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Abstract

Maximal isotropic varieties of the \Sigma_{2,0} singular symplectic structure
are considered. Their versal singularities are classified and the lists of
normal forms of small codimensions are given. These normal formas are
represented by res tricted classification of singularities of Lagarangian
varieties in symplectic manifold with boundary. The links to ther-
modynamics of the zer0-lovel-temperature are discussed.

1. Introduction

The main aim of the applied symplectic geometry is to describe the
real states of a system by means of Lagrangian varieties in appropriate
cotangent bundle-phase space [1, 3] . In this approach the structural prop-
erties of a system under consideration (say phase transitions, bifurcation
sets, breaking of the wave fronts, ...) are associated with the structure and
generic properties of the corresponding Lagrangian varieties. In early
applications of Lagrangian singularities [21, 22, 12] only smooth Lagran-
gian submanifolds of the phase spaces were used. Although generally suc-
cessful, this approach showed some shortcomings too. For instance it
appeared to be insufficient to describe so called critical phenomena in ther-
modynamics (since it delivered only the classical values of critical indices
[17, 11, 12], not compatible with experimental data).

The first generalisation, to non-smooth Lagrangian varieties, appeared
naturally in Melrose’s theory of glancing hypersurfaces [15] which was
subsequently extended in Arnold’s papers (see e. g . [4]) on singularities of
systems of rays in the variational obstacle problem. Such generalisations
appeared also in the discussion of thermodynamical phase coexistence in
[10]. However in an attempt to model properly the critical point of ther-
modynamics (where possibly some fundamental laws of thermodynamics
“break down” [17, 19]) it seems to be quite natural to go further on and
admit some singularities of symplectic structures of the phase space as
well. The aim of this paper is to make the first step in this direction. To
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select reasonably an initial form of “ singular symplectic structure ” it is
natural to turn to the (local) classification of germs of 2-forms [13, 18] .
There we find that on R^{2n} , the simplest classes of germs (at 0) of stable
2-forms are represented by the canonical symplectic form \omega=\sum_{i=1}^{n}dx_{i}\wedge dy_{i}

and by the 2-f0rm

\sigma=x_{1}dx_{1}\wedge dy_{1}+\sum_{i=2}^{n}dx_{i}\wedge dy_{i} . (1)

On this ground the ‘ singular symplectic structure ’
\sigma and the ‘ singular

Lagrangian fibration (R^{2n}. \sigma, \pi) , where \pi:(x, y)\in R^{2n}-x\in R^{n} . are the
natural candidates to start with (cf. [20, 16]). As an additional argument
supporting this choice we find that the 2-form (1) bas already emerged as
the simplest one in the hierarchy of singular symplectic structures in the
above mentioned papers of Melrose and Arnold on the variational obstacle
problem. We can also foresee potential applications of this structure in
thermodynamics: in modelling the above mentioned critical region, in the
investigations of open thermodynamical systems and in modelling the
absolute zero temperature region. In the latest context let us consider the
1-form of internal energy [8]

\theta=\frac{1}{2}\gamma^{2}dS-pdV+\sum_{i=2}^{k}\mu_{i}dN_{i}, (2)

where \gamma is a parametric temperature [6]. Then 2-form d\theta has stable sin-
gularities of type (1) along the hypersurface \{\gamma^{2}=T=0\} and is non-
singular elsewhere and \pi is the projection of the thermodynamical phase
space \{\gamma, p, \mu_{i}, S, - V, N_{i}\} onto the space of thermodynamical forces \{(\gamma ,
p , \mu_{i})\} , which are natural control parameters for the thermodynamic sys-
tem in equilibrium [6, 11, 12, 17, 19]. On assuming (2) we obtain a fine
link between the thermodynamical postulate of positivity of absolute tem-
perature and the stability of an applicable structure of thermodynamics
[6]. In this approach the normal states of equilibrium apart from \gamma=0

are described by Lagrangian submanifolds, in agreement with classical
theory. Thus in the case of extended phase space with the 1-form of inter-
nal energy (2) it is natural to set as an initial goal the classification of
local forms of maximal isotropic submanifolds near the singularity hyper-
surface \{\gamma=0\} . This is exactly the starting point of this paper, although

formulated in terms of the 2-form \sigma^{d}=^{ef}d\theta rather than the 1-form (2). We
end up with an initial classification of maximal isotropic varieties of the
singular symplectic structure (1).

The paper is organised as follows. At the beginning of Section 2 the



S. Janeczko and A. Kowalczyk 105

natural equivalences of (R^{2n}-\sigma) ( \sigma-equivalences) are introduced and it is
shown that a substantial class of them can be obtained by lowering
restricted Lagrangian equivalences of the Lagrangian fibration (R^{2n}. \omega) ,
\omega=\sum dx_{i}\wedge dy_{i} (restricted means preserving the hypersurface \{x_{1}=0\}).
Next the isotropic varieties of (R^{2n}. \sigma, \pi) , \sigma-varieties, are introduced for-
mally in terms of generating families. Their classification up to \sigma -

equivalences is shown to be equivalent to a classification of Lagrangian
varieties in (R^{2n}. \omega, \pi) up to restricted Lagrangian equivalences. Finally,
the case of maximal isotropic submanifolds ( \sigma-manifold) in (R^{2n}, \sigma, \pi) is
considered in able to show that isotropic varieties appear in this sort of
considerations quite naturally. Representative features of the geometry of
\sigma-manifolds are illustrated by a number of Examples. Section 3 considers
classification of Lagrangian varieties up to restricted Lagrangian equiva-
lences. The initial classification list of normal forms of generating fam-
ilies is obtained here. These results are derived in the standard singular-
ity theory fashion, with an essential use of Arnold’s classification of
boundary singularities. In Section 4 these results are finally utilised to
classify maximal isotropic varieties of (R^{2n}, \sigma) and some examples of the
simplest normal forms are considered.

2. Maximal isotropic varieties

2. 1 \sigma-equivalences. Let us consider R^{2n} with fixed coordinates
(x_{1}, \ldots-x_{n}, y_{1_{ }},\ldots y_{n}) and a 2-form \sigma=x_{1}dx_{1}\wedge dy_{1}+\Sigma_{i=2}^{n} dx_{i}\wedge dy_{i} . A
diffeomorphism R^{2n}arrow R^{2n} preserving the 2-form \sigma and the fibration \pi :
R^{2n}arrow R^{n} , (x, y)arrow x is called a \sigma-equivalence. (As it has been mentioned
already, the \sigma-equivalences form the natural group of permissible transfor-
mations of (R^{2n}. \sigma, \pi) with natural thermodynamic interpretations.)

We shall discuss now natural links between \sigma equivalences and La-
grangian equivalences in the theory of Lagrangian singularities [2, 4, 22,
23]. Let \omega^{d}=^{ef}\Sigma dx_{i}\wedge dy_{i} be a symplectic form on R^{2n} . We recall that
symplectomorphism of (R^{2n}-\omega) preserving fibration \pi is called a Lagran-
gian equivalence (L-equivalence). An L-equivalence preserving the hyper-
plane \{x_{1}=0\} will be called a restricted Lagrangian equivalence (for short:
rL-equivalence).

The transformation

\rho : (x, y) \in R^{2n}-(\frac{1}{2}x_{1}^{2}, x_{1_{ }}, \ldots . x_{n},y_{1} , , ._{1},_{y_{n})\in R^{2n}} (3)

preserves the fibration \pi and satisfies the condition
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\rho^{*}\omega=\sigma . (4)

Obviously \rho is not a unique transformation with these properties. For
example its composition with any Lagrangian equivalence of (R^{2n}, \omega, \pi)

has the same properties.

PROPOSITION 2. 1 For any rL equivalence \Phi of (R^{2n}-\omega) there exists
a \sigma equivalence \phi commuting the diagram

R^{2n}arrow\Phi R^{2n}

R^{2n}arrow|\rho\phi R^{2n}|\rho
.

PROOF. For an rL equivalence \Phi we have \Phi(x, y)=(X_{i}(x), Y_{i}(x, y)) ,

where X_{1}(x)=x_{1}(a+\alpha(x)) , 0\neq a\in R and \alpha\in m_{x}^{2}. A diffeomorphism \phi

commuting diagram (5) and preserving fibration \pi , can be defined as fol-
lows:

\phi(x, y)^{d}=^{ef}(x_{1}\sqrt{a+\alpha(\xi)}\neg X_{2}(\xi)\wedge’\ldots _{X_{n}(\xi)} ,
Y_{1}(\xi, y) , \ldots . Y_{n}(\xi, y))|_{\xi=(\frac{1}{2}x_{1}^{2},xz,\cdots,x_{n})} .

For such \phi we have \phi^{*}\sigma=\phi^{*}\rho^{*}\omega=\rho^{*}\Phi^{*}\omega=\rho^{*}\omega=\sigma(see(4)) . Q. E. D.

REMARK 2. 2 It is easily seen that transformation

\rho’ : R^{2n}arrow R^{2n}-(x, y)- (x, Xlyl, y_{2} , \ldots y_{n})

preserves the fibration \pi and satisfies (4). This raises the question
whether a smooth mapping h:R^{2n}arrow R^{2n} such that h^{*}\omega=\sigma must be equiva-
lent to \rho or \rho’ (it can be easily checked that this is the case in the space
of tw0-jets of such mappings).

2. 2. \sigma-varieties. Let F(\lambda, \xi)\in C^{\infty}(R^{m}\cross R^{n}) , (\lambda, \xi)\in R^{m}\cross R^{n} . We
define \sigma-variety, V_{F}\in R^{2n} by the following equations

y= \frac{\partial F}{\partial\xi}(\lambda, \xi)|_{\xi=(\frac{1}{2}x_{1}^{2},x_{2},\cdots,x_{n})} , (6)

0= \frac{\partial F}{\partial\lambda}(\lambda, \xi)|_{\xi=(\frac{1}{2}x_{1}^{2},x_{2},\cdots,x_{n})} . (7)

The local classification of \sigma-varieties up to \sigma-equivalences is the main
objective of this paper.

It is convenient to associate with ( V_{F}, 0) a Lagrangian variety (L-

variety of (R^{2n}. \omega), (L_{F}, 0) , defined by the equations
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y= \frac{\partial F}{\partial x}(\lambda, x) ,

0= \frac{\partial F}{\partial\lambda}(\lambda, x) .

(Such L-varieties appeared naturally in Arnold’s theory of singularities of
systems of rays [4].) Obviously \sigma-variety ( V_{F}, 0) is a \rho pull-back of L-
variety (L_{F}, 0) , i . e . V_{F}=S^{-1}(L_{F}) .

The germ (F, 0) , with F as above, will be called a generating family
of ( V_{F}, 0) or of (L_{F}, 0) , respectively.

It is well known [2, 22] that if (F, 0) is a Morse family, i . e .

rank \frac{\partial^{2}F}{\partial\lambda\partial\lambda}, \frac{\partial^{2}F}{\partial\lambda\partial x})|_{0}=\max=m,

then (L_{F}, 0) is a Lagrangian submanifold of (R^{2n}, \omega) . (Lagrangian sub-
manifold is defined as an immersed submanifold \iota : R^{n}arrow R^{2b} such that
\iota^{*}\omega=0 ; in such a case the germ (L, 0) , L^{d}=^{ef}\iota(R^{n}) , will be called an L-
germ.) In the generic case, when the generating family F is a
polynomial, the corresponding L-variety is stratifable with all strata
isotropic (i . e . with vanishing pull-backs of \omega on them) and maximal
strata Lagrangian [8, 10] .

Two generating families (F_{i}, 0) , F_{i}(\lambda, x)\in C^{\infty}(R^{k}\cross R^{n}) , i=1,2 , are
called equivalent if there exists a diffeomorphism

\Phi:(R^{k}\cross R^{n}, 0)arrow(R^{k}\cross R^{n}, 0) , (\lambda, x)-(\Lambda(\lambda, x), X(x))

and a smooth function f\in C^{\infty}(R^{n}) such that

F_{2}(\Lambda(\lambda, x) , X(x))=F_{1}(\lambda, x)+f(x) (8)

near 0\in R^{k}\cross R^{n} . The equivalence of generating families which preserves
the hyperplane \{x_{1}=0\} will be called restricted ( r-equivalence). For r-
equivalences the first coordinate of X , is divisible by x_{1}i . e .

X_{1}(x)=x_{1}(\alpha+\phi(x)) , (9)

where \alpha=const\neq 0 and \phi\in m(n) . By straightforward calculation we
obtain:

PROPOSITION 2. 3 Two L-varieties generated by r equivalent generat-
ing families are rL equivalent

REMARK 2. 4 For Morse families and L-germs the converse is true.
From [2, 23] it follows that any two L equivalent L-germs have equivalent
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minimal Morse families (i. e . Morse families F_{i}(\lambda, x) such that \partial^{2}F_{i}/

\partial\lambda\partial\lambda|_{0}=0) .
Propositions 2. 1 and 2. 3 imply.

COROLLARY 2. 5 Two \sigma-varieties generated by r-equivalent generated
ing families are \sigma-equivalent.

2. 3. Special case of \sigma-manifolds. In this subsection we discuss the
interesting particular case when \sigma-variety is an n-submanifold. The fol-
lowing argument could be viewed as an additional justification for the
. naturality j of the above definition of \sigma-variety.

An immersed n-dimensional submanifold M=\iota(R^{n}) of R^{2n} . where \iota :
R^{n}arrow R^{2n} is a smooth immersion such that \iota^{*}\sigma=0 , will be called a \sigma -

manifold. We define the symmetrisation of M as follows

Sym(M) def=\{(\pm x_{1}, x_{2}, \ldots x_{n}, y) ; (x, y)\in M\} .

The property of being a \sigma-manifold is obviously preserved by \sigma -

equivalences. \cdot But symmetrisations of \sigma-equivalent \sigma-manifolds are not
\sigma-equivalent in general.

EXAMPLE 2. 6 \sigma-equivalence (x, y)-(x, y+x^{3}) of (R^{2}. xdx\wedge dy)

carries \sigma-manifold M_{1}^{d}=^{ef}\{y=x^{2}\} onto the \sigma-manifold M_{2}^{d}=^{ef}\{y=x^{2}+x^{3}\} .
However, their symmetrisations, (Sym (M_{1}) , 0) and (Sym(M2), 0), are not
\sigma-equivalent (see Fig. 1).

PROPOSITION 2. 7 Let (M, 0) be a \sigma-manifold. Then there exist a
\sigma-equivalence \Phi:(R^{2n}. \sigma)-arrow(R^{2n}. \sigma) and a Morse family germ (G, 0) ,
G(\lambda, x)\in C^{\infty}(R^{m}\cross R^{n}) such that

(Sym(\Phi(M)) , 0 ) =(V_{G}, 0) ,

Figure 1. Sketches of two non-cr-equivalent symmetrisations of \sigma -equivalent \sigma -

manifolds for Example 1.
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where V_{G}\subset R^{2n} is the \sigma-variety generated by G (see eqns(6) and (7)).

PROOF. The proof is divided into few steps.

A. (Sym(Af), 0) in given at least by one of the following systems of
equations :

\frac{1}{2}x_{1}^{2}=\frac{\partial F}{\partial y_{1}}(y_{1}, x_{I}, y_{J})

y_{I}= \frac{\partial F}{\partial x_{I}}(y_{1}, x_{I}, y_{J}) (10)

-x_{J}= \frac{\partial F}{\partial y_{J}}(y_{1}, x_{I}, y_{J})

or

x_{1}y_{1}= \frac{\partial F}{\partial x_{1}}(x_{1}, x_{I}, y_{J})

y_{I}= \frac{\partial F}{\partial x_{I}}(x_{1}, x_{I}, y_{J}) (11)

-x_{J}= \frac{\partial F}{\partial y_{J}}(x_{1}, x_{I}, y_{J})

where F is a germ of smooth function on R^{n} . I_{=(i_{1}}^{def} ,\ldots-i_{k}), J=(j_{1} , \ldots

j_{n-k-1}) and I\cup J=\{2, \ldots.n\} .

PROOF A. A germ (\iota, 0) of the immersion \iota : R^{n}arrow R^{2n} . M=\iota(R^{n}) ,
can be always written at least in one of the following two forms.

\iota : (x_{I}, y_{1}, y_{J})\in R^{n}-(X_{1}(x_{I}, y_{1}, y_{J}), x_{I}, X_{J}(x_{I}, y_{1}, y_{J}) , y_{1} ,
Y_{I}(x_{I}, y_{1}, y_{J}) , y_{J})\in R^{2n} . (12)

or
\iota : (x_{1}, x_{I}, y_{J})\in R^{n}-(x_{1}, x_{I}, X_{1}(x_{1}, x_{I}, y_{J}) , X_{1}(x_{1}, x_{I}, y_{J}) ,

Y_{I}(x_{1}, x_{I}, y_{J}) , y_{J})\in R^{2n} . (13)

where X_{J} : R^{n}arrow R^{|f|} , Y_{I} : R^{n}arrow R^{|I|} and Y_{1} , X_{1} : R^{n}arrow R are smooth germs
(I\cup J=\{2, \ldots-n\}, I\cap J=\emptyset) . In the case (12) the requirement \iota^{*}\sigma=0

yields the equations

X_{1} \frac{\partial X_{1}}{\partial x_{i}}-\frac{\partial Y_{i}}{\partial y_{1}}=0 ,

X_{1} \frac{\partial X_{1}}{\partial y_{j}}-\frac{\partial X_{j}}{\partial y_{1}}=0 ,

\frac{\partial X_{i}}{\partial x_{i’}}-\frac{\partial Y_{i’}}{\partial x_{i}}=0 ,

(14)

(15)

(11)
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\frac{\partial Y_{i}}{\partial y_{j}}+\frac{\partial X_{j}}{\partial x_{i}}=0 , (17)

\frac{\partial Y_{j}}{\partial y_{j}}

,
- \frac{\partial X_{j’}}{\partial yj}=0 , (18)

for any i, i’\in I and j, j’\in J. On substituting \overline{X}_{1}=\frac{1}{2}X_{1}^{2} we find [2, 22] that

there exists a smooth germ F(x_{I}, y_{1}, y_{J}) such that \overline{X}_{1}=\frac{\partial F}{\partial y_{1}}, Y_{I}= \frac{\partial F}{\partial x_{I}}

and - X_{J}= \frac{\partial F}{\partial y_{J}} . Representation (10) of (Sym(M), 0) follows immediate-

ly from these equations. Similarly in the case (13) condition \iota^{*}\sigma=0

implies equations (16)-(18) and the following two systems of equations:

x_{1} \frac{\partial Y_{1}}{\partial x_{i}}-\frac{\partial Y_{i}}{\partial x_{1}}=0 ,

x_{1} \frac{\partial Y_{1}}{\partial yj}-\frac{\partial X_{j}}{\partial x_{1}}=0 ,

instead of (14) and (15). Inserting \overline{Y}_{1}=x_{1}Y_{1} we find (cf. [23]) a germ F
(x_{1}, x_{I}, y_{J}) such that \tilde{Y}_{1}=\frac{\partial F}{\partial x_{1}}, Y_{I}= \frac{\partial F}{\partial x_{I}} and - X_{J}= \frac{\partial F}{\partial y_{J}} . These equations

yield representation (11) for (Sym(Af), 0).

B. If (Sym(Af), 0) has a representation (10), then (Sym(M), 0) =

(V_{G}, 0) , where G(\lambda, x)\in C^{\infty}(R^{n-k}\cross R^{n}) is the following Morse family (on
R^{n}) :

G(\lambda_{i}, \ldots.\lambda_{n-k}, x_{1,\ldots-}x_{n})^{d}=^{ef}F(\lambda_{1}, x_{i_{1},\ldots-}x_{i_{k\prime}}\lambda_{2}, \ldots j\lambda_{n-k})

+ \lambda_{1}x_{1}+\sum_{a=2}^{n-k}\lambda_{a}x_{ja- 1} .

This can be verified easily by straightforward computations.

C. (M, 0) is always \sigma-equivalent to a \sigma-manifold germ with
symmetrisation of the formm (10).

PROOF C. If (Sym(M), 0) does not allow the representation (10),
then \iota necessarily has a representation (13) with

\frac{\partial Y_{1}}{\partial x_{1}}(0)=0 . (19)

In this case (Sym(\PhiM), 0), where \Phi:R^{2n}arrow R^{2n} is the \sigma-equivalence (x, y)
-(x, x+y) , has a representation (10) (since any of its representations
of the form (12) does not satisfy (19) ) .
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This completes the proof of the Proposition. Q. E. D.

EXAMPLE 2. 8 Let us assume (R^{n}, \sigma)^{d}=^{ef}(R^{2}, xdx\wedge dy) .
(a) Let M\subset R^{2} be the parabola \{(t2. t)\} . The sets Sym(Af), L=def

\rho(M) and L’=\rho’(M)def , are sketched in Fig. 2 ( _{a}) . On the basis of PropO-

sition 2. 7 we easily calculate the generating function for L:F(y)^{d}=^{ef} \frac{1}{5}y^{5} .

(a)

Figure 2. Sketches representing some basic features of geometry of \sigma -manifolds
for Examples 2. 8(a) and 2. 8(b) .
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(b) For the germ (\Sigma, 0) of the \sigma-manifold \Sigma^{d}=^{ef}\{(x, x^{3})\} not having

the representation (10), the set L^{d}=^{ef} \rho(\sum) is a non-smooth semmicubical
parabola x^{3}=y^{2} (Fig. 2( b )). If we use \rho’ instead of \rho , the set L’=\rho’(\Sigma)def ,

becomes the smooth curve y=x^{4} (Fig. 2 ( b )). This suggests that \rho’ could
be used like \rho to describe gems of \sigma-manifolds in terms of L-germs.
However, not all \sigma-manifold germs are \sigma-equivalent to ones having
smooth representations via \rho’(e. g. (\sum, 0), \sum=(y^{2}, y)) and also there is a
problem with lowering of L-equivalences to \sigma-equivalences through \rho’

(c) In the particular case of a \sigma-manifold (M, 0) satisfying the
equation (M,0)=(Sym(M), 0) and not having the representation (10) the
image L^{d}=^{ef}\rho(M) is always a smooth manifold with boundary. For
instance, for M^{d}=^{ef}\{y=x^{2}\}\subset R^{2} we have L^{d}=^{ef}\{(x, x) : x\geq 0\} and \rho^{-1}(L)=M

(Fig. ( a )). According to Proposition 2. 7 we can deform M by a \sigma -

equivalence to the \sigma-manifold \overline{M}-\{y=x^{2}+\lambda x\} having the representation
(10). In this case the set \rho(\tilde{M}) becomes a smooth curve \tilde{L} obtained by
splitting the half-line L (Fig. 3 ( b )).

(a)

\rho=(x^{2},y)

(b)

\rho^{=}(x^{2},\underline{y)}

Figure 3. \sigma-manifolds for Example 2. 8(c).
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3. A classification of Lagrangian varieties

We recall [2, 7] that a generating family (F(\lambda, x) , 0), (\lambda, x)\in R^{k}\cross

R^{n}\wedge is versal if any other generating family (F’(\lambda, x’) , 0), (\lambda, x)\in R^{k}\cross

R^{n\prime} . such that F’|_{x^{r}=0}=F|_{x=0} is induced from F, i . e . if there exists a map-
ping

(\lambda, x’)\in R^{k}\cross R^{n^{r}}-(\Lambda(\lambda, x’) , X(x’))\in R^{k}\cross R^{n} (20)

and a function f : R^{n^{r}}- R such that

F’(\lambda, x’)=F(\Lambda(\lambda, x’), X(x’))+f(x’) .

(Classifications of versal families can be found in [2, 14, 17]).
For the purposes of this paper it seems natural to consider restricted

versality by imposing on the inducing mappings (20) a requirement of
preservation of distinguished hyperplanes, i . e . in the case of hyperplanes
\{x_{1}=0\} and \{x_{1}’=0\} , by assuming X(\{x_{1}’=0\})\subset\{x_{1}=0\} . This requirement
means that x_{1} , the first coordinate of X , is of the form (9). The follow-
ing result reduces the restricted versality to ordinary versality.

PROPOSITION 3. 1 A family (F(\lambda, x) , 0) is restricted versal if and
only if the family (F(\lambda, x)|_{x_{1}=0},0) is versal.

PROOF. \Leftarrow . Assume (F(\lambda, x)|_{x_{1}=0},0) , (\lambda, x)\in R^{k}\cross R^{n} , is a versal
family and (F’(\lambda, x’) , 0), (\lambda, x’)\in R^{k}\cross R^{m} is such that F’(\lambda, O)=F(\lambda, 0) .
Then (\lambda, x’)-(\Lambda(\lambda, x’), 0 , X_{2}(\lambda, x’) , \ldots . X_{n}(\lambda, x’)) is the demanded
morphism.

\Rightarrow . Following the standard lines of versality theory [5, 20] for
restricted versality we obtain the following necessary condition:

\langle\frac{\partial F}{\partial x}\rangle_{g_{\lambda X}}+\langle x_{1}\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}}, ... , \frac{\partial F}{\partial x_{n}}, 1\rangle_{g_{X}}=\mathscr{C}_{\lambda X} .

Factorising by m_{x}\mathscr{C}_{\lambda\chi} we get the following condition of infinitesimal ver-
sality for F|_{x_{1}=0} :

\langle\frac{\partial F}{\partial\lambda}|_{x=0}\rangle_{g_{\lambda}}+\langle\frac{\partial F}{\partial x_{2}}|_{x=0} , \ldots J\frac{\partial F}{\partial x_{n}}|_{x=0},1\rangle_{R}=\mathscr{C}_{\lambda} .

As is well known this condition implies versality of F|_{x_{1}=0}[2,5,13] . O. E.
D.

In the case when the vector space \mathscr{C}_{\lambda}/\langle\frac{\partial F}{\partial\lambda}(\lambda, x)|_{x=0}\rangle_{g_{\lambda}} has a finite

number of generators, say \{e_{1}(\lambda), \ldots.e_{m}(\lambda), 1\} , we have the decomposi-
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tion
F(\lambda, x)=F(\Lambda(\lambda, x), 0)+ \sum_{i=1}^{m}e_{i^{\circ}}\Lambda(\lambda, x)u_{i}(x)+f(x)

for some smooth u= (u_{1}, \ldots. u_{m}):R^{n}arrow R^{m} and f : R^{n}arrow R[5,20] , where \Lambda :
R^{k}\cross R^{n}arrow R^{k} . \Lambda|_{R^{k}\cross\{0\}}=id_{R^{k}} . From Proposition 3. 1 we find that any other
r -equivalent family (F’, 0) has the form

F’(\lambda, x)=F(\Lambda(\lambda, x), 0)+ \sum_{i=1}^{m}e_{i}(\Lambda(\lambda, x))u_{i}’(x)+f(x) ,

where \Lambda|_{R^{k}\cross\{0\}} is a diffeomorphism of (R^{k}, 0) and u’ commutes the follow-
ing diagram

(R^{n}, \{x_{1}=0\}, 0)arrow u(R^{m}, 0)

\downarrow\phi \nearrow u’ (21)

(R^{n}, \{x_{1}=0\}, 0)

Here \phi is a diffeomorphism preserving the hyperplane \{x_{1}=0\} . It is
apparent that r -equivalence classes of generating families (F(\lambda, x) , 0) are
parametrised by singularities of F|_{x=0} and equivalence classes of mappings
u in the sense of diagram (21) (we call them \mathscr{A}_{r} -equivalences). In this
context it is natural to introduce the following characteristics of F:(i)
codimension of (F, 0) , codim F=def dim ( \mathscr{C}_{\lambda}/\langle\frac{\partial F}{\partial\lambda}(\lambda, x)|_{x=0}\rangle_{g_{\lambda}} and (ii)

corank of F=m-rank( \frac{\partial\tilde{u}}{\partial x})|_{x=0} , where \tilde{u}:R^{n}arrow R^{m} is assumed to be such

that F is induced via a pull-back (\tilde{\Lambda},\tilde{u}) from an universal unfolding \tilde{F} of
F|_{x=0} . It is easily seen that these two characteristics are invariants of
r-equivalences.

REMARK 3. 2 The above equivalence of generating families can be
expressed also in a more general way. We call two generating families F
and F’. on R^{k}\cross R^{n} . equivalent (also pull back equivalent) if they com-
mute the following diagram

(R^{k}\cross R^{n}, \{x_{1}=0\}, 0)

\backslash F \backslash \tilde{\Psi}

\tilde{F}

|\Phi R – (R^{k}\cross R^{m}, 0) ,

(R^{k}\cross R^{n}, \{x_{1}=0\}, 0)\nearrow F’
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where \tilde{F} is a universal unfolding of the germ F|_{x=0}=F’|_{x=0} from which F
and F’ are induced by pull backs \Psi and \Psi’ respectively, and \Phi is a stan-
dard r -equivalence. The equivalence so defined is suitable for providing a
classification list of normal forms of generating families and, at the end,
of normal forms of \sigma-varieties.

Now using Arnold’s classification methods [4] we obtain lists of nor-
mal forms for some simplest r -equivalence classes. At first we consider
the case of co\dim=1 . The cases of co\dim=2 and 3 will be considered
subsequently in the remaining part of this section.

PROPOSITION 3. 3 The list of simple normal forms of r-equivalence
classes of generating families F(\lambda, x) , (\lambda, x)\in R\cross R^{n} of codimension 1 is
the following :

A_{2}A_{0}^{0}\cdot. \lambda^{3}+x_{2}\lambda ,
A_{2}A_{k}^{0} : \lambda^{3}+(\pm x_{2}^{k+1}\pm x_{1}+q)\lambda , k\geq 1 ,
A_{2}D_{k}^{0} : \lambda^{3}+(x_{2}x_{3}^{2}\pm x_{2}^{k-1}\pm x_{1}+q)\lambda , k\geq 4 ,
A_{2}E_{6}^{0} : \lambda^{3}+(x_{2}^{3}\pm x_{3}^{4}\pm x_{1}+q)\lambda ,
A_{2}E_{7}^{0} : \lambda^{3}+(x_{2}^{3}+x_{2}x_{3}^{3}\pm x_{1}+q)\lambda ,
A_{2}E_{8}^{0} : \lambda^{3}+(x_{2}^{3}+x_{3}^{5}\pm x_{1}+q)\lambda ,
A_{2}B_{k}^{1} : \lambda^{3}+(\pm x_{1}^{k}+x_{2}^{2}+q)\lambda, k\geq 2 ,
A_{2}C_{k}^{1} : \lambda^{3}+(x_{1}x_{2}\pm x_{2}^{k}+q)\lambda, k\geq 2 ,
A_{2}F_{4}^{1} : \lambda^{3}+(\pm x_{1}^{2}+x_{2}^{3}+q)\lambda,

where q is a non-degenerate quadratic form of the remaining variables.

PROOF. Up to an r-equivalence we have
F(\lambda, x)=\lambda^{3}+\lambda u(x) ,

where u:R^{n}arrow R . Using the list of simple normal forms of singularities
of u on the manifold \{x_{1}\geq 0\}\subset R^{n} with boundary \{x_{1}=0\} [2, Sec. 17.4] we
obtain the above classification. Q. E. D.

REMARK 3. 4 (i) In the above list A_{2}A_{0}^{0} is the only restricted versal
family.

(ii) Families A_{2}A_{k}^{0}, A_{2}D_{k}^{0} and A_{2}E_{i}^{0} are Morse families while A_{2}B_{k}^{1},
A_{2}C_{k}^{1}, A_{2}F_{4}^{1} are not (and provide L-varieties which are not manifolds).

(iii) Generating families (\tilde{F}(\lambda, x), 0) , (\lambda, x)\in R^{k}\cross R^{n} . k\geq 2 with
\tilde{F}|_{x=0} having singularity A2 have simple normal forms F(\lambda_{1}, x)+

Q((\lambda_{2}, \ldots.\lambda_{k}) , where F has a one of the normal forms in the Proposition
3. 3 and Q is a non-degenerate quadratic form. Obviously \tilde{F} and F gener-
ate the same L-variety.
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LEMMA 3. 5 In the spaces of mappings u=(u_{i}):(R^{n}. 0)arrow(R^{m}. 0) of
rank m and m-1, respectively, the simplest singularities can be reduced by

\mathscr{A}_{-r}-equivalences to one of the following normal forms.

(i) rank ( \frac{\partial_{\mathcal{U}}}{\partial_{X}})|_{0}=m .

A_{0}^{0} : u(x)=(x_{2}, x_{3}, \ldots x_{m+1}) ,

or
u=(u_{i}(x))=(x_{2}, \ldots 3x_{j}, u_{j}, x_{j+1}, \ldots x_{m})

where j\in\{1, \ldots-m\} and u_{j} has one of the following forms:

D_{k,j}^{0}A_{k,j}^{0}. \cdot.\cdot u_{j}=x_{1}\pm x_{m+1}^{k+1}\pm x_{m+1}^{2}+\sum ik-01x_{m+1}^{i}=\phi_{i}+qu_{j}=x_{1}+x_{m+1}x_{m+2}^{2}\pm x_{m+1}^{k-1}+\Sigma_{i=0}^{k-2}x_{m+1}^{i}\phi_{i}’+x_{m+2}\phi_{k-1}+q

,
E_{6,j}^{0} : u_{j}=x_{1}+x_{m+1}^{3}\pm x_{m+2}^{4}+\phi_{0}+x_{m+1}\phi_{1}+x_{m+2}\phi_{2}+x_{m+1}x_{m+2}\phi_{3}+x_{m+2}^{2}\phi_{4}

+x_{m+1}x_{m+2}^{2}\phi_{5}+q,
E_{7,j}^{0} : u_{j}=x_{1}+x_{m+1}^{3}+x_{m+1}x_{m+1}x_{m+2}^{3}+\phi_{0}+x_{m+1}\phi_{1}+x_{m+2}\phi_{2}+x_{m+1}^{2}\phi_{3}

+x_{m+1}x_{m+2}\phi_{4}+x_{m+2}^{2}\phi_{5}+x_{m+1}^{2}x_{m+2}\phi_{6}+q,
E_{8,j}^{0} : u_{j}=x_{1}+x_{m+1}^{3}+x_{m+2}^{5}+\phi_{0}+x_{m+1}\phi_{1}+x_{m+2}\phi_{2}+x_{m+1}x_{m+2}\phi_{3}+x_{m+2}^{2}\phi_{4}

+x_{m+1}x_{m+2}^{2}\phi_{5}+x_{m+2}^{3}\phi_{6}+x_{m+1}x_{m+2}^{2}\phi_{7}+q,

where the \phi_{i} ’s are smooth functions of x_{2} , \ldots 3
x_{m} and q is a non-degenerate

quadratic form of the variables x_{m+3} , \ldots . xn. .

(ii) rank ( \frac{\partial u}{\partial x})|_{0}=m-1 .

( ii . a) For any j\in\{1, \ldots.m\} ,

u_{i}=x_{i} for l\leq i\neq j\leq m

and u_{j} is one of the following forms:
B_{k,j}^{1} : u_{j}=\pm x_{1}^{k}\pm x_{m+1}^{2}+\Sigma_{i=0}^{k-1}x_{1}^{i}\phi_{i}+q,
C_{k,j}^{1} : u_{j}=x_{1}x_{m+1}\pm x_{m+1}^{k}+\Sigma_{i=0}^{k-1}x_{m+1}^{i}\phi_{i}+q,
F_{4,j}^{1} : u_{j}=\pm x_{1}^{2}+x_{m+1}^{3}+\phi_{0}+x_{1}\phi_{1}+x_{m+1}\phi_{2}+x_{1}x_{m+1}\phi_{3}+q,

where \phi_{i}=\phi_{i}(x_{2}, \ldots-x_{m}) and q is a non-degenerate quadratic form of the
variables x_{m+2} , \ldots , x_{n} .

(ii b) For any j, l, 1\leq i\neq l\leq m,

u_{i}=x_{i+1} , u_{i’}=x_{i’} , u_{i^{rr}}=x_{i^{rr}-1}

for 1 \leq i<\min(j, l)<i’<\max(j, l)<i’\leq n,

u_{l}\in m_{x_{1}\cdots x_{m-1}}+m_{x}^{2}
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and u_{j} has one of the following forms:
A_{k,jl}^{1} : u_{j}=x_{1}\pm x_{m}^{k+1}\pm x_{m+1}^{2}+\Sigma_{i=0}^{k-1}x_{m}^{i}\phi_{i}+q,
D_{k,jl}^{1} : u_{j}=x_{1}+x_{m}x_{m+1}^{2}\pm x_{m}^{k-1}+\Sigma_{i=0}^{k-2}x_{m}^{i}\phi_{i}+x_{m+1}\phi_{k-1}+q,
E_{6,jl}^{1} : u_{j}=x_{1}+x_{m}^{3}\pm x_{m+1}^{4}+\phi_{0}+x_{m}\phi_{1}+x_{m}x_{m+1}\phi_{2}+x_{m+1}^{2}\phi_{3}+x_{m}x_{m+1}^{2}\phi_{4}+q,
E_{7,jl}^{1} : u_{j}=x_{1}+x_{m}^{3}+x_{m}x_{m+1}^{5}+\phi_{0}+x_{m}\phi_{1}+x_{m+1}\phi_{2}+x_{m}^{2}\phi_{3}+x_{m}x_{m+1}\phi_{4}

+x_{m+1}^{2}\phi_{5}+x_{m}^{2}x_{m+1}\phi_{6}+q,
E_{8,jt}^{1} :

u_{j}=x_{1}+x_{m}^{3}+x_{m+1}^{5}+\phi_{0}+x_{m}\phi_{1}+x_{m+1}\phi_{2}+x_{m}x_{m+1}\phi_{3}+x_{m+1}^{2}\phi_{4}+x_{m}x_{m+1}^{2}\phi_{5}+x_{m+1}^{3}\phi_{6}+x_{m}x_{m+1}^{2}\phi_{7}+q

,

where \phi_{i}=\phi_{i}(x_{2}, \ldots.x_{m-1^{4}}) and q is a non-degenerate quadratic form of the
variables x_{m+2} , \ldots , x_{n} .

PROOF. Diffeomorphic changes of coordinates X : R^{n}arrow R^{n} preserv-
ing the hyperplane \{x_{1}=0\} (we shall call them permissible) are of the form

X : xarrow(x_{+}\tilde{X}_{1}(x), X_{2}(x) , \ldots . X_{n}(x))

This class includes the transformation
xarrow(x_{1}, x_{i_{2}}, \ldots-\chi_{in}) , (22)

where (i_{2}, \ldots-i_{n}) is a permutation of indices (2, \ldots
n) .

Now we consider four different classes of smooth transformations u :
R^{n}arrow R^{m} The idea of the proof is to simplify, at first, as much as pos-
sible the form of the mapping u by permissible changes of coordinates and
then to specify the forms of remaining functional coefficients with the help
of the theory of universal unfoldings.

(i. a) rank ( \frac{\partial u}{\partial x})|_{x=0}=m and rank ( \frac{\partial u}{\partial(x_{2},\ldots.x_{n})})|_{x=0}=m .

Applying an appropriate transformation of coordinates (22) we can
achieve that rank (\partial u/\partial (x_{2}, \ldots.x_{m+1}))|_{x=0}=m . Now in coordinates x_{i}’=

u_{i-1}(x) for i=2, \ldots . m+1 and x_{i}’=x_{i} , otherwise, u has the form (A_{0}^{0}) :

u(x’)=(x_{\acute{2}}, \ldots.x_{\acute{m}+1}) .

(i, b) rank (\partial u/\partial x)|_{x=0}=m and rank (\partial u/\partial (x_{2}, \ldots jx_{n})|_{x=0}=m-1 .
After a suitable permutation of coordinates x_{2} , \ldots . xn we have

rank ( \frac{\partial(u_{1},\ldots,u_{j-1},u_{j+1},\ldots,u_{m})}{\partial(x_{2,\ldots-}x_{m})})|_{0}=m-1

and

u_{j}=x_{1}(a_{1}+\alpha(x))+\beta(x_{2}, \ldots.x_{n}) ,
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for certain j\in\{1, \ldots.n\} , 0\neq a_{1}\in R, \alpha\in m_{x} and \beta\in m_{x_{2}\cdots x_{n}} . In coordinates
x_{1}’=x_{1}(a_{1}+\alpha(x)) , x_{k}’=u_{k-1} for k=2, \ldots , j and x_{k}’=u_{k} for k=j+1 , \ldots m
transformation u takes the form

u_{k}=x_{k+1}’ for k=i, \ldots . j-1 ,
u_{j}=x_{1}’+a_{2}x_{\acute{2}}+\ldots+a_{m}x_{\acute{m}}+\beta’(x_{\acute{2}}, \ldots.x_{\acute{m}}, x_{m+1}, \ldots , x_{\acute{n}}) , (22)
u_{k}=x_{k}’ for k=j+1, \ldots-m,

where \beta’\in m_{x_{2}\cdots x_{n}}^{2} . We can view \beta’ as a family of functions of x_{\acute{m}+1} , \ldots
x_{\acute{n}}

parametrised by x_{\acute{2}} , ... -

\chi_{\acute{m}} . In the simplest cases, by a permissible
changes of coordinates not affecting x_{1}’ , \ldots . x_{\acute{m}} we can obtain \beta’ as a pull-
back from standard universal unfoldings [2]. E. g . assuming that
\beta’|xg=,\cdots,xh=0 has singularity (A_{k}) and after a suitable change of coordi-
takes

x^{\prime-}\tilde{x}= (x_{\acute{1}}, \ldots.x_{\acute{m}}, \psi_{m+1}(x_{\acute{m}+1}, \ldots.x_{\acute{n}}), \ldots.\psi_{n}(x_{m+1}, \ldots.x_{\acute{n}})) ,

we have

\beta’=\tilde{x}_{m+1}^{k+1}+\sum_{i=0}^{k-1}x_{m+1}^{i}\phi_{i}+q,

where \phi_{i}\in m_{x_{2}\cdots x\acute{m}} and q=q(x_{\acute{m}+2}, \ldots.x_{\acute{n}}) is a non-degenerate quadratic
form. This provides the normal forms A_{k}^{0} for u_{i} (note that the linear
term in u_{j} was included in \phi_{0}). Analogously we obtain forms D_{k}^{0}, E_{6}^{0} , E_{7}^{0}

and E_{8}^{0} .

(ii. a) rank ( \frac{\partial u}{\partial x})|_{x=0}=m-1 and rank ( \frac{\partial u}{\partial(x_{2},\ldots.x_{n})})|_{x=0}=m-1 .

Analogous to the previous case we find at first, that up to a suitable
permissible change of coordinates we have

u_{1}=x_{2} , \ldots u_{j-1}=x_{j},
u_{j}=a_{2}x_{2}+\ldots+a_{m}x_{m}+\beta(x_{1}, x_{2}, \ldots.x_{m}, x_{m+1}, \ldots.x_{n}) ,

u_{j+1}=x_{j+1} , \ldots u_{m}=x_{m},

where \beta\in m_{x}^{2}. We can treat \beta as an unfolding of a boundary singularity
\tilde{\beta}=\beta|_{x_{2}=0,\cdots,x_{m}=0} , with respect to unfolding parameters x_{2} , \ldots

x_{m} . The sim-
plest normal forms of \tilde{\beta}\in m^{2}(x_{1}, x_{m+1}, \ldots.\chi_{n}) , B_{k}, C_{k}, and F_{4} can be found
in [4]. Forms B_{k}^{1}, C_{k}^{1} and F_{4}^{1} are obtained as unfoldings of these normal
forms (and inclusion of the linear term in u_{j} into \phi_{0}).

(ii. b) It remains to consider the case:

rank ( \frac{\partial u}{\partial x})=m-1 and rank ( \frac{\partial u_{1}}{\partial(x_{2,.-}..x_{n})})=m-2
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at x=0 . As previously we have, up to a permissible change of coordi-
note

u_{i}=x_{i+1} , u_{i’}=x_{i’} and u_{i^{rr}}=x_{i^{rr}-1} ,
u_{j}=a_{1}x_{1}+a_{2}x_{2}+\ldots+a_{m}x_{m}+\alpha (x_{2}, \ldots x_{m}, x_{m+1}, \ldots x_{n}) ,
u_{l}=b_{1}x_{1}+\ x_{2}+\ldots+a_{m}x_{m}+\beta(x_{2}, \ldots.x_{m}, x_{m+1}, \ldots , x_{n}) ,

for certain j, k, 1\leq j\neq k\leq n, \alpha, \beta\in m_{x}^{2} and all i, i’ i’ such that 1\leq i<

\min(j, l)<i’<\max(j, l)<i’<n . Using a permissible change of coordi-
nates we can simplify one of the functions, say u_{j} while the form of the
other one must remain. arbitrary ’ Using Arnold’s list [2] we obtain nor-
mal forms A_{kjl}^{1} , D_{kjl}^{1} and E_{ijl}^{1} (by virtually specifying u_{j} : note that \frac{\partial u_{j}}{\partial x_{1}}|_{0}

\neq 0) . Q. E. D.
On the basis of Proposition 3. 1 and Lemma 3. 5 we extend the

classification of generating families in Proposition 3. 3 to the case of
codimension 2 and 3. It is convenient to define the corank of a generating
family F(\lambda, x) , as the corank (at 0) of a pull-back (\lambda, x)-(\Lambda(\lambda, x) ,
X(x)) inducing F from a universal unfolding of F|_{x=0} . Obviously it is an
invariant of the r -equivalence class of F

PROPOSITION 3. 6 Normal forms of corank 0 and 1 of r-equivalence
classes of generating families of codimension 2 and 3 are listed in Table 3.

4. Mormal forms of \sigma -varieties

On the basis of Corollary 2. 5 and of the results of Section 3 we obtain
the following Theorem.

THEOREM 4. 1 Initial classification of generic \sigma-varieties is provided
by the classification list of generating families in Propositions 3. 3 and 3. 6.

EXAMPLE 4. 2 Restricted versal generating families are of type A_{k}A_{0}^{0} ,
k\geq 2 , only. Their normal forms are as follows

F(\lambda, x)=\lambda^{k+1}+\lambda^{k-1}x_{2}+\lambda^{k-2}x_{3}+\ldots+\lambda x_{k} .

In this case the corresponding \sigma-varieties are given by the equations

y_{1}=0 ,
y_{i}=\lambda^{k-i+1} . i=2, \ldots . k
y_{j}=0 , j=k+1, \ldots’. n

0=(k+1) \lambda^{k}+\sum_{i=l}^{k}(k-i+1)\lambda^{k-i}x_{i} .
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On Fig. 4 we illustrate the \sigma-variety for the case A_{2}A_{0}^{0} ; which is the only
possible restrictly versal family for n=2 . For n=3 (and k\leq 3) we obtain
additionally the cylinder of cusp-surfaces along the axis x_{1} .

Figure 4. \sigma-variety for the case A_{2}A_{0}^{0} (Example 4. 2).

EXAMPLE 4. 3 Singularities A_{2}A_{k}^{0}, A_{2}D_{k}^{0}, A_{2}E_{k}^{0} (see Proposition 3. 3)

provide the singular \sigma-varieties. The simplest, cone-like \sigma-variety for
A_{2}A_{1}^{0} singularity is illustrated in Fig. 5.

y_{2}=\pm 2x_{2}y_{1} ,

0=3y_{1}^{2} \pm x_{2}^{2}\pm\frac{1}{2}x_{1}^{2} .

Figure 5. \sigma-variety for A_{2}A_{1}^{0} singularity for Example 4. 3.
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EXAMPLE 4. 4 The types A_{2}B_{k}^{1}, A_{2}C_{k}^{1}, A_{2}F_{4}^{1} of \sigma-varieties are pr0-

vided by generating families which are not Morse. As an example we
write down, explicitly, the equations of the normal forms of the \sigma -

varieties corresponding to a singularity of type A_{2}F_{4}^{1} .
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ylxl= \pm y_{4}x_{1}^{2}

y_{2}x_{4}=\pm 3y_{4}x_{2}^{2} ,
y_{i}x_{4}=\pm y_{4}x_{i}, 3\leq i\leq n-1 ,

y_{4}^{2}= \frac{1}{3}x_{4}^{2}(x_{2}^{3}+q\pm\frac{1}{4}x_{1}^{4}) .
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