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homogeneous Banach spaces

Min-Jei HUANG and Tzong-Mo TSAI
(Received October 20, 1993, Revised April 19, 1994)

1 Introduction

Let T=R/27Z be the circle group. We may identify functions on T
with 27-periodic functions on R. For tET, let R: denote the translation
operator on functions on T given by (R.)(s)=f(s—t). A homogeneous
Banach space on T(see[4]) is a linear subspace B of L'(T) having a
norm | *|z=]+]; under which it is a Banach space, and having the following
properties :

(a) If f€B and tE T, then Rf<B and |R.fls=/ls.

(b) For any f€B and any t€ T, lims-. |Rsf — R:f|s=0.

The space L?(T), 1<p<co, and the space C*(T), n=0, are typical exam-
ples of homogeneous Banach spaces on T

Throughout this paper, B will be a homogeneous Banach space on T
and .« (B) will denote the Banach algebra of all bounded linear operators
on B with the usual operator norm | «|. We call an operator T in & (B)
almost invariant if lim:-o|7R:— R:T|=0. The set of almost invariant
operators in #(B) will be denoted by & :(B).

Following DeLeeuw [1,2], we define the Fourier transform of
T< #(B) to be the #(B)-valued function T defined on Z by

T(n)fZ-zl?fZe_i”tR_tTRtf it (neZ, fEB)

and we call the formal series T~ ﬁ} T(n) the Fourier series of T. As

n=-—co

usual, we denote by 0.(7T) the nth C—1 sum and by S.(T) the nth par-
tial sum of the Fourier series of 7. The basic result concerning the Four-
ier series is

ProrosITION 1.1. ((1]) @) If TE = «(B), then |o(T)—T|—0
as n—00,

(b) If TE A(B), then for all fE€B, |0 T)f — Tf|s—0 as n—.

As a corollary, we have an analogue of the Riemann-Lebesgue
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lemma.

COROLLARY 1.2. () If TE Z+(B), then | T(n)|-0 as |nl—co.
(b) If T€ #(B), then for all f€B, |T(n)fls—0 as |n|—co.

This paper is devoted to a study of the Fourier transform for two
classes of operators. In Section 2, we introduce a class of operators
Lip.(B) which is dense in % +(B) in the operator norm for 0<a<1. We
give some examples and establish several of their algebraic properties.
We also show that |7(%)|=0(n|"%) for TELipa(B). Section 3 is con-
cerned with the rates of convergence of 0.(T) and S.(T) for T &€ Lip.(B).
By introducing the Fejér and Dirichlet kernels, we are able to prove the
following results::

O(n™ %) if 0<a<1
O(n logn) if a=1

1S T)— Tl=0(n"logn)  if 0<a<l.

low(T) - Tl=]

In particular, the Fourier series of T converges to T in the operator
norm. Finally, in Section 4, we restrict ourselves to the case where B=
L¥T) and study the Fourier transform of positive operators on LA T).
We prove that T is a positive operator if and only if the sequence {7 (»)}
is positive-definite.

We mention that the problem of convergence of Fourier series for
operators in the von Neumann-Schatten p-class has been studied by

Huang in [3].
2 Operators of class Lip.(B)

DEFINITION 2.1. For a homogeneous Banach space B on T, we
denote by Lip.(B) the set of operators in & (B) which satisfy the Lips-
chitz condition of order «; that is, an operator T ELip.(B) if there is a
constant M so that | T:— T|<M|t|® for all t€ T, where T.=R_.TR..

REMARKS (a) Only the case 0<a@<1 is interesting. For, if a>1,
then 7: is differentiable in norm with derivative identically zero, so that
T: is constant. It turns out that 7 commutes with translation.

(b) It may be useful to notice that if for each fEB, there is a con-
stant My, depending only on £, so that |(T:— T)fls<Ms|¢|* for all tE T,
then TE€ Lip«(B). This follows immediately from the uniform bounded-
ness principle.

We now give some concrete examples :
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TE Lipo(B).
We next establish several algebraic properties for operators in
Lip«(B).

PROPOSITION 2.2. (a) Lipo(B) forms a subalgebra of & (B).

(b) If TELip(B) and if z is in the rvesolvent set of T, then
(T —2)'€ Lipa(B).

(c) If TELipo(B) and if 1 is a finite Bovel measure on T, then the

convolution p*T defined by (ux T)fZ/HT_tf du(t) (f€B) belongs to
Lipo(B). -

PrOOF. (a) Let S, TE€Lip.(B). Then there is a constant M so that
1S.—SI<M|t|* and | T:— T|<M|¢t|* for all tET. Since (ST):=S:T:, we
have, by the triangle inequality, |(ST):—ST|<[S:Ml T:— TI+]S. =S|I Tll<
M|tEASIH+I T and so STELip.(B). By a similar argument, we can
prove that ¢S+ T € Lip.(B) for all c€C.

(b) Since [(T—2)':=[(T—2z).]7", it follows that

(T—2)—(T—2)"'=(T—-2).]"'(T—2)—(T—2)(T—2)"
=T -2 1T —T)NT—2)"

Thus, [[(T—2)".—(T—2)"Y<I(T—2)Y*| T — T:|, which shows that
(T —z)'€Lipa(B) if TE Lip«B).

(c) It is easy to verify that (u*xT):=pu*T: and that |u* T|<| gl T'|| for
all 7€ #(B), where |yl is the total variation norm of g Thus,
(e T)e—(ux T = pex(Te— TH <Nl Te— T)|. From this, our assertion
follows. [

REMARK. Since the Fourier series of any 7€ ¥:(B) is C—1 sum-
mable to 7T in the operator norm, and since T(n)ELip:i(B) for all #, it
follows that Lipi(B) is dense in & «(B) in the operator norm.

As usual, we denote by B* the dual space of B. For B=L*(T),
1< p<co, B* is canonically identified with LY T), where ¢=p/(p—1).

PROPOSITION 2.3. Let B=IL*(T), 1<p<oo., If TELipuB), then
its adjoint T*E Lip.(B*).

PROOF. It is easy to show that (R.)*=R_.. Hence (T*).=
(R_.TR)*=(T.)*, and so [(T*).—T*|=(T:=T)*|=IT:—T|. This
proves the proposition. [

We conclude this section with a theorem which is sometimes useful in
estimating the magnitude of | T(n)|.
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EXAMPLE 1. (the Fourier transform) Let 7€ #(B). By a simple
computation, we find that [T(n)]:=R_.T(n)R:=e™T(n) for all ncZ
and all t€T. Thus, I[T(n)].—Tml=le™—=1UIT <zl T(n)l,
which shows that 7 (n)E Lipi(B) for all .

EXAMPLE 2. (multiplication operators) Let B=L*(T), 1<p<co, and
let T€.2(B) be defined by Tf=¢f, where ¢ is a Lipschitz function of
order @ on T ; that is, there is a constant M so that |e(x+7%)—o(x)|<
M|h|* for all x, h&T. Then TELip(B). For, we have (Tf)(x)=
o(x+1t)f(x), hence

Te= D)= [ lole+ £) = po)|?lf () Pde < (M1 1)U 1

and so |T:— T|<M|t]°.
EXAMPLE 3. (Volterra integral operators) Let B=L*(T), 1<p<oo,

and consider the operator T& ¥ (B) defined by (Tf)(x)Z/:: F(s)ds

(—r<x<nx). We claim that T € Lip,,o(B), where qg=p/(p—1) is the con-
jugate exponent of p. To prove it, we compute

(TR —RIA)= [ fs=ds— [ A)as= [ " f(s)as

Thus, using the Holder inequality, we obtain

(7= T)le=W TR~ R [ f(5)as| <l

EXAMPLE 4. (integral operators with periodic kernels) Let
k: RX R— C be continuous and (27 X2x)-periodic, and suppose that there
is a constant M so that

|k(x+¢t, v+t)—Fk(x, v)|<M|t|* for all x,y, tER. (1)
Let B=L?(T), 1<p<co, and let T&Z(B) be defined by (7Tf)(x)=
%fﬂ k(x, v)f(y)dy. Then, using the periodicity of £ and f, we find

(th)(x)— /: k(x+t, y+t)f(v)dy. Thus, by (1), we have

(7.~ )](x)|<__/ ket t, v+ )= k(x, I )ldy
<o [ "Ml ldy =Ml

It follows that |[(7:— T)fllo<M|t|°l|fl:, so by the preceding remark (b),
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THEOREM 2.4. If T€Z(B), then ||T(n)||£%|| Trin— T\ for all n+0.

PrROOF. Let f€B. Then we have
T(n)f:Lf”e—intTf dl‘z —1/”e-in(t+n/n) th dl‘
271' - k 27[' -1

=;—;[Ze“i"tTt-n/nf dt
so that
T(n)f:f;[:e"'"‘(Tt— Ti-nin)f dt.
Using the fact that | 7¢— Ts|=|T:-s— T'll, we find that

1T As< = 1T~ Teaallfls dt == 1 Tem— Tl at
= Ten— Tl

This completes the proof. []
COROLLARY 2.5. If TELipa(B), then | T(n)|=0(n|9).
3 Convergence of Fourier series

Since every operator in Lip.(B) is almost invariant, the Fourier trans-
form of T € Lip.(B) can be defined directly by

T(n)=i[ie‘i”tﬂ dt

also, the Fourier series of T is C—1 summable to 7 in the operator norm

(see [1]). In this section, we wish to study the rates of convergence of
Fourier series for operators in Lip.(B). Recall that

o(T)= 3 (1--L)TG) and S(T)= 3 TO).

THEOREM 3.1. If TELipe(B), then

O(n™*° if 0<a<1,
lou(T)-TI={ 9 if0<a

O(n'logn) if a=1. (2)

PrROOF. By introducing the Fejér kernel :

_ < _ |71 > g 1 . (%+1)t/ ) _t}2
K”(t)‘j;_"n(l nt+1/¢ "1 2 /%
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(see, e.g., [4]), we can write
ou( T)— T=%IZKn(t)(Tt— T) dt.

Using the facts that 0<K,(¢)<min{n+1, 7%/(n+1)t?} and K.(t)=K.(—1t),
it follows that

1 [* M (" .
lon(T)— T“Sﬁ’/:nffn(t)” T.— T||dt£ﬁ_[”Kn(t)|l‘| dt
——M 1/n b4 2
= 7f<./0' +[m>Kn(t)t dt

M 1/n a T 71.2 2z :|
gﬁu (n+1)t dt+[m—n+lt dt

M(n+1) Mr 4 a=2
r(la+1)n! t n+1 l/nt at
=RHS of (2).

THEOREM 3.2. If TELipa(B), 0<a<l, then |S.(T)—T|=
O(n“logn). In particular, the Fourier series of T converges to T in the
operator norm.

PRrROOF. By introducing the Dirichlet kernel :

Di(t)= ﬁ‘, e“‘zsin<n+%>t/sin—2t—

J=—-n

(see, e. g., [4]), we can write

Sn(T)Zi[ZDn(t)Tt dt.

Let
Dﬁ(t)s%[pn(t)wm(t)]=sin(m)cot7t (3)
SHT)=5= [ DHO T dt =SA T) =L T(n)+ T(—n)]. (@)

Then, since (1/27) [ nDn(t)dt=1 and D, is an even function, we have

SHT)— Tzﬁf DT~ T)dt

=2L " DFGN T+ Toe—2T)dt.
TJo

Thus, if we put T(¢)=cot(¢/2)(T:+ T-.—2T) and 8=x/=, then by (3),
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An[S¥T)— T]=2_£ZT(t)sin nt dt
=£HT(t)sinm‘ dt—~/_:—aT(t+(9)sin nt dt (5)
E[1+]2+[3+[4

where
Lz'[jT(t)sinm‘ dt,
/] 26
12=—f_6T(t+ §)sin nt dt:£ T(H)sinnt dt,
T—6
13=£ [T(t)—T(t+8)]sinnt dt,
AzﬁeT(t)sin nt dt.

Since |sinnt cot(t/2)|<2n and |T.+ T-:—2TI<| T:— T|+|T-.— T|<
2M|¢t|%, it follows that

20
\Ll + | 2 <8nM ﬁ £ dt=0(n"%).
For n>2 and 71— 0<¢ <, we have |cot(¢#/2)|<1 so that
zh< [" )T+ T —2Tldt <401 TI=0(n™).

It remains to estimate |[l5]. For this, we write lz=1s,+ L2, where

t+40
2

n—0
zfo (Ti— Tevo+ T-t— T-i—p)sinnt cot%dt,

n—6
[3,2:'/‘; T(t+ 6){tan H2_6 —tan%}sin nt cot% dt

-0
:/o (Tevot T-t-o—2T)sin nt{sing/sin%sin t-;ﬁ}dt.

Since |cot(#/2)|<2¢7 ' in (0, ) and | T:— Ts| < M|t —s|*, we have

n—6
13,1=f0 {T(t)tan%— T(t+ O)tan }sin nt cot%dz‘

-6
||Is,1||£4M0”/6 t1 dt=0(n"" logn).

On the other hand, using the fact that 2x/7<sinx<x in (0, 7/2), we see
that for 9<t<7—0, Isin—g/sin—é—sinLgQISEZG/th. Thus,
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-6 T—
Ills,zIISanﬁf (t+0)%2 dtSZ“Mz26/ “pa-z gy
] ]

:{O(n‘llog n) if a=1,
O(n™*) if 0<a<l.

Combining these estimates with (5), we find that |S¥(T)— T|=0(n"%log n),
so by (4) and [Corollary 2.5,

|S(T) = TI<ISHT)— T||+%H T(m)+ T(=n)|=0(n“logn).

[]

REMARK. Theorems B.1 and 3.2 contain some classical versions on
the rates of convergence of Fourier series for Lipschitz functions (see [4],
p.22 and [5], p.64): Let ¢ be a Lipschitz function of order @ on T. If
B=LXT), and T€ % (B) is defined by Tf=g¢f, then TE Lip«(B), and
T(n) is the operator of multiplication by @(n)e™, where @(x) is the nth
Fourier coefficient of ¢. Set

on( e, t)=j=2_”<1— niﬂl >¢(j)eijt and Sn(qo, t):jzz_ngz(j)eijt.

Then 0,(T)—T and SAT)—T are the operators of multiplication by

on(@, t)—¢(t) and Sa(e, t)—¢(t), respectively. Thus, Theorems and
3.2 give that

O(n~%) if 0<a<1,

§161§)!0n(q0, t)—-go(t)|={0(n_1 logn) if a=1.

and

§gglsn(¢>, t)—o(t)l=0(n *log n).

4 Positive operators on L*(T)

An operator T€2(LXT)) is called positive if <TYf, f>=0 for all
fELXT). This section is devoted to studying the Fourier transform for
positive operators on L*T). We begin with a definition.

DEFINITION 4.1. Let {7}5--« be a sequence of operators on L%(T).
We say that {75} is positive-definite if for any sequence of functions {f.)
in L*(T) having only a finite number of terms different from zero we have

%( Tn—mfn, fm>20
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PROOF. (a) Since T is positive, we have for all f€L*T) that
7 _ 1 [ _ 1/
(IO, == [ <Tf, pt= 5= | <T(R), Rp>dt =0,

So, T(0) is positive. ) )
(b) We first observe that if SE€.(L¥T)), then (S*)(n)=[S(—n)]*
for all » ([2]). Since T is positive, T is self-adjoint so

[T(—n)*=T®) for all n. (7)
By [Theorem 4.2, we have Z((Tz' ~J)f:, [i>=0 for any sequence of func-

tions {f:} having only a finite number of terms different from zero. Thus,
if we put

f for i=0
_Jag for i=n ) )
=V by for i=m (@ BEC; S g ELXT))

0  otherwise

and use (7), a simple computation then gives

2Re{a< Yi(n)g, >+ b6<T (m)g, H+ balT(m—n)g, gd) ()
+<T0)f, £>+(al*+16)<T(0)g, g>=0.

To prove (b), we take =0 and choose a with |a|=1 so that a< T(n)g, f>=
—KT(n)g, >|. Then (8) simplifies to
CT()f, £>+<T(0)g, =2 T(n)g, .

Since this is true for any f, g€ L*(T), we conclude that | 7'(n)|<| 7:(0)|.
(c) Let x€R. If we take b=—a and choose ¢ with la|=|x| so that

al[T(n)—T(m)lg, {>=xK[T(n)— T(m)g, £,
then (8) becomes

2{<T(0)g,9>—Re< T (m—n)g, g>}x*
+2[K[T(n)— T(m)]g, £>|x+<T0)f, £>=0. (9)

As a result, the discriminant of the quadratic polynomial (9) in x cannot
be positive. Thus,

AKIT(m)— T (m)]g, NP A
<8T(0)f, HT(0)g, 9> —Re< T(m—n)g, g>}
=8¢T(0)f, NRe<[T(0)~ T(m—n)lg, 9>}
<8 (O 7(0)~ T(m— )l Plgl?
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THEOREM 4.2. T is a positive operator on LAT) if and only if the
sequence {T(n)} is positive-definite.

PrROOF. Suppose T is positive, and let {fz} be a sequence of func-
tions in L*T) having only a finite number of terms different from zero.
Then we have

2w BT (= mho o> =5 [ "L, S
:[? T(Ze "' fn), D™ ™ fmrdt
:]:Z( TRt(ge—intfn), Rt(%‘.e_i”tfn»dtzo

because T is positive. This shows that {7 (n)} is positive-definite.
Conversely, suppose {7(n)} is positive-definite. For any feL*T),
we have

k+

1), =3 (1=K TG p=rhs 8 T n=m)s, .
(6)

—

Thus, if we put

f:{f for 1<n<k+1
" 10 otherwise

then (6) becomes

Since {T(n)} is positive-definite, it follows that <o.(T)f, f/>=0 for all
kEN and all f€LXT). Thus, by [Proposition 1. 1. (b), we conclude that

(TY, f>=£i52<ak(T)f, £>=0.

So, T is a positive operator. []

Finally, we give a proposition which indicates some facts concerning
the Fourier transform of a positive operator.

PROPOSITION 4.3. Let T be a positive operator on LX(T). Then
(a) T(0) is positive.

O) 1 TI<ITON for all n.

() I Tm)—Tm)IP<2|TOWT)—T(m—n)| for all m, n.
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Since this holds for all f, g€ L*T), it follows that
N T (n)— T(m)*<2| T T(0)— T (m—n)l.
O
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