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0. Introduction.

We discuss the singular limit of the incompressible ideal magneto-fluid
motion with respect to the Alfvén number in the three dimensional torus
T? (i.e., the periodic motion).

In the fluid dynamics there appear many systems of non-linear
differential equations involving parameters such as the Mach number and
the Alfvén number etc. One problem on the singular limit is to determine
the limiting system which has a completely different property comparing
with the original system, as such a parameter tends to some value.

When the system is hyperbolic, this problem has been studied in C.
Browning—H.-O. Kreiss [2], S. Klainerman—A. Majda [4], A. Majda
and S. Schochet [6]. In particular, Browning and Kreiss studied the Al-
fvén limit for the compressible magneto-fluid motion as an example of
their theorems. However, to show this, they needed more assumptions on
the initial data than those in other papers above.

The purpose of this paper is to determine the limiting system for the
incompressible magneto-fluid motion under the natural assumptions on the
initial data. The limiting system becomes essentially the system of the
two dimensional motion (see (1.6)).

We state main results in Section 1. In Section 2, we show the uniform
estimates with respect to the Alfvén number, which are obtained by the
energy method. The convergence of the solutions is generally proved in
Section 3. Especially, is employed to determine the limiting
system. The proof of our theorem is finally completed in Section 4.

1. The statement of results.

We consider the system of the incompressible ideal magneto-fluid
motion involving a large parameter .

(1.1.a) 0+ V)v*+Vp*+aPH* Xrot H*=0
1.1.b) (8:+ (v, V)H*—(H®* V)v*=0 in [0, T°]x T
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(1.1.c) div v*=div H*=0
1.1.d) v%0)=0v¢ H0)=H¢ on T

Here the fluid velocity v®=0°(t, x)="(vf, vs, v§), the magnetic field H*=
H(¢t, x)="4(HE Hf Hf) and the pressure p®=p*(¢, x) are unknowns depen-
ding on a. The reciprocal of @ is the Alfvén number which is in propor-
tion to |vm|/|Hn|, where |vxl|, |Hn| are typical mean values of the velocity
and the magnetic field.

Let s>3 be an integer and assume that the initial data (1.1.d) sat-
isfy

(1.2.2) Hf=H+ao'K¢ (v§, KEHHT?),

where H is a non zero constant vector, and there exist vector fields
(0§, K&)EHY(T?) and a constant A¢>0 such that

(1.2.b) (v6, KO~ (of, K)  in H¥(T®), as a— oo,
(1.2.0) AF'<al(H, V)vils-1+al(H, V)KS|s-1 < Ao.

Throughout this paper, H™(T?®) denotes the Sobolev space of the L*type
with inner product (-, -)» and norm ||, and H&T?) denotes the
solenoidal subspace of H'(T®). The function space H'(T?) is identified
with a space of functions in H"((—x, 7)*) with periodic boundary condi-
tions and an element of H"(T?) has a Fourier development f(x)zg; oo™ ¥

such that (%‘;(1+|n12)’|f,,|2<00.

We note that (1.2.b) and (1.2.¢) imply that (H, V)ve=(H, V)Ks=0,
which are the compatibility condition of the limiting system, and there
exists a constant A; >0 such that

(1.3) lvélls + | K&ls < A

It is known that, under the assumption (1.2.a), for fixed a, there
exists a local in time (7°*>0 depend on @) unique classical solution of (1.
1.a)—(.1.d) (for example, see [1],[3]). The solution belongs to the fol-
lowing function space

(v, H*—H)eC([0, T*]; HS(T*))N C([0, T*]; H*7((T?)),
Ve C([0, T]; H*'(T?).
Here, for a Banach space X and a constant T >0, C*([0, T']; X) denotes

a set of all k-times continuously differentiable functions on a time interval
[0, T'] with values in X, and this set becomes a Banach space with norm

IAllx.r= sup B3 (Dlx.
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Setting K*=a(H*—H), we can write (1.1.a)—(1.1.d) in the form

(1.4.2) (0.4 V)v*+K*Xrot K*+V(p*+aeH -K*)—a(H,V)K*=0
1.4.0) 0+ V)K*—(K* V)ve—a(H,V)v*=0 in [0, T°]x T?
(1.4.c) div v*=div K*=0

1.4.d v%0)=0v§, K(0)=K§& on T

The aim of this paper is to prove the following

THEOREM 1.1.  Assume that (1.2.a)—1.2.¢) hold. Then there
exist a constant T x>0, independent of a, and vecter fields

(0=, K*)EC([0, T«]; HX(T*)NCY[0, T«]; HY(T?))
such that
(v%, K%)= (v=, K*) weak* in L=([0, Ts]; H(T?), as a—o,
and (v®, K*) is a unique solution of the following system
(1.5.a) (0:+(v=, V)v°+ K> Xrot K>+Vg==0
(1.5.b) (9. +(v=, V))K=—(K>, V)v™=0
(1.5.¢c) divv*=div K*=0 in [0, Tx]xXT?

1.5.d) (H V)v*=(H, V)K*=0
1.5.e) v™(0)=0v5, K~(0)=Ks on T°.
Here Vq~ is uniquely determined by
V(p*+aH-K*)-Vq™ weak* in L=([0, Tx]; H(T?).

REMARKS. (1) It follows that Vg*eC([0, Tx]; H"N(T?)), ¢~
L>([0, T«]; LX(T?)) and (H, V)g==0.

(2)  The motion described by (1.5) is essentially the two dimensional
motion in the plane which is orthogonal to H. In fact, let H=%(0,0, 1),
U*=*(vr, v¥) and B*=*(K7, K5°), where v°=%(v7, 08, v5) and K*=*(K?,

K>, K5°), we can write (1.5.a)—(1.5.e) in the two dimensional system of
the incompressible ideal magneto-fluid motion

(1.6.2) (8t+(U°°,V))U°°+V(q°°+%-(K3°°)2)—I—B°°><rotB°°=0

(1.6.b) (0:+(U>,V))B*>—(B=,V)U*=0 in [0, Tx] X T?
(1.6.c) div U”=div B>=0
(1.6.d) U=(0)=Us, B*(0)=B on T?

where Us='(v3, v5;) and By='(Ks, K&), and two linear equations
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1.7.a) (0:+(U>,V)vs—(B>, V)K=0
1.7.0) (0:+(U= V)Ks—(B> V)vs=0 in [0, Tx] X T?
1.7.¢) v3(0)=v3, K(0)=Ks on T

(3) When (a(H, V)vé, a(H,V)K) converges to zero faster than
(1.2.¢), we can easily find the limiting system (1.5).

2. Uniform estimates.

In this section, we show uniform estimates in @ of the solutions to
(1.4.a)—(1.4.d), which will be stated in Proposition 2.2 and Corollary 2.
3. To this end we assume that.the solutions (v% K¢, p%) are sufficiently
smooth.

LEMMA 2.1. There exists a constant D:>0, independent of a, such
that

10:0*(0)]|s=1 + | 0:K*(0)]|s—1 < Ao

PrROOF. First, we estimate 0.K% by H° '-norm at t=0. Since
H'™(T?) forms a Banach algebra for any »>3/2, it follows from (1.2.c),
(1.3) and (1.4.b) that

10K *(O)s-1<||(v8, V) K& — (K&, V)vills-1+ al(H, V) vélls-
< C(A+A)),

where C is a positive constant depending on s.
Next, in order to estimate 0% let Ps be the orthogonal projection
on LAT? to LY T?. Applying Ps to (1.4.a), we have

0= — Ps[ (v, V)v*+ K*Xrot K*|+a(H, V)K"
Since Ps is a bounded operator on H"(T?) for any » =0, it follows that

10:0%(0)ls-1 <|I(v8, V)vé+ K& X rot Kélls-1+al(H, V)K|ls-1
< C(A(Z) +A1),

where C is the same as above one. Now, putting A:=2C(Aj+A)), we
have proved the lemma. ]

PROPOSITION 2.2.  There exist constants T x>0 and As>0 which are
independent of a such that, for any t<[0, Txl,

[ (s + 100 ()l s-1 + K “(lls + 10K ()51 < As.

ProOF. For simplicity, we ignore the superscripts a of (v¢, K¢ p°)
and put v**=9/D*v, etc., where i=0,1 and i+|8|<s.
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Applying 0iD? to (1.4.a) and (1.4.b), we have

(2.1.a) (0:+ (v, V))v"*+ K Xrot K"*+V(p"*+aH - K"*)
—o(H V)K" =Fi
2.1.b)  F""=(v, V)v"*—8/D*((v, V)v)+ K Xrot K" —3iD*(K Xrot K),

2.2.2) (0:+(v, V)K" —(K,V)vo"*—a(H, V)v" =G,
2.2.b) G"=(v, V)K" —0iD*((v, V)K)—(K, V)v"*+ 3iD*((K, V)v).

Using the integration by parts, we know that (2.1.a) and (2.2.a) imply

(0", 0=~ 2K xrot K, o)+ 2a((H, VK™, 07),
FAE, 552),
(K™, K0=2(K, V)0, K)o+ 2a((, V)0, K,
+2(G™, K**),,

where (-, +)o stands for the inner product in H°=L? Since (K X rot K**,
v )o=((K, V)o"*—(v**, V)K, K™*),, it follows that

@.3) {0, ot (K, K7

2 =((v"", VYK, K**)o+(F"* v"")o+ (G, K**),.
To estimate (2.1.b) and (2.2.b) by the L*norm, we use the Gagliard
—Nirenberg inequality : for any i, » with 0<:<y,

|D*fleens < Crl FIL=7+ | DA,
and the Sobolev inequality : for any » >3/2,

=< G,
where C; are positive constants depending on ». Then we can prove
2.0 NFl+IG™ < Cl(u(2), K1)

where [(0(2), K(E)e=1+]v(t)ls +0:0(E)s-1+ K (s + 0K ()]s-1 and C is
a positive constant depending on s.
For example,

(v, V)™= 0iD*((v, V)v)= > Cipy0?? -V i=98=7,

1<j+lrl, i<i, I71<]A

3 !
__Z].'),].' . ( B_’B )’.)’7” , and each terms of the right hand

side are estimated by

where Cij.g,= 6
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lo?7 - Vo =2 o <[v"7|12p|V 0777|120 (for 1/p+1/g=1)
< Cpl Uj,O'}‘:I/P”DPlﬂ UJ',O“(I)/P
X Cq|Ui_j’o\lL;”q”Dq(w_m“)Z)i_j’OH(l)/q
< Cop.slloiv|s=¥?| 0ivllpE,
X Ca,sl| 0877 0|52V 0f 7 vl ¢far-11+1)-

Setting p=(s—7)/|7l, we find plyl+7;<s and q(|B|—|y|+1)+i—j<s.
Hence, we have

(v, VYo' —0iD*((v, V)v)lo< C(|vlz+100]3-1).
Now, we have from (2.3) and (2.4)

2.5.2) (1), KO Ol (1), K

On the other hand, by (1.3) and Lemma 2.1, we get
(2.5.b)  [I(v°(0), K0z <1+A1+A.=A..
Solving (2.5.a)—(2.5.b), we find

I(ve(#), K(t)e <2A4/(2— CAut).
Hence, choosing constants 7'« and As which satisfy
(2.6) 0< Tx<2(CA)™Y, As=2A4/(2—CA:T ),

we have proved the proposition. L]

Note that V(p*+aH-K*®) and (H,V)K* are orthogonal in L? then
the following result follows easily from [Proposition 2.7 and the equations
(1.4.a) and (1.4.b).

COROLLARY 2.3. There exists a constant As>0, independent of a,
such that, for any t<[0, T«l,

all(H, V)vells1+all(H, VYK s+ V(0" + aH - K@)||s-1 < As.
3. The convergence of functions.

In this section, we discuss in general the convergence of the sequences
of functions having the uniform estimate such as [Proposition 2. 2 or Corol-
lary 2. 3.

The following lemma can be proved similar to [5], but we show it for
completeness.

LEMMA 3.1. Let {U% ¢t x)} be the sequesnce of functions satisfying
the following assumptions :



Singular limit of the incompressible ideal magneto-fiuid motion
with respect to the Alfvén number 181

(3.1.a) UeC([0, T«]; H(T*)NCX0, T+]; HX(T?)
and there exists a constant As>0, independent of a, such that
B.1.b) [UXOs+0:U“(t)s-1< A6 for any t<[0, Txl.

Then, by passing to a subsequence, there exists a function U*E C([0, Tx]X
T?) such that as a— oo,

@.2.a) U*>U” weak* in L™([0, Tx]; H(T?)),
(3.2.b) U~ U~ in C([0, T«]; H>*(T®) for any >0,

and furthermore,

(3.2.0) U~ Cu([0, T4]; H(TH)N Lip([0, Tx]:; HNT?)),
(3.2.d) 8U*~0.U> weak* in L=([0, Tx]; HYT?), as a— .

PrROOF. The first notice is that, by (3.1.a) and (3.1.b), {U“(z‘,x)}
is uniformly bounded and equi-continuous with respect to @. That is, for
any (¢,x), (s, v)E[0, T+«]X T* and any a,

|U(t, )| < ChAs, |U(¢, x)— U(s, y)| < CA(|t —s|+|x— ),

where C is a positive constant depending on s.

By the Ascoli-Arzela theorem and passing to a subsequence, there
exists U C([0, Tx]X T®) such that

sup  |U(t, x)— U>(¢, x)|~0, as a—co.

(t, 0)€l0, TL]xT*

Since T? is a compact manifold, it follows that

1/2
sup < T3| Ue(t, x)— U=(t, x)lzdx>

te[0, Tl
<C sup |U(t,x)—U=(¢, x)l,
(t, )10, TIX T*
where C=(27)*?. Hence, we have
3.3 U~ U= in C([0, Tx]; LX(T?), as a—o.
On the other hand, by (3.1.b) and passing to a subsequence, we have
(3.4) U*-> U*” weak* in L([0, T«]; H(T?)), as a— o,

because this topology is stronger than that of (3.3). By the resonance
theorem, we know that (3.1.b) and (3.4) imply

G5 MUz <Limll Ulls, 7. < As.

@ — O
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Using the Interpolation inequality : for any 7, " with 0<7'<7,
1A < ColFlat =" A1,
we have from (3.3) and (3.5)
(3.6) U= U= in C(0, Tx]: H5(T?) for any >0, as a—co.

Next, we show two regularities (3.2.c) of U”. Let V*=U*—U".
We note that, for any € HS(T®), there exist ¢.€C™(T?) such that
lo— @lls—0, as k—co. For each: ¢,

(Ve(t), @x)s=(V(2t), er)s-1t(D°V(2), D°pa)o
=(Vt), ¢1)s-1—(D° ' VE(t), D pro.

The right hand side of above equality converges uniformly on [0, Tx] to
zero, as a—. Now, (V(t), 9)s=(V(t), p—@r)s +(V(2), @r)s. The
first term of right hand side is estimated by

(V) o= en)s| <NVl rllo— @els <2Ael o — pxls.

Therefore, (V%(¢), ¢)s converges uniformly on [0, Tx] to zero. By
(U*(+), ¢)s€ C([0, T«]), we have (U=(+), ¢)s=C([0, Tx]). This means

U=€ Cu([0, Tx]; H(T?)).
On the other hand, for any ¢, s€[0, Tx], we have

1) = U (s-1 WU M- ]t — s|<Ael t 5.
By (3.6) we get |U=(¢t)— U>(s)|s-1<A¢|t —s|. This means
(3.1 U=eLip([0, T«]; H(T?).

Finally, we know from (3.7) that there exist 0:U”(+) having finite
values in H® '-norm, on [0, 7] almost everywhere. On the other hand,
by (3.1.b) and passing to a subsequence, there exists a function W(t, x)
such that

0,U%— W weak* in L=([0, Tx]; H"(T?), as a—c°.

Since W is equal to 9:U* in distribution sense, the proof is completed. []
By using the Sobolev inequality, the following convergence follows
easily from Lemma 3.1

COROLLARY 3.2. Let {U%t)} be the same sequence of functions as
Lemma 3.1, then

Ue-D'U> U™ D'U> weak* in L0, Tx]; H(T?), as a—oo.
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Next, we consider the convergence of functions having the estimate
such as [Corollary 2. 3.

LEMMA 3.3.  Let {V(t, x)} be the sequence of functions satisfying the
following assumptions :

(3.8.a) V*eC([0, T«l]; H(T?)
and there exists a constant A:>0, independent of a, such that
(3.8.0) (H V) VA(ls-1<A; for any t<[0, Txl.

Then, by passing to a subsequence, there exists a function V=(t x) such
that, as a— o,

Ve V= weak* in L™([0, T«]; LA T?),
(H,V)V=(H V)V~ (H V)V* weak* in L0, T«]; H*(T?)),

where Ve(t, x)= V¢t x)— Vet x—(H x)H/|H?).

PROOF. We can assume H=%0,0, 1) without loss of generality. By
the definition of V¢ we have

Vet, x)=Ve(t, x)— Vit x1, %, 0), (H,V)Ve=(H, V)V*.

Since V(t, x1, x5, 0)=0, it follows that, for any xs&(—r, 1),

ve(t, x)=fxs83 Ve(t, x1, x2, £)dE.

0

Using the Schwarz inequality, we get

7ot o< [ 1875, 2, 72, )P
By integrating both sides of above inequality over 7@, we have from (3.8.
b) that
3.9 VD)< CIH, V) V()< CA,

where C is a positive constant.

By (3.8.b) and passing to a subsequence, there exists a function
W(t, x) such that

(H,V)V*> W weak* in L=([0, Tx]; H*Y(T?), as a— co.

On the other hand, by (3.9) and passing to a subsequence, there exists a
function V=(¢, x) such that

~

V- V= weak* in L=([0, T«]; LA T?)), as a— oo.
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Now, return to the proof of the lemma, we know that W=(H,V) V> i
distribution sense and this completes the proof. ; G

LEMMA 3.4. Let {V%(¢ x)} be the sequence of functions satisfying the
following assumptions : V€ C([0, Tx]; H(T?) and there exists a con-
stant Ns>0, independent of a, such that

IVV()|s-1<As for any t<[0, Txl.

Then, by passing to a subsequence, theve exists a function V(i x) such
that, as a— o,

Ve—Ve> V= weak* in L=([0, Tx]; LXT?),
VVe-VV® weak* in L=([0, Tx]; HSNT?)),

where V°(t)=(meas T3)‘1/;3 Vet x)dx

PROOF. When G is a bounded domain, the following Poincaré in-
equality holds:

0= C(I9 Ao +| [AG)as| ) for any FEHYG),

where a constant. C depends on G. Setting f=V*—V* and using VV*=0,
we have |V*= Vo< C|V V%, Hence, is proved similar to
Lemma 3.3. O

4. The proof of Theorem.

By the results of Section 2 and 3, it is proved that there exist a con-
stant T x determined in (2.6) and vector fields

(.1.2) (v°, KIECW(0, T«]; H(T*)NLip([0, T]; H*7(T?)),
(4.1.b) (g% u”, L?)EL([0, T+]; LXT?))

such that, as a@— o,
4.2) (02, K*) - (v=, K*) weak* in L=([0, Tx]; H(T?))

and each terms of (1.4.a) and (1.4.b) converge weakly in L>([0, T«];
H*Y(T?) to suitable terms, that is,

(438) (atv", atK“)—*(atv“, &K”),
4.3.b) ((v* V)v?, K*Xrot K¢, (v*, V)K*, (K* V)v%)

- ((v™, V)v=, K*Xrot K=, (v=°, V)K=, (K*, V)v™),
4.3.¢) (a(H, V)0 a(H,V)K*)~>((H,V)u=, (H,V)L™),
(4.3.d) V(p~+aeH-K*)-Vq~.
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In fact, (4.1.a), (4.2), (4.3.a) and (4.3.b) follow easily from Lemma 3.
I and [Corollary 3.2. Setting V*=av® or a¢K? in and V*=p*
+aH-K* in Lemma 3.4, we obtain (4.1.b), (4.3.c) and (4.3.d).

Now, it follows from (4.3.a)—(4.3.d) that (v™, K=, ¢%, u=, L*) sat-
isfy the equations

(4.4.2) (0:+(v=, V)o"+K>Xrot K*+Vg=—(H, V)L>=0),
(4.4.0) 0+ (v, V)K=— (K= V)v>—(H, V)u~=0.

Because (H,V)v* and (H,V)K® converge in L*([0, Tx]: HsYT?®) to
zero by [Corollary 2.3, (4.2) implies that

(H,V)v>=(H,V)K>=0.
By (1.4.¢) and (4.2) we have (1.5.¢) and
(4.4.0) div u®=div L*=0.

The initial data (1.5.e) follow from (1.2.b), (4.1.a) and (4.2).
Next, we show the regularity of the solution to (4.4.a)—(4.4.¢) and
(1.5.c0)—(.5.e). To this end we prove the following a priori estimate.

PROPOSITION 4.1.  For any t, [0, Txl,

lo=()ls +HIE=(Ols <{o=Eo)lls + I K=(to)]5)
Xexp [C(IVo™|=+|VE™|=)|t — tl],

where C is a positive constant depending on s.

PROOF.  Let the solution to (4.4.a)—(4.4.3) and (1.5.c)—(1.5.e)
be sufficiently smooth, which is justified by approximating the initial data
by smooth data.

Using the Gagliard—Nirenberg inequality, we can prove similar to the
proof of [Proposition 2. 2 that

j’;{llv“(t)llﬁIIK“(t)Ils}S CollVoTlee+ VK= |-Hllo=(ls + |1 K=(2)]},

where Cs is a positive constant depending on s. By the Gronwall’s in-
equality, we have proved the proposition. []
By Proposition 4. 1, we have

Tm {lo=(O)lls +1E=(Dlls}<o=(to)lls +1K=(to)].

On the other hand, since (v=, K*)= Cu([0, Tx]; H3(T?), it follows from
the resonance theorem that
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Hv°°(to)|ls+|\K°°(to)|lsSlfi_fnr{llv“(t)\ls+HK“’(t)Hs}.

Hence, we have
(v=, K*)e C([0, T+l ; H(T?).

Let new projection define as Ps: L*(T%)—S* where S* is orthogonal
complement of S={(H,V)f; f€HT®)} in L*. Applying Ps to (4.4.a)
and next applying Ps, we have

0.0°=— PsPs[(v=, V)= + K* Xrot K7].

Since (v=, V)v=+ K> Xrot K*€C([0, T]; H*"'(T?)) and Ps, Ps are bound-
ed operators on H'(T?) for any » =0, it follows that

o= C([0, T+l ; H'(T?).
Similarly, it is proved that
(0.K=,Vq=, (H, V)L, (H,V)u™)eC([0, T+]; H(T?).
The next lemma shows that (H, V)L“Z(_ﬁ, VYu®=0 and (H,V)g~=0
in (4.4.2)—(4.4.b). For simplicity, we put H=(0, 0, 1).
LEMMA 4.2. Let fELXT? and EfELXT?). If 65f=0, then f 1is
independent of xs.
PROOF. Any function f€L*T?) has a Fourier development f(x)=
%fnei"'x. Since the right hand side is a convergent series in the L?-sence,

we have

33/ (x)=— Znf fue™

n)

in distribution sense. By the assumptions, the right hand side is belong to
L% T? and is equal to zero. Note that {e™*} is complete in L*(T°), then
we have (u3)’f,=0 for any ». This means that f is dndependent of xs.
]
Applying (H,V) to (4.4.a) and (4.4.b), we have from (1.5.d)

(4.9.2) V(H-Vg°)—(H,V)?L>=0,
(4.9.b) (H,V)u>=0.

Applying div to (4.9.a), we get A(H-Vg~)=0 by (4.4.c). We can
prove that (H, V)g™ is equal to a constant, similar to Lemma 4.2. Now,
we have (H,V)?:L*=(H,V)*u>=0 and (H,V)’¢*=0. By Lemma 4.7, we
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have
(H,V)L>=(H,V)u==0, (H,V)qg==0.

Finally, we prove the uniqueness of the limiting solution. Let
(0=, K) be a solution to (1.5.a)—(1.5.e). The following inequality fol-
lows easily from the same arguement in [Proposition 4. 1,

[ = =) O+ (K== K=)( o< W(v=~ 7=)(0)lo+ I (K=~ E=)O)lo,

which implies the uniqueness of the solution. Therefore, we have proved
our theorem. L]

Acknowledgment : 1 express my many thanks to Professor Rentaro
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