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\S 0. Introduction

Our purpose of this paper is the determination of KO-theory of the
compact irreducible Hermitian symmetric spaces. The spaces are
classified by E. Cartan as follows:

AIII M_{m,n}=U(m+n)/(U(m)\cross U(n))

BDIQ_{n} =SO(n+2)/(SO(n)\cross SO(2)) (n\geq 3)

CI Sp(n)/U(n) (n\geq 3)

EIII SO(2n)/U(n) (n\geq 4)

EIII =B/(Spin(10) \cdot T^{1} ) (Spin(10)\cap T^{1}\cong Z_{4})

EVII =E_{7}/(B\cdot T_{1}) (B\cap T^{1}\cong Z_{3}) .

Bott showed their cohomology rings have no torsion and no odd
dimensional part. The integral cohomology rings are determined by [2],
[9] and [10], while the actions of the squaring operations on them are
determined in [5]. In [6], we compute the KO-theory of M_{m,n} . Here we
show:

THEOREM 1. Let X be a compact irreducible Hermitian symmetric
space, then its Atiyah-Hirzebruch spectral sequence for KO^{*}(X) :

E_{r}^{*,*}(X)\Rightarrow KO^{*}(X)

has nontrivial differential d_{r} only for r=2 .

Let H^{*}(X) be the modulo 2 cohomology ring of X. When the odd
dimensional parts of H^{*}(X) are trivial, S^{2}qSq(2=S^{3}qSq)1 vanishes on
H^{*}(X) , and (H^{*}(X), Sq)2 is a differential module. For the proof of TheO-
rem 1 we compute the (co)homology group H(H^{*}(X),\cdot Sq^{2}) , which is
isomorphic to E_{3}^{*,-1}(X) , and show the differentials d_{r}(r\geq 3) are trivial
for each X.

By Theorem 1, KO^{*}(X) is obtained from E_{3}^{*,*}(X) . Consequently the
groups H^{*}(X) and H(H^{*}(X), Sq)2 determine KO^{*}(X) in the following
corollary.



104 A. Kono and S. Hara

COROLLARY 2. The KO^{i}(X) is given by the following table:

where

t_{\delta}=\dim_{Z_{2}}\oplus_{i\equiv 28(mod 4)}H^{i}(X)

s_{\epsilon}=\dim_{z_{2}}\oplus_{i\equiv 2\epsilon(mod 8)}H^{i}(H^{*}(X) : s_{q}^{2}) .

We discribe H^{*}(X) , H(H^{*}(X):Sq)2 , t_{\delta} and s_{\epsilon} for each X later.

\S 1. Preliminaries

In this section we recall the result of our previous papers and prepare
a lemma for the proof of the theorem.

LEMMA 1. 1. Let X be a CW complex of finite type, such that its
cohomology has no torsion and is concentrated in even dimensions, and let
E_{r}^{*,*} be the Atiyah-Hirzebruch spectral sequence for KO-theory.

(1) We have an isomorphism:

\iota:E_{3}^{*,q}arrow H(H^{*}(X);\cong Sq)2 , q\equiv-1 (mod 8).

(2) Suppose there is a nontrivial differential d_{r} : E_{r}^{*,*}arrow E_{r}^{*+r,*+1-r}

(r\geq 3) . For the smallest r(E_{r}^{*,*}=E_{3}^{*,*}) , the next conditions are
satisfied.
(i) 1-r\equiv-1 (mod 8).
(ii) If p is the smallest integer such that d_{r}(E_{r}^{p,*})\neq\{0\} , there is

an element x\in E_{r}^{p,0} such that \eta\cdot x\neq 0 and \eta\cdot
d_{r}x\neq 0 , where \eta is the

generator of the coefficient group KO^{-1}\cong Z_{2} .
(iii) \iota(\eta\cdot x) is indecomposable as a element of H(H^{*}(X)\sim. Sq)2 .

(3) Moreover if X is a Hopf space, H(H^{*}(X);Sq)2 is a Hopf alge-
bra and, in (2), \iota(d_{r}x) is a primitive element.

PROOF: (1). This is given in [3].
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(2). (i) and (ii) are demonstrated in [6]. (iii). Suppose \eta\cdot x is a
decomposable element. It is written as \sum\eta\cdot x’x’ with x’x’\in E_{r}^{*,0} and deg
x’ , deg x’<\deg x . By the assumption on p, d_{r}x’=d_{r}x’=0 . We obtain
d_{r}x=\Sigma\eta\cdot d_{r}(x’)x’+\Sigma\eta\cdot x’d_{r}(x’)=0 . This is a contradicitn. Thus \eta\cdot x\in

E_{r}^{*,-1} is an indecomposable element of the algebra E_{r}^{*,*} . Let A be
H(H^{*}(X):Sq)2 . Because H^{*}(X) has trivial odd dimensional parts, Sq2

acts as a derivation on it and its homology group A is an algebra. The
product of A is compatible with that of E_{r}^{*,*} . that is, the next diagram is
commutative:

E_{r}^{*,0}(X)\otimes E_{r}^{*,-1}(X)arrow\chi E_{r}^{*,-1}(X\cross X) arrow E_{r}^{*,-1}(X)
\Delta^{*}

(1–1) \downarrow\pi\otimes\iota \downarrow\cong \iota\downarrow\cong

A\otimes A
arrow\cong H(H^{*}(X\cross X)’. Sq^{2})arrow\Delta^{*} A,

where \chi is the external product, \Delta is the diagonal map, and \pi is the natu-
ral projection:

E_{r}^{*,0}(X)=E_{3}^{*,0}(X)\cong Ker[Sq^{2}\pi_{2} : H^{*}(X : Z)arrow H^{*+2}(X)]arrow H(H^{*}(X);Sq^{2}) .

( \pi_{2} is the modulo 2 reduction H^{*}(X;Z)arrow H^{*}(X). ) The map \pi\otimes\iota is
epimorphic. This proves that: if \eta\cdot x is indecomposable then \iota(\eta\cdot x) is
also indecomposable.

(3). Since H^{*}(X) is a Hopf algebra and Sq2 is a derivation and com-
mutes with the coproduct, A has a Hopf algebra structure. Let \emptyset :
E_{r}^{*,*}(X)arrow E_{r}^{*,*}(X\cross X) be the map induced by the multiplication of X.
Consider the commutative diagram:

E_{r}^{*-r}(X)arrow\emptyset E_{r}^{*,1-r}(X\cross X)

\uparrow d_{r} \uparrow d_{r}
\searrow\eta .

(1–2) E_{r}^{*,0}(X)arrow\emptyset E_{r}^{*,0}(X\cross X) E_{r}^{*,-r}(X\cross X)

\searrow\eta .
E_{r}^{*,-1}

arrow\searrow\eta\emptyset\cdot E_{r}^{*,-1}(X\cross X)\uparrow d_{r}

As the external product map \chi is an epimorphism by the diagram (1

-1), \phi(\eta\cdot x)\in E_{r}^{*,-1}(X\cross X) can be expressed as:
\phi(\eta\cdot x)=\eta\cdot x\otimes 1+1\otimes\eta\cdot x+\Sigma x’\otimes x’ (x’\in E_{r}^{*,-1}(X))

(x is omitted.) By assumption on p, d_{r}x^{r}=d_{r}x’=0 , thus we have d_{r}\phi(\eta\cdot x)

=d_{r}(\eta\cdot x)\otimes 1+1\otimes d_{r}(\eta\cdot x) and \eta\cdot d_{r}\phi(x)=\eta\cdot(d_{r}x\otimes 1+1\otimes d_{r}x) . Since the
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multiplication by \eta:E_{r}^{*,1-r}(X\cross X) -arrow E_{r}^{*,-r}(X\cross X) is a monomorphism,
we obtain d_{r}\phi(x)=d_{r}x\otimes 1+1\otimes d_{r}x=\phi(d_{r}x) . It follows that \iota(d_{r}x) is primi-
tive as an element of A.

\S 2. Type CI, DIII and BDI

In this section we show the collapsing of the Atiyah-Hirzebruch spec-
tral sequence for the spaces of the classical types. (For the case of M_{m,n} ,
it is done in [6].)

First we consider the space of type CI, Sp(n)/U(n) . Recall that the
modulo 2 cohomology of Sp(n)/U(n) is:
(2–1) H^{*}(Sp(n)/U(n))\cong\wedge(c_{1}, c_{2^{ }},\cdots,c_{n}) ,

where c_{i} is the i -th Chern class.
Define the differential submodules M_{j} of H^{*}(Sp(n)/U(n)) by

M_{j}=\wedge(c_{2j}, c_{2j+1}’) ,

where c_{2j+1}’=Sqc_{2j}=c_{2j+1}+2c_{2j}c_{1} , j\geq 1 . Let m=[n/2] , then we have

H^{*}(Sp(n)/U(n))\cong\{
\wedge(c_{1}, c_{2m})\otimes M_{1}\otimes M_{2}\otimes\cdots\otimes M_{m-1} , if n=2m,
\wedge(c_{1})\otimes M_{1}\otimes M_{2}\otimes\cdots\otimes M_{m} , if n=2m+1.

As H(M_{j} ; S^{2}q)\cong\wedge([c_{2i}c_{2i+1}’]) , we have :
(2–2)

H(H^{*}(Sp(n)/U(n));Sq)2\cong\{
\wedge([c_{1}], [c_{2}c_{3}’], \cdots,[c_{2m-2}c_{2m-1}’]) , if n=2m,
\wedge([c_{1}], [c_{2}c_{3}’], \cdots,[c_{2m}c_{2m+1}’]) , if n=2m+1.

It is easy to see the case for n=\infty

H(H^{*}(Sp/U) ; Sp^{2})\cong\wedge([c_{1}], [c_{2}c_{3}’], \cdots,[c_{2j}c_{2j+1}’], \cdots) .

Since Sp/U has a homotopy commutative Hopf space structure (in fact, it
is an infinite loop space) and all generators have the form of [c_{2j}c_{2j+1}’] ,
whose degrees are in 8j+2 . By Lemma 1. 1, if the Atiyah-Hirzebruch
spectral sequence has nontrivial differentials d_{r} , for the smallest r , there
must be elements of H(H^{*}(Sp/U);Sq)2 , x , y , corresponding to the source
and the target of d_{r} respectively, such that deg y - deg x=r\equiv 2 (mod 8)
and x is a generator and y is a primitive element. But, as the all primi-
tive elements are in the dimensions of the generators [Prop. 4. 23, 8], that
is impossible. Thus E_{r}^{*,*}(Sp/U) collapses for r\geq 3 . Since the canonical
map E_{r}^{*,*}(Sp/U) -arrow E_{r}^{*,*}(Sp(n)/U(n)) is an epimorphism. E_{r}^{*,*}(Sp(n)/

U(n)) , r\geq 3 collapses. Thus we have:
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THEOREM 2. 1. The Atiyah-Hirzebruch spectral sequence for KO the
ory of Sp(n)/U(n) collapses for r\geq 3 and

E_{\infty}^{*,-1}(Sp(n)/U(n))\cong\wedge(x_{2}, x_{10}, \cdots,n_{k+2}) ,

where k=[ \frac{n-1}{2}] and deg x_{i}=i .

Next we consider the space of type Dili, SO(2n)/U(n). It is known
that ([5]):

(2–3) H^{*}(SO(2n)/U(n))\cong\triangle(e_{2}, e_{4}, \cdots,e_{2n-2}) , dege_{i}=i

where e_{2i^{2}}=e_{4i} , and e_{2j}=0(j\geq n) , and the action of Sq2 is given by Sqe_{2i}=2

i\cdot e_{2i+2} .
Define the differential submodules M_{i} of H^{*}(SO(2n)/U(n)) by

M_{i}=Z_{2}\langle 1, e_{4i-2}, e_{4i}, e_{8i-2}’\rangle ,

where e_{8i-2}’=e_{4i-2}e_{4i}+e_{8i-2} . Then H^{*}(SO(2n)/U(n)) splits as

H^{*}(SO(2n)/U(n))=\{
M_{1}\otimes M_{2}\otimes\cdots\otimes M_{m-1}\otimes\wedge(e_{4m-2}) if n=2m,
M_{1}\otimes M_{2}\otimes\cdots\otimes M_{m} if n=2m+1 .

Using Sqe_{4i-2}=e_{4i}2 , Sq^{2}e_{8i-2}’=0 , we get H(M_{i} ; Sq^{2})=Z_{2}\langle 1, [e_{8i-2}]\rangle . Thus
we obtain

(2–4)

H(H^{*}(SO(2n)/U(n));Sq)2=\{
\triangle([e_{6}’], [e_{14}’], \cdots,[e_{8m-10}’], [e_{4m-2}]) , if n=2m,
\triangle([e_{6}’], [e_{14}’], \cdots , [e_{8m-2}’]) , if n=2m+1 .

On the other hand, since e_{8i-2^{2}}’=Sq(2e_{8i-6}e_{8i}+e_{16i-6}) , we have [e_{8i-2}’]^{2}=0 ,

and the algebra of (2–4) is an external algebra.
Now we show the Atiyah-Hirzebruch spectral sequence E_{r}^{*,*} collapses

for r>3 . As the similar way for the type CI, consider the case n=\infty ,

then the space SO/U is a Hopf space and H((H^{*}(SO(2n)/U(n)):Sq)2\cong

\bigwedge_{j\geq 1}([e_{8j-2}^{r}]) . Since the generators and primitives are concentrated in the
degrees \{8j-2\} , by Lemma 1. 1, there is no nontrivial differential d_{r} on
E_{r}^{*,*}(SO/U) for (r>3) . For finite n, consider the map

E_{r}^{*,*}(SO/U)arrow E_{r}^{*,*}(SO(2n)/U(n)) ,

which is induced by inclusion SO(2 n)/U(n) -arrow SO/U . The elements
[e_{8j-2}’] in (2–4) is in the image of this map. Therefore the possible

nontrivial differential in the minimal degree occurs only on [e_{4m-2}] . We
show the next lemma later.



108 A. Kono and S. Hara

LEMMA 2. 2. [e_{4m-2}]\in E_{3}^{*,-1}(SO(4m)/U(2m)) is a permanent cycle.
This completes the proof of this theorem.

THEOREM 2. 3. The Atiyah-Hirzebruch spectral sequence for KO the
o\eta of SO(2n)/U(n) collapses for r\geq 3 and

E_{\infty}^{*,-1}(SO(2n)/U(n))\cong\{
\wedge(n, x_{14}, \cdots,jhm-10, y_{4m-^{\underline{n}}}) , if n=2m,
\wedge(m, x_{14}, \cdots,x_{8m-2}) , if n=2m+1

where degx_{i}=i and deg y_{i}=i.
Lastly we consider the space of type BDI:

Q_{n}=SO(n+2)/(SO(n)\cross SO(2))

Let t\in H^{2}(BSO(2);Z) be the canonical generator and put t=\iota^{*}(1\cross t)\in

H^{*}(Q_{n},\cdot Z) , where \iota comes from the fibration:

Q_{n}arrow BO(n)\cross BO(2)\iota – BO(n+2) .

When n=2m, let \chi\in H^{2m}(BSO(2m);Z) be the Euler class. There is an
element s_{2m}\in H^{2m}(Q_{2m} ; Z) such that 2s_{2m}=\iota^{*}(\chi X1+1\cross t^{n}) . The same
symbol s_{2m}\in H^{2m}(Q_{2m}) denotes its modulo 2 reduction. When n=2m-1 ,
s_{2m}\in H^{2m}(Q_{2m-1}) denotes its image by the map induced by the inclusion i :
Q_{2m-1}arrow Q_{2m} .

It is known that ([5]):

(2–5) H^{*}(Q_{n})=

\prime z_{2}[t, s_{4m}]/(t^{2m+1}, s_{4m^{2}}-s_{4m}t^{2m}) , if n=4m,
Z_{2}[t, s_{4m}]/(t^{2m}. s_{4m^{2}}) , if n=4m-1 ,
Z_{2}[t, s_{4m-2}]/(t^{2m}, s_{4m-2^{2}}) , if n=4m-2,

\backslash Z_{2}[t, s_{4m-2}]/(t_{\backslash }^{2m-1},s_{4m-2^{2}}) , if n=4m-3.

and

s_{q}^{2}s_{2k}=(k+1)s_{2k}t .

From this, we can easily compute the Sq2 cohomology of them.

(2–6) H(H^{*}(Q_{n}):Sq)2=

\wedge[t^{2m}s_{4m}]) , if n=4m,
\wedge[t^{2m-1}]) , if n=4m-1 ,
\wedge[t^{2m-1}] , [s_{4m-2}]) , if n=4m-2 ,

-\wedge([s_{4m-2}]) , if n=4m-3.

In the cases other than n=4m-2 , it is trivial that the Atyah-
Hirzegruch spectral sequence E_{r}^{*,*}(r\geq 3) collapses. If n=4m-2 , the
inclusion map i:Q_{4m-2}arrow Q_{4m-1} maps [t^{2m-1}] to [t^{2m-1}] , thus we see [t^{2m-1}]



KO-theory of Hermitian symmetric spaces 109

is a permanent cycle. Therefore it is enough to show that:

LEMMA 2. 4. In H(H^{*}(Q_{4m-2});Sq^{2}) , [s_{4m-2}] is a permanent cycle.
We demonstrate it later. Thus we have

THEOREM 2. 5. The Atiyah-Hirzebruch spectral sequence for KO the
ory of Q_{n} collapses for r\geq 3 and

-\wedge(z_{8m}) ,
\wedge(x_{4m-2}) ,

E_{\infty}^{*,-1}(Q_{n})\cong

\wedge(x_{4m-2}, y_{4m-2}) ,
-\wedge(y_{4m-2}) ,

if n=4m,

if n=4m-1,

if n=4m-2,

if n=4m-3 .

where degx_{i}=degy_{i}=degz_{i}=i

Now we prove Lemma 2. 2 and Lemma 2. 4 simultaneously.

Proof OF LEMMA 2. 2. AND LEMMA 2. 4: Consider the diagram:

SO(4m)/U(2m-l)xU(l) arrow q SO(4m)/U(l)
p\downarrow

Q_{4m-2}=SO(4m)/SO(4m-2)\cross SO(2)

where p and q are the canonical maps. It is easy to see that H^{*}(q) is an
injection and H^{*}(SO(4m)/U(2m-1)\cross U(1))=H^{*}(SO(4m)/U(2m))\otimes Z_{2}[t]/

(t^{2m}) , degt=2 .
Apply H(H^{*}( ); Sq)2 to that diagram:

\wedge([e_{6}’], \cdots,[e_{8m-10}’], [e_{4m-2}])\otimes\wedge([t^{2m-1}])\underline{q^{* }}\wedge([e_{6}’],\cdots,[e_{8m-10}’], [e_{4m-2}])

p^{*}\uparrow

\wedge([t^{2m-1}], [s_{4m-2}]) .

Here p^{*} and q^{*} are monomorphisms, and by [5],

p^{*}s_{4m-1}= \sum_{i=0}^{2m-2}e_{4m-2-2i}t^{i}

=e_{4m-2}+ \sum_{i=0}^{m-2}s_{q}^{2}(e_{4m-6-4i}t^{2i+1}) .

Thus we obtain p^{*}[s_{4m-2}]=[e_{4m-2}] , and we can take t so as satinfy p^{*}t=t .
Suppose there is a nontrivial differential on E_{r}^{*,*}(Q_{4m-2})(r\geq 3) . Then,

by the differential, [s_{4m-2}] corresponds to [t^{2m-1}][s_{4m-2}] . Thus [e_{4m-2}] cor-
responds to [t^{2m-1}][e_{4m-2}] in H(H^{*}(SO(4m)/U(2m-1)\cross U(1));Sq)2 . On
the other hand, [e_{4m-2}]\in{\rm Im} q^{*} . but [t^{2m-1}][e_{4m-2}]\not\in{\rm Im} q^{*} , this is a contradic-



110 A. Kono and S. Hara

tion. Therefore [s_{4m-2}] is a permanent cycle.
By the same way, we can see the [e_{4m-2}] is a permanent cycle.

\S 3. Exceptional types

The integral cohomology ring of EIII is obtained in [9], and the
modulo 2 reduction is:
(3–1) H^{*}(EIII)=Z_{2}[t, w]/(t^{9}+w^{2}t, w^{3}+w^{2}t^{4}+wt^{8}) ,

where deg w=8 and deg t=2, and by [5], Sq2w wt+t^{5} .
Let w’=w+t^{4} . then

H^{*}(EIII)=Z_{2}[t, w’]/(’w^{2}t’, w^{3}+t^{12}) , with Sqw’=w’t2.

Thus we have

(3–2) H(H^{*}(EIII);S^{2}q))=Z_{2}[[w^{2}]’]/([w^{2}]^{3}’) .

Its generators exist only in the degree 0 modulo 8. Lemma 1. 1 assert
that the Atiyah-Hirzebruch spectral sequence collapses. We obtain:

THEOREM 3. 1. The Atiyah-Hirzebruch spectral sequence for KO the
ory of EIII collapses for r\geq 3 and

E_{\infty}^{*.-1}(EIII)\cong Z_{2}[x_{16}]/(x_{16^{3}}) ,

where degx_{16}=16 .

Lastly we consider the case EVII. From the result of [10], we have
(3–3) H^{*}(EVII)=Z_{2}[u, v, w]/(\mathcal{U}_{-}^{14}v^{2}w^{2}) ,

where deg u=2 , deg v=10 , deg w=18 , and the actions of cohomology
operations are determined in [5],

Sqv=02 , S^{4}qv=vu^{2}+u^{7} , S^{2}qv=w+vu^{4}+u^{9} ,
s_{qw=u^{10}}^{2} . s_{qw=vu^{6}+_{\mathcal{U}_{-}^{11}}}^{4} s_{qw=vu^{8}+u^{13}}^{8} . s_{qw=vu^{12}}^{16} .

Let w^{r}=w+u^{9} . then

H^{*}(EVII)=Z_{2}[u, v, w’]/(u. v. w^{2})142’ , with Sqv=02 and Sqw’=02 .

Thus we have

(3–4) H(H^{*}(EVII);S^{2}q))=\wedge([u^{13}], [v], [w’]) .

In this algebra the generators are in degrees 26, 10 and 18. So we cannot
apply Lemma 1. 1 directly to this case. To use the Hopf algebra struc-
ture, consider a generating map
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g:EVIIarrow\Omega E_{7}

which makes EVII a generating variety of \Omega E_{7} . In [1], Bott showes:

PROPOSITION 3. 2. Im [ g^{*}: H_{*} (EVII)-\rightarrow H_{*}(\Omega E_{7}) ] generates the
Pontrjagin ring.

On the other hand, \Omega E_{7} is a homotopy commutative Hopf space and
H_{*}(\Omega E_{7}) is completely given in [7]:

PROPOSITION 3. 3.
(1) H_{*}(\Omega E_{7})\cong\wedge(x_{2}, x_{4}, x_{8})\otimes Z_{2}[x_{10},x_{14}, x_{16}, x_{18}, x_{22}, x_{26}, x_{34}] .
(2) For the coproduct \phi,

\phi x_{4}=x_{4}\otimes 1+x_{2}\otimes x_{2}+1\otimes x_{4} ,
\phi x_{8}=x_{8}\otimes 1+x_{2}x_{4}\otimes x_{2}+x_{2}\otimes x_{2}x_{4}+1\otimes x_{8} ,

\phi x_{16}=x_{16}\otimes 1+x_{2}x_{4}x_{8}\otimes x_{2}+x_{4}x_{8}\otimes x_{4}+x_{2}x_{8}\otimes x_{2}x_{4}+x_{8}\otimes x_{8}

+x_{2}x_{4}\otimes x_{2}x_{8}+x_{4}\otimes x_{4}x_{8}+x_{2}\otimes x_{2}x_{4}x_{8}+1\otimes x_{16} .

Other generators are primitive.
(3) The dual operations are completely determined by:

S^{2}q_{*}x_{4}=x_{2} , Sq_{*}^{2}x_{8}=x_{2}x_{4} , Sq_{*}x_{16}=x_{14}+2x_{2}x_{4}x_{8} , Sq_{*}x_{22}=x_{10^{2}}2 .
s_{q_{*}x_{34}=x_{16^{2}}}^{2} .

s_{q_{*}x_{8}=x_{4}}^{4} , s_{q_{*}x_{14}=x_{10}}^{4} , s_{q_{*}x_{16}=x_{4}x_{8}}^{4} , s_{q_{*}x_{26}=x_{22}}^{4} ,
Sq_{*}^{8}x_{16}=x_{8} , s_{q_{*}x_{18}=x_{10}}^{8} , s_{q_{*}x_{22}=x_{14}}^{8} , s_{q_{*}x_{26}=x_{18}}^{8} ,

otherwise, S^{2^{i}}q_{*}x_{j}=0 ,

We can easily compute its dual Hopf algebra from this. Let w_{i} be the
dual element of x_{i} for the monomial basis of x_{i} ’s, (exceptionally w_{32} be the
dual to x_{16}^{2}).

PROPOSITION 3. 4.
(1) H^{*}\Omega E_{7}\cong Z_{2}[w_{2}]/(w_{2}^{16})\otimes\Gamma(w_{10}, w_{14}, w_{18}, w_{22}, w_{26}, w_{32}, w_{34}) ,

where \Gamma(w) denotes the divided power algebra which has addtive basis
\{\gamma_{n}(w)\} .

(2) The generators indicated above except w_{32} are primitive.
(3) The cohomology operations are given by:

Sq^{2}w_{2}=w_{2}^{2} . Sq^{2}w_{14}=w_{2}^{8} , Sq^{2}\gamma_{2}(w_{10})=w_{22} , Sq^{2}w_{32}=w_{34} ,
Sq^{4}w_{4}=w_{8} , Sq^{4}w_{10}=w_{14} , Sq^{4}w_{22}=w_{26} ,
Sq^{8}w_{8}=w_{16} , Sq^{8}w_{10}=w_{18} , Sq^{8}w_{14}=w_{22} , Sq^{8}w_{18}=w_{26} .

If x is the dual element of the generator of H_{*}(\Omega E_{7}) , then g^{*}(x) is the
non zero element, because In1g_{*} generates H_{*} ( \Omega E7). We can determine
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g_{*} as follows.
For dimensional reasons, g^{*}(w_{2})=u . Since g^{*}(w_{10})^{2}=g^{*}(w_{10^{2}})=0 , we

have:

(3–5) g^{*}(w_{10})=v .

From this g^{*} is determined, using squaring operations:

g^{*}(w_{14})=g^{*}(S^{4}qw_{10})=Sqg(4*w_{10})=Sqv=vu^{2}+4u^{7}

g^{*}(w_{18})=g^{*}(s_{q}^{8}w_{10})=s_{qg}^{8*}(w_{10})=Sqv=w’+8vu^{4} .(3–8)
g^{*}(w_{22})=g^{*}(S^{8}qw_{14})=S^{8*}qg(w_{14})=S^{8}q(vu^{2}+u^{7})=w’u^{2} .
g^{*}(_{W_{26}})=g^{*}(s_{qw_{22}}^{4})=s_{qg}^{4*}(w_{22})=s_{q(w’u^{2})=w’u^{4}+vu^{8}+u^{13}}^{4} .

By the way, from Proposition 3.4, we get the next isomorphism of the
Hopf algebra.

(3–7)
H(H^{*}(\Omega E_{7}\} ;Sq)2)\cong\wedge([w_{10}], [w_{14}+w_{2}^{7}])\otimes\Gamma([w_{18}], [w_{26}], [\gamma_{2}(w_{22})], [\gamma_{2}(w_{34})]) .

From (3–5) and (3–6), we have the correspondence of elements of Sq2-

cohomology groups.

H(g^{*} : s_{q}^{2})([w_{10}])=[v] ,
(3–8) H(g^{*} ; s_{q}^{2})([w_{18}])=[w’+vu^{4}]=[w’] ,

H(g^{*} ; S^{2}q)([w_{26}])=[w’u^{4}+vu^{8}+u^{13}]=[u^{13}] .

Suppose that there is a nontrivial differential of E_{r}^{*,*}(EVII) . By Lemma
1. 1 and (3–4), it is given by:

d_{r}\alpha=\beta , with deg \alpha=10 or 18 or 26, and deg \beta=28 or 36 or 44.

Because H(g^{*} ; Sq)2 is epimorphic by (3–8), the differential must occur in
the same dimensions of E_{r}^{*,*}(\Omega E_{7}) . Again by Lemma 1. 1, the target must
be primitive. Thus by (3–7), we conclude that:

[\gamma_{2}(w_{22})] is hit by [w_{10}] or [w_{18}] or [w_{26}] .

To show that this is impossible, it is enough to prove that [x_{22^{2}}] is a per-
manent cycle of the dual Atiyah-Hizebruch spectral sequence E_{*,*}^{r}(\Omega E_{7})

for KO_{*}(\Omega E_{7}) . Here, we quote the result on H_{*}(\Omega F_{4}) from [7] again.

PROPOSITION 3. 5. H_{*}(\Omega F_{4})\cong\wedge(x_{2})\otimes Z_{2}[x_{4}, x_{10}, x_{14}, x_{22}] .
Sq_{*}x_{4}=x_{2}2 , s_{q_{*}x_{10}=x_{4-}^{2}}^{2}s_{q_{*}x_{22}=x_{10}^{2}}^{2} .

Thus we have

(3–9) E_{*,*}^{3}(\Omega F_{4})\cong H(H_{*}(\Omega F_{4});S^{2}q_{*})\cong Z_{2}[[x_{14}], [x_{22^{2}}]] .
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As we discussed in Lemma 1. 1, this spectral sequence E_{*,*}^{r}(\Omega F_{4}) collapse

for r\geq 3 , by dimensional reason. So [x_{22^{2}}] is a permanent cycle. By the
canonical inclusion F_{4}arrow i E7, x_{22} maps to x_{22} . Hence [x_{22^{2}}] is a perma-
nent cycle in E_{*,*}^{r}(\Omega E_{7}) . This completes the proof of the next theorem.

THEOREM 3. 6. The Atiyah-Hirzebruch spectral sequence for KO the
ory of EVII collapses for r\geq 3 and

E_{\infty}^{*,-1}(EVII)\cong\wedge(x_{10}, x_{18}, x_{26}) ,

where deg x_{i}=i .

\S 4. Proof of Corollary 2 and lists

Suppose X is a finite complex such that H^{*}(X;Z) has no torsion and
no odd dimensional part. By the similar arguments of Lemma 2. 1 and 2.
2 of [4] we have

(4–1) KO^{2i+1}(X)\cong sZ_{2} ,
KO^{2i}(X) \cong rZ\otimes sZ_{2}

for some r and s , and

rank KO^{0}(X)=rankKO^{-4}(X)=t_{0} ,
(4–2)

rank KO^{-2}(X)=rankKO^{-6}(X)=t_{1} .

By (4–1) the extension of \oplus_{p+q=2i+1}E_{\infty}^{p,q} to KO^{2i+1}(X) is trivial.
Thus if X is a compact irreducible Hermitian symmetric space, we have

\dim_{Z_{2}}KO^{2i+1}(X)=\dim_{Z_{2}}\bigoplus_{p+q=2i+1}E_{\infty}^{p,q}

= \dim_{z_{2}}\bigoplus_{p\equiv 2i+2(mod 8)}E_{\infty}^{p,-1}

= \dim_{z_{2}}\bigoplus_{p\equiv 2i+2(mod 8)}H^{p}(H^{*}(X) ; ^{s_{q}^{2}})

=s_{i+1} .

The proof of Corollary 2 is done.
Now we list the order of KO^{*}(X) , which is determined by t_{8} and s_{\epsilon} as

in Corollary 2.
We prepare a lemma for the cases X=Sp(n)/U(n) and X=SO(2n)/

U(n) . Let R_{n}^{*} be the exterior algebra over Z_{2} defined by

R_{n}^{*}=\wedge(e_{1}, e_{2}, \cdots,e_{n}) , with dege_{i}\equiv 1 (mod 4),

and

\rho(n, i)=\dim\bigoplus_{d\equiv i(mod 4)}R_{n}^{d}.
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Of course, \rho(n, i) equals to \Sigma_{d\equiv i(mod 4)} (\begin{array}{l}nd\end{array}) . But to get more concrete

description, we solve the next equations:

\rho(1,0)=\rho(1,1)=1 , \rho(1,2)=\rho(1,3)=0 ,
\rho(n+1, i)=\rho(n, i-1)+\rho(n, i) .

We have

PROPOSITION 4. 1.
\rho(n, 0)=2^{n-2}+\frac{\sqrt{-1}}{2}(\alpha^{n-2}-\beta^{n-2}) ,

\rho(n, 1)=2^{n-2}+\frac{1}{2}(\alpha^{n-2}+\beta^{n-2}) ,

\rho(n, 2)=2^{n-2}-\frac{\sqrt{-1}}{2}(\alpha^{n-2}-\beta^{n-2}) ,

\rho(n, 3)=2^{n-2}-\frac{1}{2}(\alpha^{n-2}+\beta^{n-2}) ,

where \alpha=1+\sqrt{-1}, \beta=1-\sqrt{-1}, thus we have

From this, in the case X=Sp(n)/U(n) , we get s_{\epsilon} ’s by Theorem 2. 1.
t_{\delta} ’s are obtained by (2–1).

THEOREM 4. 2. For X=Sp(n)/U(n) ,

k=t_{1}=2^{n-1}-

s_{\epsilon}=\rho( [ \frac{n+1}{2}] , \epsilon).
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When X=SO(2n)/U(n) , the next result is obtained by the similar
computation as above from Theorem 2. 3 and (2–3).

THEOREM 4. 3. For X=SO(2n)/U(n) ,

k=t_{1}=2^{n-2} .

s_{\epsilon}=\{

\rho( [ \frac{n}{2}] , 1-\epsilon), if n\equiv 2 (mod 4),

\rho( [ \frac{n}{2}] , -\epsilon), otherwise.

When X=Q_{n} , by (2–5) and Theorem 2. 5, we have

THEOREM 4. 4. For X=Q_{n},
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For EIII, by (3–1) and Theorem 3. 1 and for X=EVII . by
(3–3) and Theorem 3. 6, we have the following table.

THEOREM 4. 5. For the exceptional types,

X t_{0} t_{1} SO s_{1} s_{2} Ss

EIII 15 12 3 0 0 0
EVII 28 28 1 3 3 1
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