On the Fourier transform for operators on homogeneous Banach spaces

Min-Jei HUANG and Tzong-Mo TSAI (Received October 20, 1993, Revised April 19, 1994)

1 Introduction

Let $T = R/2\pi Z$ be the circle group. We may identify functions on T with 2π -periodic functions on R. For $t \in T$, let R_t denote the translation operator on functions on T given by $(R_t f)(s) = f(s-t)$. A homogeneous Banach space on T(see [4]) is a linear subspace B of $L^1(T)$ having a norm $\|\cdot\|_B \ge \|\cdot\|_1$ under which it is a Banach space, and having the following properties:

- (a) If $f \in B$ and $t \in T$, then $R_t f \in B$ and $||R_t f||_B = ||f||_B$.
- (b) For any $f \in B$ and any $t \in T$, $\lim_{s \to t} ||R_s f R_t f||_B = 0$.

The space $L^p(T)$, $1 \le p < \infty$, and the space $C^n(T)$, $n \ge 0$, are typical examples of homogeneous Banach spaces on T.

Throughout this paper, B will be a homogeneous Banach space on T and $\mathcal{L}(B)$ will denote the Banach algebra of all bounded linear operators on B with the usual operator norm $\| \cdot \|$. We call an operator T in $\mathcal{L}(B)$ almost invariant if $\lim_{t\to 0} \|TR_t - R_t T\| = 0$. The set of almost invariant operators in $\mathcal{L}(B)$ will be denoted by $\mathcal{L}_{\#}(B)$.

Following DeLeeuw [1, 2], we define the Fourier transform of $T \in \mathcal{L}(B)$ to be the $\mathcal{L}(B)$ -valued function \widehat{T} defined on Z by

$$\widehat{T}(n)f = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-int} R_{-t} T R_{t} f \ dt \qquad (n \in \mathbb{Z}, f \in B)$$

and we call the formal series $T \sim \sum_{n=-\infty}^{\infty} \widehat{T}(n)$ the Fourier series of T. As usual, we denote by $\sigma_n(T)$ the nth C-1 sum and by $S_n(T)$ the nth partial sum of the Fourier series of T. The basic result concerning the Fourier series is

PROPOSITION 1.1. ([1]) (a) If $T \in \mathcal{L}_*(B)$, then $\|\sigma_n(T) - T\| \to 0$ as $n \to \infty$.

(b) If $T \in \mathcal{L}(B)$, then for all $f \in B$, $\|\sigma_n(T)f - Tf\|_B \to 0$ as $n \to \infty$.

As a corollary, we have an analogue of the Riemann-Lebesgue

lemma.

COROLLARY 1.2. (a) If
$$T \in \mathcal{L}_*(B)$$
, then $\|\widehat{T}(n)\| \to 0$ as $|n| \to \infty$.
(b) If $T \in \mathcal{L}(B)$, then for all $f \in B$, $\|\widehat{T}(n)f\|_B \to 0$ as $|n| \to \infty$.

This paper is devoted to a study of the Fourier transform for two classes of operators. In Section 2, we introduce a class of operators $Lip_{\alpha}(B)$ which is dense in $\mathcal{L}_{*}(B)$ in the operator norm for $0 < \alpha \le 1$. We give some examples and establish several of their algebraic properties. We also show that $\|\hat{T}(n)\| = O(|n|^{-\alpha})$ for $T \in Lip_{\alpha}(B)$. Section 3 is concerned with the rates of convergence of $\sigma_{n}(T)$ and $S_{n}(T)$ for $T \in Lip_{\alpha}(B)$. By introducing the Fejér and Dirichlet kernels, we are able to prove the following results:

$$\|\sigma_n(T) - T\| = \begin{cases} O(n^{-\alpha}) & \text{if } 0 < \alpha < 1 \\ O(n^{-1}\log n) & \text{if } \alpha = 1 \end{cases}$$
$$\|S_n(T) - T\| = O(n^{-\alpha}\log n) & \text{if } 0 < \alpha \le 1.$$

In particular, the Fourier series of T converges to T in the operator norm. Finally, in Section 4, we restrict ourselves to the case where $B = L^2(T)$ and study the Fourier transform of positive operators on $L^2(T)$. We prove that T is a positive operator if and only if the sequence $\{\hat{T}(n)\}$ is positive-definite.

We mention that the problem of convergence of Fourier series for operators in the von Neumann-Schatten p-class has been studied by Huang in [3].

2 Operators of class $Lip_a(B)$

DEFINITION 2.1. For a homogeneous Banach space B on T, we denote by $\operatorname{Lip}_{\alpha}(B)$ the set of operators in $\mathscr{L}(B)$ which satisfy the Lipschitz condition of order α ; that is, an operator $T \in \operatorname{Lip}_{\alpha}(B)$ if there is a constant M so that $\|T_t - T\| \leq M|t|^{\alpha}$ for all $t \in T$, where $T_t = R_{-t}TR_t$.

REMARKS (a) Only the case $0 < \alpha \le 1$ is interesting. For, if $\alpha > 1$, then T_t is differentiable in norm with derivative identically zero, so that T_t is constant. It turns out that T commutes with translation.

(b) It may be useful to notice that if for each $f \in B$, there is a constant M_f , depending only on f, so that $\|(T_t - T)f\|_B \le M_f |t|^\alpha$ for all $t \in T$, then $T \in Lip_\alpha(B)$. This follows immediately from the uniform boundedness principle.

We now give some concrete examples:

 $T \in Lip_{\alpha}(B)$.

We next establish several algebraic properties for operators in $Lip_{\alpha}(B)$.

PROPOSITION 2.2. (a) $Lip_{\alpha}(B)$ forms a subalgebra of $\mathcal{L}(B)$.

- (b) If $T \in Lip_{\alpha}(B)$ and if z is in the resolvent set of T, then $(T-z)^{-1} \in Lip_{\alpha}(B)$.
- (c) If $T \in Lip_a(B)$ and if μ is a finite Borel measure on T, then the convolution $\mu * T$ defined by $(\mu * T)f = \int_{-\pi}^{\pi} T_{-t} f \ d\mu(t)$ $(f \in B)$ belongs to $Lip_a(B)$.

PROOF. (a) Let $S, T \in Lip_{\alpha}(B)$. Then there is a constant M so that $||S_t - S|| \le M|t|^{\alpha}$ and $||T_t - T|| \le M|t|^{\alpha}$ for all $t \in T$. Since $(ST)_t = S_tT_t$, we have, by the triangle inequality, $||(ST)_t - ST|| \le ||S_t|| ||T_t - T|| + ||S_t - S|| ||T|| \le M|t|^{\alpha}(||S|| + ||T||)$ and so $ST \in Lip_{\alpha}(B)$. By a similar argument, we can prove that $cS + T \in Lip_{\alpha}(B)$ for all $c \in C$.

(b) Since $[(T-z)^{-1}]_t = [(T-z)_t]^{-1}$, it follows that

$$[(T-z)^{-1}]_t - (T-z)^{-1} = [(T-z)_t]^{-1}[(T-z) - (T-z)_t](T-z)^{-1}$$
$$= [(T-z)^{-1}]_t (T-T_t)(T-z)^{-1}.$$

Thus, $\|[(T-z)^{-1}]_t - (T-z)^{-1}\| \le \|(T-z)^{-1}\|^2 \|T-T_t\|$, which shows that $(T-z)^{-1} \in Lip_{\alpha}(B)$ if $T \in Lip_{\alpha}(B)$.

(c) It is easy to verify that $(\mu * T)_t = \mu * T_t$ and that $\|\mu * T\| \le \|\mu\| \|T\|$ for all $T \in \mathcal{L}(B)$, where $\|\mu\|$ is the total variation norm of μ . Thus, $\|(\mu * T)_t - (\mu * T)\| = \|\mu * (T_t - T)\| \le \|\mu\| \|T_t - T\|$. From this, our assertion follows. \square

REMARK. Since the Fourier series of any $T \in \mathcal{L}_*(B)$ is C-1 summable to T in the operator norm, and since $\widehat{T}(n) \in Lip_1(B)$ for all n, it follows that $Lip_1(B)$ is dense in $\mathcal{L}_*(B)$ in the operator norm.

As usual, we denote by B^* the dual space of B. For $B = L^p(T)$, $1 , <math>B^*$ is canonically identified with $L^q(T)$, where q = p/(p-1).

PROPOSITION 2.3. Let $B = L^p(\mathbf{T})$, $1 . If <math>T \in Lip_{\alpha}(B)$, then its adjoint $T^* \in Lip_{\alpha}(B^*)$.

PROOF. It is easy to show that $(R_t)^* = R_{-t}$. Hence $(T^*)_t = (R_{-t}TR_t)^* = (T_t)^*$, and so $\|(T^*)_t - T^*\| = \|(T_t - T)^*\| = \|T_t - T\|$. This proves the proposition. \square

We conclude this section with a theorem which is sometimes useful in estimating the magnitude of $\|\widehat{T}(n)\|$.

EXAMPLE 1. (the Fourier transform) Let $T \in \mathcal{L}(B)$. By a simple computation, we find that $[\hat{T}(n)]_t = R_{-t}\hat{T}(n)R_t = e^{int}\hat{T}(n)$ for all $n \in \mathbb{Z}$ and all $t \in \mathbb{T}$. Thus, $\|[\hat{T}(n)]_t - \hat{T}(n)\| = |e^{int} - 1|\|\hat{T}(n)\| \le |n||t|\|\hat{T}(n)\|$, which shows that $\hat{T}(n) \in Lip_1(B)$ for all n.

EXAMPLE 2. (multiplication operators) Let $B = L^p(T)$, $1 \le p < \infty$, and let $T \in \mathcal{L}(B)$ be defined by $Tf = \varphi f$, where φ is a Lipschitz function of order α on T; that is, there is a constant M so that $|\varphi(x+h) - \varphi(x)| \le M|h|^{\alpha}$ for all $x, h \in T$. Then $T \in Lip_{\alpha}(B)$. For, we have $(T_t f)(x) = \varphi(x+t)f(x)$, hence

$$\|(T_t - T)f\|_p^p = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\varphi(x+t) - \varphi(x)|^p |f(x)|^p dx \le (M|t|^{\alpha})^p \|f\|_p^p$$

and so $||T_t - T|| \le M|t|^{\alpha}$.

EXAMPLE 3. (Volterra integral operators) Let $B = L^p(T)$, $1 \le p < \infty$, and consider the operator $T \in \mathcal{L}(B)$ defined by $(Tf)(x) = \int_{-\pi}^x f(s) ds$ $(-\pi \le x \le \pi)$. We claim that $T \in Lip_{1/q}(B)$, where q = p/(p-1) is the conjugate exponent of p. To prove it, we compute

$$[(TR_t - R_t T)f](x) = \int_{-\pi}^{x} f(s-t) ds - \int_{-\pi}^{x-t} f(s) ds = \int_{-\pi-t}^{-\pi} f(s) ds.$$

Thus, using the Hölder inequality, we obtain

$$\|(T_t - T)f\|_p = \|(TR_t - R_t T)f\|_p = \left|\int_{-\pi - t}^{-\pi} f(s)ds\right| \le |t|^{1/q} \|f\|_p.$$

EXAMPLE 4. (integral operators with periodic kernels) Let $k: \mathbf{R} \times \mathbf{R} \to \mathbf{C}$ be continuous and $(2\pi \times 2\pi)$ -periodic, and suppose that there is a constant M so that

$$|k(x+t, y+t) - k(x, y)| \le M|t|^{\alpha} \quad \text{for all } x, y, t \in \mathbf{R}.$$

Let $B = L^p(T)$, $1 \le p < \infty$, and let $T \in \mathcal{L}(B)$ be defined by $(Tf)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} k(x, y) f(y) dy$. Then, using the periodicity of k and f, we find $(T_t f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} k(x+t, y+t) f(y) dy$. Thus, by (1), we have

$$|[(T_{t}-T)f](x)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |k(x+t, y+t) - k(x, y)| |f(y)| dy$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} M|t|^{\alpha} |f(y)| dy = M|t|^{\alpha} |f|_{1}.$$

It follows that $\|(T_t - T)f\|_p \le M|t|^{\alpha} \|f\|_1$, so by the preceding remark (b),

THEOREM 2.4. If $T \in \mathcal{L}(B)$, then $\|\hat{T}(n)\| \leq \frac{1}{2} \|T_{\pi/n} - T\|$ for all $n \neq 0$.

PROOF. Let $f \in B$. Then we have

$$\widehat{T}(n)f = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-int} T_{t} f \ dt = \frac{-1}{2\pi} \int_{-\pi}^{\pi} e^{-in(t+\pi/n)} T_{t} f \ dt$$

$$= \frac{-1}{2\pi} \int_{-\pi}^{\pi} e^{-int} T_{t-\pi/n} f \ dt$$

so that

$$\widehat{T}(n)f = \frac{1}{4\pi} \int_{-\pi}^{\pi} e^{-int} (T_t - T_{t-\pi/n}) f \ dt.$$

Using the fact that $||T_t - T_s|| = ||T_{t-s} - T||$, we find that

$$\begin{split} \|\widehat{T}(n)f\|_{B} \leq & \frac{1}{4\pi} \int_{-\pi}^{\pi} \|T_{t} - T_{t-\pi/n}\| \|f\|_{B} \ dt = \frac{1}{4\pi} \int_{-\pi}^{\pi} \|T_{\pi/n} - T\| \|f\|_{B} \ dt \\ = & \frac{1}{2} \|T_{\pi/n} - T\| \|f\|_{B}. \end{split}$$

This completes the proof. \square

COROLLARY 2.5. If $T \in Lip_{\alpha}(B)$, then $\|\hat{T}(n)\| = O(|n|^{-\alpha})$.

3 Convergence of Fourier series

Since every operator in $Lip_a(B)$ is almost invariant, the Fourier transform of $T \in Lip_a(B)$ can be defined directly by

$$\widehat{T}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-int} T_t \ dt$$

also, the Fourier series of T is C-1 summable to T in the operator norm (see [1]). In this section, we wish to study the rates of convergence of Fourier series for operators in $Lip_{\alpha}(B)$. Recall that

$$\sigma_n(T) = \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) \widehat{T}(j)$$
 and $S_n(T) = \sum_{j=-n}^n \widehat{T}(j)$.

THEOREM 3.1. If $T \in Lip_a(B)$, then

$$\|\sigma_n(T) - T\| = \begin{cases} O(n^{-\alpha}) & \text{if } 0 < \alpha < 1, \\ O(n^{-1}\log n) & \text{if } \alpha = 1. \end{cases}$$
 (2)

PROOF. By introducing the Fejér kernel:

$$K_n(t) = \sum_{j=-n}^{n} \left(1 - \frac{|j|}{n+1} \right) e^{ijt} = \frac{1}{n+1} \left\{ \sin \frac{(n+1)t}{2} / \sin \frac{t}{2} \right\}^2$$

(see, e.g., [4]), we can write

$$\sigma_n(T) - T = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(t) (T_t - T) dt.$$

Using the facts that $0 \le K_n(t) \le \min\{n+1, \pi^2/(n+1)t^2\}$ and $K_n(t) = K_n(-t)$, it follows that

$$\|\sigma_{n}(T) - T\| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} K_{n}(t) \|T_{t} - T\| dt \leq \frac{M}{2\pi} \int_{-\pi}^{\pi} K_{n}(t) |t|^{\alpha} dt$$

$$= \frac{M}{\pi} \left(\int_{0}^{1/n} + \int_{1/n}^{\pi} K_{n}(t) t^{\alpha} dt \right)$$

$$\leq \frac{M}{\pi} \left[\int_{0}^{1/n} (n+1) t^{\alpha} dt + \int_{1/n}^{\pi} \frac{\pi^{2}}{n+1} t^{\alpha-2} dt \right]$$

$$= \frac{M(n+1)}{\pi(\alpha+1)n^{\alpha+1}} + \frac{M\pi}{n+1} \int_{1/n}^{\pi} t^{\alpha-2} dt$$

$$= \text{RHS of (2)}.$$

THEOREM 3. 2. If $T \in Lip_{\alpha}(B)$, $0 < \alpha \le 1$, then $||S_n(T) - T|| = O(n^{-\alpha} \log n)$. In particular, the Fourier series of T converges to T in the operator norm.

PROOF. By introducing the Dirichlet kernel:

$$D_n(t) = \sum_{j=-n}^{n} e^{ijt} = \sin\left(n + \frac{1}{2}\right)t / \sin\frac{t}{2}$$

(see, e.g., [4]), we can write

$$S_n(T) = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) T_t dt.$$

Let

$$D_n^*(t) = \frac{1}{2} [D_n(t) + D_{n-1}(t)] = \sin(nt)\cot\frac{t}{2}$$
(3)

$$S_n^*(T) \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n^*(t) T_t dt = S_n(T) - \frac{1}{2} [\hat{T}(n) + \hat{T}(-n)]. \tag{4}$$

Then, since $(1/2\pi)\int_{-\pi}^{\pi}D_n(t)dt=1$ and D_n is an even function, we have

$$S_n^*(T) - T = \frac{1}{2\pi} \int_{-\pi}^{\pi} D_n^*(t) (T_t - T) dt$$
$$= \frac{1}{2\pi} \int_0^{\pi} D_n^*(t) (T_t + T_{-t} - 2T) dt.$$

Thus, if we put $T(t) = \cot(t/2)(T_t + T_{-t} - 2T)$ and $\theta = \pi/n$, then by (3),

$$4\pi[S_n^*(T) - T] = 2\int_0^{\pi} T(t)\sin nt \ dt$$

$$= \int_0^{\pi} T(t)\sin nt \ dt - \int_{-\theta}^{\pi-\theta} T(t+\theta)\sin nt \ dt \qquad (5)$$

$$\equiv I_1 + I_2 + I_3 + I_4$$

where

$$I_{1} = \int_{0}^{\theta} T(t)\sin nt \ dt,$$

$$I_{2} = -\int_{-\theta}^{\theta} T(t+\theta)\sin nt \ dt = \int_{0}^{2\theta} T(t)\sin nt \ dt,$$

$$I_{3} = \int_{\theta}^{\pi-\theta} [T(t) - T(t+\theta)]\sin nt \ dt,$$

$$I_{4} = \int_{\pi-\theta}^{\pi} T(t)\sin nt \ dt.$$

Since $|\sin nt \cot(t/2)| \le 2n$ and $||T_t + T_{-t} - 2T|| \le ||T_t - T|| + ||T_{-t} - T|| \le 2M|t|^{\alpha}$, it follows that

$$||I_1|| + ||I_2|| \le 8nM \int_0^{2\theta} t^{\alpha} dt = O(n^{-\alpha}).$$

For $n \ge 2$ and $\pi - \theta \le t \le \pi$, we have $|\cot(t/2)| \le 1$ so that

$$||I_4|| \le \int_{\pi-\theta}^{\pi} ||T_t + T_{-t} - 2T|| dt \le 4\theta ||T|| = O(n^{-1}).$$

It remains to estimate $||I_3||$. For this, we write $I_3 = I_{3,1} + I_{3,2}$, where

$$I_{3,1} = \int_{\theta}^{\pi-\theta} \left\{ T(t) \tan \frac{t}{2} - T(t+\theta) \tan \frac{t+\theta}{2} \right\} \sin nt \cot \frac{t}{2} dt$$

$$= \int_{\theta}^{\pi-\theta} (T_t - T_{t+\theta} + T_{-t} - T_{-t-\theta}) \sin nt \cot \frac{t}{2} dt,$$

$$I_{3,2} = \int_{\theta}^{\pi-\theta} T(t+\theta) \left\{ \tan \frac{t+\theta}{2} - \tan \frac{t}{2} \right\} \sin nt \cot \frac{t}{2} dt$$

$$= \int_{\theta}^{\pi-\theta} (T_{t+\theta} + T_{-t-\theta} - 2T) \sin nt \left\{ \sin \frac{\theta}{2} / \sin \frac{t}{2} \sin \frac{t+\theta}{2} \right\} dt.$$

Since $|\cot(t/2)| \le 2t^{-1}$ in $(0, \pi)$ and $||T_t - T_s|| \le M|t - s|^{\alpha}$, we have

$$||I_{3,1}|| \le 4M\theta^{\alpha} \int_{\theta}^{\pi-\theta} t^{-1} dt = O(n^{-\alpha} \log n).$$

On the other hand, using the fact that $2x/\pi < \sin x < x$ in $(0, \pi/2)$, we see that for $\theta \le t \le \pi - \theta$, $|\sin \frac{\theta}{2} / \sin \frac{t}{2} \sin \frac{t+\theta}{2}| \le \pi^2 \theta / 2t^2$. Thus,

$$||I_{3,2}|| \le M\pi^2 \theta \int_{\theta}^{\pi-\theta} (t+\theta)^{\alpha} t^{-2} dt \le 2^{\alpha} M\pi^2 \theta \int_{\theta}^{\pi-\theta} t^{\alpha-2} dt$$

$$= \begin{cases} O(n^{-1} \log n) & \text{if } \alpha = 1, \\ O(n^{-\alpha}) & \text{if } 0 < \alpha < 1. \end{cases}$$

Combining these estimates with (5), we find that $||S_n^*(T) - T|| = O(n^{-\alpha} \log n)$, so by (4) and Corollary 2.5,

$$||S_n(T)-T|| \le ||S_n^*(T)-T|| + \frac{1}{2}||\widehat{T}(n)+\widehat{T}(-n)|| = O(n^{-\alpha}\log n).$$

REMARK. Theorems 3.1 and 3.2 contain some classical versions on the rates of convergence of Fourier series for Lipschitz functions (see [4], p. 22 and [5], p. 64): Let φ be a Lipschitz function of order α on T. If $B = L^1(T)$, and $T \in \mathcal{L}(B)$ is defined by $Tf = \varphi f$, then $T \in Lip_\alpha(B)$, and $\widehat{T}(n)$ is the operator of multiplication by $\widehat{\varphi}(n)e^{in}$, where $\widehat{\varphi}(n)$ is the nth Fourier coefficient of φ . Set

$$\sigma_n(\varphi, t) = \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) \widehat{\varphi}(j) e^{ijt}$$
 and $S_n(\varphi, t) = \sum_{j=-n}^n \widehat{\varphi}(j) e^{ijt}$.

Then $\sigma_n(T)-T$ and $S_n(T)-T$ are the operators of multiplication by $\sigma_n(\varphi,t)-\varphi(t)$ and $S_n(\varphi,t)-\varphi(t)$, respectively. Thus, Theorems 3.1 and 3.2 give that

$$\sup_{t\in T} |\sigma_n(\varphi, t) - \varphi(t)| = \begin{cases} O(n^{-\alpha}) & \text{if } 0 < \alpha < 1, \\ O(n^{-1} \log n) & \text{if } \alpha = 1. \end{cases}$$

and

$$\sup_{t\in T} |S_n(\varphi, t) - \varphi(t)| = O(n^{-\alpha} \log n).$$

4 Positive operators on $L^2(T)$

An operator $T \in \mathcal{L}(L^2(T))$ is called positive if $\langle Tf, f \rangle \geq 0$ for all $f \in L^2(T)$. This section is devoted to studying the Fourier transform for positive operators on $L^2(T)$. We begin with a definition.

DEFINITION 4.1. Let $\{T_n\}_{n=-\infty}^{\infty}$ be a sequence of operators on $L^2(T)$. We say that $\{T_n\}$ is positive-definite if for any sequence of functions $\{f_n\}$ in $L^2(T)$ having only a finite number of terms different from zero we have $\sum_{n,m} \langle T_{n-m}f_n, f_m \rangle \geq 0$.

PROOF. (a) Since T is positive, we have for all $f \in L^2(T)$ that

$$\langle \hat{T}(0)f, f \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \langle T_t f, f \rangle dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \langle T(R_t f), R_t f \rangle dt \ge 0.$$

So, $\hat{T}(0)$ is positive.

(b) We first observe that if $S \in \mathcal{L}(L^2(T))$, then $(S^*)(n) = [\widehat{S}(-n)]^*$ for all n ([2]). Since T is positive, T is self-adjoint so

$$[\hat{T}(-n)]^* = \hat{T}(n) \quad \text{for all } n. \tag{7}$$

By Theorem 4.2, we have $\sum_{i,j} \langle (\hat{T}i-j)f_i, f_j \rangle \geq 0$ for any sequence of functions $\{f_i\}$ having only a finite number of terms different from zero. Thus, if we put

$$f_{i} = \begin{cases} f & \text{for } i = 0 \\ ag & \text{for } i = n \\ bg & \text{for } i = m \\ 0 & \text{otherwise} \end{cases}$$
 $(a, b \in \mathbf{C}; f, g \in L^{2}(\mathbf{T}))$

and use (7), a simple computation then gives

$$2\operatorname{Re}\left\{a\langle\widehat{T}(n)g,f\rangle+b\langle\widehat{T}(m)g,f\rangle+b\overline{a}\langle\widehat{T}(m-n)g,g\rangle\right\} \\ +\langle\widehat{T}(0)f,f\rangle+(|a|^2+|b|^2)\langle\widehat{T}(0)g,g\rangle\geq0. \tag{8}$$

To prove (b), we take b=0 and choose a with |a|=1 so that $a < \hat{T}(n)g$, $f > = -|<\hat{T}(n)g$, f > |. Then (8) simplifies to

$$\langle \hat{T}(0)f, f \rangle + \langle \hat{T}(0)g, g \rangle \geq 2 |\langle \hat{T}(n)g, f \rangle|.$$

Since this is true for any $f, g \in L^2(T)$, we conclude that $\|\hat{T}(n)\| \le \|\hat{T}(0)\|$.

(c) Let $x \in \mathbb{R}$. If we take b = -a and choose a with |a| = |x| so that

$$a \langle [\hat{T}(n) - \hat{T}(m)]g, f \rangle = x |\langle [\hat{T}(n) - \hat{T}(m)]g, f \rangle|,$$

then (8) becomes

$$2\{\langle \hat{T}(0)g,g\rangle - \operatorname{Re}\langle \hat{T}(m-n)g,g\rangle\}\chi^{2} + 2|\langle [\hat{T}(n) - \hat{T}(m)]g,f\rangle|\chi + \langle \hat{T}(0)f,f\rangle \ge 0.$$
(9)

As a result, the discriminant of the quadratic polynomial (9) in x cannot be positive. Thus,

$$\begin{split} 4|\langle [\,\widehat{T}(n) - \widehat{T}(m)]g,f\rangle|^2 \\ &\leq 8\langle\,\widehat{T}(0)f,f\rangle \{\langle\,\widehat{T}(0)g,g\rangle - \operatorname{Re}\langle\,\widehat{T}(m-n)g,g\rangle\} \\ &= 8\langle\,\widehat{T}(0)f,f\rangle \{\operatorname{Re}\langle[\,\widehat{T}(0) - \widehat{T}(m-n)]g,g\rangle\} \\ &\leq 8\|\,\widehat{T}(0)\|\|\,\widehat{T}(0) - \widehat{T}(m-n)\|\|f\|^2\|g\|^2. \end{split}$$

THEOREM 4.2. T is a positive operator on $L^2(\mathbf{T})$ if and only if the sequence $\{\widehat{T}(n)\}$ is positive-definite.

PROOF. Suppose T is positive, and let $\{f_n\}$ be a sequence of functions in $L^2(T)$ having only a finite number of terms different from zero. Then we have

$$2\pi \sum_{n,m} \langle \widehat{T}(n-m)f_n, f_m \rangle = \sum_{n,m} \int_{-\pi}^{\pi} e^{-i(n-m)t} \langle T_t f_n, f_m \rangle dt$$

$$= \int_{-\pi}^{\pi} \langle T_t(\sum_n e^{-int} f_n), \sum_m e^{-imt} f_m \rangle dt$$

$$= \int_{-\pi}^{\pi} \langle TR_t(\sum_n e^{-int} f_n), R_t(\sum_n e^{-int} f_n) \rangle dt \ge 0$$

because T is positive. This shows that $\{\hat{T}(n)\}$ is positive-definite.

Conversely, suppose $\{\hat{T}(n)\}\$ is positive-definite. For any $f \in L^2(T)$, we have

$$\langle \sigma_{k}(T)f, f \rangle = \sum_{j=-k}^{k} \left(1 - \frac{|j|}{k+1} \right) \langle \widehat{T}(j)f, f \rangle = \frac{1}{k+1} \sum_{n,m=1}^{k+1} \langle \widehat{T}(n-m)f, f \rangle.$$
(6)

Thus, if we put

$$f_n = \begin{cases} f & \text{for } 1 \le n \le k+1 \\ 0 & \text{otherwise} \end{cases}$$

then (6) becomes

$$\langle \sigma_k(T)f, f \rangle = \frac{1}{k+1} \sum_{n,m} \langle \widehat{T}(n-m)f_n, f_m \rangle.$$

Since $\{\widehat{T}(n)\}\$ is positive-definite, it follows that $\langle \sigma_k(T)f, f \rangle \geq 0$ for all $k \in \mathbb{N}$ and all $f \in L^2(T)$. Thus, by Proposition 1.1. (b), we conclude that

$$\langle Tf, f \rangle = \lim_{k \to \infty} \langle \sigma_k(T)f, f \rangle \geq 0.$$

So, T is a positive operator. \square

Finally, we give a proposition which indicates some facts concerning the Fourier transform of a positive operator.

PROPOSITION 4.3. Let T be a positive operator on $L^2(T)$. Then

- (a) $\hat{T}(0)$ is positive.
- (b) $\|\hat{T}(n)\| \le \|\hat{T}(0)\|$ for all n.
- (c) $\|\hat{T}(n) \hat{T}(m)\|^2 \le 2\|\hat{T}(0)\|\|\hat{T}(0) \hat{T}(m-n)\|$ for all m, n.

Since this holds for all $f, g \in L^2(T)$, it follows that

$$\|\hat{T}(n) - \hat{T}(m)\|^2 \le 2\|\hat{T}(0)\|\|\hat{T}(0) - \hat{T}(m-n)\|.$$

ACKNOWLEDGMENTS: The authors wish to thank the referee for useful comments.

References

- [1] K. DELEEUW, An Harmonic Analysis for Operators I: Formal Properties, Illinois J. Math. 19 (1975), 593-606.
- [2] K. DELEEUW, An Harmonic Analysis for Operators II: Operators on Hilbert Space and Analytic Operators, Illinois J. Math. 21 (1977), 164-175.
- [3] M-J. HUANG, Harmonic Analysis for Operators in Homogeneous Classes, Bull. Inst. Math. Acad. Sinica, 21 (1993), 115-130.
- [4] Y. KATZNELSON, An Introduction to Harmonic Analysis, Wiley, New York, 1968.
- [5] A. ZYGMUND, Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.

Department of Mathematics National Tsing Hua University Hsinchu, Taiwan 30043