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On real hypersurfaces of a complex projective space III
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\S 0. Introduction

Let P_{n}(C) be an n^{-}dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4, and let M be
a real hypersurface of P_{n}(C) . M has an almost contact metric structure
(\phi, \xi, \eta, g) (see, \S 1) induced from the complex structure J of P_{n}(C) .
Many differential geometers have studied M by using the structure (\phi, \xi ,
\eta , g) . We denote by A, R and S, the shape operator, the curvature ten-
sor and the Ricci tensor of type (1, 1) on M, respectively. Typical exam-
ples of real hypersurfaces in P_{n}(C) are homogeneous ones. Takagi ([9])
classified homogeneous real hypersurfaces in P_{n}(C) . Due to his work, we
find that a homogeneous real hypersurface of P_{n}(C) is locally congruent to
one of the six model spaces of type A_{1} , An, B, C, D and E (for details,
see Theorem A).

This paper consists of two parts. In the first part of this paper, we
characterize a homogeneous real hypersurface M of type A_{1} in P_{n}(C) ( ,
that is, a geodesic hypersphere M in P_{n}(C)) in terms of the derivative of
the Ricci tensor S (cf. Theorem 1). In the second part of this paper, we
study real hypersurfaces M in terms of the curvature operator R(X, Y)
of M. In Theorem 2, we investigate M by using the action of R(X, Y)
on the Ricci tensor S . In Theorems 3 and 4, we investigate M by using
the action of R(X, Y) on the shape operator A.

The second author is partially supported by Ishida Foundation.

\S 1. Preliminaries

Let M be an orientable real hypersurface of P_{n}(C) and let N be a unit
normal vector field on M. The Riemannian connections \overline{\nabla} in P_{n}(C) and
\nabla in M are related by the following formulas for any vector fields X and
Y on M :

(1. 1) \tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N ,

(1. 2) \overline{\nabla}_{X}N=-AX ,

where g denotes the Riemannian metric of M induced from the Fubini-
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study metric G of P_{n}(C) and A is the shape operator of M in P_{n}(C) . An
eigenvector X of the shape operator A is called a principal curvature
vector. Also an eigenvalue \lambda of A is called a principal curvature. In
what follows, we denote by V_{\lambda} the eigenspace of A associated with
eigenvalue \lambda . It is known that M has an almost contact metric structure
induced from the complex structure J on P_{n}(C) , that is, we define a tensor
field \phi of type (1, 1) , a vector field \xi and a 1-form \eta on M by g(\phi X, Y)=

G(JX, Y) and g(\xi, X)=\eta(X)=G(JX, N) . Then we have

(1. 3) \phi^{2}X=-X+\eta(X)\xi , g(\xi, \xi)=1 , \phi\xi=0 .

It follows from (1. 1) that

(1. 4) (\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi ,

(1. 5) \nabla_{X}\xi=\phi AX .

Let \tilde{R} and R be the curvature tensors of P_{n}(C) and M, respectively.
Since the curvature tensor \overline{R} has a nice form, we have the following
Gauss and Codazzi equations:

(1. 6) g(R(X, Y)Z, W)=g(Y,Z)g(X, W)-g(X,Z)g(Y, W)
+g(\phi Y,Z)g(\phi X, W)

-g(\phi X,Z)g(\phi Y, W)-2g(\phi X, Y)g(\phi Z, W)

+g(AY,Z)g\{AX ,W)-g(AX,Z)g(AY, W) .

(1. 7) (\nabla_{X}A)Y-(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi .

From (1. 3), (1. 5), (1. 6) and (1. 7) we get

(1. 8) SX=(2n+1)X-3\eta(X)\xi+hAX-A^{2}X .

(1. 9) (\nabla_{X}S)Y=-3\{g(\phi AX, Y)\xi+\eta(Y)\phi AX\}+(Xh)AY

+(hI-A)(\nabla_{X}A)Y-(\nabla_{X}A)AY .

where h=traceA, S is the Ricci tensor of type (1, 1) on M and I is the
identity map.

In the following, we use the same terminology and notations as above
unless otherwise stated. Now we prepare without proof the following in
order to prove our results:

THEOREM A ([9]). Let M be a homogeneous real hypersurface of
P_{n}(C) . Then M is a tube of radius r over one of the following Kaehler
submanifolds :
(A_{1}) hyperplane Pn-i(C), where 0<r<\pi/2 ,
(A2) totally geodesic P_{k}(C)(1\leqq k\leqq n-2) , where 0<r<\pi/2 ,
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(B) complex quadric Q_{n-1} , where 0<r<\pi/4 ,
(C) P_{1}(C)\cross P_{(n-1)/2}(C) , where 0<r<\pi/4 and n(\geqq 5) is odd.
(D) complex Grassmann G_{2,5}(C) , where 0<r<\pi/4 and n=9,
(E) Hermitian symmetric space SO(10)/U(5),

where 0<r<\pi/4 and n=15 .

THEOREM B([7]) . Let M be a real hypersurface of P_{n}(C) . Then the
following are equivalent :

(i) M is locally congruent to one of homogeneous ones of type A_{1}

and A2.
(ii) (\nabla_{X}A)Y=-\eta(Y)\phi X-g(\phi X, Y)\xi for any X, Y\in TM.

THEOREM C([1], [5]) . Let M be a real hypersurface in P_{n}(C) , n\geqq 3 ,
whose Ricci tensor S satisfifies the identity SX=aX+b\eta(X)\xi for some
smooth functions a and b on M (, that is, M is \eta-Einstein). Then M is
locally congruent to one of the following:

(1) a geodesic hypersphere,
(2) a tube of radius r over a totally geodesic P_{k}(C), 0<k<n-1 ,

where 0<r<\pi/2 and \cot^{2}r=k/(n-k-1) ,
(3) a tube of radius r over a complex quadric Q_{n-1} , where 0<r<\pi/4

and \cot^{2}2r=n-2 .

THEOREM D([2]) . Let M be a real hypersurface in P_{n}(C) , n\geqq 3 .
Then the following are equivalent:

(i) M is \eta-Einstein.
(ii) (R(X, Y)S)Z+(R(Y,Z)S)X+(R(Z,X)S)Y=0 for any

X, Y, Z\in TM.

THEOREM E([4]) . Let M be a real hypersurface of P_{n}(C) , n\geqq 3 .
Then the following are equivalent:

(i) The Ricci tensor S of M satisfifies
(\nabla_{X}S)Y=c\{g(\phi X, Y)\xi+\eta(Y)\phi X\} for any X, Y\in TM,
where c is locally constant,

(ii) M is locally congruent to a geodesic hypersphere in P_{n}(C) .

THEOREM F([3]) . Let M be a real hypersurface of P_{n}(C) . Then M
has constant principal curvatures and \xi is a principal curvature vector if
and only if M is locally congruent to a homogeneous real hypersurface.

THEOREM G([1]) . Let M be a real hypersurface in P_{n}(C) on which
\xi is a principal curvature vector with principal curvature \alpha=2\cot 2r. Then
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M is locally congruent to a tube of radius r over a certain Kaehler sub-
manifold \overline{N} in P_{n}(C) .

THEOREM H([8]) . Let M be a real hypersurface of P_{n}(C) . Then
the following are equivalent:

(i) \phi A=A\phi ,
(ii) M is locally congruent to one of homogeneous real hypersurfaces

of type A_{1} and A2.

PROPOSITION A ([7]). If \xi is a principal curvature vector, then the
corresponding principal curvature \alpha is locally constant.

PROPOSITION B([7]) . Assume that \xi is a principal curvature vector
and the corresponding principal curvature is \alpha . If AX=rX for X\perp\xi,

then we have A\phi X=((\alpha r+2)/(2r-\alpha))\phi X.

\S 2. Real hypersurfaces in terms of the derivative the Ricci tensor S

The purpose of this Section is to prove the following

THEOREM 1. Let M be a real hypersurface of P_{n}(C) , n\geqq 3 . Then
the following are equivalent:

(i) The Ricci tensor S of M satisfifies
(2. 1) (\nabla_{X}S)Y=\lambda\{g(\phi X, Y)\xi+\eta(Y)\phi X\} for any X, Y\in TM,

where \lambda is a function on M,

(ii) M is locally congruent to a geodesic hypersphere in P_{n}(C) .

PROOF. Suppose that the condition ( i) holds. Our aim here is to
prove that \lambda is locally constant (cf. Theorem E). From (2. 1), (1, 4) and
(1. 5), we have

(2. 2) (\nabla_{W}(\nabla_{X}S))Y-(\nabla_{\nabla_{W}X}S)Y

=(W\lambda)\{g(\phi X, Y)\xi+\eta(Y)\phi X\}

+\lambda\{\eta(X)g(AW, Y)\xi-\eta(Y)g(AW,X)\xi

+g(\phi X, Y)\phi AW+g(\phi AW, Y)\phi X

+\eta(Y)(\eta(X)AW-g(AW,X)\xi)\} .

Exchanging X and W in (2. 2), we have the following

(2. 3) (R(W, X)S)Y
=(W\lambda)\{g(\phi X, Y)\xi+\eta(Y)\phi X\}

-(X\lambda)\{g(\phi W, Y)\xi+\eta(Y)\phi W\}

+\lambda\{\eta(X)g(AW, Y)\xi-\eta(W)g(AX, Y)\xi
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+g(\phi X, Y)\phi AW-g(\phi W, Y)\phi AX+g(\phi AW, Y)\phi X

-g(\phi AX, Y)\phi W+\eta(Y)(\eta(X)AW-\eta(W)AX)\} .

Let e_{1} , \ldots e_{2n-1} be local fields of orthonormal vectors on M. From (2. 3)
and (1. 3) we find

(2. 4) \sum_{i=1}^{2n-1}g((R(e_{i}, X)S)Y, e_{i})

=(\xi\lambda)g(\phi X, Y)+(\phi X\lambda)\eta(Y)

+\lambda\{\eta(X)\eta(AY)-2\eta(Y)\eta(AX)

+(trA)\eta(X)\eta(Y)-g (A\phi Y. \phi X) \} .

Now note that the left hand side of (2. 4) is symmetric with respect to X
and Y (for details, see the proof of Theorem E). And hence Equation (2.
4) yields

(2. 5) 2(\xi\lambda)g(\phi X, Y)+\eta(Y)(\phi X\lambda)-\eta(X)(\phi Y\lambda)

+3\lambda\{\eta(X)\eta(AY)-\eta(Y)\eta(AX)\}=0 .

Putting Y=\phi Y and contracting with respect to X in (2. 5), we find
2(2n-2)(\xi\lambda)=0 so that

(2. 6) \xi\lambda=0 .

On the other hand, setting Y=\xi and X=\phi W in (2. 5), we see
(\phi^{2}W\lambda)-3\lambda\eta(A\phi W)=0 .

This, together with (1. 3) and (2. 6), shows
W\lambda=3\lambda g(\phi A\xi, W) for any W\in TM , so that

(2. 7) grad \lambda=3\lambda\phi A\xi .

And hence Equation (2. 3) asserts that
(2. 8) (R(W, X)S)Y

=\lambda\{3g(\phi A\xi, W)(g(\phi X, Y)\xi+\eta(Y)\phi X)

-3g(\phi A\xi, X) (g( \phi W. Y) \xi+\eta(Y)\phi W)
+(\eta(X)g(AW_{;}Y)-\eta(W)g(AX, Y))\xi

+g(\phi X, Y)\phi AW-g( \phi W\dagger Y) \phi AX+g(\phi AW, Y)\phi X

-g(\phi AX, Y)\phi W+\eta(Y)(\eta(X)AW-\eta(W)AX\} .

It follows from (1. 3) an (2. 8) that

(2. 9) \sum_{i=1}^{2n-1}g((R(e_{i}, X)S)\xi, \phi e_{i})=-3(2n-3)\lambda g(\phi A\xi, X) .
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On the other hand we have

(2. 10) \sum_{i=1}^{2n-1}g(R(e_{i}, X)S)\xi , \phi e_{i})

= \sum_{i=1}^{2n-1}g(R(e_{i}, X)(S\xi), ( \phi e_{i})-\sum_{i=1}^{2n-1}g(R(e_{i}, X)\xi, S\phi e_{i}) .

Equation (1. 8) shows that

(2. 11) trace AS\phi=0 .

From (1. 3), (1. 6), (2. 10) and (2. 11) we see that

(2. 12) \sum_{i=1}^{2n-1}g((R(e_{i}, X)S)\xi, \phi e_{i})=2n\cdot g(\phi X, S\xi)+g(\phi AX, AS\xi)

+g(SAX, \phi A\xi) .

By virtue of (2. 9) and (2. 12) we get

(2. 13) -3(2n-3)\mbox{\boldmath $\lambda$}\mbox{\boldmath $\phi$}A\mbox{\boldmath $\xi$}=-2n\mbox{\boldmath $\phi$}S\mbox{\boldmath $\xi$}+AS\mbox{\boldmath $\phi$}A\mbox{\boldmath $\xi$}-A\mbox{\boldmath $\phi$}AS\mbox{\boldmath $\xi$}.

Gauss equation (1. 6) tells us that

(2. 14) \sum_{i=1}^{2n-1}g((Re_{i}, \phi e_{i})S)\xi , X)=g(-4n\phi S\xi+2(SA\phi A-A\phi AS)\xi, X) .

On the other hand, from (2. 8) we obtain

(2. 15) \sum_{i=1}^{2n-1}g((R(e_{i}, \phi e_{i})S)\xi, X)=-6\lambda g(\phi A\xi, X) .

In view of (2. 14) and (2. 15) we have

(2. 16) -3\lambda\phi A\xi=-2n\phi S\xi+SA\phi A\xi-A\phi AS\xi .

Equation (1. 8) implies that

(2. 17) SA\phi A\xi=AS\phi A\xi .

Then, from (2. 13), (2. 16) and (2.17) we find

(2n-4)\lambda\phi A\xi=0 so that, since n\geqq 3 ,

(2. 18) \lambda\phi A\xi=0 .

Therefore, from (2. 7) and (2.18) we can conclude that \lambda is locally con-
stant.

Q. E. D.

Motivated by Theorem 1, we prove the following

PROPOSITION 1. Let M be a real hypersurface of P_{n}(C) , n\geqq 3 . Then
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the following inequality holds :

(2. 19) || \nabla S||^{2}\geqq 1/(n-1)\cdot(\sum_{i=1}^{2n-1}g((\nabla_{e_{i}}S)\xi, \phi e_{i}))^{2}\wedge

where S is the Ricci tensor of M and e_{1} , \ldots e_{2n-1} is a local fifield of orth-
onormal frames of M. Moreover, the equality of (2. 19) holds if and only
if M is locally congruent to a geodesic hypersphere of P_{n}(C) .

PROOF. We define the following tensor T on M as:
(2. 20) T(X, Y)=(\nabla_{X}S)Y-\lambda g(\phi X, Y)\xi-\lambda\eta(Y)\phi X ,

where \lambda is a function on M. Calculating the length of T. we get

||T||^{2}=|| \nabla S||^{2}-4\lambda\sum_{i=1}^{2n-1}g((\nabla_{e_{i}}S)\xi, \phi e_{i})+4(n-1)\lambda^{2} ,

so that for any real number \lambda at any point p\in M we obtain the following
inequality

(2. 21) 4(n-1) \lambda^{2}-4\lambda\sum_{i=1}^{2n-1}g((\nabla_{e_{i}}S)\xi, \phi e_{i})+||\nabla S||^{2}\geqq 0 .

Hence the discriminant of (2. 21) shows (2. 19). Due to this discussion, we
find that the equality of (2. 19) implies T=0 , that is, M is locally congru-
ent to a geodesic hypersphere in P_{n}(C) (cf. Theorem 1). Q. E. D.

REMARK 1. The right hand side of (2. 19) can be expressed in terms
of the shape operator A as:

l/(n-l) \cdot \{2n(trA-\eta(A\xi))+\phi A\xi(trA)+tr(\nabla_{\xi}A)A\phi\}^{2}

\S 3. Real hypersurfaces in terms of the curvature operator R(X, Y)

In this Section, we consider the action of the derivation R(X, Y) on
the algebra of tensor fields of a real hypersurface in P_{n}(C) . First of all
we prove

THEOREM 2. Let M be a real hypersurface in P_{n}(C) , n\geqq 3 . Suppose
that M satisfifies
(3. 1) (R(W, X)S)Y=\mu\{\eta(X)(g(W, Y)\xi+\eta(Y)W)

-\eta(W)(g(X, Y)\xi+\eta(Y)X)\} ,

where R and S are the curvature tensor of M and the Ricci tensor of M,
respectively, \mu is a function on M and W, X, Y\in TM.
Then M is a tube of radius r over the following Kaehler submanifolds:
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(i) hype7planeP_{n-1}(C) , where 0<r<\pi/2 ,

(ii) totally geodesic P_{k}(C) , where n=2k+1 and r=\pi/4 .

PROOF. Since the condition ( ii) in Theorem D follows from (3, 1) ,

we can see that our real hypersurface M must be \eta-Einstein. So the rest
of the proof is to check the equation (3. 1) one by one for the three model
spaces of type A_{1} , A2 and B (cf. Theorem C):

Let M be of type A_{1} (which is a tube of radius r ). From (2. 3) we
find that the manifold M satisfies

(3. 2) (R(W. X)S)Y
=\lambda\{\eta(X)g(AW, Y)\xi-\eta(W)g(AX, Y)\xi

+g(\phi X, Y)\phi AW-g ( \phi W. Y) \phi AX

+g( \phi A W. Y) \phi X-g(\phi AX, Y)\phi W+\eta(Y)(\eta(X)AW

-\eta(W)AX)\} .

Let t=\cot r . Then the shape operator A of M is expressed as (cf. [10]):

(3. 3) AX=tX-(1/t)\eta(X)\xi for any X\in TM .

Substituting (3. 3) into the right hand side of (3. 2), we get (3. 1).

Let M be of type A2 (which is a tube of radius r , where \cot 2r=k/

(n-k-l), 0<k<n-1 and 0<r<\pi/2 ). Let t=\cot r . Then M has three
distinct constant principal curvatures t with multiplicity 2k , -1/t with
multiplicity 2n-2k-2 and t-1/t with multiplicity 1 (cf. [10]). Let X\in

V_{t} , Y\in V- 1/t and ||X||=||Y||=1 . Then (3. 1) shows

(3. 4) g((R(X, \xi)S)\xi, X)=g((R(Y, \xi)S)\xi , Y)=\mu .

On the other hand

(3. 5) (R(X, \xi)S)\xi=R(X, \xi)(S\xi)-S(R(X, \xi)\xi) .

Note that (1. 8) implies that

(3. 6) SX=(2n+1+th-t^{2})X for X\in V_{t} ,

(3. 7) S\xi=\{2n-2+h(t-1/t)-(t-1/t)^{2}\}\xi .

It follows from (1. 6), (3. 5), (3. 6) and (3. 7) that

(3. 8) g((R(X, \xi)S)\xi, X)=-t^{2}-th-1 for X\in V_{t} , ||X||=1 .

A similar computation yields

(3. 9) g((R(Y. \xi)S)\xi, Y)=-1/t^{2}+h/t-1 for Y\in V- 1/t , ||Y||=1 .

From (3. 4), (3, 8) and (3, 9) we obtain the following



On real hypersu \gamma faces of a complex projective space III 71

(3. 10) t^{2}+th-1=0 .

We now remark that

(3. 11) h=trA=2kt-(2n-2k-2)/t+t-1/t .

Substituting (3. 11) into the left hand side of (3. 10), we have
(3. 12) t^{2}=(n-k)/(k+1) .

Hence we can get the following equation

k/(n-k-1)=(n-k)/(k+1) ,

which implies that n=2k+1 and t=1 .
In the following, we shall show that the real hypersurface M of type

A2 in the case of n=2k+1 and t=1 satisfies (3. 1). Note that M has three
distict constant principal curvatures 1 with multiplicity 2k , -1 with multi-
plicity 2k and 0 with multiplicity 1. It sufficies to consider the following
in order to check (3. 1):

(3. 13) (R(X, \xi)S)\xi= (the right hand side of (3. 1))
(for X\in V_{+1} or X\in V_{-1} ),

(3. 14) (R(X, \xi)S)Y= (the right hand side of (3. 1))
(for X, Y\in V_{+1} ; X\in V_{+1} , Y\in V_{-1} ; X\in V_{-1} , Y\in V_{+1} or X,

Y\in V_{-1}) ,

(3. 15) (R(X, Y)S)\xi= (the right hand side of (3. 1))
(for X, Y\in V_{+1} ; X\in V_{+1} , Y\in V_{-1} , or X, Y\in V_{-1} ),

(3. 16) (R(X, Y)S)Z= (the right hand side of (3. 1))
(for X, Y, Z\in X_{+1} ; X, Y, Z\in V_{-1} : X, Y\in V_{+1} , Z\in V_{-1} ;
X, Y\in V_{-1} , Z\in V_{+1} ;

X\in V_{+1} , Y\in V_{-1} , Z\in V_{+1} or X\in V_{+1} , X\in V_{-1} , Z\in V_{-1} ).

Here note that the manifold M satisfies

(3. 17) A\xi=0 , SX=2nX (for any X\perp\xi) and S\xi=(2n-2)\xi .

It follows from (1. 6) and (3. 17) that for any X\in V_{+1}

(R(X, \xi)S)\xi=R(X,\xi)(S\xi)-S(R(X, \xi)\xi)

=-2X= (the right hand side of (3. 1)).

This computation shows that the equation (3. 13) holds for X\in V_{+1} . Of
course, we can see that (3. 13) also holds for X\in V_{-1} . Moreover, a simi-
lar computation yields that the equations (3. 14) and (3. 15) hold. Making
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use of (1. 6) and (3. 17), for X, Y. Z\in V_{+1} , we find

(R(X, Y)S)Z=0= (the right hand side of (3. 1)),

which implies that the equation (3. 16) holds for X, Y_{?}Z\in V_{+1} . Of course,
a similar computation asserts that (3. 16) also holds in the other cases.
Therefore we can conclude that the real hypersurface M of type A2 in the
case of n=2k+1 and t=1 satisfies (3. 1).

Let M be of type B (which is a tube of radius r , where \cot^{2}2r=n-2

and 0<r<\pi/4 ). Let t=\cot r=\sqrt{n-1}+\sqrt{n-2} . Then M has three dis-
tinct constant principal curvatures r_{1}=(1+t)/(1-t) with multiplicity n-1 ,
r_{2}=(t-1)/(t+1) with multiplicity n-1 and \alpha=t-1/t with multiplicity 1
(cf. [10]). Note that the following:

(3. 18) r_{1}+r_{2}=-4/\alpha , r_{1}r_{2}=-1 ,

(3. 19) h=\alpha-4(n-1)/\alpha ,

(3. 20) \alpha=2\sqrt{n-2} .

Let X\in V_{r_{1}} , Y\in V_{r_{2}} and ||X||=||Y||=1 . Then (3. 1) shows

(3. 21) (R(X, \xi)S)\xi , X)=g(R(Y. \xi)S)\xi , Y)=\mu .

Equation (1. 8) shows that

(3. 22) SX=(2n+1+r_{1}h-r_{1}^{2})X ,

(3. 23) S\xi=(2n-2+\alpha h-\alpha^{2})\xi .

It follows from (1. 6), (3, 5) , (3. 22) and (3. 23) that

(3. 24) g((R(X, \xi)S)\xi, X)=(1+\alpha r_{1})(-3+\alpha h-\alpha^{2}-r_{1}h+r_{1}^{2}) .

A similar computation yields

(3. 25) g((R(Y, \xi)S)\xi, Y)=(1+\alpha r_{2})(-3+\alpha h-\alpha^{2}-r_{2}h+r_{2}^{2}) .

From (3. 21), (3. 24) and (3. 25) we have

(3. 26) h-(r_{1}+r_{2})+3\alpha-\alpha^{2}h+\alpha^{3}+\alpha h(r_{1}+r_{2})-\alpha(r_{1}^{2}+r_{1}r_{2}+r_{2}^{2})=0 .

In view of (3. 18), (3. 19), (3. 20) and (3. 26) we obtain the following

4(4n-5)(n-2)+12(n-2)=0 so that, since n\geqq 3 ,

n=1/2 , which is a contradiction. Q. E. D.

Here we define the tensor T on M as:
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T(X, Y, W)=(R(W. X)S)Y-\mu\{\eta(X)(g(W, Y)\xi+\eta(Y)W)-\eta(W)(g(X ,
Y)\xi+\eta(Y)X)\} .

By the same discussion as in Proposition 1, we get

PROPOSITION 2. Let M be a real hypersurface of P_{n}(C) , n\geqq 3 . Then
the following inequality holds:

(3. 27) ||RS||^{2}\geqq 2/(n-1)\cdot ( \sum_{i=1}^{2n-1}g((R(e_{i}, \xi)S)\xi, e_{i}))^{2}

where R and S are the curvature tensor of M and the Ricci tensor of M,
respectively and e_{1} , ... e_{2n-1} is a local fifield of orthonormal frames of M.
Moreover, the equality of (3. 27) holds if and only M is a tube of radius
r over the following Kaehler submanifolds:
(i) hyperplane P_{n-1}(C) , where 0<r<\pi/2 ,
(ii) totally geodesic P_{k}(C) , where n=2k+1 and r=\pi/4 .

REMARK 2. The right hand side of (3. 27) can be expressed as:
2/(n-l) \cdot \{||S\xi||^{2}-\rho+\eta(S\xi)-(tr SA)\eta(A\xi)+g(SA\xi, A\xi)\}^{2} .

where \rho is the scalar curvature of M.

Now we shall study real hypersurfaces M in P_{n}(C) by using the
action of R(X, Y) on the shape operator A. We have

THEOREM 3. Let M be a real hypersurface of P_{n}(C) , n\geqq 2 . Suppose
that M satisfies
(3. 28) (R(W, X)A)Y+(R(X, Y)A)W+(R(Y, W)A)X=0,

where R and A are the curvature tensor of M and the shape operator of
M, respectively and W, X, Y\in TM. Then M is locally congruent to one
of the following :

(i) a geodesic hypersphere, n\geqq 3 ,
(ii) a real hypersurface in P_{2}(C) on which \xi is a principal curvature

vector.

PROOF. It follows from (1. 6) and (3. 28) that

(3. 29) g((\phi A+A\phi)X, Y)\phi W+g((\phi A+A\phi)Y, W)\phi X+g((\phi A+A\phi)W ,
X)\phi Y-2g(\phi W, X)\phi AY-2g(\phi X, Y)\phi AW-2g(\phi Y. W)\phi AX=0 .

Let X=e_{i} and Y=\phi e_{i} in (3. 29). Then contraction yields that
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(3. 30) 2(trA-\eta(A\xi))\phi W-2(2n-3)\phi AW-2A\phi W+2\eta(A\phi W)\xi

-4\eta(W)\phi A\xi=0 .

Putting W=\xi in (3. 30), we find

-2(2n-l)\mbox{\boldmath $\phi$}A\mbox{\boldmath $\xi$}=0,

which shows that \xi is principal. Hence the equation (3. 30) gives

(3. 31) 2(trA-\eta(A\xi))\phi W-2(2n-3)\phi AW-2A\phi W=0 .

So, for any Y. W\in TM , (3. 31) shows that

(3. 32) 2(trA-\eta(A\xi))g(\phi W, Y)-2(2n-3)g( \phi A W. Y) -2g(A\phi W, Y)=0 .

Exchanging Y and W in (3. 32), we see that

(3. 33) 2(trA-\eta(A\xi))g(\phi Y-W)-2(2n-3)g( \phi A Y. W) -2g(A\phi Y. W)=0 .

Hence, from (3. 32) and (3. 33), for any Y_{-}W\in TM we have

-2(2n-4)g((\phi A-A\phi)Y, W)=0 ,

which implies that \phi A=A\phi in the case of n\geqq 3 . Therefore, in the case of
n\geqq 3 , M is locally congruent to one of homegeneous real hypersurfaces of
type A_{1} and A2 (cf. Theorem H). So, we shall check the equation (3. 28)

one by one for the two model spaces of type A_{1} and A2:
Let M be of type A_{1} (which is a tube of radius r ). First we note that

(3. 34) (R(W, X)A)Y=R(W, X)(AY)-A(R(W, X)Y) .

From (1. 6), (3. 3) and (3. 34) we find

(3. 35) (R(W. X)A)Y=t\{\eta(W)\eta(Y)X+\eta(W)g(X, Y)\xi-\eta(X)\eta(Y)W

-\eta(X)g(W. Y)\xi\} for any W. X, Y\in TM .

Equation (3. 35) implies (3. 28).
Let M be of type A2 (which is a tube of radius r). Let X\in V_{t} , Y\in

V_{-1/t} and ||X||=||Y||=1 . We here remark that \phi X\in V_{t} (cf. Proposition B).

Hence Gauss equation (1. 6) tells us that

(R(X, \phi X)A)Y+(R(\phi X, Y)A)X+(R(Y, X)A)\phi X=2(t+1/t)\phi Y\neq 0 .

Therefore, in case that n\geqq 3 , we conclude that the manifold M satisfying
(3. 28) must be of type A_{1} .

In case that n=2, the equation (3. 28) is equivalent to the condition “
\xi

is a pricipal curvature vector” The proof of this assertion is as follows:
Let X be a principal curvature (unit) vector orthogonal to \xi with
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principal curvature r and A\xi=\alpha\xi . From (1. 6) and Proposition B we get

(R(X, \xi)A)\phi X+(R(\xi, \phi X)A)X+(R(\phi X, X)A)\xi

=(\alpha r+2)/(2r-\alpha)\cdot R(X, \xi)\phi X+r\cdot R(\xi, \phi X)X+\alpha\cdot R(\phi X, X)\xi

=(\alpha r+2)/(2r-\alpha)\cdot O+r\cdot 0+\alpha\cdot 0=0 . Q. E D.

REMARK 3.
(1) Theorem G asserts that the real hypersurface M satisfying (3. 28) in
P_{2}(C) must be a tube of constant radius over a complex curve in P_{2}(C) .
(2) Let M be a homogeneous real hypersurface M satisfying (3. 28) in
P_{n}(C) . Then M is locally congruent to one of the following:
(i) a homogeneous real hypersurface of type A_{1} , n\geqq 2 ,

(ii) a homogeneous real hypersurface of type B, n=2 .

The following statement is an immediate consequence of Theorem 3 in
the case of n\geqq 3 .

THEOREM 4. Let M be a real hypersurface of P_{n}(C) , n\geqq 2 . Suppose
that M satisfifies
(3. 36) (R(W, X)A)Y=\lambda\{\eta(W)\eta(Y)X+\eta(W)g(X, Y)\xi-\eta(X)\eta(Y)W

-\eta(X)g(W, Y)\xi\} ,

where R and A are the curvature tensor of M and the shape operator of
M, respectively, \lambda is a function on M and W, X, Y\in TM. Then M is
locally congruent to a geodesic hypersphere of P_{n}(C) .

PROOF. First of all we pay attention to the fact that (3. 36) implies
(3. 28). And hence, in case that n\geqq 3 the manifold M satisfying (3. 36)

must be of type A_{1} (cf. Theorem 3 and (3. 35)). So the rest of the proof is
to study in the case of n=2 . We shall show that M must be homogeneous
in P_{2}(C) . We can set A\xi=\alpha\xi (see the proof of Theorem 3). Let X be a
principal curvature (unit) vector orthogonal to \xi with principal curvature
r . Gauss equation (1. 6) gives the following:

(3. 37) g((R(X, \xi)A)\xi, X)=\alpha+\alpha^{2}r-r-\alpha r^{2} ,

(3. 38) g((R(\phi X, \xi)A)\xi, \phi X)=\alpha+\alpha^{2}\cdot (\alpha r+2)/(2r-\alpha)

-(\alpha r+2)/(2r-\alpha)-\alpha\cdot\{(\alpha r+2)/(2r-\alpha)\}^{2} .

On the other hand (3. 36) implies

(3. 39) g((R(X, \xi)A)\xi, X)=g((R(\phi X, \xi)A)\xi , \phi X)=-\lambda .

By virtue of (3. 37), (3. 38) and (3. 39) we have
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\alpha^{2}r-r-\alpha r^{2}=\alpha^{2}(\alpha r+2)/(2r-\alpha)-(\alpha r+2)/(2r-\alpha)

-\alpha\{(\alpha r+2)/(2r-\alpha)\}^{2} , so that

(3. 40) (r^{2}-\alpha r-1)\{-2\alpha r^{2}+2(\alpha^{2}-1)r-\alpha(\alpha^{2}+1)\}=0 ,

which shows that r is constant (cf. Proposition A). Therefore our real
hypersurface M must be homogeneous in P_{2}(C) (cf. Theorem F). So we
have only to prove that the real hypersurface M of type B (which is a
tube of radius r ) in P_{2}(C) does not satisfy (3. A). M has three distinct
constant principal curvatures r_{1}=(1+t)/(1-t) , r_{2}=(t-1)/(t+1) and \alpha=

t-1/t (cf. [10]). We here note that the quadratic equation r^{2}-\alpha r-1=0

does not have solutions r_{1} and r_{2} . The solutions for this equation are t

and - 1/t . Moreover, the quadratic equation -2\alpha r^{2}+2(\alpha^{2}-1)r-\alpha(\alpha^{2}+

1)=0 for r does not have solutions r_{1} and r_{2} . In fact, we assume that the
solutions for this equation are r_{1} and r_{2} . Then

r_{1}r_{2}=\alpha(\alpha^{2}+1)/2\alpha=(\alpha^{2}+1)/2>0 .

On the other hand r_{1}r_{2}=-1 . These statements contradict each other.
Q. E. D.

Here we define the tensor T on M as:
T (X, Y. W) =(R(W, X)A)Y-\lambda\{\eta(W)(\eta(Y)X+g(X, Y)\xi)

-\eta(X)(\eta(Y)W+g(W, Y)\xi)\} .

By the same discussion as in Proposition 1, we find

PROPOSITION 3. Let M be a real hypersurface of P_{n}(C) , n\geqq 2 .
Then the following inequality holds:
(3. 41) ||RA||^{2}\geqq 2/(n-1)\cdot ( \sum_{i=1}^{2n-1}g((R(e_{i}, \xi)A)\xi, e_{i}))^{2} .

where R and A are the curvature tensor of M and the shape operator of
M, respectively and e_{1} , ... . e_{2n-1} is a local fifield of orthonormal frames of
M. Moreover, the equality of (3. 41) holds if and only if M is locally
congruent to a geodesic hypersphere of P_{n}(C) .

REMARK 4. The right hand side of (3. 41) can be expressed in terms
of the shape operator A as:

2/(n-l) \cdot \{(2n-1-trA^{2})\eta(A\xi)+(||A\xi||^{2}-1)trA\}^{2} .

\S 4. An application of Propositions 2 and 3

Making use of Proposition 2, we get the following
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PROPOSITION 4. There are no real hypersurfaces M with RS=0 in
P_{n}(C) , n\geqq 3 . So, in particular P_{n}(C)(n\geqq 3) does not admit real hypersur-
faces M with parallel Ricci tensor S.

PROOF. We first suppose that M is neither a tube over a hyperplane
P_{n-1}(C) nor a tube of radius \pi/4 over a totally geodesic P_{(n-1)/2}(C) . Then
Proposition 2 asserts that the equality of (3. 27) does not hold, which
implies that our real hypersurface M must satisfy RS\neq 0 . Next, let M be
a tube of radius r over a hyperplane P_{n-1}(C) in P_{n}(C) . Then a straight-
forward calculation shows that ||RS||^{2}=16n^{2} cot 4r>0 (cf. Remark 2).
Finally, let M be a tube of radius \pi/4 over a totally geodesic P_{(n-1)/2}(C) in
P_{n}(C) . Then a calculation yields that ||RS||^{2}=32(n-1)>0 (cf. Remark 2).

Q. E. D.

REMARK 5. Ki, Nakagawa and Suh ([2]) have already proved PropO-
sition 4.

Similary, by using Proposition 3 we obtain the following

PROPOSITION 5. There are no real hypersurfaces M with RA=0 in
P_{n}(C) , n\geqq 2 .

PROOF. First we suppose that M is not of type A_{1} . Then Proposi-
tion 3 asserts that the equality of (3. 41) does not hold, which implies that
our real hypersurface M must satisfy RA\neq 0 . Next, let M be of type A_{1}

(which is a tube of radius r ). Then a computation yields that ||RA||^{2}=

8(n-1)\cot^{2}r>0 . (cf. Remark 4). Q. E. D.

REMARK 6. The second author of this paper proved Proposition 5 in
the case of n\geqq 3 (cf. [6]).
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