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Abstract

Maximal isotropic varieties of the 2,0 singular symplectic structure
are considered. Their versal singularities are classified and the lists of
normal forms of small codimensions are given. These normal formas are
represented by resttricted classification of singularities of Lagarangian
varieties in symplectic manifold with boundary. The links to ther-
modynamics of the zero-lovel-temperature are discussed.

1. Introduction

The main aim of the applied symplectic geometry is to describe the
real states of a system by means of Lagrangian varieties in appropriate
cotangent bundle-phase space [1,3]. In this approach the structural prop-
erties of a system under consideration (say phase transitions, bifurcation
sets, breaking of the wave fronts,...) are associated with the structure and
generic properties of the corresponding Lagrangian varieties. In early
applications of Lagrangian singularities [21,22,12] only smooth Lagran-
gian submanifolds of the phase spaces were used. Although generally suc-
cessful, this approach showed some shortcomings too. For instance it
appeared to be insufficient to describe so called critical phenomena in ther-
modynamics (since it delivered only the classical values of critical indices
[17, 11, 12], not compatible with experimental data).

The first generalisation, to non-smooth Lagrangian varieties, appeared
naturally in Melrose’s theory of glancing hypersurfaces which was
subsequently extended in Arnold’s papers (see e. g. [4]) on singularities of
systems of rays in the variational obstacle problem. Such generalisations
appeared also in the discussion of thermodynamical phase coexistence in
[10]. However in an attempt to model properly the critical point of ther-
modynamics (where possibly some fundamental laws of thermodynamics
“break down” [17, 19]) it seems to be quite natural to go further on and
admit some singularities of symplectic structures of the phase space as
well. The aim of this paper is to make the first step in this direction. To
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select reasonably an initial form of “singular symplectic structure” it is
natural to turn to the (local) classification of germs of 2-forms [13,18].
There we find that on R*", the simplest classes of germs (at 0) of stable
2-forms are represented by the canonical symplectic form =227, dx; \ dy:
and by the 2-form

o=ndu A dy+ 22 dx: A dys, D

On this ground the ‘singular symplectic structure’ ¢ and the ‘singular
Lagrangian fibration’ (R**, ¢, ), where z: (x, y) ER*—— xER", are the
natural candidates to start with (cf. [20,16]). As an additional argument
supporting this choice we find that the 2-form (1) bas already emerged as
the simplest one in the hierarchy of singular symplectic structures in the
above mentioned papers of Melrose and Arnold on the variational obstacle
problem. We can also foresee potential applications of this structure in
thermodynamics : in modelling the above mentioned critical region, in the
investigations of open thermodynamical systems and in modelling the
absolute zero temperature region. In the latest context let us consider the
1-form of internal energy

9 :%yzds— pdV + z":z N, @)

where y is a parametric temperature [6]. Then 2-form d6 has stable sin-
gularities of type (1) along the hypersurface {y*=7=0} and is non-
singular elsewhere and = is the projection of the thermodynamical phase
space {y,p, u;, S, —V, N} onto the space of thermodynamical forces {(y,
p, u:)}, which are natural control parameters for the thermodynamic sys-
tem in equilibrium [6,11,12,17,19]. On assuming (2) we obtain a fine
link between the thermodynamical postulate of positivity of absolute tem-
perature and the stability of an applicable structure of thermodynamics
[6]. In this approach the normal states of equilibrium apart from y=0
are described by Lagrangian submanifolds, in agreement with classical
theory. Thus in the case of extended phase space with the 1-form of inter-
nal energy (2) it is natural to set as an initial goal the classification of
local forms of maximal isotropic submanifolds near the singularity hyper-
surface {y=0}. This is exactly the starting point of this paper, although

formulated in terms of the 2-form o‘cli"fdﬁ rather than the 1-form (2). We
end up with an initial classification of maximal isotropic varieties of the
singular symplectic structure (1).

The paper is organised as follows. At the beginning of Section 2 the
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natural equivalences of (R**, ¢)(c-equivalences) are introduced and it is
shown that a substantial class of them can be obtained by lowering
restricted Lagrangian equivalences of the Lagrangian fibration (R*", @),
w=2 dx:\dy: (vestricted means preserving the hypersurface {x=0)).
Next the isotropic varieties of (R*", ¢, x), o-varieties, are introduced for-
mally in terms of generating families. Their classification up to o-
equivalences is shown to be equivalent to a classification of Lagrangian
varieties in (R*", w, 7) up to restricted Lagrangian equivalences. Finally,
the case of maximal isotropic submanifolds (¢-manifold) in (R*, o, ) is
considered in able to show that isotropic varieties appear in this sort of
considerations quite naturally. Representative features of the geometry of
c-manifolds are illustrated by a number of Examples. Section 3 considers
classification of Lagrangian varieties up to restricted Lagrangian equiva-
lences. The initial classification list of normal forms of generating fam-
ilies is obtained here. These results are derived in the standard singular-
ity theory fashion, with an essential use of Arnold’s classification of
boundary singularities. In Section 4 these results are finally utilised to
classify maximal isotropic varieties of (R*", ) and some examples of the
simplest normal forms are considered.

2. Maximal isotropic varieties

2.1 o-equivalences. Let us consider R?*" with fixed coordinates
(H, eeos Xny Y1, oo, ) and @ 2-form o=xidaAdn+ 2% deiAdy. A
diffeomorphism R?"— R?*" preserving the 2-form & and the fibration = :
R*—R" (x, y)—xis called a o-equivalence. (As it has been mentioned
already, the o-equivalences form the natural group of permissible transfor-
mations of (R*", ¢, #) with natural thermodynamic interpretations.)

We shall discuss now natural links between o-equivalences and La-
grangian equivalences in the theory of Lagrangian singularities [2, 4, 22,

23]. Let w=3 dx:\Ndy: be a symplectic form on R?". We recall that
symplectomorphism of (R*", ) preserving fibration = is called a Lagran-
gian equivalence (L-equivalence). An L-equivalence preserving the hyper-
plane {x =0} will be called a restricted Lagrangian equivalence (for short :
rL-equivalence).

The transformation

o (x, y)ERZ”M(%x?, X, ey Xny Y1, ..., V) ER 3)

preserves the fibration = and satisfies the condition
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pPrw=o. 4

Obviously p is not a unique transformation with these properties. For
example its composition with any Lagrangian equivalence of (R?", w, )
has the same properties.

PROPOSITION 2.1  For any rL-equivalence ® of (R*", w) there exists
a o-equivalence ¢ commuting the diagram

R2n q) R2n

o, e

RZn RZn

PROOF.  For an 7L-equivalence ® we have ®(x, y)=(X:(x), Y:(x, v)),
where Xi(x)=xn(a+ax)), 0+aER and aSwm% A diffeomorphism ¢
commuting diagram (5) and preserving fibration z, can be defined as fol-
lows :

$(x y)ji:eful/aw(g X(8), . Xn<g>
K(g, y), Yn(f y))le ( 5x2,%32,° )

For such ¢ we have ¢*0=¢*p*w=p*®*w=p*w=0c(see (4)). Q.E.D.
REMARK 2.2 It is easily seen that transformation
p' i R"—>R™, (x, y)— (%, ), Yo, wvv ) Yo)

preserves the fibration = and satisfies (4). This raises the question
whether a smooth mapping %#: R*— R?" such that /4*w = ¢ must be equiva-
lent to p or p’ (it can be easily checked that this is the case in the space
of two-jets of such mappings).

2.2. o-varieties. Let F(1,&&€C”(R"XR"), (A,&)ER™"XR". We
define o-variety, VrE R?", by the following equations

5(1 )le-(Latxursn), Q)

—/1(/1’ §)15=(%x§,x2,---,xn)- (’D

The local classification of ¢-varieties up to o¢-equivalences is the main
objective of this paper.

It is convenient to associate with (VF,0) a Lagrangian variety (L-
variety) of (R*, w), (Lr,0), defined by the equations
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_ oF
V=5 A, %),
__oF
0_ al <A-) x).

(Such L-varieties appeared naturally in Arnold’s theory of singularities of
systems of rays [4].) Obviously o-variety (Vr, 0) is a p pull-back of L-
variety (Lr, 0), i.e. Ve=S"'(Lg).

The germ (F,0), with F as above, will be called a generating family
of (Vr, 0) or of (Ls, 0), respectively.

It is well known [2, 22] that if (F,0) is a Morse family, i.e.
’F @°F
OAoA’ ©OAox

rank( )’0 =max=m,
then (Lr, 0) is a Lagrangian submanifold of (R*" w). (Lagrangian sub-

manifold is defined as an immersed submanifold ¢: R"—R?® such that

t*@=0; in such a case the germ (L, 0), Ld:efL(R”>, will be called an L-

germ.) In the generic case, when the generating family F is a
polynomial, the corresponding L-variety is stratifable with all strata
isotropic (i.e. with vanishing pull-backs of @ on them) and maximal
strata Lagrangian [8, 10].

Two generating families (F;, 0), Fi(A, x) €EC(R*XR™), i=1, 2, are
called equivalent if there exists a diffeomorphism

®: (R*XR" 0)—(R*XR",0), (A, x)— (A, x), X(x))
and a smooth function f€C*(R"™) such that
A, 0, X)) =FQ, x)+f () )

near 0 R*X R". The equivalence of generating families which preserves
the hyperplane {x1=0} will be called restricted (r-equivalence). For 7-
equivalences the first coordinate of X, is divisible by x i. e.

Xl(x>:x1<a'+¢<X)), (9)

where a=const+0 and ¢Em(n). By straightforward calculation we
obtain :

PROPOSITION 2.3  Two L-varieties genevated by r-equivalent generat-
ing families ave rL-equivalent.

REMARK 2.4 For Morse families and L-germs the converse is true.
From [2, 23] it follows that any two L-equivalent L-germs have equivalent
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minimal Morse families (i.e. Morse families F;(A, x) such that 8%*F;/
A |o=0).
Propositions 2.1 and imply.

COROLLARY 2.5 Two o-varieties generated by r-equivalent generat-
ing families are o-equivalent.

2. 3. Special case of o-manifolds. In this subsection we discuss the
interesting particular case when o¢-variety is an #-submanifold. The fol-
lowing argument could be viewed as an additional justification for the
‘naturality ’ of the above definition of ¢-variety.

An immersed #n-dimensional submanifold M =:.(R") of R?", where ¢ :

R"™—R* is a smooth immersion such that :*¢=0, will be called a o-
manifold. We define the symmetrisation of M as follows

Sym(M) E{(+x, X2, e, Xn, V)5 (x, Y EMY.

The property of being a o¢-manifold is obviously preserved by o-
equivalences. - But symmetrisations of ¢-equivalent o&-manifolds are not
o-equivalent in general.

EXAMPLE 2.6 o¢-equivalence (x, y)——(x, y+x*) of (R? xdx A dy)

carries ¢-manifold Mld:ef{y:xz} onto the ¢-manifold Mzg{y=x2+x3}.

However, their symmetrisations, (Sym(M),0) and (Sym(M5),0), are not
c-equivalent (see Fig. 1).

PROPOSITION 2.7 Let (M,0) be a o-manifold. Then theve exist a
o-equivalence ®: (R*", 0)—(R*, ¢) and a Morse family germ (G, 0),
G, x)EC(R™"XR™) such that

Sym(@(M)),0)=(Vs, 0),

\ >~ M

/ /\< "% -i \\
01 x ‘ 0 v x
Sym(Mz)

.M =Sym{(M)

|
Figure 1. Sketches of two non-¢-equivalent symmetrisations of o¢-equivalent o-
manifolds for Example 1.



S. Janeczko and A. Kowalczyk 109

wheve VcC R is the c-variety gemerated by G (see eqns(6) and (7)).
PROOF.  The proof is divided into few steps.

A, (Sym(M)D,0) in given at least by one of the following systems of
equations :

'%—X%:g—i<y1, X1, y;)
yzzg—f](yl, X1, y;) (10)
—szigh, X, y;)

oy

or

wn=2F (4 x )
11 on 1, X1, Vi

F
y’:g—x,(xl’ X1, ¥y) A1

—X :i (1, X1, J’J)
oV

where F is a germ of smooth function on R”, [(j:ef<i1, vy i), J=(, ol

Jn-k-1) and TUJ={2, ..., n}.

PROOF A. A germ (¢,0) of the immersion ¢: R"—R*", M=.(R"),
can be always written at least in one of the following two forms.

e Qoo yER™— (Xi(aa, 3, 31, 21, X5 (o, w1, v1), i,
YiCa, 1, 30, y1) ER?, (12)

or

¢: Ca, 2, ) ER™ (a2, XoCn, 21, 9, XaCoa, 20, ),
YI(XI, X1, yD, yJ)ERzn, 13)

where X;: R"—R"', Y;: R">R" and Y, Xi: R™—R are smooth germs
TUJ=1{2,....,n}, INJ=®). In the case the requirement (*o=0
yields the equations

oXi . oY,
X oXi o =9, 14
5),€ . oX; _
X > o =0, . 15
oX: oY« =0,

oxs  oxi
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oY: L 29X, _

o + o, =0, an

oY, aX;

___L__J:O

i ’ (18)
for any 7, /€1 and j, j’€/J. On substituting )EZ-%-X? we find [2, 22] that
there exists a smooth germ F (x;, w, y;) such that )?lzi, Y= oF

on ox1

and —X;zi Representation of (Sym(M),0) follows immediate-

oy
ly from these equations. Similarly in the case condition ¢*o=0
implies equations (16)-(18) and the following two systems of equations :

oY, _ oYi _

"on om O
oY aX, _
! ayj ox1 ’
instead of (14) and (15). Inserting Yi=xY: we find (cf. [23]) a germ F
. oF ., oF . . @oF |
(1, x1, y7) such that Yl—_axl , Y= o and —X;= E These equations

yield representation for (Sym(MD), 0).

B. If (Sym(M),0) has a representation [(10), then (Sym(M),0)=
(Ve,0), where GQA, x) ECZ(R" *XR"™ is the following Morse family (on
R") :

def

G(li, ceey /ln_k, X1y eeey xn>:F<l1, Xity voe sy Xin, lz, s s A.n—k)
n—=k
+ A+ Ez laxj'a_,.

This can be verified easily by straightforward computations.

C. (M,0) is always o-equivalent to a o-manifold germ with
symmetrisation of the formm [10).

PROOF C. If (Sym(M),0) does not allow the representation [10),
then ¢ necessarily has a representation with

oY,

o 0 =0. 19

In this case (Sym(®M),0), where ®: R**—R*" is the o-equivalence (x, y)

—— (x, x+y), has a representation (since any of its representations
of the form does not satisfy [(19)).
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This completes the proof of the Proposition. Q. E.D.

EXAMPLE 2.8 Let us assume (R”, o‘)dZEf(Rz, xdx ANdy).
(a) Let M CR? be the parabola {(¢2?, ¢#)}. The sets Sym(M), L = =
p(M) and L’d:efp’(M), are sketched in Fig. 2(a). On the basis of Propo-

ef
sition 2.7 we easily calculate the generating function for L: F (y)d—% ’

oYL
y/
«;\

2 1)

/
.
aUs ~<

(b) y L:ix®=y?

\ y 3
\\ N *
\ Y
\ |
N\
\\~
y
SymN \

Figure 2. Sketches representing some basic features of geometry of o-manifolds
for Examples 2.8(a) and 2. 8(b).

L:{y=x"

p ML)
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def

(b) For the germ (2,0) of the ¢-manifold 21={(x, *)} not having
the representation [(10), the set Ld—i-fp(z) is a non-smooth semmicubical

parabola x*=3? (Fig.2(b)). If we use p’ instead of p, the set L’dzefp’(z.),
becomes the smooth curve y=x* (Fig.2(b)). This suggests that p’ could
be used like p to describe gems of o-manifolds in terms of L-germs.
However, not all o¢-manifold germs are o-equivalent to ones having
smooth representations via p’(e.g. (22,0), 2=(y? y)) and also there is a
problem with lowering of L-equivalences to ¢-equivalences through p’.

(c) In the particular case of a ¢-manifold (M,0) satisfying the
equation (M,0)=(Sym(M),0) and not having the representation the

. def . . . -
image L=p(M) is always a smooth manifold with wboundary. For

instance, for M‘i—e—f{yzxz}CR2 we have Ldg{(x, x): x>0} and p'(L)=M
(Fig. (a)). According to Proposition 2.7 we can deform M by a o-
equivalence to the o-manifold #/——{y=x%+Ax} having the representation
(10). In this case the set p(M) becomes a smooth curve L obtained by
splitting the half-line L (Fig.3(b)).

/M: = Lix =y

(a)

y M:(t, t2+12)

-2 x

Figure 3. o-manifolds for Example 2. 8(c).
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3. A classification of Lagrangian varieties

We recall [2,7] that a generating family (F (A, x),0), (1, x)ER*X
R”, is versal if any other generating family (F’'(Q, x),0), (1, x)ER*X
R", such that F'|x—o=F|x-0 is induced from F, i.e. if there exists a map-
ping

A, x)ER*XR"— (AL, x), X(x))ER*XR" (20)
and a function f : R"— R such that
F'A,x)=FAQ,x), X&)D+f&).

(Classifications of versal families can be found in [2, 14, 17]).

For the purposes of this paper it seems natural to consider restricted
versality by imposing on the inducing mappings a requirement of
preservation of distinguished hyperplanes, i.e. in the case of hyperplanes
{x=0} and {x7=0}, by assuming X ({xi=0})C{m=0}. This requirement
means that x, the first coordinate of X, is of the form (9). The follow-
ing result reduces the restricted versality to ordinary versality.

PROPOSITION 3.1 A family (F(A,x),0) is restricted vérsal if and
only if the family (F(A, x)|x,=0, 0) is versal.

PROOF. <& Assume (F(Q, x)|xi=0,0), (1, x)ER*XR" is a versal
family and (F’(Z, x),0), (A4, x)ER*XR™ is such that F’(1,0)=F(,0).
Then (4, x)+—— (A(X,x),0, X2(A, 2D, ..., X2(A, x)) is the demanded
morphism.

=. Following the standard lines of versality theory [5,20] for
restricted versality we obtain the following necessary condition :

{ oF oF oF

ox 8Ax+ A on’ ox’ "’ oxn’ 1>gx:g“'

Factorising by mx&ix we get the following condition of infinitesimal ver-
sality for Flxi=o:
x=0" 1>R =&

< oA |x= 0>g,1 < oxXz

As is well known this condition implies versality of Flx.-o [2,5,13]. O.E.
D.

oF
x= 0 e axn

In the case when the vector space &./ <%(1, x>|x=0>g has a finite

number of generators, say {a(1), ..., en(1), 1}, we have the decomposi-
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tion

F, x)=F(AQ, x),0) +g“1 eoAQA, x)u: (x)+f (x)

for some smooth #= (u, ..., un) : R"R™ and f : R"—R [5, 20], where A:
R*X R">R*, Algexiy=1idgr+. From [Proposition 3.1 we find that any other

r-equivalent family (F’,0) has the form

F'(a, x)=F(AQ, %), 0)+§mlei(A(A, ) ui(x)+f(x),

where Algexio is a diffeomorphism of (R*, 0) and # commutes the follow-
ing diagram

u
(Rn, {x1:0}, 0) — (Rm, 0)

j é /u’ 2D

(Rn, {x1 :0}, 0)

Here ¢ is a diffeomorphism preserving the hyperplane {x=0}. It is
apparent that r-equivalence classes of generating families (F (A, x),0) are
parametrised by singularities of F|x-o and equivalence classes of mappings
# in the sense of diagram (we call them & ;-equivalences). In this
context it is natural to introduce the following characteristics of F: (7)

codimension of (F,0), codim F “ dim (éﬁ/<%(/1, x>|x=0>g and (1)

covank of F =m—mnk<%§c—t—>4x_o, where # : R"—R™ is assumed to be such

that F is induced via a pull-back (A, #) from an universal unfolding F of
Flx=0. It is easily seen that these two characteristics are invariants of
r-equivalences.

REMARK 3.2 The above equivalence of generating families can be
expressed also in a more general way. We call two generating families F
and F’, on R*XR", equivalent (also pull back equivalent) if they com-

mute the following diagram
\F \\1}
F

(Rk X Rn, {x1=0}, 0)
]@ R < (R*XR"0),

Y=

(R*X R", {x1=0}, 0)
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where F is a universal unfolding of the germ F|x—-o=F’|x=o from which F
and F’ are induced by pull backs ¥ and ¥, respectively, and ® is a stan-
dard r-equivalence. The equivalence so defined is suitable for providing a
classification list of normal forms of generating families and, at the end,
of normal forms of o-varieties.

Now using Arnold’s classification methods we obtain lists of nor-
mal forms for some simplest 7-equivalence classes. At first we consider
the case of codim=1. The cases of codim=2 and 3 will be considered
subsequently in the remaining part of this section.

PROPOSITION 3.3  The list of simple normal forms of r-equivalence
classes of generating families F (A, x), (A, x) ERXR" of codimension 1 is
the following :

AA8: A3+ %A,

AAY%: P+ (x5 xm+qA, k=1,
A2DY: 234 (exitas '+, k>4,
AER: 22+ (dtxitan+ga,

AES: M+ 3+ ndtatgA,

AES: M+ (3+x3tn+A,

AoBi: A4 (txf+x5+qA, =2,
A:Ch: 13+ (axetxs+qA, k=2,
AFy: 3+ (8 +x3+9)A,

where q is a non-degenerate quadratic form of the remaining variables.
PROOF. Up to an r-equivalence we have
FQA, x)=213+2u(x),

where #: R"—R. Using the list of simple normal forms of singularities
of # on the manifold {\=0}CR" with boundary {x=0} [2, Sec. 17.4] we
obtain the above classification. Q. E. D.

REMARK 3.4 (7) In the above list A:AJ is the only restricted versal
family.

(#7) Families A24% A.DY% and A.E? are Morse families while A.B3},
AxC's, AoFj are not (and provide L-varieties which are not manifolds).

(iii) Generating families (F (A, x),0), (1, x)ER*XR", k > 2 with
Flio having singularity A, have simple normal forms F(A, x)+
Q((2z, ..., A»), where F has a one of the normal forms in the
3.3 and Q is a non-degenerate quadratic form. Obviously £ and F gener-
ate the same L-variety.
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LEMMA 3.5 In the spaces of mappings u= (u;): (R",0)—(R™ 0) of
rank m and m—1, respectively, the simplest singularities can be reduced by
& r-equivalences to one of the following novrmal forms.

(i) rank( gz>0=m.

AY: u(x) =, %, ..., Xm+1),
or
u=(u:(x)) =, vuv ) X5y Ujy Xit1y oev s Xm)
where JE{1, ..., m} and u; has one of the following forms :

bit wi=ntxriExha+ 2550 xhadita,
%it W=t XmiX e TR A+ 258 X1t Xzt q,
ES;: =+ xhatxnet dot Xmeidi+ Xmezdot XmirXmszpat xosaha
+ Xmi1Xnr2dstq,
E%: =2+ Xnat Xnms1Xme1X ezt dot Xme1 T Xmiado+ X i1 s
+xm+1xm+2¢4+x%n+2¢5+x%n+lxm+2¢6+C],
E;: =t xhat et dotamiiditAnszdot Xni1Xmizdst Xaiachs
+ Xms1Xms2ps X nr2deT AmrX 2+ g,

where the ¢:’s arve smooth functions of x, ..., xm and q is a non-degenerate
quadratic form of the variables xmss, ..., Xn..

. o) _
(i) rank( o >L—m 1.
(ii.a) For any jE11, ..., m},
ui=x; for 1<i*+j<m
and u; 1s one of the following forms :

bt = tabtab o+ 242 xigitg,
Chi: U= XXmi1 £ X+ 250 xhaditq,
Fi;: ;= 3+ x50+ ot +amridet xmer s+ q,

where ¢:=¢:(x, ..., xn) and q is a non-degenerate quadratic form of the
variables xm+2, ..., Xn.
(ii.b) For any j, | 1<i+I<m,

Ui = Xi+1, Uir—Xir, Ui = Xirr—1
Sfor 1<i<min(j, [)<i'<max(J, 1) <i"<n,

2
ULS My xm_y T Mk
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and u; has one of the following forms :

Abii: i=xtxn txba+20 xhditq,

Diji: i=x1+xmxn1Ex8 '+ 258 xndpi+ Amr1dr1+ 4,

Etli,jl: uj:xl'i'x::nixﬁrwl‘{_¢0+xm¢l+xmxm+l¢2+x?n+l¢3+xmx%1+1¢4+q,

Elji: =2+ X0t XmX i1+ ot Xm1 + Xmr1¢p2+ Xnep 3+ XmXm +1¢h4
+X%z+1¢5+x%ﬂm+1¢e+q,

Esji: =0+ x0+ Xne1+ dot xmdi + Xmr1o+ XmXme1pa+ Xv16ha
+xmx%n+1¢5+x§n+l¢6+xmxgn+l¢7+q,

where ¢i=¢i(x, ..., xn-1) and q is a non-degenerate quadratic form of the
variables Xm+2, ..., Xn.

PROOF. Diffeomorphic changes of coordinates X : R"—R”" preserv-
ing the hyperplane {x1=0} (we shall call them permissible) are of the form

X: =X, X2(x), ..., Xa(x))
This class includes the transformation
1= (X, Xipy oee s Xin), (22)

where (%, ..., i») is a permutation of indices (2, ..., »n).

Now we consider four different classes of smooth transformations u:
R"—R™. The idea of the proof is to simplify, at first, as much as pos-
sible the form of the mapping # by permissible changes of coordinates and
then to specify the forms of remaining functional coefficients with the help
of the theory of universal unfoldings.

. ou ou

(i. @) rank (§> =m and rank< YOS )

Applying an appropriate transformation of coordinates we can
achieve that rank(8u/9(x2, ..., Xn+1))|x=o=m. Now in coordinates xi=
ui—1(x) for =2, ..., m+1 and x;=x:;, otherwise, # has the form (A49) :

= m.
x=0

x=0

u(x’)=(x2, .., Xn+1).

(7, b) rank(8u/ox)|x=o=m and rank(ou/d(x, ..., xn)|x=0=m—1.
After a suitable permutation of coordinates x, ..., x» we have

(8(%1, cee, Uj-1, Mj+1,>.-- , Um) )\ozm_l

rank
a(xz, eee s Xm

and

ujle(a1+a(x))+ﬁ(xz, ooy xﬂ))
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for certain jE1{1,...,n}, 0FaER, a=mx and fSEmx,-x.. In coordinates
xi=xn(am+a(x)), xr=ur-1 for k=2, ...,7 and xr=ur for k=j+1, ..., m
transformation # takes the form

Ur=2Xr for k=1, ..., 71,
ui=x1+@xst ...t amxmt B (X3, oo, Xmy Xms1, oen ) X0, (22)
ur=xy for k=5+1, ..., m,

where '€ m%,.x,. We can view 8’ as a family of functions of Xn+1, ..., X%
parametrised by x3,...,x» In the simplest cases, by a permissible
changes of coordinates not affecting x1, ..., x» we can obtain 8" as a pull-
back from standard universal unfoldings [2]. E. g. assuming that
B|xs=,xm=0 has singularity (A.) and after a suitable change of coordi-
nates

XX =1, cor, Xy Ym1Xmaty oen, X0, een, Yn(Xms1, oon, X0)),

we have
’ ~k+1 =
,3 =Xmit Zoxriwlqbi_f_q,
i=

where ¢:EMy,xm and g=qxn+2, ..., x») iS a non-degenerate quadratic
form. This provides the normal forms A% for «: (note that the linear

term in #; was included in ¢). Analogously we obtain forms D%, E§, EY
and E3.
i o B Gaw)
(1. a) rank( W m—1 and rank YRS
Analogous to the previous case we find at first, that up to a suitable
permissible change of coordinates we have

=m—1.
x=0

x=0

UL=X2, o0o , Uj—1— X5,
wi= Xt ...+ am¥m+ L0, X2y ooy Xmy Xm1, on., Xn),

Ui+1 = Xj+1y oee » Um— Xm,

where BEm5% We can treat 8 as an unfolding of a boundary singularity
,5 = Bx;=0,-.xm=0, With respect to unfolding parameters x, ..., ¥». The sim-
plest normal forms of ﬁ~ em?(x, Xn+1, ..., %), Br, Ci, and Fi can be found
in [4] Forms B}, C} and F} are obtained as unfoldings of these normal
forms (and inclusion of the linear term in #; into ¢o).

(7. b) It remains to consider the case:

o
3(9@, eee y xn>

rank (ﬂ> =m—1 and rank (

ox )-—-m—Z
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at x=0. As previously we have, up to a permissible change of coordi-
nates

Ui =Xiv1, Ur=Xr and u=x_1,
wi=mnt+ et tawmta(e, ..., Xn, Xns1, oon, Xn),
w=bxitbxet...tamin+ 800, ..., Xn, Xntl, ..., Xn),

for certain j, k, 1<j+k<mn, a, BEm?% and all 7, 7/, i” such that 1<i<
min(y, /) <i'<max(j, [)<i{”<n. Using a permissible change of coordi-
nates we can simplify one of the functions, say #; while the form of the
other one must remain ‘ arbitrary’. Using Arnold’s list we obtain nor-
ou;

mal forms Aki, Dii and E}: (by virtually specifying #;: note that Fvl
1

*+0). Q.E.D.

On the basis of [Proposition 3.1 and Lemma 3.5 we extend the
classification of generating families in [Proposition 3.3 to the case of
codimension 2 and 3. It is convenient to define the corank of a generating
family F (A, x), as the corank (at 0) of a pull-back (A, x)— (A(A, x),
X (x)) inducing F from a universal unfolding of Flx=o. Obviously it is an
invariant of the »-equivalence class of F.

PROPOSITION 3.6  Normal forms of corank 0 and 1 of r-equivalence
classes of gemevating families of codimension 2 and 3 are listed in Table 3.

4. Mormal forms of o-varieties

On the basis of Corollary 2.5 and of the results of Section 3 we obtain
the following Theorem.

THEOREM 4.1  Initial classification of gemeric o-varieties is provided
by the classification list of gemerating families in Propositions 3.3 and 3. 6.

EXAMPLE 4.2  Restricted versal generating families are of type A.AS$,
k=2, only. Their normal forms are as follows

FQ, 0)=2*"4+ 21"+ 1% 20+...+ 1.
In this case the corresponding o¢-varieties are given by the equations

yl:O)
yi=AR =2, ...,k
y;=0, j=k+1, ..., n

k
0=Ck+DA*+ gl(k—i-l-l)lk‘ixf.
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On Fig. 4 we illustrate the o-variety for the case A.A$; which is the only
possible restrictly versal family for =2. For =3 (and £<3) we obtain
additionally the cylinder of cusp-surfaces along the axis xi.

¥2

Figure 4. o-variety for the case A.AS (Example 4. 2).

EXAMPLE 4.3  Singularities A.A% A.D%, A.E% (see [Proposition 3.3)
provide the singular o¢-varieties. The simplest, cone-like o-variety for
A,AY singularity is illustrated in Fig. 5.

Vo= 221,

0=3y¥ix§i%x%.

Figure 5. o-variety for A.A3 singularity for Example 4. 3.
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EXAMPLE 4.4 The types A:B}%, A:Ck A:Fi of o-varieties are pro-
vided by generating families which are not Morse. As an example we
write down, explicitly, the equations of the normal forms of the o-
varieties corresponding to a singularity of type A.Fi.

Table 1: Initial list of normal forms for 7-equivalence classes of generating families

. Normal forms C.onditions.
codim | corank | Type F=F(L ) 1<j#[<codim
’ u=Cu;(xa, ..., %))
0 AsAg /14 + 129@ + Axs
AsA%,j <M1, M2>EA%,J', k=1
0 AsDS; | AP A%+ Awe (m, ) EDL,;, k=24
AEY (m, ) EES,;, k=6,7,8
9 AsAl; (w1, ) E ALy, k21
AsD}; (m, w) EAL;, k>4
AsE%,; (, ) EEL,;, k=6,7,8
1 A.BL, 2%+ A, (i, 1) EBL, k22
AsCh; (m, ) ECh;, k=2
AsFi; (m, ) EF4;
AAS, (o, s, us) EAL;, k=0
ADS; | A5+ 2%+ A 2+ Aus (w1, s, us) EDY;, k=4
0 AES; (m, ws, us) EES,;, k=6,7,8
DiAj; (wa, 2, us) EA%5, E=0
DiD5%; | Aid+ A3+ A3ui+ et dows | (o, o, us) EDY 5, k=4
DiES., (, 2, ) EES;, k=6,7,8
A4BL; (wy, ty, us) EBL;, k=2
ACh; | A+ 1%um+ 21+ Aus (1, wy, us) ECh,;, k=2
] AFi, (w1, we, us) EFY;
DfBi,j (Ml, Uz, M3)EB}1,J', k=2
DiCh; | A2+ 23+ 25ur+ Ao+ Aoz | Cotr, 1o, ) ECj, B 22
0 DfFi,j (ul, Uz, m)EFl,j
A4A}z,j (ul, Uz, u3>€A}z,j, k=1
ADh; | A3+ 23+ 212+ Au (1, e, us) ED};, k=4
A4E}z,j (u1, Uz, %S)EE}z,j, k:6, 7, 8
DiA% i (0, e, ) E Abji, k=1
DiDhy | A+ 3+ B+ A+ Au;s | (i, o, u) EDh i, k24
DFEL ; Ca, s, 3) EE%;, k=6,7,8
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X = £ yuxt

VoXa = £ 3yux3,

V=t yx, 3<i<n—1,
1

yEZ?xﬁ(x3+ qi—}l—xi‘).
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