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Note on even tournaments whose automorphism groups
contain regular subgroups

Noboru ITO
(Received May 26, 1992)

§1. Introduction

A (0,1)-matrix A of degree v is called a tournament of order v if A
satisfies the following equation

(1) A+A+I=],

where ¢ denotes the transposition, and / and J are the identity and all one
matrices of degree v respectively. In other words, a tournament is the
adjacency matrix of a complete asymmetric digraph.

A tournament A is called even if the inner product of any two distinct
row vectors of A is even.

A permutation matrix P such that P’ AP=A is called an automor-
phism of A. The multiplicative group ®(A) of all automorphisms of A is
called the automorphism group of A.

In the present note we consider a tournament A such that ®(A) con-
tains a regular subgroup ®. In previous two notes we considered the case
where & is cyclic (1) and (2). In such a case A is called a cyclic tourna-
ment. We obtained the following result in (2).

THEOREM. An even cyclic tournament of ovder v exists if and only
if v satisfies ome of the following conditions: (i) v is congruent to 3
modulo 8 and the order of 2 modulo every prime divisor of v is singly
even, wheve an even integer wn is called singly even if n is not divisible by
4; (ii) v is cogruent to 1 modulo 8 and the ovder of 2 modulo every prime
divisor of v is odd.

Now since ® is regular, we label rows and columns of A by elements of &
so that

(2) A=(A(a, b)), where a and b are elements of ®,
and

(3) A(ac, bc)=A(a, b), where ¢ runs over all elements of ®.
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Obviously A is regular, namely each row A(a) of A contains the
same number of 1’s, say 2. Then it holds that

(4) v=2k+1.

Moreover A is completely determined by its first row A(e), where e is the
identity element of ®. We identify A(e) with its support ®, namely the
set of elements a of ® such that A(e, a)=1. So ® consists of £ elements
of &.

In the present note we show that the above mentioned theorem holds
good for an arbitrary group & of order v, provided that we choose ©

normal in ®, namely ® satisfies the condition ¢ '®a=% for every element
a of ®.
We have to leave open the case where 9 is not normal in &.

§ 2.

LEMMA 1. (i) e doe not belong to ©. (ii) For a+e exactly one of
a and a”' belongs to D.

ProOOF. It is straightforward.

We consider the collection ®(*) (namely multiplicity is counted) of
elements of ® of the form ¢ 'd, where both ¢ and d belong to ®. Let

m(a) denote the multiplicity of an element @ of & in ®©(*). Clearly it
holds that m(e)=~r.

LEMMA 2. A tournament A is even if and only if m(a) is even for
every non-identity element a of ©.

ProoF. m(a) equals the inner product (A(e), A(a)).

We say that D is even if m(a) is even for every non-identity elemens
a of ®.

LEMMA 3. If ® is even, then it holds that
(5) EP—k=0  (mod 4).
PROOF. « and @' have the same multiplicity.

By (5) we distinguish two cases: (I) £ is congruent to 1 modulo 4
and (II) £ is divisible by 4.

First we treat the case (I). In the proof of the next lemma we require
the assumption that © is normal in ®.

LEMMA 4. 9D is even if and only if exactly one of a and a* belongs
to D for every mon-identity element a of .
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PrROOF. First assume that both ¢ and «&* belong to ®©. Then we
show that m(a?) is odd. We say that an element d of ® is bad if da™®
does not belong to ®©. Under our assumption we show that the number of
bad d’s is even. Under our assumption we show that the number of bad
d’s is even. Since % is odd in case (I), this implies that m(a?) is odd.
Now since both aa>=a"! and a®?a*=e¢ do not belong to ®, both ¢ and &*
are bad. Moreover, if b is bad and if b#a, &% then &?b' is also bad,
since @67 belongs to ® and a’b 'a~? does not belong to ® by the normal-
ity of D.

Next assume that neither @ nor a® belongs to ®. This time we show
that m(a™?) is odd. Since both ¢ 'a*=a and a?a*=¢ do not belong to 9,
both @' and a2 are bad. If b is bad and if b+a™!, @’ % then a 207! is
also bad, since @ 2b7* belongs to ® and a 26 'a* does not belong to ® by
the normality of 9.

Conversely we assume that exactly one of a and &® belongs to ® for
every non-identity element a of & We notice that every non-identity
element ¢ of ® may be written in the form ¢=4? for some element a of ®,
since ® has odd order. So we may proceed as above and investigate
m(a®). If a belongs to ® and & does not belong to ®, then, since aa =
a”' does not belong to ®, a is bad. Moreover, if ¢ ? is bad, then a* is
also bad, because a*a"?=a? does not belong to ®. If ¢ does not belong to
® and «® belongs to D, then, since a’a *=e does not belong to ®, 4 is
bad. Moreover, if ¢! is bad, then &® is also bad, because @’a *=a does
not belong to 9D.

LEMMA 5. Let ® be even. If an elemens a of & belongs to D, then
a? also belongs to D.

PrOOF. This is immediate by Lemma 4.

LEMMA 6. If there exists a prime divisor p of v such that 2 modulo
p has order divisible by 4 or odd, then there exists no even tournament of
ovder v whose automorphism group containts a regular subgroup.

PrOOF. Assume the contrary. We use the same notation as above.
Let a be an element of ® of order p. Using repeatedly, we see
that a“""" belongs to ©. Now assume that the order of 2 modulo p
equals 4m. Then put n=2m. It follows that «*"=a' belongs to 9,
which is a contradiction. Next assume that the order of 2 modulo p
equals 2m~+1. Then put #=2m+1. It follows that a *""'=a"! belongs to

9P, which is a contradiction.
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THEOREM 1. If the order of 2 is singly evem wmodulo every prime
divisor of v, then there exists a tournament of order v whose automor-
phism group contains a regular subgroup which is isomorphic to an arbi-
trarily given group & of ovder v.

PROOF. Let ¢ and d be elements of . Then we say that d is equiv-
alent to ¢ if and only if there exists a non-negative integer # such that
d=c"?". 1t is easy to see that this is a true equivalence relation.

We show that for every non-identity element @ of & @ and &' belong
to distinct equivalence classes.

Now assume that for some non-identity element a of & both ¢ and a~
belong to the same equivalence class. So there exists a positive integer m
such that ¢"™®"=a"'. Let p be a prime divisor of the order of . Then p
is also a prime divisor of v. Now p divides (—2)"+1. If m is odd, then
the order of 2 modulo p divides m against our assumption. Hence m is
even and we put m=2xn. Now let 2« be the order of 2 modulo p. Then,
by assumption, # is odd. Thus u#+2#n. If 2 is bigger than u, then the
order of 2 modulo p divides 2n—wu. If 2» is less than «, then the order of
2 modulo p divides #—2#n. Since 2n—wu and u#—2#» are odd, we have a
contradiction.

Thus equivalence classes of non-identity elements of & are paired off.

So if we pick up exactly one equivalence class from each pair and form a
union ®, then ® is even by Lemma 4.

REMARK 1. The normality of D is not needed in the proof of Theo-
rem 1. So the following question arises. Does a new order v appear, if
we put aside the normality of © after all?

Secondly we treat the case (II). We notice that %4 is a multiple of 4 in
this case.

1

LEMMA 7. D s even if and only if for every mon-identity element a
of ® both a and a* belong to D, or neither a nor a® belongs to D.

PrROOF. Bad elements in are wanted here. The proof of
goes through.

LEMMA 8. Let ® be even. If an element a of & belongs to D, then
a® also belongs to .

PROOF. This is immediate by Lemma 1.

LEMMA 9. If there exists a prime divisor p of v such that 2 has even
order modulo b, then there exists no even tournament of orvder v whose
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automorphism group contains a regular subgroup.

PROOF. Let 2m be the order of 2 modulo p. Then 2"+1 is divisible
by p. Now assume the contrary and let a be an element of © of order p.
Then by a®"=a"* belongs to ®, which is a contradiction.

THEOREM 2. If the order of 2 wmodulo every prime divisor of v is
odd, then there exists an even tournament of ovder v whose automorphism
group contains a vegular subgroup which is isomorphic to an arbitvarily
given group & of ovder v.

PROOF. Let ¢ and d be elements of & Then we say that d is equiv-
alent to c¢ if and only if there exists a non-negative integer #» such that
d=c*. This is a true equivalence relation.

We show that for every non-identity a of ® a and ' belong to dis-
tinct equivalence classes.

Suppose that for some non-identity element @ of ® &' is equivalent to
a. Then there is a positive integer » such that a®"=a™'. Let p be a
prime divisor of the order of . Then p is also a prime divisor of v. At
any rate 2"+1 is divisible by p. Now let # be the order of 2 modulo p.
Then, by assumption, # is odd. Now 2# is a multiple of %. But this
implies that » is a multiple of %, which is a contradiction.

Now we can complete the proof like [Theorem 1.

REMARK 2. We can make the same question as in Remark 1.
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