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\S 0. Introduction

In this paper, we give an example of a regular Cantor set whose self
-difference set is a Cantor set and, at the same time, has a positive mea-
sure. This is a counter example of one of the questions posed by J. Palis
related to homoclinic bifurcation of surface diffeomorphisms.

In [PT], Palis-Takens investigated homoclinic bifurcation in the fol-
lowing context. Let M be a closed 2-dimensional manifold. We say a
C^{r}-diffeomorphism \phi:Marrow M is persistently hyperbolic if there is a C^{r}-

neighborhood \mathscr{U} of \phi such that for every \psi\in \mathscr{U} , the non-wandering set
\Omega(\psi) is a hyperbolic set (refer [PM] for the definitions and the notations
of the terminologies of dynamical systems). Let \{\phi_{\mu}\}_{\mu\in R} be a l-parameter
family of C^{2_{-}}diffeomorphisms on M . We say \{\phi_{\mu}\}_{\mu\in R} has a homoclinic \Omega

-explosion at \mu=0 if:
(i) For \mu<0 , \phi_{\mu} is persistently hyperbolic:
(ii) For \mu=0 , the non-wandering set \Omega(\phi_{0}) consists of a (closed)

hyperbolic set \tilde{\Omega}(\phi_{0})=\lim_{\mu\uparrow 0}\Omega(\phi_{\mu}) together with a homoclinic
orbit of tangency \mathscr{O} associated with a fixed saddle point p, so
that \Omega(\phi_{0})=\tilde{\Omega}(\phi_{0})\cup \mathscr{O} ; the product of the eigenvalues of d\phi_{0} at
p is different from one in norm;

(iii) The separatrices have quadratic tangency along \mathscr{O} unfolding
generically: \mathscr{O} is the only orbit of tangency between stable and
unstable separatrices of periodic orbits of \phi_{0} .

Let \Lambda be a basic set of a diffeomorphism \emptyset on M. d^{s}(\Lambda)(d^{u}(\Lambda))

denotes the Hausdorff dimension in the transversal direction of the stable
(unstable) foliation of the stable (unstable) manifold of \Lambda (refer [PM] for
the precise definition), and is called the stable (unstable) limit capacity.
Let B denote the set of values \mu>0 for which \phi_{\mu} is not persistently
hyperbolic.
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The result of Palis-Takens is:

THEOREM [1]. Let \{\phi_{\mu};\mu\in R\} be a family of diffeomorphisms of M
with a homoclinic \Omega- explosion at \mu=0 . Suppose that d^{s}(\Lambda)+d^{u}(\Lambda)<1 ,

where \Lambda is the basic set of \phi_{0} associated with the homoclinic tangency.
Then

\lim_{8arrow 0}\frac{m(B\cap[0,\delta])}{\delta}=0

where m ( \circ ) denotes Lebesgue measure.

This result states that, in the case of d^{s}(\Lambda)+d^{u}(\Lambda)<1 , the measure of
the parameters for which bifurcation occurs is relatively small. For the
next step, the case of d^{s}(\Lambda)+d^{u}(\Lambda)>1 comes into question. In the proof
of the theorem above, one of the essential points is the question of how
two Cantor sets intersect each other when the one Cantor set is slided. In
[P], Palis posed the following questions.

(Q. 1) : For affine Cantor sets X and Y in the line, is it true that X
-Y either has measure zero or contains intervals ?

(Q. 2) : Same for regular Cantor sets,
where for two subsets X, Y of R.,

X-Y=\{x-y|x\in X,y\in Y\} .

This can be also written as;

X-Y=\{\mu\in R|X\cap(\mu+Y)\neq\phi\} ,

namely, X-Y is the set of parameters at which X and Y have an inter-
section point when Y is slided. Refer [L] for more detailed and intelli-
gible exposition for these questions.

Cantor set \mathscr{C} in R is called affine (regular or C^{r} for 1<r\leq\infty ) if \mathscr{C}

is difined with finite number of expanding affine ( C^{2} or C^{r} ) maps, name-
ly:

DEFINITION. Let \mathscr{C} be a Cantor set on a closed interval I. For 1\leq

r\leq\infty , \mathscr{C} is called C^{r}- Cantor set if there are closed disjoint intervals I_{1} ,

..., I_{k} on I and onto C^{r} -maps g_{i} : I_{i}arrow I for all 1\leq i\leq k such that:
(i) |g_{i}’(x)|>1 \forall x\in I_{i},

(ii) \mathscr{C}=\bigcap_{n=0}^{\infty}\{\bigcup_{\sigma\in\Sigma_{n}^{k}g_{\overline{\sigma}(1}^{1})g_{\overline{\sigma}(2)}^{1}\cdots g_{\overline{\sigma}(n)}^{1}(I)\}} ,

where \Sigma_{n}^{k}=\{\sigma:\{1,\cdots,n\}arrow\{1,\cdots,k\}\} .

Our result in this paper claims that there is a counter example of (Q.
2), namely;
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THEOREM. There exists a C^{\infty}- Cantor set \mathscr{C} such that
(i) m(\mathscr{C}-\mathscr{C})>0 ,
(ii) \mathscr{C}-\mathscr{C} is a Cantor set.

As is mentioned above, if the sum of limit capacities is less than 1,
then the measure of parameter values at which the diffeomorphism has a
homoclinic tangency is asymptotically zero. What happens if d^{s}(\Lambda)

+d^{u}(\Lambda)>1.? One of the questions about this situation is the following.
(Q. 3) : Is there any one-parameter family of plane diffeomorphisms f_{\mu}

such that the measure of parameters of homoclinic tangency is positive
while the set of parameters of persistent hyperbolicity is dense ?

Our example \mathscr{C} of the theorem might be applicable to construct an
example for this (Q. 3). However, when we try to embed the Cantor set

\mathscr{C} as transversal Cantor sets of the stable and unstable foliations of a
family of diffeomorphisms, new bumps of stable and unstable manifolds
grow up after the first tangency and it is very difficult to know whether
those new and very thinly stretched bumps have tangency or not. Thus,

the application of our theorem to plane diffeomorphisms does not seem to
be easy. In the case of d^{s}(\Lambda)+d^{u}(\Lambda)>1 , for the practical application to
homoclinic bifurcation, the problems of “genericity” or “openness” may
have more importance.

One will see in the proof of this theorem that \mathscr{C} is constructed very
artificially and cannot be defined as an analytic Cantor set. Therefore,

this theorem may not give any clue to (Q. 1), i . e . the affine case. In fact,

the affine case seems to have an essential difficulty of these problems.
In [MO], P. Mendes and F. Oliveira have got some partial answers to

the affine case. P. Larsson [L] proved that if the sum of the Hausdorff
dimensions is bigger than 1, then almost surely, the difference set of two
“random Cantor sets” contains an interval.

In the succeeding sections, we shall give the proof of our theorem.

\S 1. Definition of the Cantor sets \mathscr{C}(s) , \mathscr{D}(s)

One of the most typical methods of constructing Cantor sets is recur-
sive process of “removing the middle part of interval” By assigning the
ratio of the length of the intervals which are left in each step, we can
construct a Cantor set depending on a given sequence of positive numbers
as follows.

DEFINITION 1. 1. Let I=[x_{1}, x_{2}] be a closed interval and \lambda a real

number with 0< \lambda<\frac{1}{2} . We defifine,
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I_{0}(\lambda,\cdot I)=[x_{1}, x_{1}+\lambda(x_{2}-x_{1})]

I_{1}(\lambda:I)=[x_{2}-\lambda(x_{2}-x_{1}), x_{2}] .

DEFINITION 1. 2 (Cantor set \mathscr{C}(s) ). Let I^{0}=[0,1] and s =(\lambda_{1}, \lambda_{2} , \lambda_{3} ,

\ldots) be a one sided sequence of real numbers with 0< \lambda_{i}<\frac{1}{2} for all i\geq 1 .

We defifine the Cantor set \mathscr{C}(s) as follows.
Let I_{0}^{1}=I_{0}(\lambda_{1} ; I^{0}) , I_{1}^{1}=I_{1}(\lambda_{1} ; I^{0}) and I^{1}=I_{0}^{1}\cup I_{1}^{1} . \Delta_{n} denotes the set of

all sequences of 0 and 1 of length n. When I_{\beta}^{n-1} ’s are defifined for all \beta

\in\Delta_{n-1} , we defifine :
I_{\beta 0}^{n}=I_{0}(\lambda_{n} ; I_{\beta}^{n-1})

I_{\beta 1}^{n}=I_{1}(\lambda_{n} ; I_{\beta}^{n-1}) .

Inductively, we can defifine I_{a}^{n} for all \alpha\in\Delta_{n} and for all n\geq 0 . Defifine
I^{n}= \bigcup_{a\in\Delta n}I_{a}^{n}

and

\mathscr{C}(s)=\bigcap_{n\geq 0}I^{n} .

This is clearly a Cantor set by the defifinition.

0 \lambda_{1} 1-\lambda_{1} 1
Figure 1

Our Cantor set \mathscr{C} in the main theorem will be given as one of such
Cantor sets \mathscr{C}(s) for an appropriate s=(\lambda_{1}, \lambda_{2}, \cdots) . Our next claim is that

if 0< \lambda_{i}<\frac{1}{3} for all i , then the difference set \mathscr{C}(s)-\mathscr{C}(s) is also a Cantor

set with a neat structure.

DEFINITION 1. 3. Let J=[x_{1}, x_{2}] and 0< \lambda<\frac{1}{3} , We defifine,

J_{0}(\lambda;J)=[x_{1}, x_{1}+\lambda(x_{2}-x_{1})]

J_{1}( \lambda;J)=[\frac{x_{1}+x_{2}}{2}-\frac{\lambda}{2}(x_{2}-x_{1}), \frac{x_{1}+x_{2}}{2}+\frac{\lambda}{2}(x_{2}-x_{1})]

J_{2}(\lambda;J)=[x_{2}-\lambda(x_{2}-x_{1}), x_{2}] .

DEFINITION 1. 4. Let J^{0}=[-1,1] and s=(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots) be a one sided
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sequence of real numbers with 0< \lambda_{i}<\frac{1}{3} for all i\geq 1 . Let

J_{0}^{1}=J_{0}(\lambda_{1;}J^{0})

J_{1}^{1}=J_{1}(\lambda_{1} ; J^{0})

J_{2}^{1}=J_{2}(\lambda_{1} ; J^{0})

and \Pi_{n} denote the set of all sequences of 0, 1, 2 of length n. When J_{8}^{n-1} ’s
are defifined for all \delta\in\Pi_{n-1} , we defifine;

J_{80}^{n}=J_{0}(\lambda_{n} ; J_{8}^{n-1})

J^{n}81=J_{1}(\lambda_{n} ; J_{8}^{n-1})

J_{82}^{n}=J_{2}(\lambda_{n} ; J_{8}^{n-1}) .

Inductively, we can defifine J_{\gamma}^{n} for all \gamma\in\Pi_{n} and for all n\geq 0 . Defifine
J^{n}= \bigcup_{\gamma\in\Pi_{n}}J_{\gamma}^{n}

and

\mathscr{D}(s)=\bigcap_{n\geq 0}J^{n}

\mapsto J_{0}^{1}\sim \mapsto J_{1}^{1}arrow \mapsto\int_{2}^{1}*

- 1 1
Figure 2

THEOREM A. A. Let s=(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots) be a sequence of real num-

bers with 0< \lambda_{i}<\frac{1}{3} for all i\geq 1 . then,

\mathscr{C}(s)-\mathscr{C}(s)=\mathscr{D}(s) .

PROOF:
\mathscr{C}(s)-\mathscr{C}(s)=(\bigcap_{n\geq 0}I^{n})_{\backslash }-(\bigcap_{n\geq 0}I^{n}) .

By a straightforward argument, it can be seen that,

( \bigcap_{n\geq 0}I^{n})-(\bigcap_{n\geq 0}I^{n})=\bigcap_{n\geq 0}(I^{n}-I^{n}) .

Therefore, it is enough to show that

I^{n}-I^{n}=J^{n} \forall n\geq 0 .

By the definition of I^{n} and J^{n} , that is an easy consequence of the fol-
lowing lemma 1. 5.
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LEMMA 1. 5. For all n\geq 0 ,

(i) for all \alpha , \beta\in\Delta_{n} , there exists a \gamma\in\Pi_{n} such that

I_{a}^{n}-I_{\beta}^{n}=J_{\gamma}^{n}

(ii) for all \gamma\in\Pi_{n}, there exist \alpha , \beta\in\Delta_{n} such that

J_{\gamma}^{n}=I_{a}^{n}-I_{\beta}^{n} .

PROOF:
Note that for arbitrary two closed intervals I=[x_{1}, x_{2}] and J=[y_{1}, y_{2}] ,

I-J=[x_{1}-y_{2}, x_{2}-y_{1}] .
We prove ( i) and ( ii) simultaneously by induction.
When n=0, the statement holds, because I^{0}-I^{0}=J^{0} . Assume that

the statement is valid for n .
Let \alpha , \beta\in\Delta_{n+1} and \alpha=\tilde{\alpha}\alpha_{n+1} , \beta=\overline{\beta}\beta_{n+1} for \tilde{\alpha},\tilde{\beta}\in\Delta_{n} and \alpha_{n+1} , \beta_{n+1}=0

or 1. Then, by the hypothesis of induction, there exists a \tilde{\gamma}\in\Pi_{n} such
that I \frac{n}{\alpha}-I\frac{n}{\beta}=J\frac{n}{\gamma} .

On the other hand, let \gamma\in\Pi_{n+1} and \gamma=\tilde{\gamma}\gamma_{n+1} for some \tilde{\gamma}\in\Pi_{n} and
\gamma_{n+1}=0 or 1. Then, by the hypothesis of induction, there exist \tilde{\alpha},\tilde{\beta}\in\Delta_{n}

such that I \frac{n}{\alpha}-I\frac{n}{\beta}=J\frac{n}{\gamma} .

Thus in both cases ( i) and ( ii) , the statement of lemma 1. 5 is
obtained from the following lemma 1. 6.

LEMMA 1. 6. Suppose that
I_{\overline{a}}^{n}-I \frac{n}{\beta}=J\frac{n}{\gamma}

for \tilde{\alpha},\tilde{\beta}\in\Delta_{n} and \tilde{\gamma}\in\Pi_{n} . Then,

J^{+1} \frac{n}{\gamma}0=I^{+1}\frac{n}{\alpha}0=I_{1}^{+1}\frac{\prime l}{\beta}

J^{+1} \frac{n}{\gamma}1=I^{+1}\frac{n}{a}0-I_{0}^{+1}\frac{n}{\beta}=I^{+1}\frac{n}{a}1-I_{1}^{+1}\frac{n}{\beta}

J_{\overline{\gamma}2}^{\prime\iota+1}=I_{1}^{+1} \frac{n}{\alpha}-I_{\tilde{\beta}0}^{n+1} .

PROOF : Let I_{\frac{n}{a}}=[x_{1}, x_{2}] and I_{\frac{n}{\beta}}=[y_{1}, y_{2}] . Then, J \frac{n}{\gamma}=[x_{1}-y_{2}, x_{2}-y_{1}] .

Since the length of I \frac{\Pi}{\alpha} and I - are the same, we denote \swarrow n=x_{2}-x_{1}=y_{2}

-y_{1} . By the definition,

I_{\frac{n}{a}0}^{+1}=[x_{1}, x_{1}+\lambda_{n+1}\swarrow n]

I_{\overline{\alpha}1}^{n+1}=[x_{2}-\lambda_{n+1}\swarrow n, x_{2}]

I_{0}^{+1} \frac{n}{\beta}=[y_{1}, y_{1}+\lambda_{n+1}\swarrow n]

I_{1}^{+1} \frac{n}{\beta}=[y_{2}-\lambda_{n+1}\swarrow n, y_{2}] .

Therefore we have,
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I^{+1} \frac{n}{a}0-I_{0}^{+1}\frac{n}{\beta}=[x_{1}-y_{1}-\lambda_{n+1}\swarrow n, x_{1}-y_{1}+\lambda_{n+1}\swarrow n]

I^{+1} \frac{n}{a}0-I_{1}^{+1}\frac{n}{\beta}=[x_{1}-y_{2}, x_{1}-y_{2}+2\lambda_{n+1}\swarrow n]

I_{\frac{n}{a}1}^{+1}-I_{0}^{+1} \frac{n}{\beta}=[x_{2}-y_{1}-2\lambda_{n+1}\swarrow n, x_{2}-y_{1}]

I_{\frac{n}{\alpha}1}^{+1}-I_{1}^{+1} \frac{n}{\beta}=[x_{2}-y_{2}-\lambda_{n+1}\swarrow n, x_{2}-y_{2}+\lambda_{n+1}\swarrow n] .

On the other hand, by the definition,

J_{\frac{n}{\gamma}0}^{+1}=[x_{1}-y_{2}, x_{1}-y_{2}+2\lambda_{n+1}\swarrow n]

J_{\frac{n}{\gamma}1}^{+1}=[ \frac{1}{2}(x_{1}-y_{2}+x_{2}-y_{1})-\lambda_{n+1}\swarrow n, \frac{1}{2}(x_{1}-y_{2}+x_{2}-y_{1})+\lambda_{n+1}\swarrow n]

J_{\frac{n}{\gamma}2}^{+1}=[x_{2}-y_{1}-2\lambda_{n+1}\swarrow n, x_{2}-y_{1}] .

Since \frac{1}{2}(x_{1}-y_{2}+x_{2}-y_{1})=x_{1}-y_{1} , the statement is obtained. \square

The combinat\overline{l}on of Theorem A and the following Theorem B yields
our main Theorem.

THEOREM B. There exists a sequence of real numbers s=(\lambda_{1}, \lambda_{2} , \lambda_{3} ,

\ldots ) with 0< \lambda_{i}<\frac{1}{3} for all i\geq 1 such that,\cdot

(i) m(\mathscr{C}(s)-\mathscr{C}(s))>0 ,
(ii) \mathscr{C}(s) is a C^{\infty}- Cantor set.

In the rest of this paper, we shall prove this Theorem B.

\S 2. Positivity of the measure

In general, the measure of \mathscr{D}(s) is given as follows.

LEMMA 2. 1. Let s=(\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots) be a sequence of real numbers such

that 0< \lambda_{n}<\frac{1}{3} for all n\geq 1 . Then,

m( \mathscr{D}(s))=2(1-\sum_{n=0}^{\infty}(3^{n}(1-3\lambda_{n+1})\prod_{j=1}^{n}\lambda_{j})) .

PROOF: Let w_{n} denotes the length of each interval of J^{n} . For
example, w_{0}=2 , w_{1}=2\lambda_{1} , w_{2}=\lambda_{2}w_{1}=2\lambda_{1}\lambda_{2} . In general, w_{n}=\lambda_{n}w_{n-1} , and,

w_{n}=2 \prod_{j=1}^{n}\lambda_{j} .

In each interval of J^{n-1} . there are three intervals of J^{n} and therefore,
there are two gaps in it. The sum of the lengths of these gaps in J^{n-1} is
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w_{n-1}-3w_{n} .

Since there are 3^{n-1} intervals in J^{n-1} , the sum of the lengths of the open
gaps of the n-th level is

3^{n-1}(w_{n-1}-3w_{n}) .

Therefore, the sum of the lengths of the all open gaps is,

\sum_{n=0}^{\infty}3^{n}(w_{n}-3w_{n+1})

= \sum_{n=0}^{\infty}3^{n}w_{n}(1-3\lambda_{n+1})

=2 \sum_{n=0}^{\infty}3^{n}(1-3\lambda_{n+1})\prod_{j=1}^{n}\lambda_{j} . \square

It is convenient to introduce another sequence of positive numbers to
define the sequence s=(\lambda_{1}, \lambda_{2}, \cdots) for \mathscr{C}(s) in Theorem B.

DEFINITION 2. 2. Let \rho=\{r_{n}\}_{n\geq 0} be a sequence of positive real num-
bers such that

(1) \sum_{n=0}^{\infty}r_{n}<1 .

We defifine a sequence of positive real numbers s(\rho)=\{\lambda_{n}\}_{n\geq 1} depending on \rho

as follows.

(2) \{\begin{array}{l}\lambda_{1}=\frac{1}{3}(1-r_{0})\mathcal{A}_{n+1}=\frac{1}{3}(\frac{1-\sum_{i=0}^{n}r_{i}}{1-\sum_{i=0}^{n-1}r_{i}})\end{array} \forall n\geq 1 .

It is clear that

(3) 0< \lambda_{n}<\frac{1}{3} \forall n\geq 1 .

LEMMA 2. 3. Let \rho=\{r_{n}\}_{n\geq 0} and s(\rho)=\{\lambda_{n}\}_{n\geq 1} be sequences as in
Defifinition 2. 2.

(i) i \sum_{=0}^{n}r_{i}=1-3^{n+1}\prod_{j=1}^{n+1}\lambda_{j} \forall n\geq 0 .

(ii) r_{n}=3^{n}(1-3 \lambda_{n+1})\prod_{j=0}^{n}\lambda_{j} \forall n\geq 0 .

Where, we assume \lambda_{0}=1 for the simplicity of notation.

PROOF: The proofs are straightforward by induction. \square
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By this lemma 2. 3 and the proof of lemma 2. 1, one can see the real
nature of the sequence \rho=\{r_{n}\}_{n\geq 0} . In fact, r_{n} represents the ratio of the
measure of the set of all the open gaps of the n+1-th leved of \mathscr{D}(s(\rho)) in
J^{0}=[-1,1] . Therefore, if \Sigma_{n=0}^{\infty}r_{n}<1 , then by lemma 2. 3 ( ii) and lemma
2. 1, m(\mathscr{D}(s(\rho)))>0 . Thus, what we have to do is to define a special
sequence \rho=\{r_{n}\}_{n\geq 0} so that \sum_{n=0}^{\infty}r_{n}<1 and \mathscr{C}(s(\rho)) may be defined as a
C^{\infty}-Cantor set.

In order to define \rho=\{r_{n}\}_{n\geq 0} , we need to fix a C^{\infty}-function h(t) on [0,
1] with the following properties.

(i) h(t)\geq 0 0\leq\forall t\leq 1 ,

(ii) \int_{0}^{1}h(t)dt=1 ,

(iii) for all n\geq 0 , \{\begin{array}{l}\lim_{t\downarrow 0}h^{(n)}(t)=0,\lim_{t\uparrow 1}h^{(n)}(t)=0_{\prime}\end{array}

where h^{(n)} denotes the n-th derivative of h .
(For example,

h(t)=\{
\frac{e^{\frac{1}{t(1-t)}}}{\int_{0}^{1}e^{\frac{1}{s(1-S)}}ds} 0<t<1

0 t=0,1 .

is one of such functions.)
For each integers n\geq 0 , let

q_{n}= \max\{q_{0} ,q_{1} ,\cdots .q_{n-1},1,sut\in lP_{1l}^{|h^{(n)}(t)|\}},\cdot

Clearly,

1\leq q_{0}\leq q_{1}\leq q_{2}\leq\cdots .

For n\geq 0 , we define,

r_{n}= \frac{4^{-(n^{2}+2)}}{q_{n}} .

This \rho=\{r_{n}\}_{n\geq 0} is exactly the sequence we need. Clearly.

\frac{1}{16}\geq r_{0}>r_{1}>r_{2}>\ldots

Since r_{n}\leq 4^{-(n^{2}+2)}\leq 4^{-(n+2)} , we have

(4) \sum_{n=0}^{\infty}r_{n}<\sum_{n=2}^{\infty}\frac{1}{4^{n}}=\frac{1}{12} .
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Therefore, \{r_{n}\}_{n\geq 0} satisfy (1). Let s(\rho)=\{\lambda_{n}\}_{n\geq 1} be the sequence defined
in definition 2. 2.

By (2) and (4), we can easily see that \lambda_{n}>\frac{1}{4} for all n\geq 1 . So,

together with (3), we have.

(5) \frac{1}{4}<\lambda_{n}<\frac{1}{3} \forall n\geq 1 .

From now on, we fix \rho and s(\rho) , and denote s(\rho) just s=(\lambda_{1}, \lambda_{2}, \cdots) .
In the following sections, we shall prove that \mathscr{C}(s) is a C^{\infty}-Cantor set.

\S 3. The regularity of \mathscr{C}(s)

We prove the smoothness of \mathscr{C}(s) as follows. We have to define
C^{\infty}-functions g_{0} and g_{1} on I_{0}^{1} and I_{1}^{1} respectively such that the intersec-
tion of all the images of the compositions of g_{0}^{-1} and g_{1}^{-1} is equal to \mathscr{C}(s) .
Since \mathscr{C}(s) has the same structure on I_{0}^{1} and I_{1}^{1} , g_{1} has to be just a trans-
lation of g_{0} . Therefore, we have only to define a C^{\infty}-function g on I_{0}^{1} ,
and put

\{

g_{0}(t)=g(t) on [0, \lambda_{1}]

g_{1}(t)=g(t-1+\lambda\lambda_{1}) on [1-\lambda_{1},1] .

Figure 3
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Let U^{0} denote the open interval between I_{0}^{1} and I_{1}^{1} , namely ,\cdot

U^{0}=I^{0}\backslash (I_{0}^{1}\cup I_{1}^{1}) .

In general, let U_{a}^{n}(\alpha\in\Delta_{n}) denote the open interval between I_{a0}^{n+1} and I_{a1}^{n+1}

in I_{a}^{n} , namely:

U_{a}^{n}=I_{a}^{n}\backslash (_{a0}^{n+1}\cup I_{a1}^{n+1}) .

I_{a0}^{n+1} U_{a}^{n} I_{a1}^{n+1}

Xa y_{a}

Figure 4

Let \swarrow n^{=}\swarrow(I_{a}^{n}) , u_{n}=\swarrow(U_{a}^{n}) and \overline{U_{a}^{n}}=[x_{a}, y_{a}] , where \swarrow(\cdot) denotes the
length of the interval. Then,

(6) u_{n}=\swarrow n-2\swarrow n+1 .

Note that

(7) \swarrow n^{=\lambda_{n}}\swarrow n-1 ,

(8) \swarrow n^{=\prod_{j=1}^{n}\lambda_{j}} .

What is the shape of g like ? Since g_{0} and g_{1} have to define \swarrow(s) ,
g^{-1}(I_{a}^{n}) has to be exactly equal to I_{0a}^{n+1} . and g^{-1}(U_{a}^{n})=U_{0a}^{n+1} .
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I_{oao}^{n+2}
I_{0a1}^{n+2}

\mapsto I_{oa}^{n+1}-

Figure 5

Note that

(9) u_{n}/u_{n+1}>3 ,

because by (6), (7) and Definition 2. 2,

u_{n}-3u_{n+1}=\swarrow n-2\swarrow n+1-3(\swarrow n+1-2\swarrow n+2)

=\swarrow n\{1+\lambda_{n+1}(6\lambda_{n+2}-5)\}

= \swarrow n\{1+\frac{1}{3}(\frac{1-\Sigma_{i=0}^{n}r_{i}}{1-\Sigma_{i=0}^{n-1}r_{i}})\{ 2( \frac{1-\Sigma_{i=0}^{n+1}r_{i}}{1-\Sigma_{i=0}^{n}r_{i}})-5\}\}

(10) = \frac{\swarrow n}{3(1-\Sigma_{i=0}^{n-1}r_{i})}(3r_{n}-2r_{n+1}) .

(10) is positive because \{r_{i}\} is monotonically decreasing.
By (9), the average value of g’(t) on U_{a}^{n} has to be more than 3.

Therefore it is easier to define a C^{\infty}-function f(t) which has a positive
bump on each gap U_{a}^{n} and define g as the integral
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g(t)= \int_{0}^{t}(f(s)+3)ds .

f(t)

Figure 6

In order to define f, we introduce another sequence of positive real
numbers ;

m_{n}= \frac{3(3r_{n-1}-2r_{n})}{1-\Sigma_{i=0}^{n-1}r_{i}} \forall n\geq 1 .

Since \{r_{n}\}_{n\geq 0} is monotonically decreasing and by (4), m_{n}>0 for all n\geq 1 .
Moreover,

(11)
m_{n}< \frac{9r_{n-1}}{1-\Sigma_{i=0}^{n-1}h_{i}}

<10\cdot r_{n-1} .

By (3) and (6), we have

u_{n}> \frac{\swarrow n}{3} .

Let [x_{\acute{a}}, y_{\acute{a}}] be the interval of lenght \frac{\swarrow n}{3} in the middle of U_{a}^{n} such

that

[x_{\acute{a}}, y_{\acute{a}}]=[x_{a}+ \frac{1}{2}(u_{n}-\frac{\swarrow n}{3}) , y_{a}- \frac{1}{2}(u_{n}-\frac{\swarrow n}{3})] .

DEFINITION OF f(t) . Recall that we have already defifined a C^{\infty}-func-
tion h(t) on [0, 1] . We defifine f(t) on [0, \lambda_{1}] using this h(t) as follows.

(i) On U_{a}^{n}\cap[0, \lambda_{1}] ,

\{

f(t)=m_{n}h( \frac{t-x_{\acute{a}}}{\swarrow n}) t\in[x_{\acute{a}}, y_{\acute{a}}]

\overline{3}

f(t)=0 otherwise.

(ii) On -

(s)\cap[0, \lambda_{1}] , f(t)=0.
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f(t)

Xa x\’a y_{\acute{a}}

y_{a}

U_{a}^{n}

Figure 7

PROPOSITION 3. 1. f(t) is a C^{\infty}-function on [0, \lambda_{1}] .

PROOF:
For any p\geq 0 , we define a function f_{p}(t) as follows. Let \Delta_{n}^{0}=\{\alpha=\alpha_{1}

\ldots\alpha_{n}\in\Delta_{n}|\alpha_{1}=0\} and U= \bigcup_{n\geq 1,\alpha\in\Delta_{n}^{0}}U_{a}^{p}, Note that U=[0, \lambda_{1}]\backslash \mathscr{C}(s) . Since
f(t) is C^{\infty} on U, f^{(p)}(t) exists for any p\geq 0 on U. We define,

\{

f_{p}(t)=f^{(p)}(t) for t\in U

f_{p}(t)=0 otherwise (i.c. t\in \mathscr{C}(s)) .

Since f_{0}=f , in order to show the smoothness of f(t) , we shall show
that for any p\geq 0 , f_{p} is differentiable at any t\in[0, \lambda_{1}] and f_{\acute{p}}(t)=f_{p+1}(t) .
That implies f is C^{\infty}-

Now we fix p\geq 0 . Since f_{p} is differentiable at any t\in U , we have
only to show that at any t\in \mathscr{C}(s)\cap[0, \lambda_{1}] , f_{p} is differentiable and f_{\acute{p}}(t)=0 .

Let t_{0}\in \mathscr{C}(s)\cap[0,\lambda_{1}] . Since f_{p}(t_{0})=0 , it is enough to show that

(12) \lim_{tarrow to}\frac{f_{p}(t)}{t-t_{0}}=0

Assume that t_{0}<t , namely t approaches to t_{0} from the above.
Therefore, we shall consider only the right side of t_{0} . The similar argu-
ment proves another case.

We shall prove that for any \epsilon>0 , there exists a \delta>0 such that if t

-t_{0}<\delta , then

\frac{f_{p}(t)}{t-t_{0}}<\epsilon .

Let \epsilon>0 be given. Let n_{0}\geq p+2 be an integer such that, for any n\geq

n_{0} ,

10 \cdot 3^{p+1}\cdot 4^{(n(p+1)-(n-1)^{2}-2)}<\epsilon .

If t_{0} is the left end point of some\overline{U_{a}^{n}} and t approaches to t_{0} in U_{a}^{n},
then (12) is clear because f(t)\equiv 0 in a neighbourhood of the end point of
\overline{U_{a}^{n}} .
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If it is not the case, since U_{a}^{n}’ s are connected components of the com-
plement of the Cantor set \mathscr{C}(s) and t_{0}\in \mathscr{C}(s) , infinitely many U_{a}^{n}’ s con-
verge to t_{0} from the right. Therefore, there exists a \delta>0 satisfying the
following property.

(^{*}) . If t-t_{0}<\delta and [t_{0}, t]\cap U_{a}^{n}\neq\emptyset for some U_{a}^{n} , then n\geq n_{0} .

Suppose that t-t_{0}<\delta for this \delta>0 . If t\in \mathscr{C}(s) , then by the
definition of f_{p} , f_{p}(t)=0 . Therefore, we assume that t\in U_{a}^{n} for some n\geq

n_{0} and \alpha\in\Delta_{n}^{0} .
Let t_{1} be the left end point of \overline{U_{a}^{n}} . Clearly, t_{0}<t_{1}<t and

\frac{f_{p}(t)}{t-t_{0}}<\frac{f_{p}(t)}{t-t_{1}} .

Since f_{p} is differentiable on \overline{U_{a}^{n}} , by the mean value theorem,

\frac{f_{p}(t)}{t-t_{1}}\leq\sup_{t\in U_{a}^{n}}|f_{\acute{p}}(t)|

(13) = \sup_{t\in lXa,\mathcal{Y}a1}|f^{(p+1)}(t)|

=m_{n}( \frac{3}{\swarrow n})^{p+1}\sup_{t\in[0,1]}h^{(p+1)}(t)

By (5), (8) and (11), we have \swarrow n^{=\Pi_{j=1}^{n}\lambda_{j}}>(\frac{1}{4})^{n} and m_{n}<10\cdot r_{n-1} .

Therefore,

(13)<10 \cdot r_{n-1}\cdot 3^{p+1}\cdot(4^{n})^{p+1} . \{\sup_{t\in[0,1]}h^{(p+1)}(t)\}

(14)
=10 \cdot\frac{4^{-((n-1)^{2}+2)}}{q_{n-1}}\cdot 3^{p+1}\cdot(4^{n})^{p+1}\cdot\{\sup_{t\in[0,1]}h^{(p+1)}(t)\}

Since n-1\geq p+1 , by the definition of q_{n-1} ,

(14)\leq 10 \cdot 3^{p+1}\cdot 4^{n(p+1)}\cdot 4^{-((n-1)^{2}+2)}

=10\cdot 3^{p+1}\cdot 4^{(n(p+1)-(n-1)^{2}-2)}<\epsilon . \square

\S 4. g_{0} and g_{1} define \mathscr{C}(s)

In the previous section, we defined the C^{\infty}-function f and using it,
defined g_{0} and g_{1} . In this section, we shall prove that \mathscr{C}(s) is defined by
them, namely :

PROPOSITION 4. 1.

\mathscr{C}(s)=\bigcap_{n\geq 0}\{\bigcup_{\sigma\in\Sigma_{n}^{2}}g\overline{\sigma}1^{1}1)g_{\overline{\sigma}(2)}^{1}\cdots g_{\overline{\sigma}(n)}^{1}(I^{0})\} .
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For the proof, we need some lemmas.

LEMMA 4. 2. For any n\geq 1 and \alpha\in\Delta_{n}^{0} ,

\int_{Ua}f(t)dt=\frac{1}{3}m_{n}\swarrow n .

PROOF: It is straightforward by the definition of f(t) . \square

LEMMA 4. 3. For all n\geq 1 ,

\swarrow n-1=g(\swarrow n) .

PROOF:

g( \swarrow n)=\int_{0}^{\swarrow n}(f(t)+3)dt

(15)
=3 \swarrow n+\int_{0}^{\swarrow n}f(t)dt .

In [0, \swarrow]n , f(t) has positive value only on countable number of open inter-
vals U_{a}^{k} such that U_{a}^{k}\subset[0^{ \swarrow n},] . Note that U_{a}^{k}\subset[0, \swarrow_{n}] for \alpha=\alpha_{1}\cdots\alpha_{k} if
and only if k\geq n and \alpha_{1}\cdots\alpha_{n}=0\cdots 0 because [0, \swarrow] n=I_{0\cdots 0}^{n} . Therefore, k
\geq n , the number of U_{a}^{k}’ s in [0, \swarrow]n is 2^{k-n} .

By lemma 4. 2,

\int_{0}^{\swarrow n}f(t)dt=\sum_{0U_{a}^{k}\subset I,\swarrow n1}(\int_{Ua}f(t)dt)

(16) = \sum_{i=n}^{\infty}2^{i-n}\cdot\frac{1}{3}m_{i}\swarrow i

= \sum_{i=n}^{\infty}2^{i-n}\swarrow i\frac{3r_{i-1}-2r_{i}}{1-\sum_{j=1}^{i-1}r_{j}}

By lemma 2. 3 ( i ) , \swarrow i^{=\Pi_{j=1}^{i}\lambda_{j}=\frac{1}{3^{i}}(1-\sum_{j=1}^{i-1}r_{j})} . Therefore, by lemma 2. 3
(ii),

(16)= \sum_{i=n}^{\infty}2^{i-n}\frac{1}{3^{i}}(3r_{i-1}-2r_{i})

=2^{-(n-1)} \sum_{i=n}^{\infty}\{(\frac{2}{3})^{i-1}r_{i-1}-(\frac{2}{3})^{i}r_{i}\}

=2^{-(n-1)} \lim_{karrow\infty}\{(\frac{2}{3})^{n-2}r_{n-1}-(\frac{2}{3})^{k}r_{k}\}

= \frac{r_{n-1}}{3^{n-1}}

= \frac{1}{3^{n-1}}3^{n-1}(1-3\lambda_{n})\swarrow n-1
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=\swarrow n-1-3\swarrow n .

Hence by (15), we have the statement of the lemma. \square

Let I_{a}^{n}=[a_{a}^{n}, b_{a}^{n}] .

LEMMA 4. 4. For any \alpha , \beta\in\Delta_{n}^{0} ,

\int_{Ia}f(t)dt=\int_{I_{\beta}^{n}}f(t)dt .

PROOF: By the definition of \mathscr{C}(s) and f(t) , the statement is clear
because f(t+a_{a}^{n})=f(t+a_{\beta}^{n}) for any 0\leq t\leq b_{a}^{n}-a_{a}^{n}=b_{\beta}^{n}-a_{\beta}^{n} . \square

PROOF OF PROPOSITION 4. 1: What we have to show is that for any
n\geq 0 and \alpha\in\Delta_{n} ,

g_{0}(I_{oa}^{n+1})=I_{a}^{n} , g_{1}(I_{1a}^{n+1})=I_{a}^{n} .

We shall prove them by induction on n .
When n=0, it suffices to show that;

(17) g_{0}(I_{0}^{1})=I^{0} . g_{1}(I_{1}^{1})=I^{o} .

Since g_{0} , g_{1} are monotonically increasing and I_{0}^{1}=[0^{ \swarrow 1},] , I_{1}^{1}=[1-\swarrow 1,1] , by
the definition of g_{0} , g_{1} and lemma 4. 3, we have

\{

g_{0}(0) , g_{0}(\swarrow 1)=1

g_{1}(1-\swarrow 1)=0 , g_{1}(1)=1 .

This means (17).

Assume that statement be true for n-1 . It is enough to show that;

(i) g_{0}(a_{0a}^{n+1})=a_{a}^{n}

(ii) g_{0}(b_{0a}^{n+1})=b_{a}^{n}

(iii) g_{1}(a_{1a}^{n+1})=a_{a}^{n}

(iv) g_{1}(b_{1a}^{n+1})=b_{a}^{n} .

Let \alpha=\alpha’\alpha_{n} . Then, by the hypothesis of induction,

g_{0}(I_{0a^{r}}^{n})=I_{a}^{n-1}, . g_{1}(I_{1a^{r}}^{n})=I_{a}^{n-1}, .

Namely;

g_{0}(a_{0a^{r}}^{n})=a_{a^{r}}^{n-1} , g_{0}(b_{0a’}^{n})=b_{a}^{n-1}, ,
(18)

g_{1}(a_{1a’}^{n})=a_{a-}^{n-1}’ g_{1}(b_{1a^{r}}^{n})=b_{a-}^{n-1},

First, we assume \alpha_{n}=0 . Since a_{0a}^{n+1}=a_{0a^{r}}^{n} , and a_{a}^{n}=a_{a^{r}}^{n-1} , ( i) is clear
by (18). By lemma 4. 3 and lemma 4. 4, we have,



24 A_{-} Sannami

g_{0}(b_{0a}^{n+1})= \int_{0}^{b_{0a}^{n+1}}(f(t)+3)dt

= \int_{0}^{a_{0a}^{n+1}}(f(t)+3)dt+\int_{I_{0a}^{n+1}}(f(t)+3)dt

=a_{a}^{n}+\swarrow n

=a_{a}^{n}+(b_{a}^{n}-a_{a}^{n})

=b_{a}^{n} .

That proves ( ii) . The similar argument with g_{1} gives (iii) and (iv).
Suppose \alpha_{n}=1 . Since b_{0a}^{n+1}=b_{0a’}^{n} and b_{a}^{n}=b_{a^{r}}^{n-1} , ( ii) is clear. As to

(i ) , we have,

g_{0}(a_{0a}^{n+1})= \int_{0}^{a_{0a}^{n+1}}(f(t)+3)dt

= \int_{0}^{b_{0a}^{n+1}}(f(t)+3)dt-\int_{a_{0\alpha}^{n+1}}^{b_{0a}^{n+1}}(f(t)+3)dt

=b_{a}^{n}-\swarrow n

=b_{a}^{n}-(b_{a}^{n}-a_{a}^{n})

=a_{a}^{n} .

That shows ( i ) . The similar argument with g_{1} gives (iii) and (iv).
\square
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