An example of a regular Cantor set whose difference set is a Cantor set with positive measure

Atsuro SANNAMI (Received June 29, 1989, Revised August 5, 1991)

Dedicated to Professor Haruo Suzuki on his 60th birthday

§ 0. Introduction

In this paper, we give an example of a regular Cantor set whose self -difference set is a Cantor set and, at the same time, has a positive measure. This is a counter example of one of the questions posed by J. Palis related to homoclinic bifurcation of surface diffeomorphisms.

In [PT], Palis-Takens investigated homoclinic bifurcation in the following context. Let M be a closed 2-dimensional manifold. We say a C^r -diffeomorphism $\phi: M \to M$ is *persistently hyperbolic* if there is a C^r neighborhood \mathscr{U} of ϕ such that for every $\psi \in \mathscr{U}$, the non-wandering set $\Omega(\psi)$ is a hyperbolic set (refer [PM] for the definitions and the notations of the terminologies of dynamical systems). Let $\{\phi_{\mu}\}_{\mu\in\mathbb{R}}$ be a 1-parameter family of C^2 -diffeomorphisms on M. We say $\{\phi_{\mu}\}_{\mu\in\mathbb{R}}$ has a *homoclinic* Ω -*explosion* at $\mu=0$ if:

- (i) For $\mu < 0$, ϕ_{μ} is persistently hyperbolic;
- (ii) For $\mu=0$, the non-wandering set $\Omega(\phi_0)$ consists of a (closed) hyperbolic set $\tilde{\Omega}(\phi_0)=\lim_{\mu \to 0} \Omega(\phi_\mu)$ together with a homoclinic orbit of tangency \mathscr{O} associated with a fixed saddle point p, so that $\Omega(\phi_0)=\tilde{\Omega}(\phi_0)\cup \mathscr{O}$; the product of the eigenvalues of $d\phi_0$ at p is different from one in norm;
- (iii) The separatrices have quadratic tangency along \mathscr{O} unfolding generically; \mathscr{O} is the only orbit of tangency between stable and unstable separatrices of periodic orbits of ϕ_0 .

Let Λ be a basic set of a diffeomorphism ψ on $M. d^{s}(\Lambda) (d^{u}(\Lambda))$ denotes the Hausdorff dimension in the transversal direction of the stable (unstable) foliation of the stable (unstable) manifold of Λ (refer [PM] for the precise definition), and is called the stable (unstable) *limit capacity*. Let B denote the set of values $\mu > 0$ for which ϕ_{μ} is not persistently hyperbolic. The result of Palis-Takens is;

THEOREM [1]. Let $\{\phi_{\mu}; \mu \in \mathbf{R}\}$ be a family of diffeomorphisms of Mwith a homoclinic Ω -explosion at $\mu=0$. Suppose that $d^{s}(\Lambda)+d^{u}(\Lambda)<1$, where Λ is the basic set of ϕ_{0} associated with the homoclinic tangency. Then

$$\lim_{\delta \to 0} \frac{m(B \cap [0, \delta])}{\delta} = 0$$

where $m(\cdot)$ denotes Lebesgue measure.

This result states that, in the case of $d^{s}(\Lambda) + d^{u}(\Lambda) < 1$, the measure of the parameters for which bifurcation occurs is relatively small. For the next step, the case of $d^{s}(\Lambda) + d^{u}(\Lambda) > 1$ comes into question. In the proof of the theorem above, one of the essential points is the question of how two Cantor sets intersect each other when the one Cantor set is slided. In [P], Palis posed the following questions.

(Q. 1): For affine Cantor sets X and Y in the line, is it true that X - Y either has measure zero or contains intervals?

(Q. 2): Same for regular Cantor sets, where for two subsets X, Y of R.,

 $X - Y = \{x - y | x \in X, y \in Y\}.$

This can be also written as;

 $X - Y = \{ \mu \in \mathbf{R} | X \cap (\mu + Y) \neq \phi \},\$

namely, X - Y is the set of parameters at which X and Y have an intersection point when Y is slided. Refer [L] for more detailed and intelligible exposition for these questions.

Cantor set \mathscr{C} in **R** is called affine (regular or C^r for $1 < r \le \infty$) if \mathscr{C} is difined with finite number of expanding affine (C^2 or C^r) maps, namely;

DEFINITION. Let \mathscr{C} be a Cantor set on a closed interval I. For $1 \le r \le \infty$, \mathscr{C} is called C^r -Cantor set if there are closed disjoint intervals I_1 , ..., I_k on I and onto C^r -maps $g_i : I_i \rightarrow I$ for all $1 \le i \le k$ such that ; (i) $|a'_i(x)| > 1 \quad \forall x \in I_i$.

(ii)
$$\mathscr{C} = \bigcap_{n=0}^{\infty} \{ \bigcup_{\sigma \in \Sigma_{n}^{k}} g_{\sigma(1)}^{-1} g_{\sigma(2)}^{-1} \cdots g_{\sigma(n)}^{-1}(I) \},$$

where $\sum_{n=1}^{k} \{ \sigma : \{1, \cdots, n\} \rightarrow \{1, \cdots, k\} \}.$

Our result in this paper claims that there is a counter example of (Q. 2), namely;

THEOREM. There exists a C^{∞} -Cantor set \mathscr{C} such that (i) $m(\mathscr{C} - \mathscr{C}) > 0$, (ii) $\mathscr{C} - \mathscr{C}$ is a Cantor set.

As is mentioned above, if the sum of limit capacities is less than 1, then the measure of parameter values at which the diffeomorphism has a homoclinic tangency is asymptotically zero. What happens if $d^{s}(\Lambda) + d^{u}(\Lambda) > 1$? One of the questions about this situation is the following.

(Q. 3): Is there any one-parameter family of plane diffeomorphisms f_{μ} such that the measure of parameters of homoclinic tangency is positive while the set of parameters of persistent hyperbolicity is dense?

Our example \mathscr{C} of the theorem might be applicable to construct an example for this (Q.3). However, when we try to embed the Cantor set \mathscr{C} as transversal Cantor sets of the stable and unstable foliations of a family of diffeomorphisms, new bumps of stable and unstable manifolds grow up after the first tangency and it is very difficult to know whether those new and very thinly stretched bumps have tangency or not. Thus, the application of our theorem to plane diffeomorphisms does not seem to be easy. In the case of $d^s(\Lambda) + d^u(\Lambda) > 1$, for the practical application to homoclinic bifurcation, the problems of "genericity" or "openness" may have more importance.

One will see in the proof of this theorem that \mathscr{C} is constructed very artificially and cannot be defined as an *analytic* Cantor set. Therefore, this theorem may not give any clue to (Q. 1), i. e. the affine case. In fact, the affine case seems to have an essential difficulty of these problems.

In [MO], P. Mendes and F. Oliveira have got some partial answers to the affine case. P. Larsson [L] proved that if the sum of the Hausdorff dimensions is bigger than 1, then almost surely, the difference set of two "random Cantor sets" contains an interval.

In the succeeding sections, we shall give the proof of our theorem.

§ 1. Definition of the Cantor sets $\mathscr{C}(s)$, $\mathscr{D}(s)$

One of the most typical methods of constructing Cantor sets is recursive process of "removing the middle part of interval". By assigning the ratio of the length of the intervals which are left in each step, we can construct a Cantor set depending on a given sequence of positive numbers as follows.

DEFINITION 1.1. Let $I = [x_1, x_2]$ be a closed interval and λ a real number with $0 < \lambda < \frac{1}{2}$. We define,

$$I_{0}(\lambda; I) = [x_{1}, x_{1} + \lambda(x_{2} - x_{1})]$$

$$I_{1}(\lambda; I) = [x_{2} - \lambda(x_{2} - x_{1}), x_{2}].$$

DEFINITION 1.2 (Cantor set $\mathscr{C}(s)$). Let $I^0 = [0, 1]$ and $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ be a one sided sequence of real numbers with $0 < \lambda_i < \frac{1}{2}$ for all $i \ge 1$. We define the Cantor set $\mathscr{C}(s)$ as follows.

Let $I_0^1 = I_0(\lambda_1; I^0)$, $I_1^1 = I_1(\lambda_1; I^0)$ and $I^1 = I_0^1 \cup I_1^1$. Δ_n denotes the set of all sequences of 0 and 1 of length n. When I_{β}^{n-1} 's are defined for all $\beta \in \Delta_{n-1}$, we define;

$$I_{\beta 0}^{n} = I_{0}(\lambda_{n} ; I_{\beta}^{n-1}) \\ I_{\beta 1}^{n} = I_{1}(\lambda_{n} ; I_{\beta}^{n-1}).$$

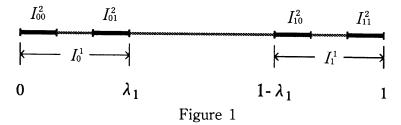
Inductively, we can define I_{α}^{n} for all $\alpha \in \Delta_{n}$ and for all $n \ge 0$. Define

$$I^n = \bigcup_{\alpha \in \Delta_n} I^n_\alpha$$

and

$$\mathscr{C}(s) = \bigcap_{n \ge 0} I^n.$$

This is clearly a Cantor set by the definition.



Our Cantor set \mathscr{C} in the main theorem will be given as one of such Cantor sets $\mathscr{C}(s)$ for an appropriate $s = (\lambda_1, \lambda_2, \cdots)$. Our next claim is that if $0 < \lambda_i < \frac{1}{3}$ for all *i*, then the difference set $\mathscr{C}(s) - \mathscr{C}(s)$ is also a Cantor set with a neat structure.

DEFINITION 1.3. Let $J = [x_1, x_2]$ and $0 < \lambda < \frac{1}{3}$, We define,

$$J_{0}(\lambda; J) = [x_{1}, x_{1} + \lambda(x_{2} - x_{1})]$$

$$J_{1}(\lambda; J) = \left[\frac{x_{1} + x_{2}}{2} - \frac{\lambda}{2}(x_{2} - x_{1}), \frac{x_{1} + x_{2}}{2} + \frac{\lambda}{2}(x_{2} - x_{1})\right]$$

$$J_{2}(\lambda; J) = [x_{2} - \lambda(x_{2} - x_{1}), x_{2}].$$

DEFINITION 1.4. Let $J^0 = [-1, 1]$ and $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ be a one sided

sequence of real numbers with $0 < \lambda_i < \frac{1}{3}$ for all $i \ge 1$. Let

$$J_0^1 = J_0(\lambda_1; J^0) J_1^1 = J_1(\lambda_1; J^0) J_2^1 = J_2(\lambda_1; J^0)$$

and Π_n denote the set of all sequences of 0, 1, 2 of length n. When J_{δ}^{n-1} 's are defined for all $\delta \in \Pi_{n-1}$, we define ;

$$J_{\delta 0}^{n} = J_{0}(\lambda_{n}; J_{\delta}^{n-1})$$

$$J_{\delta 1}^{n} = J_{1}(\lambda_{n}; J_{\delta}^{n-1})$$

$$J_{\delta 2}^{n} = J_{2}(\lambda_{n}; J_{\delta}^{n-1}).$$

Inductively, we can define J_r^n for all $\gamma \in \Pi_n$ and for all $n \ge 0$. Define

$$J^n = \bigcup_{\gamma \in \Pi_n} J^n_{\gamma}$$

and

$$\mathscr{D}(s) = \bigcap_{n \ge 0} J^{n}$$

$$\xrightarrow{J_{00}^{2}} J_{01}^{2} J_{02}^{2} J_{10}^{2} J_{11}^{2} J_{12}^{2} J_{20}^{2} J_{21}^{2} J_{22}^{2}$$

$$\xrightarrow{I_{10}^{2}} J_{01}^{1} \longrightarrow I_{1}^{1} \longrightarrow I_{1}^{1} \longrightarrow I_{1}^{1} \longrightarrow I_{2}^{1} \longrightarrow I$$

THEOREM A. A. Let $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ be a sequence of real numbers with $0 < \lambda_i < \frac{1}{3}$ for all $i \ge 1$. then,

$$\mathscr{C}(s) - \mathscr{C}(s) = \mathscr{D}(s).$$

Proof:

$$\mathscr{C}(s) - \mathscr{C}(s) = (\bigcap_{n \ge 0} I^n) - (\bigcap_{n \ge 0} I^n).$$

By a straightforward argument, it can be seen that,

$$(\bigcap_{n\geq 0}I^n)-(\bigcap_{n\geq 0}I^n)=\bigcap_{n\geq 0}(I^n-I^n).$$

Therefore, it is enough to show that

$$I^n - I^n = J^n \qquad \forall n \ge 0.$$

By the definition of I^n and J^n , that is an easy consequence of the following lemma 1.5. LEMMA 1.5. For all n≥0,
(i) for all α, β∈Δ_n, there exists a γ∈Π_n such that Iⁿ_α−Iⁿ_β=Jⁿ_γ
(ii) for all γ∈Π_n, there exist α, β∈Δ_n such that Jⁿ_γ=Iⁿ_α−Iⁿ_β.

PROOF:

Note that for arbitrary two closed intervals $I = [x_1, x_2]$ and $J = [y_1, y_2]$, $I - J = [x_1 - y_2, x_2 - y_1]$.

We prove (i) and (ii) simultaneously by induction.

When n=0, the statement holds, because $I^0-I^0=J^0$. Assume that the statement is valid for n.

Let $\alpha, \beta \in \Delta_{n+1}$ and $\alpha = \tilde{\alpha} \alpha_{n+1}, \beta = \tilde{\beta} \beta_{n+1}$ for $\tilde{\alpha}, \tilde{\beta} \in \Delta_n$ and $\alpha_{n+1}, \beta_{n+1} = 0$ or 1. Then, by the hypothesis of induction, there exists a $\tilde{\gamma} \in \Pi_n$ such that $I_{\tilde{\alpha}}^n - I_{\tilde{\beta}}^n = J_{\tilde{\gamma}}^n$.

On the other hand, let $\gamma \in \Pi_{n+1}$ and $\gamma = \tilde{\gamma}\gamma_{n+1}$ for some $\tilde{\gamma} \in \Pi_n$ and $\gamma_{n+1}=0$ or 1. Then, by the hypothesis of induction, there exist $\tilde{\alpha}, \tilde{\beta} \in \Delta_n$ such that $I_{\tilde{\alpha}}^n - I_{\tilde{\beta}}^n = J_{\tilde{\gamma}}^n$.

Thus in both cases (i) and (ii), the statement of lemma 1.5 is obtained from the following lemma 1.6.

LEMMA 1.6. Suppose that $I_{\tilde{a}}^{n} - I_{\tilde{\beta}}^{n} = J_{\tilde{\gamma}}^{n}$

for $\tilde{\alpha}, \tilde{\beta} \in \Delta_n$ and $\tilde{\gamma} \in \Pi_n$. Then,

$$J_{\tilde{\gamma}0}^{n+1} = I_{\tilde{a}0}^{n+1} = I_{\tilde{\beta}1}^{n+1}$$

$$J_{\tilde{\gamma}1}^{n+1} = I_{\tilde{a}0}^{n+1} - I_{\tilde{\beta}0}^{n+1} = I_{\tilde{a}1}^{n+1} - I_{\tilde{\beta}1}^{n+1}$$

$$J_{\tilde{\gamma}2}^{n+1} = I_{\tilde{a}1}^{n+1} - I_{\tilde{\beta}0}^{n+1}.$$

PROOF: Let $I_{\tilde{\alpha}}^{n} = [x_{1}, x_{2}]$ and $I_{\tilde{\beta}}^{n} = [y_{1}, y_{2}]$. Then, $J_{\tilde{\gamma}}^{n} = [x_{1} - y_{2}, x_{2} - y_{1}]$. Since the length of $I_{\tilde{\alpha}}^{n}$ and $I_{\tilde{\beta}}^{n}$ are the same, we denote $\ell_{n} = x_{2} - x_{1} = y_{2} - y_{1}$. By the definition,

$$I_{\bar{a}0}^{n+1} = [x_1, x_1 + \lambda_{n+1} \ell_n]$$

$$I_{\bar{a}1}^{n+1} = [x_2 - \lambda_{n+1} \ell_n, x_2]$$

$$I_{\bar{\beta}0}^{n+1} = [y_1, y_1 + \lambda_{n+1} \ell_n]$$

$$I_{\bar{\beta}1}^{n+1} = [y_2 - \lambda_{n+1} \ell_n, y_2].$$

Therefore we have,

$$I_{\tilde{a}0}^{n+1} - I_{\tilde{\beta}0}^{n+1} = [x_1 - y_1 - \lambda_{n+1} \ell_n, x_1 - y_1 + \lambda_{n+1} \ell_n]$$

$$I_{\tilde{a}0}^{n+1} - I_{\tilde{\beta}1}^{n+1} = [x_1 - y_2, x_1 - y_2 + 2\lambda_{n+1} \ell_n]$$

$$I_{\tilde{a}1}^{n+1} - I_{\tilde{\beta}0}^{n+1} = [x_2 - y_1 - 2\lambda_{n+1} \ell_n, x_2 - y_1]$$

$$I_{\tilde{a}1}^{n+1} - I_{\tilde{\beta}1}^{n+1} = [x_2 - y_2 - \lambda_{n+1} \ell_n, x_2 - y_2 + \lambda_{n+1} \ell_n].$$

On the other hand, by the definition,

$$J_{\tilde{\gamma}0}^{n+1} = [x_1 - y_2, x_1 - y_2 + 2\lambda_{n+1} \land n]$$

$$J_{\tilde{\gamma}1}^{n+1} = [\frac{1}{2}(x_1 - y_2 + x_2 - y_1) - \lambda_{n+1} \land n, \frac{1}{2}(x_1 - y_2 + x_2 - y_1) + \lambda_{n+1} \land n]$$

$$J_{\tilde{\gamma}2}^{n+1} = [x_2 - y_1 - 2\lambda_{n+1} \land n, x_2 - y_1].$$

Since $\frac{1}{2}(x_1-y_2+x_2-y_1)=x_1-y_1$, the statement is obtained.

The combination of Theorem A and the following Theorem B yields our main Theorem.

THEOREM B. There exists a sequence of real numbers $s = (\lambda_1, \lambda_2, \lambda_3, \dots)$ with $0 < \lambda_i < \frac{1}{3}$ for all $i \ge 1$ such that ;

(i) $m(\mathscr{C}(s) - \mathscr{C}(s)) > 0$, (ii) $\mathscr{C}(s)$ is a C^{∞} -Cantor set.

In the rest of this paper, we shall prove this Theorem B.

§ 2. Positivity of the measure

In general, the measure of $\mathscr{D}(s)$ is given as follows.

LEMMA 2.1. Let $s = (\lambda_1, \lambda_2, \lambda_3, \cdots)$ be a sequence of real numbers such that $0 < \lambda_n < \frac{1}{3}$ for all $n \ge 1$. Then,

$$m(\mathscr{D}(s))=2(1-\sum_{n=0}^{\infty}(3^{n}(1-3\lambda_{n+1})\prod_{j=1}^{n}\lambda_{j})).$$

PROOF: Let w_n denotes the length of each interval of J^n . For example, $w_0=2$, $w_1=2\lambda_1$, $w_2=\lambda_2w_1=2\lambda_1\lambda_2$. In general, $w_n=\lambda_nw_{n-1}$, and,

$$w_n = 2 \prod_{j=1}^n \lambda_j.$$

In each interval of J^{n-1} , there are three intervals of J^n and therefore, there are two gaps in it. The sum of the lengths of these gaps in J^{n-1} is

$$w_{n-1}-3w_n$$
.

Since there are 3^{n-1} intervals in J^{n-1} , the sum of the lengths of the open gaps of the n-th level is

$$3^{n-1}(w_{n-1}-3w_n).$$

Therefore, the sum of the lengths of the all open gaps is,

$$\sum_{n=0}^{\infty} 3^n (w_n - 3w_{n+1})$$
$$= \sum_{n=0}^{\infty} 3^n w_n (1 - 3\lambda_{n+1})$$
$$= 2 \sum_{n=0}^{\infty} 3^n (1 - 3\lambda_{n+1}) \prod_{j=1}^n \lambda_j. \quad \Box$$

It is convenient to introduce another sequence of positive numbers to define the sequence $s = (\lambda_1, \lambda_2, \cdots)$ for $\mathscr{C}(s)$ in Theorem B.

DEFINITION 2.2. Let $\rho = \{r_n\}_{n \ge 0}$ be a sequence of positive real numbers such that

(1)
$$\sum_{n=0}^{\infty} r_n < 1.$$

We define a sequence of positive real numbers $s(\rho) = \{\lambda_n\}_{n\geq 1}$ depending on ρ as follows.

(2)
$$\begin{cases} \lambda_1 = \frac{1}{3}(1 - r_0) \\ \lambda_{n+1} = \frac{1}{3} \left(\frac{1 - \sum_{i=0}^n r_i}{1 - \sum_{i=0}^{n-1} r_i} \right) \quad \forall n \ge 1. \end{cases}$$

It is clear that

(3)
$$0 < \lambda_n < \frac{1}{3} \quad \forall n \ge 1.$$

LEMMA 2.3. Let $\rho = \{r_n\}_{n\geq 0}$ and $s(\rho) = \{\lambda_n\}_{n\geq 1}$ be sequences as in Definition 2.2.

(i)
$$\sum_{i=0}^{n} r_i = 1 - 3^{n+1} \prod_{j=1}^{n+1} \lambda_j \quad \forall n \ge 0.$$

(ii)
$$r_n = 3^n (1 - 3\lambda_{n+1}) \prod_{j=0}^n \lambda_j \quad \forall n \ge 0$$

Where, we assume $\lambda_o = 1$ for the simplicity of notation.

PROOF: The proofs are straightforward by induction.

By this lemma 2.3 and the proof of lemma 2.1, one can see the real nature of the sequence $\rho = \{r_n\}_{n\geq 0}$. In fact, r_n represents the ratio of the measure of the set of all the open gaps of the n+1-th leved of $\mathscr{D}(s(\rho))$ in $J^0 = [-1, 1]$. Therefore, if $\sum_{n=0}^{\infty} r_n < 1$, then by lemma 2.3 (ii) and lemma 2.1, $m(\mathscr{D}(s(\rho))) > 0$. Thus, what we have to do is to define a special sequence $\rho = \{r_n\}_{n\geq 0}$ so that $\sum_{n=0}^{\infty} r_n < 1$ and $\mathscr{C}(s(\rho))$ may be defined as a C^{∞} -Cantor set.

In order to define $\rho = \{r_n\}_{n\geq 0}$, we need to fix a C^{∞} -function h(t) on [0, 1] with the following properties.

(i)
$$h(t) \ge 0$$
 $0 \le \forall t \le 1$,
(ii) $\int_{0}^{1} h(t) dt = 1$,
(iii) for all $n \ge 0$, $\begin{cases} \lim_{t \ne 0} h^{(n)}(t) = 0, \\ \lim_{t \ne 1} h^{(n)}(t) = 0, \end{cases}$

where $h^{(n)}$ denotes the *n*-th derivative of *h*. (For example,

$$h(t) = \begin{cases} \frac{e^{-\frac{1}{t(1-t)}}}{\int_0^1 e^{-\frac{1}{s(1-s)}} ds} & 0 < t < 1\\ 0 & t = 0, 1. \end{cases}$$

is one of such functions.)

For each integers $n \ge 0$, let

$$q_n = \max\{q_0, q_1, \cdots, q_{n-1}, 1, \sup_{t \in [0,1]} |h^{(n)}(t)|\}.$$

Clearly,

$$1 \leq q_0 \leq q_1 \leq q_2 \leq \cdots.$$

For $n \ge 0$, we define,

$$\gamma_n = \frac{4^{-(n^2+2)}}{q_n}.$$

This $\rho = \{r_n\}_{n\geq 0}$ is exactly the sequence we need. Clearly.

$$\frac{1}{16} \ge r_0 > r_1 > r_2 > \cdots$$
.

Since $r_n \le 4^{-(n^2+2)} \le 4^{-(n+2)}$, we have

(4)
$$\sum_{n=0}^{\infty} r_n < \sum_{n=2}^{\infty} \frac{1}{4^n} = \frac{1}{12}.$$

A. Sannami

Therefore, $\{r_n\}_{n\geq 0}$ satisfy (1). Let $s(\rho) = \{\lambda_n\}_{n\geq 1}$ be the sequence defined in definition 2.2.

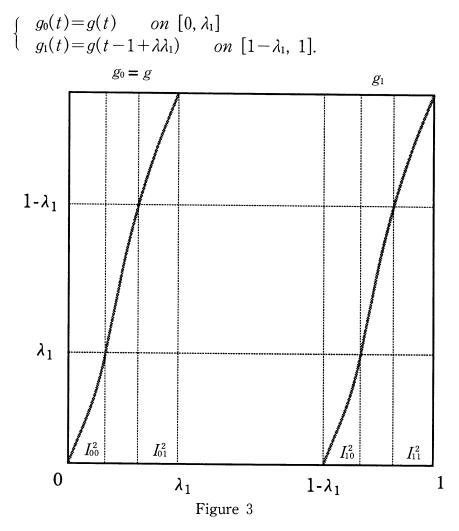
By (2) and (4), we can easily see that $\lambda_n > \frac{1}{4}$ for all $n \ge 1$. So, together with (3), we have.

(5)
$$\frac{1}{4} < \lambda_n < \frac{1}{3} \quad \forall n \ge 1.$$

From now on, we fix ρ and $s(\rho)$, and denote $s(\rho)$ just $s = (\lambda_1, \lambda_2, \cdots)$. In the following sections, we shall prove that $\mathscr{C}(s)$ is a C^{∞} -Cantor set.

§ 3. The regularity of $\mathscr{C}(s)$

We prove the smoothness of $\mathscr{C}(s)$ as follows. We have to define C^{∞} -functions g_0 and g_1 on I_0^1 and I_1^1 respectively such that the intersection of all the images of the compositions of g_0^{-1} and g_1^{-1} is equal to $\mathscr{C}(s)$. Since $\mathscr{C}(s)$ has the same structure on I_0^1 and I_1^1 , g_1 has to be just a translation of g_0 . Therefore, we have only to define a C^{∞} -function g on I_0^1 , and put



Let U^0 denote the open interval between I_0^1 and I_1^1 , namely;

 $U^0 = I^0 \backslash (I_0^1 \cup I_1^1).$

In general, let $U^n_{\alpha}(\alpha \in \Delta_n)$ denote the open interval between $I^{n+1}_{\alpha_0}$ and $I^{n+1}_{\alpha_1}$ in I^n_{α} , namely;

Let $\ell_n = \ell(I_a^n)$, $u_n = \ell(U_a^n)$ and $\overline{U_a^n} = [x_a, y_a]$, where $\ell(\cdot)$ denotes the length of the interval. Then,

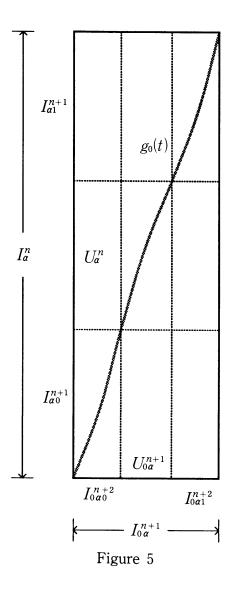
(6)
$$u_n = \ell_n - 2 \ell_{n+1}.$$

Note that

(7)
$$\ell_n = \lambda_n \ell_{n-1},$$

(8)
$$\ell_n = \prod_{j=1}^n \lambda_j.$$

What is the shape of g like? Since g_0 and g_1 have to define $\ell(s)$, $g^{-1}(I_{\alpha}^n)$ has to be exactly equal to $I_{0\alpha}^{n+1}$, and $g^{-1}(U_{\alpha}^n) = U_{0\alpha}^{n+1}$.



Note that

(9)
$$u_n/u_{n+1}>3,$$

because by (6), (7) and Definition 2.2,

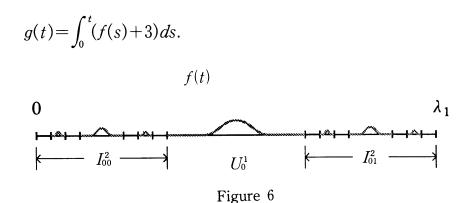
(10)

$$u_{n}-3u_{n+1} = \ell_{n}-2\ell_{n+1}-3(\ell_{n+1}-2\ell_{n+2}) = \ell_{n}\{1+\lambda_{n+1}(6\lambda_{n+2}-5)\} = \ell_{n}\{1+\frac{1}{3}\left(\frac{1-\sum_{i=0}^{n}r_{i}}{1-\sum_{i=0}^{n-1}r_{i}}\right)\left\{2\left(\frac{1-\sum_{i=0}^{n+1}r_{i}}{1-\sum_{i=0}^{n}r_{i}}\right)-5\right\}\right\}$$

$$=\frac{\ell_{n}}{3(1-\sum_{i=0}^{n-1}r_{i})}(3r_{n}-2r_{n+1}).$$

(10) is positive because $\{r_i\}$ is monotonically decreasing.

By (9), the average value of g'(t) on U^n_a has to be more than 3. Therefore it is easier to define a C^{∞} -function f(t) which has a positive bump on each gap U^n_a and define g as the integral An example of a regular Cantor set whose difference set is a Cantor set with positive measure



In order to define f, we introduce another sequence of positive real numbers;

$$m_n = \frac{3(3r_{n-1}-2r_n)}{1-\sum_{i=0}^{n-1}r_i} \quad \forall n \ge 1.$$

Since $\{r_n\}_{n\geq 0}$ is monotonically decreasing and by (4), $m_n>0$ for all $n\geq 1$. Moreover,

(11)
$$m_n < \frac{9r_{n-1}}{1 - \sum_{i=0}^{n-1} h_i} < 10 \cdot r_{n-1}.$$

By (3) and (6), we have

$$u_n > \frac{\ell_n}{3}.$$

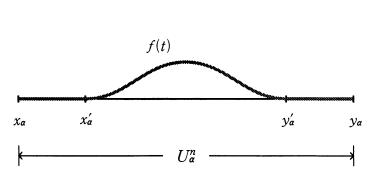
Let $[x'_{\alpha}, y'_{\alpha}]$ be the interval of lenght $\frac{\sqrt{n}}{3}$ in the middle of U^n_{α} such that

$$[x'_{a}, y'_{a}] = \left[x_{a} + \frac{1}{2} \left(u_{n} - \frac{\ell_{n}}{3} \right), y_{a} - \frac{1}{2} \left(u_{n} - \frac{\ell_{n}}{3} \right) \right].$$

DEFINITION OF f(t). Recall that we have already defined a C^{∞} -function h(t) on [0, 1]. We define f(t) on $[0, \lambda_1]$ using this h(t) as follows.

(i) On
$$U_{\alpha}^{n} \cap [0, \lambda_{1}],$$

$$\begin{cases} f(t) = m_{n}h\left(\frac{t - x'_{\alpha}}{\frac{t'_{n}}{3}}\right) & t \in [x'_{\alpha}, y'_{\alpha}] \\ f(t) = 0 & otherwise. \end{cases}$$
(ii) On $\mathscr{C}(s) \cap [0, \lambda_{1}], f(t) = 0.$



A. Sannami

PROPOSITION 3.1. f(t) is a C^{∞} -function on $[0, \lambda_1]$.

PROOF:

For any $p \ge 0$, we define a function $f_p(t)$ as follows. Let $\Delta_n^0 = \{\alpha = \alpha_1 \\ \cdots \\ \alpha_n \in \Delta_n | \alpha_1 = 0 \}$ and $U = \bigcup_{n \ge 1, \alpha \in \Delta_n^0} U_{\alpha}^p$. Note that $U = [0, \lambda_1] \setminus \mathscr{C}(s)$. Since f(t) is C^{∞} on $U, f^{(p)}(t)$ exists for any $p \ge 0$ on U. We define,

$$\begin{cases} f_{\mathcal{P}}(t) = f^{(\mathcal{P})}(t) & \text{for } t \in U \\ f_{\mathcal{P}}(t) = 0 & \text{otherwise } (i.e. \ t \in \mathscr{C}(s)). \end{cases}$$

Since $f_0=f$, in order to show the smoothness of f(t), we shall show that for any $p \ge 0$, f_p is differentiable at any $t \in [0, \lambda_1]$ and $f'_p(t) = f_{p+1}(t)$. That implies f is C^{∞} .

Now we fix $p \ge 0$. Since f_p is differentiable at any $t \in U$, we have only to show that at any $t \in \mathscr{C}(s) \cap [0, \lambda_1]$, f_p is differentiable and $f'_p(t) = 0$.

Let $t_0 \in \mathscr{C}(s) \cap [0,\lambda_1]$. Since $f_p(t_0) = 0$, it is enough to show that

(12)
$$\lim_{t \to t_0} \frac{f_p(t)}{t - t_0} = 0$$

Assume that $t_0 < t$, namely *t* approaches to t_0 from the above. Therefore, we shall consider only the right side of t_0 . The similar argument proves another case.

We shall prove that for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $t - t_0 < \delta$, then

$$\frac{f_p(t)}{t-t_0} < \epsilon.$$

Let $\epsilon > 0$ be given. Let $n_0 \ge p+2$ be an integer such that, for any $n \ge n_0$,

 $10 \cdot 3^{p+1} \cdot 4^{(n(p+1)-(n-1)^2-2)} < \epsilon.$

If t_0 is the left end point of some $\overline{U_{\alpha}^n}$ and t approaches to t_0 in U_{α}^n , then (12) is clear because $f(t) \equiv 0$ in a neighbourhood of the end point of $\overline{U_{\alpha}^n}$. If it is not the case, since U_a^m 's are connected components of the complement of the Cantor set $\mathscr{C}(s)$ and $t_0 \in \mathscr{C}(s)$, infinitely many U_a^m 's converge to t_0 from the right. Therefore, there exists a $\delta > 0$ satisfying the following property.

(*). If
$$t-t_0 < \delta$$
 and $[t_0, t] \cap U^n_a \neq \emptyset$ for some U^n_a , then $n \ge n_0$.

Suppose that $t-t_0 < \delta$ for this $\delta > 0$. If $t \in \mathscr{C}(s)$, then by the definition of f_p , $f_p(t)=0$. Therefore, we assume that $t \in U^n_{\alpha}$ for some $n \ge n_0$ and $\alpha \in \Delta^0_n$.

Let t_1 be the left end point of $\overline{U_{\alpha}^n}$. Clearly, $t_0 < t_1 < t$ and

$$\frac{f_p(t)}{t-t_0} < \frac{f_p(t)}{t-t_1}.$$

Since f_p is differentiable on $\overline{U_{\alpha}^n}$, by the mean value theorem,

(13)
$$\frac{f_{p}(t)}{t-t_{1}} \leq \sup_{t \in U_{a}^{n}} |f_{p}'(t)| = \sup_{t \in [x_{a}, y_{a}]} |f^{(p+1)}(t)| = m_{n} \left(\frac{3}{\sqrt{n}}\right)^{p+1} \sup_{t \in [0,1]} h^{(p+1)}(t)$$

By (5), (8) and (11), we have $\lambda_n = \prod_{j=1}^n \lambda_j > \left(\frac{1}{4}\right)^n$ and $m_n < 10 \cdot r_{n-1}$. Therefore,

(14)

$$(13) < 10 \cdot r_{n-1} \cdot 3^{p+1} \cdot (4^n)^{p+1} \cdot \{\sup_{t \in [0,1]} h^{(p+1)}(t)\}$$

$$= 10 \cdot \frac{4^{-((n-1)^2+2)}}{q_{n-1}} \cdot 3^{p+1} \cdot (4^n)^{p+1} \cdot \{\sup_{t \in [0,1]} h^{(p+1)}(t)\}$$

Since $n-1 \ge p+1$, by the definition of q_{n-1} ,

$$(14) \le 10 \cdot 3^{p+1} \cdot 4^{n(p+1)} \cdot 4^{-((n-1)^2+2)}$$

= 10 \cdot 3^{p+1} \cdot 4^{(n(p+1)-(n-1)^2-2)} < \epsilon.

§ 4. g_0 and g_1 define $\mathscr{C}(s)$

In the previous section, we defined the C^{∞} -function f and using it, defined g_0 and g_1 . In this section, we shall prove that $\mathscr{C}(s)$ is defined by them, namely;

PROPOSITION 4.1.

$$\mathscr{C}(s) = \bigcap_{n \ge 0} \{\bigcup_{\sigma \in \Sigma_n^2} g_{\sigma(1)}^{-1} g_{\sigma(2)}^{-1} \cdots g_{\sigma(n)}^{-1} (I^0) \}.$$

For the proof, we need some lemmas.

LEMMA 4.2. For any $n \ge 1$ and $\alpha \in \Delta_n^0$,

$$\int_{U_a^n} f(t) dt = \frac{1}{3} m_n \swarrow_n.$$

PROOF: It is straightforward by the definition of f(t).

LEMMA 4.3. For all $n \ge 1$,

 $\ell_{n-1} = g(\ell_n).$

Proof:

(15)
$$g(\swarrow_{n}) = \int_{0}^{\swarrow_{n}} (f(t) + 3) dt = 3 \checkmark_{n} + \int_{0}^{\swarrow_{n}} f(t) dt.$$

In $[0, \ell_n]$, f(t) has positive value only on countable number of open intervals U_a^k such that $U_a^k \subset [0, \ell_n]$. Note that $U_a^k \subset [0, \ell_n]$ for $\alpha = \alpha_1 \cdots \alpha_k$ if and only if $k \ge n$ and $\alpha_1 \cdots \alpha_n = 0 \cdots 0$ because $[0, \ell_n] = I_{0 \cdots 0}^n$. Therefore, $k \ge n$, the number of U_a^{k} 's in $[0, \ell_n]$ is 2^{k-n} .

By lemma 4.2,

(16)
$$\int_{0}^{2^{n}} f(t) dt = \sum_{U_{s}^{*} \subset [0, \mathbb{Z}_{n}]} \left(\int_{U_{s}^{*}} f(t) dt \right)$$
$$= \sum_{i=n}^{\infty} 2^{i-n} \cdot \frac{1}{3} m_{i} \mathbb{Z}_{i}$$
$$= \sum_{i=n}^{\infty} 2^{i-n} \mathbb{Z}_{i} \frac{3r_{i-1} - 2r_{i}}{1 - \sum_{j=1}^{i-1} r_{j}}$$

By lemma 2.3(i), $\ell_i = \prod_{j=1}^{i} \lambda_j = \frac{1}{3^i} (1 - \sum_{j=1}^{i-1} r_j)$. Therefore, by lemma 2.3 (ii),

$$(16) = \sum_{i=n}^{\infty} 2^{i-n} \frac{1}{3^{i}} (3r_{i-1} - 2r_{i})$$

$$= 2^{-(n-1)} \sum_{i=n}^{\infty} \left\{ \left(\frac{2}{3}\right)^{i-1} r_{i-1} - \left(\frac{2}{3}\right)^{i} r_{i} \right\}$$

$$= 2^{-(n-1)} \lim_{k \to \infty} \left\{ \left(\frac{2}{3}\right)^{n-2} r_{n-1} - \left(\frac{2}{3}\right)^{k} r_{k} \right\}$$

$$= \frac{r_{n-1}}{3^{n-1}}$$

$$= \frac{1}{3^{n-1}} 3^{n-1} (1 - 3\lambda_{n}) \ell_{n-1}$$

 $= \ell_{n-1} - 3 \ell_n.$

Hence by (15), we have the statement of the lemma.

Let $I_{\alpha}^{n} = [a_{\alpha}^{n}, b_{\alpha}^{n}].$

LEMMA 4.4. For any α , $\beta \in \Delta_n^0$,

$$\int_{I_a^n} f(t) dt = \int_{I_a^n} f(t) dt.$$

PROOF: By the definition of $\mathscr{C}(s)$ and f(t), the statement is clear because $f(t+a_{\alpha}^{n})=f(t+a_{\beta}^{n})$ for any $0 \le t \le b_{\alpha}^{n}-a_{\alpha}^{n}=b_{\beta}^{n}-a_{\beta}^{n}$.

PROOF OF PROPOSITION 4.1: What we have to show is that for any $n \ge 0$ and $\alpha \in \Delta_n$,

$$g_0(I_{o\alpha}^{n+1})=I_{\alpha}^n, \qquad g_1(I_{1\alpha}^{n+1})=I_{\alpha}^n.$$

We shall prove them by induction on n. When n=0, it suffices to show that;

(17) $g_0(I_0^1) = I^0, \quad g_1(I_1^1) = I^o.$

Since g_0, g_1 are monotonically increasing and $I_0^1 = [0, \ell_1], I_1^1 = [1 - \ell_1, 1]$, by the definition of g_0, g_1 and lemma 4.3, we have

$$\begin{cases} g_0(0), & g_0(\ell_1) = 1 \\ g_1(1 - \ell_1) = 0, & g_1(1) = 1. \end{cases}$$

This means (17).

Assume that statement be true for n-1. It is enough to show that;

(i) $g_0(a_{0a}^{n+1}) = a_a^n$ (ii) $g_0(b_{0a}^{n+1}) = b_a^n$ (iii) $g_1(a_{1a}^{n+1}) = a_a^n$ (iv) $g_1(b_{1a}^{n+1}) = b_a^n$.

Let $\alpha = \alpha' \alpha_n$. Then, by the hypothesis of induction,

$$g_0(I_{0\alpha'}^n) = I_{\alpha'}^{n-1}, \qquad g_1(I_{1\alpha'}^n) = I_{\alpha'}^{n-1}.$$

Namely;

(18)
$$\begin{array}{c} g_0(a_{0a'}^n) = a_{a'}^{n-1}, \quad g_0(b_{0a'}^n) = b_{a'}^{n-1}, \\ g_1(a_{1a'}^n) = a_{a'}^{n-1}, \quad g_1(b_{1a'}^n) = b_{a'}^{n-1}. \end{array}$$

First, we assume $a_n=0$. Since $a_{0\alpha}^{n+1}=a_{0\alpha'}^n$, and $a_{\alpha}^n=a_{\alpha'}^{n-1}$, (i) is clear by (18). By lemma 4.3 and lemma 4.4, we have,

A. Sannami

$$g_{0}(b_{0\alpha}^{n+1}) = \int_{0}^{b_{0\alpha}^{n+1}} (f(t)+3)dt$$

= $\int_{0}^{a_{0\alpha}^{n+1}} (f(t)+3)dt + \int_{I_{0\alpha}^{n+1}} (f(t)+3)dt$
= $a_{\alpha}^{n} + \alpha_{n}$
= $a_{\alpha}^{n} + (b_{\alpha}^{n} - a_{\alpha}^{n})$
= b_{α}^{n} .

That proves (ii). The similar argument with g_1 gives (iii) and (iv).

Suppose $\alpha_n = 1$. Since $b_{0\alpha}^{n+1} = b_{0\alpha'}^n$ and $b_{\alpha}^n = b_{\alpha'}^{n-1}$, (ii) is clear. As to (i), we have,

$$g_{0}(a_{0a}^{n+1}) = \int_{0}^{a_{0a}^{n+1}} (f(t)+3)dt$$

= $\int_{0}^{b_{0a}^{n+1}} (f(t)+3)dt - \int_{a_{0a}^{n+1}}^{b_{0a}^{n+1}} (f(t)+3)dt$
= $b_{a}^{n} - \nu_{n}$
= $b_{a}^{n} - (b_{a}^{n} - a_{a}^{n})$
= a_{a}^{n} .

That shows (i). The similar argument with g_1 gives (iii) and (iv).

Acknowledgement: The author would like to thank J. Palis for his helpful comments.

References

[L] P. LARSSON, The difference set of two Cantor sets, Thesis-Uppsala University (1991).

- [MO] P. MENDES, F. OLIVEIRA, On the topological structure of the arithmetic sum of two Cantor sets, (preprint).
- [P] J. PALIS, Fractional dimension and homoclinic bifurcations, Colloquium-Hokkaido University (Ocotber, 1988).
- [PM] J. PALIS, W. de MELO, Geometric Theory of Dynamical Systems, Springer-Verlag (1982).
- [PT] J. PALIS, F. TAKENS, Hyperbolicity and the creation of homoclinic orbits, Annals of Math. 125 (1987), 337-374.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060 Japan