^{z}+d_{z}^{(3)} where d_{z}^{(3)}\in S_{0^{m\mathscr{L},z-1/2,M_{1}\mathscr{L}.z,M_{2}\mathscr{L}_{s}z}}

Next for every i=1,2 , we have:

PROPOSITION4. 3_{(i)} . Let W be a small conic neighborhood of \rho\in\Sigma_{i}|\Sigma_{0}
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such that W \cap\sum_{0}=\phi . And also let \chi be a function of positively
homogeneous of degree 0 such that supp\#\subset W. Then we have in W :

(i) \sigma(P^{z})=\chi\tilde{p}(u_{i}, v, r)^{z}+d_{z}^{(i1)}+d_{z}^{(i2)}

where d_{z}^{(i1)}\in S_{0}^{m\mathscr{L},z,M,\mathscr{L}_{s}z+1} ( W : \Sigma_{i}) and d_{z}^{(i2)}\in S_{0}^{m\mathscr{L}.z-1/2,M,\mathscr{L}_{e}z}

(ii) \sigma(P^{z})=\chi(p_{m}+\sqrt{}^{n-M,/2})^{z}+d_{z}^{(i2)}

where d_{z}^{(i2)}\in S_{0^{m\mathscr{L},z-1/2,M,\mathscr{L},z-1}} ( W : \Sigma_{i}) .

PROPOSITION 4. 4. Let W be an open cone such that W\cap\Sigma=\phi and \chi

be a function of positively homogeneous of degree 0 such that supp \chi\subset W.
Then we have in W,

\sigma(P^{z})=\chi p_{m}^{z}+d_{z}

where d_{z}\in S_{0}^{m\mathscr{L}_{e}z-1/2}( W) .

\S 5. The first singularity of Trace (P^{z})

In this section we consider the first singularity of Trace(P^{z}) and
determine the order of the pole and the coefficient at the point. Let p_{z}(x, \xi)

be the symbol of P^{z}. It is well known that if

\int_{R^{n}\cross R^{n}}|p_{z}(x, \xi)|dxd\xi\leq C_{z}

for some constant C_{z} , then P^{z} is an operator of trace class and the trace is
given by:

Tr (P^{z})=(2 \pi)^{-n}\int_{R^{n}\cross R^{n}}p_{z}(x, \xi)dxd\xi.

Since

\int_{r\leq 1}p_{z}(x, \xi)dxd\xi

is entire, we may consider:

I(z)=(2 \pi)^{-n}\int_{r\geq 1}p_{z}(x, \xi)dxd\xi.

PROPOSITION 5. 1. Let p_{z}\in S_{0^{m\mathscr{L}.z-j,M_{1}\mathscr{L},z-k_{1},M_{2}\mathscr{L},z-k_{2}}} (\Sigma_{1} , \Sigma_{2}) and W be
an open cone and \chi a C^{\infty} function of positively homogeneous of degree 0 such
that supp \chi\subset W. Put

I_{\chi}(z)= \int_{r\geq 1}\chi(x, \xi)p_{z}(x, \xi)dxd\xi.

(I) The case: W is a small conic neighborhood of \rho\in\Sigma_{0} . Then I_{\chi}(z) is
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holomorphic in \{ z:\mathscr{B}_{e}z<a\} if a satisfifies any one of the fallowings.

(I 1) a<- \frac{d_{l}\cdot-k_{l}}{M_{l}}.\cdot(i=1,2) and a<- \frac{N(2n-j,d_{0}-k_{1}-k_{2})}{N(m,M_{0})} ,

(I. 2) - \frac{d_{1}-k_{1}}{M_{1}}\leq a<-\frac{d_{2}-k_{2}}{M_{2}} and a<- \frac{N(2n-j,d_{2}-k_{2})}{N(m,M_{2})} ,

(I. 3) - \frac{d_{2}-k_{2}}{M_{2}}\leq a<-\frac{d_{1}-k_{1}}{M_{1}} and a<- \frac{N(2n-j,d_{1}-k_{1})}{N(m,M_{1})} ,

(I. 4) - \frac{d_{l}\cdot-k_{l}}{M_{l}}.\cdot\leq a(i=1,2) and a<- \frac{2n-j}{m} .

(II)_{(\iota)}. The casc: W is a small conic neighborhood of \rho\in\Sigma_{i}|\Sigma_{0}(i=1,2)

such that W\cap\Sigma_{0}=\phi . Then I_{\chi}(z) is holomorphic in \{ z;\mathscr{B}_{e}z<a\} if a

satisfifies any one of the fallowings.

(II.1.i) a<- \frac{d_{l}\cdot-k_{l}}{M_{l}}.\cdot and a<- \frac{N(2n-j,d_{i}-k_{i})}{N(m,M_{l}\cdot)},

(II.2.i) - \frac{d_{l}\cdot-k_{l}}{M_{l}}.\cdot\leq a and a<- \frac{2n-j}{m} .

(III) The casc : W is outside of \sum . Then I_{\chi}(z) is holomorphic in

{ z : \mathscr{B}_{e}z<a^{\mathfrak{l}}, if a<- \frac{2n-j}{m} .

PROOF. ( I) We choose a local coordinate system w=(u_{1}, u_{2}, v, r)

as in \S 2. We may assume that W\subset { w=(u_{1} , u_{2} , v, r); |u_{i}|\leq 1 , i–l, 2}.
Let K be an arbitrary compact set in \{ z:\mathscr{B}_{e}z<a\} . Then by Theorem 4. 1,
there exists a constant C which is independent of z\in K such that

|p_{z}(x, \xi)|\leq CR(r, u_{1}, u_{2})^{a}r^{-j}(|u_{1}|^{2}+r^{-1})^{-k_{1}/2}(|u_{2}|^{2}+r^{-1})^{-k_{2}/2} .

Note that dxd\xi--J(u_{1}, u_{2}, v, r) du_{1} du_{2} dv dr where J(u_{1}, u_{2}, v, r)

=| \det\frac{D(u_{1}u_{2},v,r)}{D’(x,\xi)}|^{-1} is positively homogeneous of degree 2n-1 . Thus if

\mathscr{B}_{e}z<a , we have for some constants C, C’ and T

(5. 1) \int_{r\geq 1}|\chi(x, \xi)p_{z}(x, \xi)|dxd\xi

\leq C\int_{1}^{\infty}\int_{|v|\leq T,|u_{\iota}|\leq 1}R(r, u_{1}, u_{2})^{a}r^{-j+2n-1}(|u_{1}|^{2}+r^{-1})^{-k_{1}/2}\cross

(|u_{2}|^{2}+r^{-1})^{-k_{2}/2}du_{1}du_{2}dvdr

\leq C’\int_{1}^{\infty}r^{V(m,M_{tt})a+N(2n,d)-1-j+(k_{1}+k_{2})/2})dr\prod_{i=1}^{2}\int_{0}^{r^{12}}(t_{l}^{2}.+1)^{(M,a-k,)/2}t_{\acute{i}}^{d-1}dt_{l}\cdot .

Here we have that if M_{i}a-k_{\iota}\cdot+d_{i}<0 ,
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\int_{0}^{r^{1\prime 2}}(t_{l}^{2}.+1)^{(M,a-k,)/2}t_{i}^{d,-1}dt_{i}\leq\int_{0}^{\infty}(t_{i}^{2}+1)^{(M,a-k,)/2}t_{i}^{d,-1}dt_{l}\cdot<\infty

and if M_{i}a-k_{i}+d_{i}\geq 0 ,

\int_{0}^{r^{112}}(t_{i}^{2}+1)^{(M,a-k)/2}t_{i}^{d,-1}dt_{l}\cdot=O ( r^{(M,a+d,-k_{z})/2} log r ) as rarrow\infty .

Thus ( I) holds. Also ( II) and (III) follows from the same arguments,
so we omit them.

Now we have results on the first singularity of Tr(P^{z}) for each case.

PROPOSITION 5. 2. When \frac{d_{1}}{M_{1}}\geq\frac{d_{2}}{M_{2}}>\frac{2n}{m} , Tr(P^{z}) is holomorphic in

\{z;\mathscr{B}_{e}z<-\frac{2n}{m}\} and has a simple pole at z=- \frac{2n}{m} as the fifirst singularity with

the residue Res (- \frac{2n}{m})=\frac{2nA_{1}}{m} where

(5.2) A_{1}=(2 \pi)^{-n}\int_{p_{m}(x,\xi)\leq 1}dxd\xi .

PROOF. That Tr(P^{z}) is holomorphic in \{ z;\mathscr{B}_{e}z<-\frac{2n}{m}\} follows from

Proposition 5. 1 with j=k_{1}=k_{2}=0 . In this case we use Proposition 4. 2(Hi) ,

4. 3(ii) , 4. 4 and slso 5. 1. Then we can write Tr(P^{z})=I_{0}(z)+I_{1}(z) where

I_{0}(z)=(2 \pi)^{-n}\int_{r\geq 1}(p_{m}+\sqrt{}^{n-{\rm Min}(M_{1},M_{2})/2})^{z}dxd\xi

and I_{1}(z) is holomorhic in \{ z : \mathscr{B}_{e}z\leq-\frac{2n}{m}\} . Here by using the mean value

theorem, for any a<0 and any \epsilon , 0<\epsilon<1 , there exists a constant C such
that

| \int_{r\geq 1}\{(p_{m}+V^{-{\rm Min}(M_{1\prime}M_{2})/2})^{a}-(p_{m}+1)^{a}\}dxd\xi|

=| \int_{r\geq 1}[a(V^{-{\rm Min}(M_{1},M_{2})/2}-1)\cross

\int_{0}^{1}\{p_{m}+1+\theta(\sqrt{}^{n-Mi\eta(M_{1},M_{2})/2}-1)\}^{a}1d\theta]dxd\xi|

\leq C\int_{1}^{\infty}\sqrt{}^{na+2n-1-\epsilon{\rm Min}(M_{1},M_{2})/2}dr\prod_{i=1}^{2}\int_{0}^{1}t_{i}^{M,a-M,\epsilon+d,-1}dt_{l}\cdot .

Thus if we choose a such that a>- \frac{2n}{m} , we see that the integral is convergent.

So we are reduced to (c. f. [2]) :
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\int(p_{m}+1)^{z}dxd\xi=\frac{2n}{m}\sigma(1)\frac{\Gamma(2n/m)\Gamma(-(z+2n/m))}{\Gamma(-z)}

where \sigma(\lambda)=(2\pi)^{-n}\int_{p_{m}(x,\xi)\leq\lambda}dxd\xi .

Therefore by the properties of \Gamma -function, we reach the conclusion.

PROPOSITION 5. 3. When \frac{N(2n,d_{2})}{N(m,M_{2})}>\frac{2n}{m} , \frac{d_{1}}{M_{1}} , Tr (P^{z}) is holomorphic

in \{ z:\mathscr{B}, z<-\frac{N(2n,d_{0})}{N(m,M_{0})}\} and has a simple pole at z=- \frac{N(2n,d_{0})}{N(m,M_{0})} as the

fifirst singularity with the residue {\rm Res}(- \frac{N(2n,d_{0})}{N(m,M_{0})})=\frac{A_{2}}{N(m,M_{0})} where

(5.3) A_{2}=(2\pi)^{-n}1_{(\Sigma_{0}\cap S^{*}R^{2n})\cross R^{d_{1}}\cross R^{d_{2}}}J(0,0, v, 1)\cross

\tilde{p}(u_{1}, u_{2}, v, 1)^{-N(2n,d)})/N(m, M_{0})du_{1} du_{2}dv .

PROOF. We have \frac{N(2n,d_{0})}{N(m,M_{0})}>\frac{N(2n,d_{i})}{N(m,M_{i})}(i=1,2) in this case. By

Proposition 4. 2 ( i ) , 4. 3 ( i ) , 4. 4 and 5. 1, we may consider with W and \chi

as in Proposition 5. 1 ( I) ,

\int_{r\geq 1}h(u_{1}, u_{2}, v, r)\tilde{p}(u_{1}, u_{2}, v, r)^{z}du_{1}du_{2}dvdr

where h(u_{1} , u_{2}, v, r)=\chi(u_{1}, u_{2}, v, r)J (u_{1}, u_{2}, v, r) . Since we have
\backslash /h(u_{1}, u_{2}, v, r)-h(0,0, v, r)\}\tilde{p}(u_{1}, u_{2}, v, r)^{z}=r_{\acute{z}}+r_{z}’

where r_{z}’\in S_{0}^{m\mathscr{L}_{e}z,M_{1}\mathscr{L}.z+1,M_{2}\mathscr{L},z} and r_{z}’\in S_{0}^{m\mathscr{L},z,M_{1}\mathscr{L},z,M_{2}\mathscr{L},z+1} again by
Proposition 5. 1 we are reduced to the integral I(z)=

(2 \pi)^{-n}\int_{(\Sigma_{0}\cap\{r\geq 1\})\cross R^{d_{1}}\cross R^{d_{2}}}h(0,0, v, r)\tilde{p}(u_{1}, u_{2}, v, r)^{z}du_{1}du_{2}dv dr.

By quasi-homogeneity of \tilde{p} and the change of variable: u_{i}arrow r^{-1/2}u_{i} (i=1,2) ,
we see that

I(z)=(2 \pi)^{-n}\int_{1}^{\infty}r^{N(m,M_{0})z+N(2n,d_{)})-1}drI_{1}(z)

where

I_{1}(z)= \int_{(\Sigma_{0}\cap S^{*}R^{2n})\cross R^{d_{1}}\cross R^{d}}.h(0,0, v, 1)\tilde{p}(u_{1}. u_{2}, v, 1)^{z}du_{1}du_{2}dv .

Since it is clear that I_{1}(z) is holomorphic in \{ z;\mathscr{B}_{e}z\leq-\frac{N(2n,d_{0})}{N(m,M_{0})}\} , we

reach the conclusion.
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PROPOSITION 5. 4. When \frac{d_{1}}{M_{1}}>\frac{N(2n,d_{2})}{N(m,M_{2})}>\frac{2n}{m}, Tr(P^{z}) is holomorphic

in \{ z:\mathscr{B}_{9}z<-\frac{N(2n,d_{2})}{N(m,M_{2})}\} and has a simple pole at z=- \frac{N(2n,d_{2})}{N(m,M_{2})} as the

first singularity with the residue {\rm Res}(- \frac{N(2n,d_{2})}{N(m,M_{2})})=-\frac{A_{3}}{N(m,N_{2})} where

(5.4) A_{3}=(2 \pi)^{-n}\int_{(\Sigma_{2}\cap S^{*}R^{2n})\cross R^{d}}.(\tilde{p}(u_{2}, v, 1)+1)^{-N(2n,d_{2})/N(m,M_{2})}J(0, v, 1)du_{2}dv

PROOF That Tr (P^{z}) is holomorphic in \{ z : \mathscr{B}_{e}z<-\frac{N(2n,d_{2})}{N(m,M_{2})}\}

follows from Proposition 5. 1. By Proposition 4. 2(ii), 4. 3_{(2)}(i ) , 4. 3_{(1)}

(ii) , 4. 4 and 5. 1, we may consider the integral of p_{z}(x, \xi) near \Sigma_{2} . First
let W and \chi be as in Proposition 5. 1 ( II)_{(2)} . Then by the same way as the
proof of Proposition 5. 3, we have modulo holomorphic functions for

N(2n, d_{2})
\mathscr{B}_{p}z\leq-_{\overline{N(m,M_{2})}},

I_{\chi}(z)\equiv

(2 \pi)^{-n}\int_{r\geq 1}h(0, v, r) \{ \tilde{p}(u_{2}, v, r)+\sqrt{}^{n-M_{1}/2}(|u_{2}|^{2}+r^{-1})^{M_{2}/2}\}^{z}du_{2}dv dr.

Secondly let W and \chi be as in Proposition 5. 1(I) . Then we have

\tilde{p}(u_{1}, u_{2}, v, r)^{z}-\{\tilde{p}_{\Sigma_{2}}(u_{2}, u_{1} , v, r)+V^{-M_{1}/2}(|u_{2}|^{2}+r^{-1})^{M_{2}/2})\}^{z}

=r_{z}^{1}+r_{z}^{2}

where r_{z}^{1}\in S_{0}^{m\mathscr{L},z-1/2,M_{1}\mathscr{L},z-1,M_{2}\mathscr{L},z} and r_{z}^{2}\in S_{0}^{m\mathscr{L},z,M_{1}\mathscr{L},z,M_{2}\mathscr{L}.z+1} . So we have

I_{\chi}(z) \equiv(2\pi)^{-n}\int_{r\geq 1}h(u_{1},0, v, r)\cross

\{\tilde{p}_{\Sigma_{2}}(u_{2}, u_{1}, v, r)+V^{-M_{1}/2}(|u_{2}|^{2}+r^{-1})^{M_{2}/2}\}^{z}du_{1}du_{2}dvdr.

By the quasi-homogeneity of \tilde{p}(u_{2}, v, r) and \tilde{p}_{\Sigma_{2}}(u_{2}, u_{1r}v, r) and the change
of variable u_{2}arrow r^{-1/2}u_{2} , we reach the conclusion.

PROPOSITION 5. 5. When \frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\frac{2n}{m} , Tr(P^{z}) is holomorphic in

\{z ; \mathscr{B}_{e}z<-\frac{2n}{m}\} and has a triple pole at z=- \frac{2n}{m} as the fifirst singularity with

the coefficient of (z+ \frac{2n}{m})^{-3} equal to - \frac{N(2m,M_{0})A_{4}}{4mN(m,M_{1})N(m,M_{2})N(m,M_{0})}

where
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(5. 5) A_{4}=(2 \pi)^{-n}\int_{(\Sigma_{0}\cap S^{*}R^{2n})\cross S^{*}R^{d_{1}}\cross S^{*}R^{d_{2}}}\tilde{p}_{m}(\omega_{1}, \omega_{2}, v, 1)^{-2n/m}\cross

J(0,0, v, 1)d\omega_{1}d\omega_{2}dv .

PROOF. In this proposition if a function f(z) is holomorphic in

{ z: \mathscr{B}_{e}z<-\frac{2n}{m} (, and has at most a double pole at z=- \frac{2n}{m} as the first

singularity, we say that the function is negligible and write f(z)\equiv 0 .

That Tr(P^{z}) is holomorphic in \{ z;\mathscr{B}_{e}z<-\frac{2n}{m}\} follows from Proposi-

tion 5. 1. Let W and \chi be as in Proposition 5. 1 ( I) . By Proposition 4. 2
(i ) , 4. 3_{(j)}(i) and 4. 4, we may consider

J(z)=(2 \pi)\prime l\int_{r\geq 1}h(u_{1}, u_{2}, v, r) \{ p(u_{1}, u_{2}, v, r)^{z}+d_{z}^{(1\rangle}+d_{z}^{(2)}\}du_{1}du_{2}dvdr

where d_{z}^{(1)}--

=\{ ^{\sum_{|a_{1}|\leq M_{1}}a_{a_{1}.a}(u_{1}}|a|\leq M" \mathcal{U}_{2}, v, r)u_{1}u_{2}\}^{\mathcal{Z}}a_{1}a_{2}-\{ ^{\sum_{|\alpha,|\leq M_{1}}a_{a_{1\prime}a_{2}}(0, u_{2}, v, r)}|a_{2}|\leq M_{2}’ u_{1}^{a_{1}}u_{2}^{a_{2}}\}^{z}

and
d_{z}^{(2)}-- \{ _{|a|\leq M^{1}’}\sum_{|a_{1}|\leq M}a_{a_{1},a}(0, u_{2}, v, r)u_{1}^{a_{1}}u_{2}^{a_{2}}\}^{z}-\{\Sigma a_{a_{1},a_{2}}(0,0, v, r)u_{1}^{a_{1}}u_{2}^{a_{2}}\}^{z}|_{a_{2}}^{a_{1}}|_{\leq M_{2}}^{\leq M_{1}}

.

Here we may assume that supph\subset\{(u_{1}, u_{2}, v, r); |u_{i}|\leq 1, i=1,2\} .
Moreover we shall prove:

(5. 6) J(z)\equiv J_{0}(z) where J_{0}(z)=

=(2 \pi)^{-;:}\int_{r\geq 1}r12\leq|u_{z}|\leq 1h(0,0, v, r)\tilde{p}(u_{1}, u_{2}, v, r)^{z}du_{1}du_{2}dv dr.

In order to prove (5. 6) we need the following lemmas.

LEMMA 5. 6. If we put J_{1}(z)=

= \int_{|u,|\leq r}1’ 2h(u_{1}, u_{2}, v, r)\tilde{p}(u_{1} , u_{2}, v, r)^{z}du_{1} du_{2}dv dr,

then J_{1}(z)\equiv 0 .

PROOF. By the preceding arguments, we have for \mathscr{B}_{e}z<-\frac{N(2n,d_{0})}{N(m,M_{0})},

J_{1}(z)= \int_{1}^{\infty}7^{N(m,M_{0})z+N(2n,d_{)})-1}dr\cross

\cross\int_{|u_{:}|\leq 1}h(r^{-1/2}u_{1}, r^{-1/2}u_{2}, v, 1)\tilde{p}(u_{1}, u_{2}, v, 1)^{z}du_{1}du_{2}dv
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=- \frac{1}{N(m,M_{0})z+N(2n,d_{0})}\int_{|u_{z}|\leq 1}h(u_{1}, u_{2}, v, 1)\cross

\tilde{p}(u_{1}, u_{2}, v, 1)^{z}du_{1}du_{2}dv-\int_{1}^{\infty}\beta^{(m,M_{0})z+N(2n,d_{)})-3/2}dr\cross

\int_{|u_{z}|\leq 1}\sum_{i=1}^{2}u_{i}\tilde{h}_{i}(r^{-1/2}u_{1_{J}}r^{-1/2}u_{2}, v, 1)\tilde{p}(u_{1}, u_{2}, v, 1)^{z}dux du_{2}dv .

Thus we see that J_{1}(z)\equiv 0 and this completes the proof.

LEMMA 5. 7. If we put J_{2}(z)=

\int_{|u_{1}|\leq r^{-1/2}},h(u_{1}r^{-12}\leq|u_{2}|\leq 1 , ^{u_{2}}dvdr,

then J_{2}(z)\equiv 0 .

PROOF. 1^{st}-step: If we put J_{3}(z)=

\int |u_{1}|,\leq r^{-1/2}r^{12}\leq|u_{2}’|\leq 1\{h(u_{1}, u_{2}, v, r)-h(u_{1},0, v, r)\}\tilde{p}(u_{1;}u_{2}, v, r)^{z}du_{1}du_{2}dvdr,

we can prove J_{3}(z)\equiv 0 . In fact, if we put h(u_{1r}u_{2}, v, r)-h(u_{1} , 0, v, r)=

u_{2}\cdot\tilde{h}(u_{1r}u_{2}, v, r) , we have

J_{3}(z)= \int_{1}^{\infty}p^{N(m,M_{1})z+N(2n,d_{1})-1}J_{4}(r, z) dr.

Here J_{4}(r, z)=

\int_{u_{11}|\leq 1},u_{2}\cdot\tilde{h}(r^{-1/2}u_{1}r^{-12}\leq|u_{2}|\leq 1 , u_{2}, v, r) \{ ^{\sum_{i=1}^{2}\hat{p}_{i}(u_{1}, u_{2}, v, r)\}^{z}du_{1}du_{2}dvdr}

where \hat{p}_{1} (
u_{1}

,^{u_{2}}|| \alpha_{1}|\leq M_{1}^{2}a_{2}|-,M\sum_{-}a_{a_{1},a_{2}}(0,0, v, r)u_{1}^{a_{1}}u_{2}^{a_{2}}
and

\hat{p}_{2}(u_{1}, u_{2}, v, r)=\sum_{a_{2}|<M_{2}} 1_{1a_{1}|\leq M_{1}},

r^{(|a_{2}|-M_{2})/2}a_{a_{1},a_{2}}(0,0, v, 1)u_{1}^{a}’ u_{2}^{a_{2}} .

Moreover we can write

J_{4}(r, z)= \int_{r^{1\prime 2}}^{1}\Psi^{2}z+d_{2}J_{5}(t, r, z)dt

where J_{5}(t, r, z)=

\int\omega_{2}\cdot h(r^{-1/2}u_{1}, t\omega_{2}, v, 1)[\hat{p}_{1}(u_{1_{J}}\omega_{2}, v, 1) \dagger\hat{b}(u_{1}, \omega_{2}, v, t^{2}r)]^{z}du_{1} d\omega_{2}dv .
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Thus by the integration by parts, we have J_{4} ( r, z)= \frac{1}{M_{2}z+d_{2}+1}\cross

[J_{5}(1, r, z)-r^{-(M_{2}z+d_{2}+1)/2}J_{5}(r^{-12}, r, z)- \int_{r^{112}}^{1}\mu_{2}z+d_{2}+1\frac{\partial}{\partial t}J_{5}(t, r, z)dt] .

Here we have

\frac{\partial}{\partial t}J_{5}(t, r, z)=\int\{\tilde{h}_{1}(r^{-12}u_{1;}t\omega_{2}, v, 1)[\hat{p}_{1}(u_{1} , _{\omega_{2}}, v, 1)+

\hat{p}_{2}(u_{1}, \omega_{2}, v, t^{2}r)]^{z}+z\omega_{2}\cdot\tilde{h}_{2}(r^{-12}u_{1}, t\omega_{2}, v, 1) [\hat{p}_{1}(u_{1} , \omega_{2}, v, 1)+

\hat{p}_{2}(u_{1}, \omega_{2}, v, t^{2}r)]^{z-1}\cross r^{(|a_{2}|-M_{2})/2}t^{|a_{2}|-M_{2}-1},{}^{t}du_{1}d\omega_{2}dv

where \tilde{h}_{1} and \tilde{h} are bounded functions. Thus we have

J_{3}(z)= \frac{-1}{N(m,M_{1})z+N(2n,d_{1})}\int_{1}^{\infty}p^{N(m,M_{1})z+N(2n,d_{1})}\frac{\partial}{\partial r}J_{4}(r, z) dr.

Here we note

\frac{\partial}{\partial r}J_{5}(1, r, z)=O(r^{-3/2}) , \frac{\partial}{\partial r}[r^{-(M_{2}z+d_{2}+1)/2}J_{5}(r^{-112}, r, z)]=

O(r^{-(M_{2}z+d_{2}+3)/2}) and
\frac{\partial}{\partial r}[\int_{r^{1’ 2}}^{1}\mu_{2}z+d_{2}+1\frac{\partial}{\partial t}J_{5}(t, r, z)dt]=O(r^{-3/2})

as rarrow\infty uniformly on j \backslash z:\mathscr{B}_{e}z\leq-\frac{2n}{m}+\epsilon/\backslash for any \epsilon>0 . Therefore we see

that J_{3}(z) is negligible.
2^{nd}-step : If we put J_{6}(z)=

\int_{|u_{1}|\leq r^{1/2}},h(u_{1},0, vr^{12}\leq|u_{2}|\leq 1’ r)\tilde{p}(u_{1}, u_{2}, v, r)^{z}du_{1}du_{2}dvdr,

we can prove J_{6}(z)\equiv 0 . In fact, we have J_{6}(z)=

\int_{1}^{\infty}\beta^{(m.M_{(},)z+N(2n,d_{1})-1}dr\int_{u_{1}||\leq 1}1\leq|u_{2}|\leq r^{1/2}h(r^{-1/2}u_{1},0, v, 1)\tilde{p}(u_{1}, u_{2}, v, 1)^{z}du_{1}du_{2}dv .

Here if we write \tilde{p}(u_{1r}u_{2}, v, 1)^{z}=\hat{p}_{1}(u_{1} , u_{2}, v, 1)^{z}+r_{z}(u_{1}, u_{2}, v) , we have
|r_{z}(u_{1_{J}}u_{2}, v)|\leq C|u_{2}|^{M_{2}\mathscr{L}_{\delta}z-1} . Therefore we have J_{6}(z)

\equiv\int_{1}^{\infty}\gamma^{N(m,M_{0})z+N(2n,d_{)})-1}dr\cross

\int_{|u_{1}|\leq 1}h(r^{-1/2}u_{1\tau}0, v, 1)\hat{p}_{1}(u_{1}1\leq|u_{2}|\leq r^{1\prime 2} , u_{2}, v, r)^{z}du_{1}du_{2}dvdr

= \int_{1}^{\infty}p^{N(m,M_{0})z+N(2n,d_{)})-1}dr\int_{1}^{r^{1\prime 2}}\Psi^{2}z+d_{2}-1dt
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\cross \int_{|u_{1}|\leq 1,|\omega_{2}|=1}h(r^{-1/2}u_{1},0, v, 1)\hat{p}_{1}(u_{1}, \omega_{2}, v, r)^{z}du_{1}d\omega_{2}dv

= \frac{1}{M_{2}z+d_{2}}\int_{1}^{\infty}r^{V(m,M_{0})z+N(2n,k)-1}(r^{(M_{2}z+d_{2})/2}-1)

\cross \int_{|u_{1}|\leq 1,|\omega_{2}|=1}h(r^{-112}u_{1_{P}}0, v, 1)\hat{p}_{1}(u_{1},_{\omega_{2}}d\omega_{2}dv .

By the integration by parts with respect to r, we see that J_{6}(z)\equiv 0 . This
completes the proof.

Similarly we see that

\int_{r^{-1\prime 2}\leq|u_{1}|\leq 1}|u_{2}|\leq r^{-1/2}h(u_{1}, u_{2}, v, r)\tilde{p}(u_{1}, u_{2}, v, r)^{z}du_{1}du_{2}dvdr\equiv 0 .

Thus we are reduced to study J_{7}(z) where

J_{7}(z)= \int_{r^{-1/2}\leq|u_{z}|\leq 1} h(u_{1} , u_{2}, v, r)\tilde{p}(u_{1}, u_{2} , v, r)^{z}du_{1}du_{2}dv dr.

However we have

LEMMA 5. 8. If we put J_{7}(z) as above, we have J_{7}(z)\equiv J_{0}(z) .

PROOF. We put h(u_{1}, u_{2}, v, r)-h(0,0, v, r)=u_{1}\cdot h_{1}(u_{1} , u_{2}, v, r)+

u_{2}\cdot h_{2}(u_{1}, u_{2}, v, r) . Then by the same way as the proof of Lemma 5. 7
( 2^{nd}- step), the proof is clear.

Finally we must prove

LEMMA 5. 9. If we put

K_{i}(z)= \int_{r\geq 1}d_{z}^{(i)}(u_{1} , u_{2}, v, r)h(u_{1}, u_{2}, v, r)duY du_{2}dv dr,

then we have K_{1}(z)+K_{2}(z)\equiv 0 .

PROOF. By Proposition 3. 1 and the construction of parametrices (c. f .
[2; \S 4] ) , we have K_{1}(z)+K_{2}(z)=

\int_{r\geq 1}h(u_{1} , u_{2}, v, r)[\{[mathring]_{\sum_{j=0}^{M}}\tilde{p}_{m-j/2}\}^{z}-\{\sum_{j=0}^{M_{0}}p_{m-j/2}\}^{z}]du_{1}du_{2}dv dr.

Here by the mean value theorem, we have K_{1}(z)+K_{2}(z)=

\int_{r\geq 1}h(u_{1}, u_{2}, v, r)z\{\sum_{j=0}^{M_{0}}(p_{m-j/2}-\tilde{p}_{m-j/2})\}

\cross\int_{0}^{1}[\sum_{j=0}^{M_{0}}\tilde{p}_{m-j/2}+\theta\{\sum_{j=0}^{M_{0}}(p_{m-j/2}-\tilde{p}_{m-j/2})\}^{z-1}]d\theta du_{1}du_{2}dv dr.

As the same way as the proof of Lemma 5. 7 ( 2^{nd}-step), we see that K_{1}(z)+
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K_{2}(z) is negligible. This completes the proof.

End of the proof of Proposition 5. 5.

By (5. 6), we may consider J_{0}(z) . If we write

\tilde{p}(u_{1}, u_{2}, v, 1)^{z}=\tilde{p}_{m}(u_{1}, u_{2} , v, 1)^{z}+r_{z}(u_{1}, u_{2}, v) for 1\leq|u_{i}|\leq r^{1/2} ,

we have

|r_{z}(u_{1}, u_{2}, v)|\leq C|u_{1}|^{M_{1}\mathscr{L}.z-1}|u_{2}|^{M_{2}\mathscr{L}_{\partial}z-1}(|u_{1}|+|u_{2}|) .

So we can see that the integral corresponding to r_{z} is negligible. Ther\’efore
we have J_{0}(z)\equiv(2\pi)^{-n}\cross

\int_{1}^{\infty}r^{N(m.M_{0})z+N(2n,d_{)})-1}dr\int_{1\leq|u_{\iota}|\leq r^{1’ 2}}h(0,0, v, 1)\tilde{p}_{m}(u_{1} , u_{2}, v, 1)^{z}du_{1}du_{2}dv

=A_{4}’(z) \int_{1}^{\infty}r^{N(m,M_{0})z+N(2n,d_{)})-1}dr\prod_{i=1}^{2}\int_{1}^{r^{1\prime 2}}t_{i}^{M,z+d,-1}dt_{i}

=A_{4}’(z) \int_{1}^{\infty}r^{N(m,M_{0})z+N(2n,d_{)})-1}dr\prod_{i=1}^{2}\frac{(r^{(M,z+d,)/2}-1)}{M_{i}z+d_{i}}

where A_{4}’(z) is defined by

(2 \pi)^{-n}\int_{(\Sigma_{0}\cap S^{*}R^{2n})\cross S^{*}R^{d_{1}}\cross S^{*}R^{d_{2}}}h(0,0, v, 1) \tilde{p}_{m}(\omega_{1},_{\omega_{2}}d\omega_{2}dv .

and A_{4}(z) is an entire function. By using an appropriate partition of unity,
we reach the conclusion of Proposition 5. 5.

PROPOSITION 5. 10. When \frac{d_{1}}{M_{1}}=\frac{N(2n,d_{2})}{N(m,M_{2})}>\frac{2n}{m} , Tr (P^{z}) is holomor-

phic in \{ z;\mathscr{B}_{e}z<-\frac{N(2n,d_{2})}{N(m,M_{2})}\} and has a double pote at z=- \frac{N(2n,d_{2})}{N(m,M_{2})}

as the fifirst singularity with the coefficient of (z+ \frac{N(2n,d_{2})}{N(m,M_{2})})^{-2} equal to

\frac{A_{5}}{2(M_{1}d_{2}-M_{2}d_{1})N(m,M_{2})N(m,M_{0})} where

(5. 7) A_{5}=(2\pi)^{-n}\cross

\int_{(\Sigma_{0}\cap S^{*}R^{2n})\cross S^{*}R^{d_{1}}\cross SR^{d_{2}}}.\tilde{p}_{m}(\omega_{1}, \omega_{2}, v, 1)^{-N(2n,d_{2})/N(m,M_{2})}J(0,0, v, 1)d\omega_{1}d\omega_{2}dv .

PROOF. In this proposition if a function f(z) is holomorphic in

\{z;\mathscr{B}_{e}z<-\frac{N(2n,d_{2})}{N(m,M_{2})}\} and has at most a simple pote at z=- \frac{N(2n,d_{2})}{N(m,M_{2})}

as the first singularity, we say that f(z) is negligible and write f(z)\equiv 0 .
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That Tr (P^{z}) is holomorphic in \{ z : ^{\mathscr{B}e} z<-\frac{N(2n,d_{2})}{N(m,M_{2})}\} follows from

Proposition 5. 1. In \sum_{2}|\sum_{1} , by using p_{\Sigma_{2}}^{\tilde{z}} , we see that the corresponding
integral is negligible. Also outside \sum_{2} , by using p_{m}^{z} , we see that the
corresponding integral is negligible. Near \sum_{0} by the same way as the proof
of Proposition 5. 5, we see that if we define an entire function

A_{5}’(z)= \int_{(\Sigma_{0}\cap SR^{2n})\cross SR^{d_{1}}\cross SR^{d_{2}}}...h(0,0, v, 1)\tilde{p}_{m}(\omega_{1}, \omega_{2\prime}v, 1)^{z}d\omega_{1}\beta\omega_{2}dv ,

then we have I(z)=

A_{5}’(z) \int_{1}^{\infty}r^{V(m,M_{0})z+N(2n,d_{)})-1}dr\prod_{i=1}^{2} \int_{0}^{r^{112}}t_{i}^{M_{l}z+d_{1}-1}dt_{i}

\equiv\frac{-A_{5}’(z)}{(M_{1}z+d_{1})(M_{2}z+d_{2})}\int_{1}^{\infty}r^{N(m,M_{0})z+N(2n,d_{)})-1}(r^{(M_{1}z+d_{1})/2}-1)dr

modulo negligible terms. This completes the proof.

PROPOSITION 5. 11. When \frac{d_{1}}{M_{1}}>\frac{d_{2}}{M_{2}}=\frac{2n}{m} , Tr (P^{z}) is holomorphic in

\{z:\mathscr{B}_{e}z<-\frac{2n}{m}\} and has a double pole at z=- \frac{2n}{m} as the fifirst singularity with

the coefficient of (z+ \frac{2n}{m})^{-2} equal to \frac{A_{6}}{2mN(m,M_{2})} where

(5.8) A_{6}=(2 \pi)^{-n}\int_{(\Sigma_{2}\cap SR^{2n})\cross SR^{d_{2}}}..(\tilde{p}_{\Sigma_{2},m}(\omega_{2}, v, 1)+1)^{-2n/m}J(0, v, 1)d\omega_{2}dv

where \tilde{p}_{\Sigma_{2},m}(u_{2}, v, r)=\sum_{|a_{2}|=M_{2}}a_{a_{2}}(0, v, r)u_{2}^{a_{2}} .

PROOF. In this proposition if a function f(z) is holomorphic in
\{z: \mathscr{B}_{8}z<-\frac{2n}{m}\} and has at most a simple pole at z=- \frac{2n}{m} as the first

singularity, we say that f(z) is negligible and write f(z)\equiv 0 . That Tr(P^{z})

is holomorphic in \{ z;\mathscr{B}_{e}z<-\frac{2n}{m}\} follows from Proposition 5. 1. Outside
\Sigma_{2} , by using the symbol (p_{m}+r^{m-{\rm Min}(M_{1},M_{2})/2})^{z} , we see that the correspond-
ing integral is negligible. Thus we may consider I(z)=

\int_{r\geq 1,|u_{2}|\leq 1}h(u_{2}, v, r) \{ \tilde{p}_{\Sigma_{2}}(u_{2}, v, r)+r^{m-M_{1}/2}(|u_{2}|^{2}+r^{-1})^{M_{2}/2}\}^{z}du_{2}dv dr.

However by the way as the preceding arguments we have I(z)=

\int_{1}^{\infty}r^{N(m,M_{2})z+N(2n,d_{2})-1}dr\cross
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\int_{1\leq|u_{2}|\leq r^{1’ 2}}h(0, v, 1) \{

\sum_{|a_{2}|=M_{2}}a_{a_{2}}(0, v, 1)u_{2/}^{a_{2}\mathfrak{l}z}du_{2}dv

=A_{6}’(z) \int_{1}^{\infty}\gamma^{N(m,M_{2})z+N(2n,d_{2})-1}dr\int_{1}^{r^{112}}t^{M_{2}z+d_{2}-1}dt

where A_{6}’(z)=

\int_{(\Sigma_{2}\cap SR^{2n})xSR^{d_{2}}}..h(0, v, 1) \{ \sum_{|a_{2}|=M_{2}}a_{a_{2}}(0, v, 1)\omega_{2}^{a_{2}}\}^{Z}d\omega_{2}dv .

Thus we have

I(z) \equiv\frac{A_{6}’(z)}{M_{2}z+d}2\int_{1}^{\infty}r^{N(m,M_{2})z+N(2n,d_{2})-1}(r^{(M_{2}z+d_{2})/2}-1) dr.

This completes the proof.

\S 6. The asymptotic behavior of eigenvalues of P

Let P(x, D)\in OPL^{m,M_{1\prime}M_{2}}(\Sigma_{1}, \Sigma_{2}) . In this section we assume that
P(x, D) satisfies (1. 3), (1. 4) and (H. 1)–(H. 6) As in \S 4, define an
unbounded self-adjoint operator P in L^{2}(R^{n}) . Then P has the spectrum
consist only of eigenvalues of finite multiplicity. By (H. 6), we can write

the sequence of eigenvalues: 0<\lambda_{1}\leq\lambda_{2}\ldots . \lim_{karrow\infty}\lambda_{k}=+\infty with repetition ac-

cording to multiplicity. Let N(\lambda) be the counting function, i . e. ,

N( \lambda)=\sum_{\lambda_{k}\leq\lambda}1 . Then we have

THEOREM 6. 1. Let P(x, D\grave{)}\in OPL^{m,M_{1},M_{2}}(\Sigma_{1}, \Sigma_{2}) . Assume that (1. 3),

(1. 4) and (H. 1) – (H. 6) hold.

(I) If \frac{d_{1}}{M_{1}}\geq\frac{d_{2}}{M_{2}}>\frac{2n}{m} , then we have N(\lambda)=A_{1}\lambda^{2n/m}+o(\lambda^{2n/m}) , \lambdaarrow+\infty .

(II) If \frac{d_{1}}{M_{1}}>\frac{d_{2}}{M_{2}}=\frac{2n}{m} , then we have

N( \lambda)=\frac{A_{6}}{n(2m-M_{2})}\lambda^{2n/m}(\log\lambda)+o ( \lambda^{2n/m} log \lambda ), \lambdaarrow+\infty .

(Ill) If \frac{d_{1}}{M_{1}}>\frac{4n-d_{2}}{2m-M_{2}}>\frac{2n}{m} , then we have

N( \lambda)=\frac{2A_{3}}{4n-d_{2}}\lambda^{(4n-d_{2})/(2m-M_{2})}+o(\lambda^{(4n-d_{2})/(2m-M_{2})}) , \lambdaarrow+\infty .

(IV) If \frac{d_{1}}{M_{1}}=\frac{4n-d_{2}}{2m-M_{2}}>\frac{2n}{m} , then we have N(\lambda)=

\frac{2M_{1}A_{5}}{(M_{2}d_{1}-M_{1}d_{2})(2m-M_{1}-M_{2})(4n-d_{1}-d_{2})}\lambda^{(4n-d_{2})/(2m-M_{2})} (log \lambda ) +
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0(\lambda^{(4n-d_{2})/(2m-M_{2})}\log\lambda) , \lambdaarrow+\infty .

(V) If \frac{4n-d_{2}}{2m-M_{2}}>\frac{2n}{m} , \frac{d_{1}}{M_{1}}, then we have

N( \lambda)=\frac{2A_{2}}{4n-d_{1}-d_{2}}\lambda^{(4n-d_{1}-d_{2})/(2m-M_{1}-M_{2})}+o(\lambda^{(4n-d_{1}-d_{2})/(2m-M_{1}-M_{2})}) ,

\lambdaarrow+\infty .

(VI) If \frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\frac{2n}{m} , then we have N(\lambda)=

\frac{(4m-M_{1}-M_{2})A_{4}}{4n(2m-M_{1})(2m-M_{2})(2m-M_{1}-M_{2})}\lambda^{2rvm}(\log\lambda)^{2}+

0(\lambda^{2n/m}(\log\lambda)^{2}) , \lambdaarrow+\infty .
Here A_{1}-A_{6} are defifined by (5. 2), (5. 3), (5. 4), (5. 5), (5. 7) and (5. 8).

REMARK 6. 2. Since we see easily that \frac{2n}{m}>\frac{d_{2}}{M_{2}} if and only if 2_{2}^{\frac{4n-d_{2}}{m-M}>}

\frac{2n}{m} , taking (1. 4) into consideration, this theorem covers all the cases.

For the proof, we use the following extended Ikehara’s Tauberian
theorem.

PROPOSITION 6. 3. ([2 ; Proposition 5. 3]) Let \sum_{k=1}^{\infty}\lambda_{k}^{z} be convergent for
\mathscr{B}_{e}z<s_{0}(<0) , hence holomorphic. Assume that there exist real numbers A_{1} ,

A_{2} , \ldots . A_{p} such that

\sum_{k=1}^{\infty}\lambda_{k}^{z}-\sum_{j=1}^{p}\frac{A_{j}}{(z-s_{0})^{j}}

is continuous on \{ z:\mathscr{B}_{e}z\leq s_{0}\} . Then we have

N( \lambda)=\frac{(-1)^{\mu 1}A_{p}}{(p-1)!s_{0}}\lambda^{-s_{0}}(\log\lambda)^{\mu 1}+o(\lambda^{-s_{0}}(\log\lambda)^{\mu 1}) , \lambdaarrow+\infty .

End of the proof of Theorem 6. 1

It is well known that if \mathscr{B}_{e}z<0 and |z| is large, Tr(P^{z})=\sum_{k=1}^{\infty}\lambda_{k}^{z} . For

example, we consider the case (VI): \frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\frac{2n}{m} . By Proposition 5. 5,

\sum_{k=1}^{\infty}\lambda_{k}^{z} has a triple pole at z=- \frac{2n}{m} as the first singularity with the coefficient

of (z+ \frac{2n}{m})^{-3} equal to A_{4}’=- \frac{(4m-M_{1}-M_{2})A_{4}}{m(2m-M_{1})(2m-M_{2})(2m-M_{1}-M_{2})} . Thus

by Proposition 6. 2, we have

N( \lambda)=\frac{-mA_{4}’}{4n}\lambda^{2n/m}(\log\lambda)^{2}+o(\lambda^{2n/m}(\log\lambda)^{2}) , \lambdaarrow+\infty .
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Since the other case are proved similarly, we omit them.

EXAMPLE 6. 4. (1) Let P(x, D)=(D_{x_{1}}^{2}+x_{1}^{2})^{2}(D_{x_{2}}^{2}+x_{2}^{2})^{2}(|D_{X}|^{2}+|x|^{2})^{2}+

\mu(D_{x_{1}}^{2}+D_{x_{2}}^{2}+x_{1}^{2}+x_{2}^{2})^{2}(|D_{X}|^{2}+|x|^{2})^{3}+\nu(|D_{X}|^{2}+|x|^{2})^{4}

on R^{3} for any positive numbers \mu and \nu . Then we can put
\sum_{1}=\{x_{1}=\xi_{1}=0^{\mathfrak{l}}, , \sum_{2}=\{x_{2}=\xi_{2}=0\} . Since M_{1}=M_{2}=4 , d_{1}=d_{2}=2 , m=12 and
n=3, we have the case (VI), i . e. ,

N( \lambda)=\frac{1}{3840}\lambda^{1\prime 2}(\log \lambda)^{2}+o ( \lambda^{1/2} (log \lambda ) ), \lambdaarrow+\infty .

(2) Let P(x, D)= \frac{1}{2}(x_{3}^{2}+D_{x_{3}}^{2})^{2}[(x_{1}^{2}+x_{2}^{2}+D_{x_{i}}^{2})^{2}(|D_{X}|^{2}+|x|^{2})^{3}+

(|D_{X}|^{2}+|x|^{2})^{3}(x_{1}^{2}+x_{2}^{2}+D_{x}^{2},)^{2}]+ \frac{1}{2}[(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2})^{2}(|D_{X}|^{2}+|x|^{2})^{4}+

(|D_{X}|^{2}+|x|^{2})^{4}(x_{1}^{2}+x_{2}^{2}+D_{x_{1}}^{2})^{2}]+(x_{3}^{2}+D_{x_{*}}^{2})^{2}(|D_{X}|^{2}+|x|^{2})^{4}+\mu(|D_{X}|^{2}+|x|^{2})^{5}

on R^{5} for any positive number \mu . Then we can put \sum_{1}=\{x_{1}=x_{2}=\xi_{1}=0\} ,
\Sigma_{2}=\{x_{3}=\xi_{3}=0^{(}, . Since M_{1}=M_{2}=4 , d_{1}=3 , d_{2}=2 , m=14 and n=5, we have
the case (IV), i . e. ,

N( \lambda)=\frac{\pi}{625}\lambda^{314} log \lambda+o(\lambda^{3/4}\log\lambda) , \lambdaarrow+\infty .

(3) Let P(x, D)= \frac{1}{2}[ D_{x_{t}}^{2}D_{X_{2}}^{2}(|x|^{2}+|D_{X}|^{2})^{3}+(|x|^{2}+|D_{x}|^{2})^{3}D_{x_{1}}^{2}D_{x_{2}}^{2}]+

\mu(D_{x_{1}}^{2}+D_{x_{2}}^{2})(|x|^{2}+|D_{X}|^{2})^{7/2}+\mu(|x|^{2}+|D_{X}|^{2})^{7/2}(D_{x_{1}}^{2}+D_{x_{2}}^{2})+\nu(|x|^{2}+|D_{X}|^{2})^{4}

on R^{2} for any positive numbers \mu and \nu . Then we can put
\Sigma_{1}=\{\xi_{1}=0\} , \Sigma_{2}=\{\xi_{2}=0^{1}, . Since M_{1_{\overline{\overline{l}}}}\prime M_{2}=2 , d_{1}=d_{2}=1 , m=10 and n=2 ,
we have the case ( I) , i . e. ,

N( \lambda)=\frac{5\{\Gamma(1/10)/(2}{8\pi\Gamma(1/5)}\lambda^{2/5}+o(\lambda^{2/5}) , \lambdaarrow+\infty .

Finally we give a generalization.

REMARK 6. 5. We can also define a symbol class which is an extension
of Definition 1. 1. Let \Sigma_{1} , \Sigma_{2} , ... . \Sigma_{p} be closed conic submanifolds of
codimension d_{1} , d_{2} , . . 1

d_{p} in R^{2n}|0 and m a real number and moreover
M_{1} , M_{2} , \ldots

M_{p} non-negative integers.
Then OPL^{m}, M_{1} , M_{2} ,

M_{p}(\Sigma_{1}, \Sigma_{2}, \ldots \Sigma_{p}) is a set of all pseud0-
differential operators P(x, D) on R^{n} whose symbol p(x, \xi) satisfies (1. 1)
and
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(6.2) ’ \frac{|p_{m-j12}(x,\xi)|}{r(x,\xi)^{m-j/2}}\leq c_{k_{1}+}\sum_{+k_{p}=j} k,\leq M,’ d_{\Sigma_{1}}^{M_{1}-k_{1}} ... d_{\Sigma_{p}}^{M_{\rho}-k_{\rho}} ,

for j=0,1 , \ldots
M_{1}+M_{2}+\ldots+M_{p} . Here

d_{\Sigma},= \inf_{(x’,\xi’)\in\Sigma}

,

(|x’- \frac{x}{r}|+|\xi’-\frac{\xi}{r}|) , i=1,2 , \ldots , p.

As in Definition 1. 1, we say that P(x, D) is regularly degenerate if p
satisfies

(6.3) ’
\frac{|p_{m}(x,\xi)|}{r(x,\xi)^{m}}\geq Cd_{\Sigma_{1}}^{M_{1}}\ldots d_{\Sigma_{\beta}}^{M_{\rho}} .

We assume (H. 1)–(H. 6). Here (H. 2), (H. 3) and (H. 4) are revised
according to this case. Then in the particular case:
\frac{d_{1}}{M_{1}}=\frac{d_{2}}{M_{2}}=\ldots=\frac{d_{p}}{M_{p}}=\frac{2n}{m} , we have for some constant A

N(\lambda)=A\lambda^{2n/m}(\log\lambda)^{\mu_{1}}+o(\lambda^{2n/m}(\log\lambda)^{\rho-1}) , \lambdaarrow+\infty .
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