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\S 1. Introduction

Problems of interspecific competitions have been studied by many

authors since LOTKA [9] and VOLTERRA [19]. EHRENFEST’S urn model
was discussed by Kac [5] and MORAN [10] studied an urn model for the
random genetic drift. ITOH [2, 3, 4] introduced a random collision model
which is an urn model for competing species in finite numbers of individ-
uals of several types interacting with each other and studied the problem

of coexistence of species.
KOGAN, LIPTSER, SHIRYAEV and SMORODINSKY [7, 8] investigated a

queuing model which is formulated in the framework of semimartingales.

By using shochastic calculus, they derived an ordinary differential equa-

tion from the weak law of large numbers and a Gaussian diffusion process
from the central limit theorem for the model.

In this paper we shall discuss the random collision model of two
pecies in [2, 3, 4] which is described by a random time change of a Poisson
process. We shall in \S 2 show the existence and uniqueness of solutions of
the random collision model stated the above. By proving that the random
time is a stopping time, we shall in \S 3 show that the stochastic process,
the unique solution of our model, is a Markov process and has a stochas-
tic structure to be called the fluctuation-dissipation theorem in statistical
physics (KUBO [6] and OKABE [11-16]), which is assumed in the one-
dimensional queuing model in [7, 8] . Therefore the weak law of large

numbers for our model can be proved by the same method as in [7, 8] .

The purpose in \S 4 is to prove the strong law of large numbers for our
random collision model. \S 5 treats a central limit theorem for our model
by the same method as in [7, 8] .

In the future, we shall give a systematic treatment of some random
collision models such as paper-scissors-stone model and Ohta-Kimura
model for interacting populations and characterize certain qualitative
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property of the fluctuation-dissipation theorem for random collision
models. Parts of our project have been already appeared in [17, 18] .

The authors would like to thank Professor T\tau SHIGA for pointing a
simplified proof of Step 4 in the proof of THEOREM 4. 2 and his other valu-
able advices.

\S 2. A random collision model of two species

Let us consider a population of two types of individuals in which
individuals interact randomly with each other. Changes occur by interac-
tions only between particles of different types. If two individuals of
different types interact, then two individuals of the dominant type result
from the interaction. Hence the total number of the particles is invariant
under interactions.

We set any fixed positive integer M which denotes the total number of
the particles. For each j\in\{1,2\} , let X_{J}^{(M)}(*) be a stochastic process which
denotes the number of individual of type j . We assume that the type 1 is
dominant than the type 2 and that each of the individuals is described by
the time change of a standard Poisson process N(*) defined on a probabil-
ity space (\Omega, \mathscr{B}, P) in a stochastic integral form as

(2. 1)

X_{1}^{(M)}(t)=X_{1}^{(M)}(0)+N( \frac{\lambda}{M}\int_{0}^{t}X_{1}^{(M)}(s)X_{2}^{(M)}(s)ds) ,

X_{2}^{(M)}(t)=X_{2}^{(M)}(0)-N( \frac{\lambda}{M}\int_{0}^{t}X_{1}^{(M\rangle}(s)X_{2}^{(M)}(s)ds) ,

X_{1}^{(M\rangle}(0)+X_{2}^{(M)}(0)=M ,

where \lambda is a positive number and X_{J}^{(M)}(0) are initial values of X_{J}^{(M)}(*)(j=

1,2) , which are defined on the probability space (\Omega, \mathscr{B}, P) .
Now we shall prove the existence and uniqueness of solutions of equa-

tion (2. 1). We denote by \{\tau_{i} ; i=0,1,2, \cdots\} the set of jumping times of the
standard Poisson process N(*) .

THEOREM 2. 1. There exists a unique solution of equation (2. 1) and
it is represented in the following form

(2. 2) X_{1}^{(M)}(t)=X_{1}^{(M)}(0)-1+ \sum_{i=0}^{M-X_{1}^{(M)}(0)}\chi ld^{M)}\infty)(t) ,

(2. 3) X_{2}^{(M)}(t)=X_{2}^{(M)}(0)+1- \sum_{i=0}^{M-X_{1}^{(M)}(0)}\chi Id^{M)}\infty)(t) ,

where \sigma 2^{M)}(0\leq k\leq M) are given by
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(2. 4) \{
\sigma\^{M)}=0_{k}\sigma 2^{M)}=\infty\sigma 2^{M)}=\sum_{X^{(M)}=\infty(0)\neq 0,M\sigma 8^{M)}}i=’ 1\frac{for1\leq k\leq M,X_{1}^{(M)}(0)=0orM\tau_{i}-\tau_{i-1}}{\lambda(X_{1}^{(M)}(0)+i-1)(1-(X_{1}^{(M)}(0)+i-1)/M),for1\leq k\leq M-X_{1}^{(M)}(0),X_{1}^{(M)}forM-X_{1}^{(M)}(0)<k\leq M,1}(0

”
)\neq 0,M,

.

PROOF. Firstly we shall prove that the solution of equation (2. 1) is

unique. Let X_{J}^{(M)}(*)(j=1,2) be a solution of equation (2. 1). For each

fixed t\in[0^{ },\infty) , we define

(2. 5) T^{(M)}(t) \equiv\frac{\lambda}{M}\int_{0}^{t}X_{1}^{(M)}(s)X_{2}^{(M)}(s)ds .

Every time when the function T^{(M)}(*) comes to the jumping times of

the standard Poisson process N(*) , the stochastic process X_{1}^{(M)}(*)

increases in the width of one. We define \sigma J_{l}^{M)} by

(2. 6) \sigma t_{l}^{M)}\equiv inf\{t\geq 0 ; T^{(M)}(t)=\tau_{k}\}(1\leq k\leq M) .

It is to be noted that \sigma A^{M)}=0 .
When X_{1}^{(M)}(0)=0 or M, we can see that, for any t>0 , T^{(M)}(t)=0 and

so X_{1}^{(M)}(t)=X_{1}^{(M)}(0) . Hence it follows that (2. 2), (2. 3) and (2. 4) hold.

When X_{1}^{(M)}(0)\neq 0 , M , if \sigma 2_{-1}^{M)}\leq t<\sigma 2^{M)} for 1\leq k\leq M-X_{1}^{(M)}(0) , and so
\tau_{k-1}\leq T^{(M)}(t)<\tau_{k} , then

X_{1}^{(M)}(t)=X_{1}^{(M)}(0)+N(T^{(M)}(t))=X_{1}^{(M)}(0)+k-1 .

Therefore

X_{1}^{(M)}(t)=X_{1}^{(M)}(0)-1+ \sum_{i=0}^{k-1}1

=X_{1}^{(M)}(0)-1+ \sum_{i=0}^{M-X_{1}^{(M)}(0)}\chi\iota\sigma_{\iota}^{(M)},\infty)(t) .

If t\geq\sigma_{M-X_{1}^{(M)}(0)}^{(M)} , then T^{(M)}(t)=\tau_{M-X_{1}^{\langle M)}(0)}^{(M)} and so

X_{1}^{(M)}(t)=X_{1}^{(M)}(0)+N(T^{(M)}(t))=X_{1}^{(M)}(0)+(M-X_{1}^{(M)}(0))

=X_{1}^{(M)}(0)-1+ \sum_{i=0}^{M-X_{1}^{(M)}(0)}1

=X_{1}^{(M)}(0)-1+ \sum_{i=0}^{M-X_{1}^{(M\rangle}(0)}\chi I\sigma^{(M)}l’\infty)(t) .

Thus we see that (2. 2) and (2. 3) hold. Furthermore it can be found

from (2. 6) that the random times \sigma 2^{M)} satisfy a recursive relation (2. 4),
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which concludes that the uniqueness of solutions of equation (2. 1) holds.
Conversely, let X_{1}^{(M)}(*) be the stochastic process defined by (2. 2) and

put X_{2}^{(M)}(*)=M-X_{1}^{(M)}(*) . It is easy to see that X_{j}^{(M)}(*) are right continu-
ous and have the left-hand side limit (j=1,2) .

When the time t is involved in the interval [\sigma J_{f-1}^{M)}, \sigma 8^{M)})(1\leq k\leq

M-X_{1}^{(M)}(0)) , we have

T^{(M)}(t)= \frac{\lambda}{M}\sum_{i=1}^{k-1}\int_{\sigma_{-1}^{(M)}}^{\sigma^{(M\rangle}},’ X_{1}^{(M)}(s)X_{2}^{(M)}(s)ds+\frac{\lambda}{M}\int_{\sigma_{k-1}^{(M)}}^{t}X_{1}^{(M)}(s)X_{2}^{(M)}(s)ds

= \sum_{i=1}^{k-1}\frac{\lambda}{M}(X_{1}^{(M)}(0)+i-1)(M-X_{1}^{(M)}(0)-(i-1))(\sigma_{l}^{(M)}-\sigma_{i-}^{(M}1)+

+ \frac{\lambda}{M}(X_{1}^{(M)}(0)+k-1)(M-X_{1}^{(M)}(0)-(k-1))(t-\sigma f_{f-1}^{M)})

= \tau_{k-1}+\frac{\lambda}{M}(X_{1}^{(M)}(0)+k-1)(M-X_{1}^{(M)}(0)-(k-1))(t-\sigma 1_{f-1}^{M)}) .

Therefore it follows that \tau_{k-1}\leq T^{(M)}(t)<\tau_{k} and so N(T^{(M)}(t))=k-1 .
On the other hand, we see from (2. 2) that when the time t is involved

in the interval [\sigma 2_{-1}^{M)}, \sigma 8^{M)}) , X_{1}^{(M)}(t)=X_{1}^{(M)}(0)-1+k and so X_{1}^{(M)}(t)=X_{1}^{(M)}(0)

+N(T^{(M)}(t)) .
When t\geq\sigma_{M-X_{1}^{(M)}(0)}^{(M)} , we find that

T^{(M)}(t)= \frac{\lambda}{M}\sum_{i=1}^{-X_{1}^{(M)}(0)}\int_{\sigma_{t1}^{(M)}}^{\sigma^{(M\rangle}}M,X_{1}^{(M)}(s)X_{2}^{(M)}(s)ds+\frac{\lambda}{M}\int_{\sigma k_{-X_{1}(0)}^{M)(M)}}^{f}X_{1}^{(M)}(s)X_{2}^{(M)}(s)ds

=. \sum_{\iota=1}^{M-X_{1}^{(M)}(0)}\frac{\lambda}{M}(X_{1}^{(M)}(0)+i-1)(M-X_{1}^{(M)}(0)-(i-1))(\sigma_{z}^{(M)}-\sigma_{\iota-}^{(M}1)

=\tau_{M-X_{1}^{(M)}(0)} .

Hence it follows that X_{1}^{(M)}(t)=X_{1}^{(M)}(0)+(M-X_{1}^{(M)}(0))=X_{1}^{(M)}(0)+N(T^{(M)}(t)) .
Consequently we find that the stochastic process X_{J}^{(M)}(*)(j=1,2)

satisfies equation (2. 1). Q. E. D.

\S 3. A stochastic structure for the model: the fluctuation-dissipation
theorem

We define a reference family (\mathscr{F}_{t}^{(M)} ; t\geq 0) by

(3. 1) \mathscr{F}_{t}^{(M)}\equiv\sigma(X_{1}^{(M\rangle}(0), N(s) ; 0\leq s\leq t ).

Let X_{j}^{(M)}(*)(j=1,2) be the unique solution of equation (2. 1).
Similarly as in (2. 5), we define for each t\in[0, \infty) a random time T^{(M)}(t)

by
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(3. 2) T^{(M)}(t) \equiv\frac{\lambda}{M}\int_{0}^{t}X_{1}^{(M)}(s)X_{2}^{(M)}(s)ds .

We shall prove the fundamental lemma to investigate certain stochas-
tic structure for our random collision model (2. 1).

LEMMA 3. 1. For each t\in[0^{ },\infty) , the random time T^{(M)}(t) is a stop-

ping time with respect to the reference family (\mathscr{F}_{t}^{(M)} ; ^{t}\geq 0) .

PROOF. We have to prove that, for any t , u\in[0^{ },\infty) ,

(3. 3) (T^{(M)}(t)\leq u)\equiv\{\omega\in\Omega, T^{(M)}(t)(\omega)\leq u\}\in \mathscr{F}_{u}^{(M)} .

Since the function T^{(M)}(*) is strictly increasing and continuous in
[0, \sigma_{M-X_{1}^{(M)}(0)}) , we note that, for any u , \tau_{k}\leq u<\tau_{k+1}\leq\tau_{M}-X_{1}^{(M)}(0) , there exists

an inverse value T^{(M)-1}(u) such that

(3. 4) T^{(M)-1}(u)= \sum_{i=1}^{k}\frac{\tau_{i}-\tau_{i-1}}{\lambda(X_{1}^{(M)}(0)+i-1)(1-(X_{1}^{(M)}(0)+i-1)/M)}+

+ \frac{u-\tau_{k}}{\lambda(X_{1}^{(M)}(0)+k-1)(1-(X_{1}^{(M)}(0)+k-1)/M)} .

Now we decompose the measurable event ( T^{(M)}(t)\leq u) into

(T^{(M)}(t)\leq u)

=(X_{1}^{(M)}(0)=0, T^{(M)}(t)\leq u)\cup(X_{1}^{(M)}(0)=M, T^{(M)}(t)\leq u)\cup[\overline{\bigcup_{l=1}}\{(X_{1}^{(M)}(0)=t)\cap M1

\cap\{(\tau_{M-l}\leq u, T^{(M)}(t)\leq u)\cup\{\bigcup_{k=0}^{Ml-1}(\tau_{k}\leq u<\tau_{k+1}, T^{(M)}(t)\leq u)\}\}\}]

=(X_{1}^{(M)}(0)=0) \cup(X_{1}^{(M)}(0)=M)\cup\{\bigcup_{=l1}^{M-1}(A_{l}\cup B_{l})\} ,

where, for t , 1\leq t\leq M-1 ,

\{

A_{l} \equiv(X_{1}^{(M)}(0)=t)\cap\{\bigcup_{k=0}^{M-l-1}(\tau_{k}\leq u<\tau_{k+1}, t\leq T^{(M)-1}(u))\} ,

B_{l}\equiv(X_{1}^{(M)}(0)=t)\cap(\tau_{M-l}\leq u, T^{(M)}(t)\leq u) .

Here we used the fact that if X_{1}^{(M)}(0)=0 or M , then T^{(M)}(t)=0 for any
t\in[0^{ },\infty) .

We fix any l , 1\leq l\leq M-1 . Since it then follows from (3. 4) that, for

any k , 0\leq k\leq M-l ,

(t\leq T^{(M)-1}(u))\in \mathscr{F}_{\tau_{h}}^{(M)}\equiv { C\in \mathscr{B};C\cap(\tau_{k}\leq v)\in \mathscr{F}_{v}^{(M\rangle} for any v\in[0, \infty) },

we see that (\tau_{k}\leq u, t\leq T^{(M)-1}(u))\in \mathscr{F}_{u}^{(M)} . Moreover, since (u<\tau_{k})\in \mathscr{F}_{\mathcal{U}}^{(M\rangle} .

we find that A_{l}\in \mathscr{F}_{u}^{(M)} .
In addition to this, since if X_{1}^{(M)}(0)\neq 0 , M , then the function T^{(M)}(*)
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has the maximal value \tau_{M-X_{1}^{(M)}(0)} , we see that

(X_{1}^{(M)}(0)=l)\cap(\tau_{M-l}\leq u, T^{(M)}(t)\leq u)=(X_{1}^{(M)}(0)=l)\cap(\tau_{M-l}\leq u)

and so B_{l}\in \mathscr{I}_{\mathcal{U}}^{-} .
Therefore, we have proved (3. 3) Q. E. D.

In the sequel we shall assume that the random variable X_{1}^{(M)}(0) is in-
dependent of the standard Poissson process N(*) . As an application of
LEMMA 3. 1, we shall show

THEOREM 3. 1. For each fixed M>0 , (\Omega, \sigma(X_{1}(s);0\leq s\leq t), X_{1}^{(M)}(*) , P)
is a Markov process.

PROOF. We have only to prove that, for any fixed s , t , 0\leq s<t , there
exists a random variable Y, independent of \sigma(X_{1}^{(M)}(\tau);0\leq\tau\leq s) , such that
X_{1}^{(M)}(t) can be represented as a Borel function of X_{1}^{(M)}(s) and Y (ITO [1]).
We can rewrite equation (2. 1) into

(3. 5) X_{1}^{(M)}(t)=X_{1}^{(M)}(s)+N_{1}( \frac{\lambda}{M}\int_{s}^{t}X_{1}^{(M)}(\tau)d\tau) ,

where N_{1}(*) is a stochastic process defined by

(3. 6) N_{1}(u)\equiv N(T^{(M)}(s)+u)-N(T^{(M)}(s)) (u\geq 0) .

We can see from the method of the construction of the unique solution
of equation (2. 1) that, for any \tau>0 , there exists a Borel function F_{\tau} from
R\cross R^{l0,\infty)} into R such that

X_{1}^{(M)}(\tau)=F_{\tau}(X_{1}^{(M)}(0), (N(u);u\geq 0)) .

By noting equation (3. 5), we find from the uniqueness of solution of equa-
tion (2. 1) that

(3. 7) X_{1}^{(M)}(t)=F_{t-S}(X_{1}^{(M)}(s), (N_{1}(u);u\geq 0)) .

Next we shall show

(3. 8) N_{1}(*) is independent of \sigma(X_{1}(\tau);0\leq\tau\leq s) .

For this proof, we have only to prove that, for any 0\leq\tau_{1}<\tau_{2}<\cdots<\tau_{p}\leq s ,
0\leq u_{1}<u_{2}<\cdots<u_{q} and any smooth functions G , H,

(3. 9) E(G(X_{1}^{(M)}(\tau_{1}), \cdots X_{1}^{(M)}(\tau_{p}))H(N_{1}(u_{1}), \cdots, N_{1}(u_{q})))

=E(G(X_{1}^{(M)}(\tau_{1}), \cdots , X_{1}^{(M)}(\tau_{p})))E(H(N_{1}(u_{1}), \cdots , N_{1}(u_{q}))) .

We approximate T^{(M)}(\tau_{l}) , T^{(M)}(s) by the random times T_{n}^{(M)}(\tau_{l}) , T_{n}^{(M)}(s)

with discrete values such that
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\{

T_{n}^{(M)}( \tau_{l})\equiv\frac{k}{2^{n}} if \frac{k-1}{2^{n}}\leq\tau_{l}<\frac{k}{2^{n}} ,

T_{n}^{(M)}(s) \equiv\frac{k}{2^{n}} if \frac{k-1}{2^{n}}\leq s<\frac{k}{2^{n}} .

Then we have
E\{G(X_{1}^{(M)}(\tau_{1}), \cdots. X_{1}^{(M)}(\tau_{p}))H(N_{1}(u_{1}), \cdots N_{1}(u_{q}))\}

= \lim_{narrow\infty}E\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{1})), \cdots, X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))\cross

\cross H(N(T_{n}^{(M)}(s)+u_{1})-N(T_{n}^{(M)}(s)), \cdots 7 N(T_{n}^{(M)}(s)+u_{q})-N(T_{n}^{(M)}(s)))\} .

For each n ,

E\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{l})), \cdots. X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))\cross

XH(N(T_{n}^{(M)}(s)+u_{1})-N(T_{n}^{(M)}(s)), \cdots, N(T_{n}^{(M)}(s)+u_{q})-N(T_{n}^{(M)}(s)))\}

= \sum_{\leq 1\leq k_{1}\leq k_{2}\leq k_{p}\leq k}^{\infty}E\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{1})), \cdots. X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))\cross

\cross H(N(T_{n}^{(M)}(s)+u_{1})-N(T_{n}^{(M)}(s)), \cdots _{N(T_{n}^{(M)}(s)+u_{q})-N(T_{n}^{(M)}(s)))}

; \bigcap_{i=1}^{p}(\frac{k_{i}-1}{2^{n}}\leq T^{(M)}(\tau_{i})<\frac{k_{i}}{2^{n}})\cap(\frac{k-1}{2^{n}}\leq T^{(M)}(s)<\frac{k}{2^{n}})\}

= \sum_{1\leq k_{1}\leq h\leq\leq k_{p}\leq k}^{\infty}E\{G( X_{1}^{(M)}(0)+N( \frac{k_{1}}{2^{n}}) , \cdots , X_{1}^{(M)}(0)+N( \frac{k_{p}}{2^{n}}))\cross

\cross H(N(\frac{k}{2^{n}}+u_{1})-N(\frac{k}{2^{n}}), \cdots ^{N(\frac{k}{2^{n}}+u_{q})-N(\frac{k}{2^{n}}))}

; \bigcap_{i=1}^{p}(\frac{k_{i}-1}{2^{n}}\leq T^{(M)}(\tau_{i})<\frac{k_{i}}{2^{n}})\cap(\frac{k-1}{2^{n}}\leq T^{(M)}(s)<\frac{k}{2^{n}})\} .

By LEMMA 3. 1, the events \bigcap_{i=1}^{p}(\frac{k_{i}-1}{2^{n}}\leq T^{(M)}(\tau_{i})<\frac{k_{i}}{2^{n}}) and ( \frac{k-1}{2^{n}}\leq T^{(M)}(s)<\frac{k}{2^{n}})

belong to the \sigma-field \mathscr{F}\frac{(Mk}{2^{n}}

)

Since H(N( \frac{k}{2^{n}}+u_{1})-N(\frac{k}{2^{n}}) , \cdots , N( \frac{k}{2^{n}}+u_{q})

-N( \frac{k}{2^{n}})) is independent of \mathscr{T}\frac{(Mk}{2^{n}}

)

we find from the temporal homogenuity

of the standard Poisson process N(*) that

E\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{1}), \cdots, X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))\cross

\cross H(N(T_{n}^{(M)}(s)+u_{1})-N(T_{n}^{(M)}(s)), \cdots, N(T_{n}^{(M)}(s)+u_{q})-N(T_{n}^{(M)}(s)))\}

= \sum_{1\leq k_{1}\leq k_{2}\leq}^{\infty}\leq k_{p}\leq kE\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{1})), \cdots, X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))

’. \bigcap_{i=1}^{p}\{

\cross E\{H(N

\frac{k_{i}-1}{2^{n}}\leq T^{(M)}(\tau_{i})<\frac{k_{i}}{2^{n}})\cap(

(T_{n}^{(M\rangle}(s)+u_{1})-N(T_{n}^{(M)}(s))

\frac{k-1}{2^{n}}\leq T^{(M)}(s)<\frac{k}{2^{n}})\}\cross

, \cdots , N(T_{n}^{(M)}(s)+u_{q})-N(T_{n}^{(M)}(s)))\}

= \sum_{k\geq 1}^{\infty}E\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{1})), \cdots. X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))
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; \frac{k-1}{2^{n}}\leq T^{(M)}(s)<\frac{k}{2^{n}}\}\cross E\{H(N(\frac{k}{2^{n}}+u_{1})-N(\frac{k}{2^{n}})) , \cdots

N( \frac{k}{2^{n}}+u_{q})-N(\frac{k}{2^{n}}))\}

= \sum_{k\geq 1}^{\infty}E\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{1})), \cdots. X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))

; \frac{k-1}{2^{n}}\leq T^{(M)}(s)<\frac{k}{2^{n}}\}\cross E\{H(N(u_{1})-N(0), \cdots, N(u_{q})-N(0))\}

=E\{G(X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{1})), \cdots, X_{1}^{(M)}(0)+N(T_{n}^{(M)}(\tau_{p})))\}\cross

\cross E\{H(N(u_{1})-N(0), \cdots N(u_{q})-N(0))\} .

Letting n tend to \infty , we have

E\{G(X_{1}^{(M)}(\tau_{1}), \cdots X_{1}^{(M)}()\tau_{p}))H(N_{1}(u_{1}), \cdots , N_{1}(u_{q}))\}

=E\{G(X_{1}^{(M)}(\tau_{1}), \cdots X_{1}^{(M)}(\tau_{p}))\}\cdot E\{H(N(u_{1})-N(0)), \cdots N(u_{q})-N(0))\} .

By the same procedure, we can see that

E\{H(N_{1}(u_{1}), \cdots. N_{1}(u_{q}))\}=E\{H(N(u_{1})-N(0), \cdots, N(u_{q})-N(0))\} .

Therefore we find that (3. 9) and so (3. 8) holds. By combining (3. 8)
with (3. 7), we have completed the proof of THEOREM 3. 1. Q. E. D.

Set

(3. 10) \mathscr{M}^{(M)}(t)\equiv N(T^{(M)}(t))-T^{(M)}(t)

and

(3. 11) \overline{\mathscr{F}}_{t}^{(M)}\equiv \mathscr{F}_{T^{t})}^{(M}l_{(t)} .

It then follows from equation (2. 1) that

(3. 12) X_{1}^{(M)}(t)=X_{1}^{(M)}(0)+\mathscr{M}^{(M)}(t)+T^{(M)}(t) ,

(3. 13) X_{2}^{(M)}(t)=X_{2}^{(M)}(0)-\mathscr{M}^{(M)}(t)-T^{(M)}(t) .

THEOREM 3. 2. The stochastic processes X_{J}^{(M)}(*) are (\overline{\mathscr{F}}\downarrow M) ; t\geq 0)-
semimartingales such that

(i) \mathscr{M}^{(M)}(*) is a square-integrable and (\overline{\mathscr{T}}_{t}^{(M)} ; _{\sim}^{t}\geq 0)- martingale,
(ii) T^{(M)}(*) is a continuous, increasing and (\mathscr{I}_{t}^{-(M)} ; t\geqq 0)- adapted process,
(iii) \langle \mathscr{M}^{(M)}\rangle_{t}=T^{(M)}(t) (t\geq 0) .

PROOF. Put

(3. 14) \overline{N}(t)\equiv N(t)-t ,

(3. 15) A(t)\equiv t .
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Then we have

(3. 16) N(t)=\overline{N}(t)+A(t) .

It is well known that (3. 16) is the Doob-Meyer decomposition, that is,
\overline{N}(*) is a square integrable martingale part and A(*) is a natural increas-
ing process part of the standard Poisson process N(*) . Moreover we
know that the quadratic variational process of \overline{N}(*) equals A(*) :

(3. 17) \langle\overline{N}\rangle_{t}=A(t) .

Since T^{(M)}(*) is a bounded continuous (\mathscr{F}_{t}^{(M)} ; t\geq 0)-stopping time, by vir-
tue of LEMMA 3. 1, we can apply the optional sampling theorem due to

Doob to (3. 16) and (3. 17) to conclude that THEOREM 3. 2 holds. Q. E. D.

We shall explain why the relation (iii) in THEOREM 3. 2 can be regar-

ded as a kind of the fluctuation-dissipation theorem in statistical physics
(KUBO [6], OKABE [11-16]). As stated in OKABE [13, 14] , the heart in the
fluctuation-dissipation theorem lies in a philosophical understanding that
any phenomena in a complex system, its equation of motion describing the
time evolution, under certain stationary situation, can be separated into a
random chaotic part (fluctuating term) and a dynamical calm part (dis-

sipative term) and certain relation holds between both parts. The st0-

chastic process X_{1}^{(M)}(*) does not have any stationary property, but has a
Markovian property. Moreover the decomposition (3. 12) as the semi-
martingale can be regarded as the one into the fluctuating part and the
dissipative part of the system X_{1}^{(M)}(*) , which are given as a martingale

and a bounded variation process, respectively. The relation (iii) in THEO-

REM3.2 gives a relation between both parts. For this reason we shall

call the relation (iii) in THEOREM 3. 2 the fluctuation-dissipation theorem.
The situation holds also for the Markov processes X_{2}^{(M)}(*) and N(*) . In

the future we shall investigate what a qualitative property characterizes
such a fluctuation-dissipation theorem.

\S 4. The law of large numbers

Let u_{1}=u_{1}(t) and u_{2}=u_{2}(t)(t\in[0^{ },\infty)) be the unique solution of the
following Lotka-Volterra equation

- \frac{du_{1}(t)}{dt}=\lambda u_{1}(t)u_{2}(t) ,

(4. 1)
\backslash \frac{du_{2}(t)}{dt}=-\lambda u_{1}(t)u_{2}(t) .

The purpose in this section is to discuss the convergence of the ratios
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\frac{X_{1}^{(M)}(t)}{M} and \frac{X_{2}^{(M)}(t)}{M} to u_{1}(t) and u_{2}(t) , respectively, as the total number
M of particles tends to \infty .

By the same method as in the queuing model of LIPTSER^{-SHIRYAEV}
[8] , we can show the following lemma.

LEMMA 4. 1. Let w=w(t)(t\in[0^{ },\infty)) be the unique solution of the
ordinary differential equation

(4. 2) \frac{dw(t)}{dt}=f(w(t))

satisfying the property with infs\leq tW(s)>0 for any t>0 . Here f=f(x) is a
non-negative function on [0, \infty) with local Lipschitz condition.

For each M>0 , let Y^{(M)}(*) be an (\mathscr{H}1^{M)} ; t\geq 0)- semimartingale on a
probability space such that

(i) Y^{(M)}(t)=Y^{(M)}(0)+\mathscr{M}^{(M)}(t)+\mathscr{A}^{(M)}(t) ,
(ii) \mathscr{M}^{(M)}(*) is a square integrable and (\mathscr{H}_{t}^{(M)} ; t\geq 0)- martingale,
(iii) \mathscr{A}^{(M)}(*) is a continuous, increasing and (\mathscr{H}_{t}^{(M)} : t\geq 0)- adapted process,
(iv) \mathscr{A}^{(M)}(t)=M\int_{0}^{t}f(\frac{Y^{(M)}(s)}{M})ds,

(v) \langle \mathscr{M}^{(M)}\rangle_{t}=\swarrow^{(M)}(t) .

Moreover we assume that

\lim_{Marrow\infty}\frac{Y^{(M)}(0)}{M}=w(0) in probability.

Then for any t>0 ,

\lim_{Marrow\infty}\frac{Y^{(M)}(t)}{M}=w(t) in probability.

By applying LEMMA 4. 1 to THEOREM 3. 1, we have

THEOREM 4. 1 (The weak law of large numbers). We assume

\{

\lim_{Marrow\infty}\frac{X_{1}^{(M)}(0)}{M}=u_{1}(0) in probability,

0<u_{1}(0)<1 and u_{1}(0)+u_{2}(0)=1 .

Then for any t>0 ,

\lim_{Marrow\infty}\frac{X_{1}^{(M)}(t)}{M}=u_{1}(t) in probability,

\lim_{Marrow\infty}\frac{X_{2}^{(M)}(t)}{M}=u_{2}(t) in probability.
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As a strong assertion of THEOREM 4. 1, we shall show

THEOREM 4. 2 (The strong law of large numbers). We assume

\{

\lim_{Marrow\infty}\frac{X_{1}^{(M)}(0)}{M}=u_{1}(0)a . s. ,

0<u_{1}(0)<1 and u_{1}(0)+u_{2}(0)=1 .

Then for any t>0 ,

\lim_{Marrow\infty}\frac{X_{1}^{(M)}(t)}{M}=u_{1}(t)a . s. ,

\lim_{Marrow\infty}\frac{X_{2}^{(M)}(t)}{M}=u_{2}(t)a . s.

PROOF. We rewrite (2. 2) in an integral form

(4. 3) \frac{X_{1}^{(M)}(t)}{M}=\frac{X_{1}^{(M)}(0)}{M}+\int_{0}^{\frac{M-X_{1^{1M)}}(0)}{M}}\varphi_{M}(p)dp ,

where the function \varphi_{M}(*) is defined on [0, \infty) by

(4. 4) \varphi_{M}(p)\equiv\chi l\sigma 1^{M)},\infty)(t) for \frac{k-1}{M}\leq p<\frac{k}{M} .

We fix any element \omega\in\Omega such that

(4. 5) \lim_{Marrow\infty}\frac{X_{1}^{(M)}(0)(\omega)}{M}=u_{1}(0) ,

(4. 6) \lim_{Marrow\infty}\frac{1}{M}\sum_{i=1}^{M}(\tau_{i}(\omega)-\tau_{i-1}(\omega))=1 ,

(4. 7) \lim_{Marrow\infty}\frac{1}{M}\sum_{i=1}^{M}(\tau_{i}(\omega)-\tau_{i-1}(\omega))^{2}=2 .

From our assumption and the fact that the strong law of large numbers
holds for independent and identically distributed random variables \tau_{i}-\tau_{i-1} ,

i=1,2 , \cdots we note that the set of elements \omega\in\Omega satisfying (4. 5)-(4.7)

has the probability one.

[Step 1] We claim that

\frac{X_{1}^{(M)}(t)}{M}=\frac{X_{1}^{(M)}(0)}{M}+\int_{0}^{1-u_{1(0)}}\varphi_{M}(p)dp+O(1)(Marrow\infty) .

By (4. 3), we have
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\frac{X_{1}^{(M)}(t)}{M}=

- \frac{X_{1}^{(M)}(0)}{M}+\int_{0}^{1-u_{1(0)}}\varphi_{M}(p)dp+\int_{1()}^{\frac{M-X1^{M)}(0)}{-u_{1}0M}}\varphi_{M}(p)dp

for 1-u_{1}(0) \leq\frac{M-X_{1}^{(M)}(0)}{M} ,

\frac{X_{1}^{(M)}(0)}{M}+\int_{0}^{1-u_{1}(0)}\varphi_{M}(p)dp-\int_{\frac{M-X1^{M)}(0)}{M}}^{1-u_{1(0)}}\varphi_{M}(p)dp

for \frac{M-X_{1}^{(M)}(0)}{M}\leq 1-u_{1}(0) .

Since 0\leq\varphi_{M}(p)\leq 1 .

\frac{X_{1}^{(M)}(t)}{M}=\frac{X_{1}^{(M)}(0)}{M}+\int_{0}^{1-u_{1(0)}}\varphi_{M}(p)dp+O(|u_{1}(0)-\frac{X_{1}^{(M)}(0)}{M}|)(Marrow\infty) .

Hence Step 1 holds.
For the proof of THEOREM 4. 2, we shall investigate the convergence

of the integrand \varphi_{M}(*) in (4. 4) and so \sigma 8^{M)} in (2. 4).
Let s\in[0^{ },\infty) be any real number such that

(4. 8) 0\leq s<1-u_{1}(0) .

We take for each M>0 an integer k_{M} such that \frac{k_{M}-1}{M}\leq s<\frac{k_{M}}{M} . It is to

be noted that \frac{k_{M}}{M} converges to s as M tends to \infty . We decompose \sigma b_{M}^{M)}

into
\sigma 2_{M}^{M)}=S_{1}+S_{2}+S_{3} ,

where

S_{1}= \frac{1}{M\lambda}\sum_{i=1}^{\infty}(_{X\{i\leq k_{M}\}}-\chi\{i\leq[M_{S}]\})\frac{\tau_{i}-\tau_{i-1}}{\frac{X_{1}^{(M)}(0)+i-1}{M}(1-\frac{X_{1}^{(M)}(0)+i-1}{M})}

S_{2}= \frac{1}{M\lambda}\sum_{i=1}^{\infty}\chi\{i\leq[Ms]\}\{\frac{\tau_{i}-\tau_{\iota-1}}{\frac{X_{1}^{(M)}(0)+i-1}{M}(1-\frac{X_{1}^{(M)}(0)+i-1}{M})}

- \frac{\tau_{i}-\tau_{i-1}}{(u_{1}(0)+\frac{i-1}{M})(1-u_{1}(0)-\frac{i-1}{M})}\}

S_{3}= \frac{1}{M\lambda}\sum_{i=1}^{\infty}\chi\{i\leq[Ms]\}^{\frac{\tau_{i}-\tau_{i-1}}{(u_{1}(0)+\frac{i-1}{M})(1-u_{1}(0)-\frac{i-1}{M})}}
.

[Step 2] We shall prove that \lim_{Marrow\infty}S_{1}=0 .

By (4. 7), there exists a positive constant C_{1} such that, for any M>0 ,
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\frac{1}{M}\sum_{i=\min\{k_{M},[Ms]\}+1}^{\max\{k_{M},[Ms]\}}(\tau_{i}-\tau_{i-1})^{2}<C_{1} .

Moreover it follows from (4. 5) that there exists a positive integer M_{0} such
that, for any M\geq M_{0} ,

(4. 9) \frac{u_{1}(0)}{2}<\frac{X_{1}^{(M)}(0)}{M}<u_{1}(0)+\frac{1-u_{1}(0)-s}{2} .

Hence

|S_{1}| \leq\{\frac{1}{M}\sum_{i=mi\mathfrak{n}\{k_{M},[Ms]\}+1}^{\max\{k_{M},[Ms]\}}(\tau_{i}-\tau_{i-1})^{2}\}^{1/2}\cross

\cross\{\frac{1}{M\lambda^{2}}\sum_{i=\min\{k_{M},[Ms]\}+1\overline{(}}^{\max\{k_{M},[Ms]\}}\frac{X_{1}^{(M)}(0)+i-1}{M}\frac{M-(X_{1}^{(M)}(0)+i-11}{M})^{2}\}^{1/2}

\leq\{C_{1}\}^{1/2}\{\frac{1}{M\lambda^{2}}\sum_{i=\min\{k_{M},[Ms]\}+1}^{\max\{k_{M},[Ms]\}}(\frac{1}{\frac{u_{1}(0)}{2}\frac{1-u_{1}(0)-s}{2}})^{2}\}^{1/2}

\leq\{C_{1}\}^{1/2}\{\frac{|k_{M}-Ms|}{M\lambda^{2}}(\frac{1}{\frac{u_{1}(0)}{2}\frac{1-u_{1}(0)-s}{2}})^{2}\}^{1/2}

Therefore we find that Step 2 holds.

[Step 3] We shall show that \lim_{Marrow\infty}S_{2}=0 .

By (4. 7), there exists a positive constant C_{2} such that, for any M>0 ,

\frac{1}{M}\sum_{i=1}^{[MS]}(\tau_{i}-\tau_{i-1})^{2}<C_{2} .

Hence, by using (4. 9) in the proof of Step 2, for any M\geq M_{0} , we have the
estimate:

|S_{2}| \leq\{\frac{1}{M}\sum_{i=1}^{[MS]}(\tau_{i}-\tau_{i-1})^{2}\}^{1/2}\cross

\cross\{\frac{1}{M\lambda^{2}}\sum_{i=1}^{[MS]}(
\frac{(1-\frac{X_{1}^{(M)}(0)}{M}-\frac{i-1}{M})-(u_{1}(0)+\frac{i-1}{M})}{(\frac{X_{1}^{(M)}(0)}{M}+\frac{i-1}{M})(1-\frac{X_{1}^{(M)}(0)}{M}-\frac{i-1}{M})(u_{1}(0)+\frac{i-1}{M})(1-u_{1}(0)-\frac{i-1}{M})})^{2}\}^{1/2}\cross

\cross|\frac{X_{1}^{(M)}(0)}{M}-u_{1}(0)|

\leq\{C_{2}\}^{1/2}\{\frac{s}{\lambda^{2}}(

\frac{1}{\frac{u_{1}(0)}{2}u_{1}(0)(1-u_{1}(0)-s)}+
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+ \frac{1}{\frac{u_{1}(0)}{2}\frac{1-u_{1}(0)-s}{2}(1-u_{1}(0)-s)})^{2}\}^{1/2}\cross

\cross|\frac{X_{1}^{(M)}(0)}{M}-u_{1}(0)| .

Therefore we find from (4. 5) that Step 3 holds.

[Step 4] We shall prove that

\lim_{Marrow\infty}S_{3}=\frac{1}{\lambda}\log\frac{(u_{1}(0)+s)(1-u_{1}(0))}{u_{1}(0)(1-u_{1}(0)-s)} .

By defining a sequence of Borel measures \{\mu_{M} ; M=1,2, \cdots\} on [0, s] such
that

\mu_{M}(\{\frac{i-1}{M}\})\equiv\frac{1}{M}(\tau_{i}-\tau_{i-1}) (1\leq i\leq[Ms]) .

We can rewrite S_{3} into

S_{3}= \int_{0}^{s}g(p)d\mu_{M}(dp) ,

where g is a continuous function on [0, s] such that

g(p)= \frac{1}{\lambda(u_{1}(0)+p)(1-u_{1}(0)-p)} .

Since it can be seen that the weak law of large numbers (4. 6) implies
that

w- \lim_{Marrow\infty}\mu_{M}=the Lebesgue measure on [o, s] ,

we find that

\lim_{Marrow\infty}S_{3}=\int_{0}^{s}g(p)dp .

A direct calculation gives us that Step 4 holds.

[Step 5] It follows from Step 1-Step 4 that the following limit exists:

\sigma(s)\equiv\lim_{Marrow\infty}\sigma_{k_{M}}^{(M)}=\frac{1}{\lambda}\log\frac{(u_{1}(0)+s)(1-u_{1}(0))}{u_{1}(0)(1-u_{1}(0)-s)}

and so the limit \lim_{Marrow\infty}\frac{X_{1}^{(M)}(t)}{M} exists and it is equal to
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u_{1}(0)+ \int_{0}^{1-u_{1(0)}}\chi l\sigma(S),\infty)(t)ds=\frac{u_{1}(0)e^{\lambda t}}{u_{1}(0)e^{\lambda t}+1-u_{1}(0)} .

This is a logistic distribution, which coincides with the unique solution of
Lotka-Volterra equation (4. 1).

Consequently we have completed the proof of THEOREM 4. 2. Q. E. D.

\S 5. The central limit theorem

For each M>0 , we define a stochastic process Y_{1}^{(M)}(*) by

(5. 1) Y_{1}^{(M)}(t) \equiv\sqrt{M}(\frac{X_{1}^{(M)}(t)}{M}-u_{1}(t)) .

By the same method as in the queuing model of LIPTSER-SHIRYAEV
[8], we can show the following central limit theorem.

THEOREM 5. 1. Let the sequence of random variables ( Y_{1}^{(M)}(0))_{M\geq 1}

converges weakly to a probability distribution G defined on R.
Then the sequence of the stochastic processes ( Y_{1}^{(M)}(t) ; t\geq 0)_{M\geq 1} con-

verges weakly to a one-dimensional Gaussian diffusion process ( Y_{1}(t);t\geq 0)

whose time evolution is governed by the following stochastic differential
equation

(5. 2) dY_{1}(t)=\lambda(u_{1}(t)+(u_{2}(t)-u_{1}(t))Y_{1}(t))dt+\sqrt{\lambda u_{1}(t)(1-u_{1}(t))}dB(t) ,

where B(*) is a one-dimensional Brownian motion.
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