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On self-adjointness of Dirac operators in
Boson-Fermion Fock spaces

Asao ARAI
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Abstract : It is shown that a class of Dirac operators acting in the
abstract Boson-Fermion Fock space, which were introduced in a previous
paper (A. Arai, J. Funct. Anal. 105 (1992), 342-408), is essentially self-ad-
joint. The result is applied to the Wess-Zumino models of supersym-
metric quantum field theory to prove the essential self-adjointness of their
supercharges and Hamiltonians.
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I. Introduction

In the previous papers [1, 2] (cf. also [3, 6, 9, 12]), the author developed
a new theory of analysis on the abstract Boson-Fermion Fock space
(BFFS), introducing operators of the de Rham and the Dirac types acting
there. Some fundamental properties of these operators were investigated.
In particular, index theorems for the Dirac operators have been estab-
lished in terms of functional integral representations. In deriving the
index theorems, however, the (essential) self-adjointness of the Dirac
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operators was assumed. In this paper we focus our attention on the self
-adjointness problem of the Dirac operators and give a partial solution to
it.

In Section II we review the fundamental framework of the theory
presented in [1], summarizing properties of the de Rham type operator d_{A} ,
the free Dirac operator Q_{A} and the free Laplacian \triangle_{A} acting in the
abstract BFFS with A a densely defined closed linear operator playing a
role of a “ parameter” In Section III we first describe a perturbation of
Q_{A} . This is defined from a perturbation of d_{A} , which is given in terms of
a Hilbert space-valued function F on the probability space realizing the
abstract Boson Fock space under consideration. We then show by an
explicit construction that the perturbed Dirac operator, denoted by
Q_{A}(F)(Q_{A}(0)=Q_{A}) , has at least two self-adjoint extensions if it is not
essentially self-adjoint. Section IV is devoted to a detailed calculation of
the perturbed Laplacian \triangle_{A}(F):=\overline{Q}_{A}(F)^{*}\overline{Q}_{A}(F) , where \overline{Q}_{A}(F) is the c10-
sure of Q_{A}(F) . This is done for a class of F. In Section V we prove
that, for a more restricted class of F, \triangle_{A}(F) and Q_{A}(F) are essentially
self-adjoint on a domain included in D(Q_{A}(F)^{2}) . The idea of the proof is
to apply a general theorem on essential self-adjointness of semibounded
operators [10, 17] . In the last section we apply the abstract results in Sec-
tion V to the Wess-Zumino models of supersymmetric quantum field the-
ory (SSQFT) to prove that, for a class of interactions, the supercharges
and the Hamiltonians with ultraviolet cutoffs are essentially self-adjoint
on suitable domains. In Appendix we prove some elementary facts on
decomposable operators in a direct integral of Hilbert spaces with a con-
stant fibre, which are needed in the main text of the present paper.

II. Preliminaries-a review

In this section we describe the fundamental framework of the theory
presented in [1] with some minor modifications in notations and
definitions, and give some additional results. Throughout the present
paper, we shall use the convention that the inner product (\cdot ,\cdot ) \mathscr{H} of the
complex Hilbert space \mathscr{H} is complex linear in the second variable.

2. 1. Boson Fock space

Let \mathscr{H} be a real separable Hilbert space and \{\phi(f)|f\in \mathscr{H}\} be a family
of Gaussian random variables on a probability space (E, \mathscr{F}, \mu) such that
the mapping: farrow\phi(f) is linear, the Borel field \mathscr{F} is generated by \{\phi(f)|f

\in \mathscr{H}\} , and
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\int_{E}e^{i\phi(f)}d\mu=e^{-||f||_{X\prime 2}^{2}} , f\in \mathscr{H}.

By abuse of notation, we also denote by \phi an element of E.
We denote by P_{n} the set of complex-valued polynomials in n real

-variables (P_{0}=C) . For a linear operator T whose domain D(T) is a
subspace of \mathscr{H}_{C} , the complexification of \mathscr{H}, we define a subspace \mathscr{P}_{T}\subset

L^{2}(E, d\mu) by

\mathscr{P}\tau^{=}\mathscr{L}\{P_{n}(\phi(f_{1}),\cdots, \phi(f_{n}))|n\geq 0, P_{n}\in P_{n}, f_{j}\in D(T)\cap \mathscr{H}, j=1,\cdots, n\} ,

where \mathscr{L} { \cdots ) denotes the subspace spanned by vectors in the set \{\cdots\} . If
D(T)\cap \mathscr{H} is dense in \mathscr{H}_{C} , then \mathscr{P}\tau is dense in L^{2}(E, d\mu) . For the case
D(T)=\mathscr{H}_{C} , we simply write \mathscr{P}\tau^{=}\mathscr{P} .

Let \mathscr{M} be a complex separable Hilbert space. We denote by L^{2}(E ,
d\mu,\cdot \mathscr{M}) the Hilbert space of \mathscr{M}-valued square integrable functions on (E,
\mu) , which is identified with L^{2}(E, d\mu)\otimes \mathscr{M}(e.g., [19, \S II. 4]) . Let T:\mathscr{H}_{C}arrow

\mathscr{M} be a densely defined closed linear operator such that D(T)\cap \mathscr{H} is dense
in \mathscr{H}. Then we can define an operator T\nabla:L^{2}(E, d\mu)arrow L^{2}(E, d\mu;\mathscr{M})

with domain \mathscr{P}\tau by

T \nabla\Psi=\sum_{j=1}^{n}\partial_{j}P_{n}(\phi(f_{1}), \cdots. \phi(f_{n}))Tf_{j}

for vectors \Psi\in \mathscr{P}_{T} of the form
\Psi=P_{n}(\phi(f_{1}), \cdots. \phi(f_{n})) (2. 1)

and by extending it by linearity to all \Psi\in \mathscr{P}_{T} , where \partial_{j}P_{n} denotes the
partial derivative of the polynomial P_{n} in the j-th variable.

We denote by J_{\mathscr{H}} the natural conjugation on \mathscr{H}_{C} and set
\overline{f}=J_{\mathscr{H}}f , f\in \mathscr{H}_{C} .

Lemma 2. 1. Let T be as above. Then T\nabla is well defifined.
Proof. For f=f_{1}+if_{2}\in \mathscr{H}_{C}(f_{j}\in \mathscr{H}. i=\sqrt{-1}) , we define \phi(f)=\phi(f_{1})

+i\phi(f_{2}) . It is \cdot well known or easily proven (cf. the proof of Theorem 6. 3.
1 in [15] ) that for vectors \Psi , \Phi\in \mathscr{P} of the form (2. 1) and all f\in \mathscr{H}_{C} ,

\int_{E}(f, \nabla\Psi)_{\mathscr{H}c}\Phi d\mu=-\int_{E}\Psi(f, \nabla\Phi)_{\mathscr{H}c}d\mu+\int_{E}\phi(\overline{f})\Psi\Phi d\mu , (2. 2)

which is an integration by parts formula with respect to (w. r. t.) the mea-
sure \mu . Let \Psi_{1} , \Psi_{2},\in \mathscr{P} such that \Psi_{1}(\phi)=\Psi_{2}(\phi)a . e . \phi . Then we have
from (2. 2) that
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\int_{E}(u, T\nabla\Psi_{1})_{l}\Phi d\mu=\int_{E}(u, T\nabla\Psi_{2})_{\chi}\Phi d\mu

for all u\in D(T^{*}) and \Phi\in \mathscr{P} . Since \mathscr{P} and D(T^{*}) are dense in L^{2}(E, d\mu)

and \mathscr{M} . respectively, and \mathscr{M} is separable, it follows that there exists a
subset N of E with \mu(N)=0 such that for all u\in D(T^{*})

(u, T\nabla\Psi_{1}(\phi))_{\chi}=(u, T\nabla\Psi_{2}(\phi))_{\nearrow} , \phi\in E\backslash N .

Hecne, T\nabla\Psi_{1}(\phi)=T\nabla\Psi_{2}(\phi)a . e . \phi , which means the well-definedness of
T\nabla as an operator from L^{2}(E, d\mu) to L^{2}(E, d\mu;\mathscr{M}) . \blacksquare

In the case where \mathscr{M}=\mathscr{H}_{C} and T=I (identity), we simply write I\nabla=

\nabla . For each f\in \mathscr{H}_{C} , we define an operator \tilde{\nabla}_{f} in L^{2}(E, d\mu) with domain
\mathscr{P} by

\tilde{\nabla}_{f}\Psi=(f, \nabla\Psi)_{\mathscr{H}c} , \Psi\in \mathscr{P} .

Note that \tilde{\nabla}_{f} is complex antilinear in f.
For two vector spaces \mathscr{V} and \mathscr{V} .

\mathscr{V}\otimes\wedge \mathscr{V} denotes their algebraic ten-
sor product.

LEMMA 2. 2. Let T be as in Lemma 2. 1 and f\in \mathscr{H}_{c} . Then, \overline{\nabla}_{f} and
T\nabla are closable and the following relations hold:

\mathscr{P}\subset D(\tilde{\nabla}_{f}^{*}) , \mathscr{P}\otimes D(T^{*})\subset D-((T\nabla)^{*}) , (2. 3)
\tilde{\nabla}_{\tau*u}^{*}\Psi=(T\nabla)^{*}(\Psi u)=-\overline{\nabla}_{JT^{*}u}\Psi+\phi(T^{*}u)\Psi , \Psi\in \mathscr{P}, u\in D(T^{*}) .

(2. 4)

PROOF. Using (2. 2), we can prove (2. 3) and (2. 4). In particular,
(2. 3) implies that D(\tilde{\nabla}_{f}^{*}) and D((T\nabla)^{*}) are dense in L^{2}(E, d\mu) and L^{2}(E

.’d\mu;\mathscr{M}) , respectively. Hence \tilde{\nabla}_{f} and T\nabla are closable.
We denote the closures of T\nabla and \tilde{\nabla}_{f} by the same symbols, respec-

tively.
The Hilbert space L^{2}(E, d\mu) admits the orthogonal decomposition

L^{2}(E, d \mu)=\bigoplus_{n=0}^{\infty}\Gamma_{n}(\mathscr{H}) ,

where \Gamma_{0}(\mathscr{H})=C and \Gamma_{n}(\mathscr{H})(n\geq 1) is the closed subspace generated by the
Wick products: \phi(f_{1})\cdots\phi(f_{n}) : (f_{j}\in \mathscr{H}, j=1, \cdots. n)w . r . t . \mu[22] . It is
well known that L^{2}(E, d\mu) is isomorphic to the Boson Fock space over \mathscr{H}_{C}

in a natural way [22].
Given a self-adjoint operator S in \mathscr{H} , one can define the second quant-

ization d\Gamma_{b}(S) of S as the self-adjoint operator in L^{2}(E, d\mu) which is
reduced by each \Gamma_{n}(\mathscr{H}) with the reduced part d\Gamma b^{n)}(S)=d\Gamma_{b}(S)\uparrow\Gamma_{n}(\mathscr{H})
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being of the form

d\Gamma b^{0)}(S)=0 ,

d\Gamma b^{n)}(S) : \phi(f_{1})\cdots\phi(f_{n}) : = \sum_{j=1}^{n} : \phi(f_{1})\cdots\phi(Sf_{j})\cdots\phi(f_{n}): , f_{j}\in D(S) .

2. 2. Fermion Fock space

We next recall Fermion Fock space. Let \mathscr{K} be a real separable Hil-
bert space and\wedge^{p}(\mathscr{K}_{c}) be the p-fold antisymmetric tensor product of \mathscr{K}_{c}

(p\geq 0, \wedge^{0}(\mathscr{K}_{c}):=C) . For u_{j}\in \mathscr{K}_{c} , j=1 , \cdots , p , we define the exterior prod-
uct u_{1}\wedge\cdots\wedge u_{p}\in\wedge^{p}(\mathscr{K}_{c}) by

u_{1} \wedge\cdots\wedge u_{p}=\frac{1}{p!}\sum_{\sigma\in \mathfrak{S}_{p}}\epsilon(\sigma)u_{\sigma(1)}\otimes\cdots\otimes u_{\sigma(p)}

=A_{p}(u_{1}\otimes\cdots\otimes u_{p})

where \mathfrak{S}_{p} is the symmetric group of order p, \epsilon(\sigma) the sign of the permuta-
tion \sigma , and A_{p}= \sum_{\sigma\in \mathfrak{S}_{p}}\sigma\epsilon(\sigma)/p! is the antisymmetrization operator on the
p-fold tensor product of \mathscr{K}_{c} .

The Fermion Fock space \wedge(\mathscr{K}_{c}) over \mathscr{K}_{c} is defined as the Hilbert
space given by

\wedge(\mathscr{K}_{c})=\bigoplus_{p=0}^{\infty}\wedge^{p}(\mathscr{K}_{C})

(e. g., [19, \S II. 4]) .
For a self-adjoint operator T in \mathscr{K}, the second quantization d\Gamma_{f}(T)

of T is defined as the self-adjoint operator in \wedge(\mathscr{K}_{c}) which is reduced by
each \wedge^{p}(\mathscr{K}_{c}) with the reduced part d\Gamma_{f}^{(p)}(T)=d\Gamma_{f}(T)\uparrow\wedge^{p}(\mathscr{K}_{c}) being of
the form

d\Gamma_{f}^{(0)}(T)=0 ,

d \Gamma_{f}^{(p)}(T)=\sum_{k=1}^{p}\frac{I\otimes\cdots\otimes I}{-tmes}\otimes T\otimes I
\bigotimes_{\vec{p},k11-kt1}\cdots\bigotimes_{mes}I

.

Let b(u) , u\in \mathscr{K}_{C} , be the annihilation operators on the Fermion Fock
space \wedge(\mathscr{K}_{c}) , i . e. , b(u) is a bounded linear operator on \wedge(\mathscr{K}_{c}) such that
b(u) : \wedge^{p}(\mathscr{K}_{c})arrow\wedge^{p-1}(\mathscr{K}_{C}) with

b(u)\uparrow\wedge^{0}(\mathscr{K}_{C})=0 ,

b(u)u_{1}\wedge\cdots\wedge u_{p}=\Sigma(-1)^{k-1}(u, u_{k})_{\mathscr{H}_{C}^{-}}u_{1}\wedge\cdots\wedge\overline{u}_{k}\wedge\cdots\wedge u_{p}\underline{1}p ,
\sqrt{p}k=1

p\geq 1 , u_{k}\in \mathscr{K}_{C} , (2. 5)
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where \overline{u}_{k} indicates the omission of u_{k} . The adjoint b(u)^{*} . called the cre-
ation operator, maps \wedge^{p}(\mathscr{K}_{c})into\wedge^{p+1}(\mathscr{K}_{c}) acting as

b(u)^{*}u_{1}\wedge\cdots\wedge u_{p}=\sqrt{p+1}u\wedge u_{1}\wedge\cdots\wedge u_{p} . (2. 6)

Moreover, the following canonical anticommutation relations (CARs)
hold:

\{b(u), b(v)^{*}\}=(u, v)_{X_{C}} , \{b(u), b(v)\}=0 , u , v\in \mathscr{K}_{C} ,

where \{A, B\}=AB+BA . The CARs imply that
||b(u)^{\#}||=||u||_{\mathscr{H}_{\acute{c}}} , u\in \mathscr{K}_{C} .

For later use, we introduce operators quadratic in b(\cdot)^{\#} (cf. [14]).
Let \mathscr{I}_{2}(\mathscr{K}_{C}) be the set of Hilbert-Schmidt operators on \mathscr{K}_{C} and T\in
\mathscr{I}_{2}(\mathscr{K}_{c}) . Then there exist two orthonrmal systems \{\phi_{n}\}_{n=1}^{N} , \{\phi_{n}\}_{n=1}^{N}(N\leq

+\infty) and positive numbers \lambda_{n} such that \sum_{n=1}^{N}\lambda_{n}^{2}<\infty and

T= \sum_{n=1}^{N}\lambda_{n}(\phi_{n}, \cdot)_{\mathscr{H}_{c}^{-}}\phi_{n} (2. 7)

(e . g. , [19, Theorem VI. 17]). We define

<b^{*}|T|b^{*}>= \sum_{n=1}^{N}\lambda_{n}b(\phi_{n})^{*}b(\overline{\phi}_{n})^{*} , (2. 8)

<b|T|b>= \sum_{n=1}^{N}\lambda_{n}b(\overline{\phi}_{n})b(\phi_{n}) , (2. 9)

<b^{*}|T|b>= \sum_{n=1}^{N}\lambda_{n}b(\phi_{n})^{*}b(\phi_{n}) . (2. 10)

One can show that, in the case N=+\infty , the operator on the right hand
side of (2. 8) [resp. (2. 9), (2. 10)] converges strongly on the dense subspace

\bigwedge_{f}(\mathscr{K}_{c}) :=\{\Psi=\{\Psi^{(p)}\}_{p=0}^{\infty}\in\wedge(\mathscr{K}_{c})|\Psi^{(p)}

\in A_{p}(\mathscr{K}-\otimes\cdots\otimes \mathscr{K}_{c})- , \Psi^{(p)}=0

for all but finitely many p)

and these limits are independent of the choice of the representation of T
given by (2. 7). We denote by <b^{\#}|T|b^{\mathfrak{h}}> any of these three quadratic
operators with domain \bigwedge_{f}(\mathscr{K}_{c}) .

LEMMA 2. 3. We have
\bigwedge_{f}(\mathscr{K}_{c})\subset D(<b^{\#}|T|b^{\mathfrak{h}}>*)

and
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<b^{*}|T|b^{*}>^{*}=<b|T^{*}|b> ,
<b^{*}|T|b>^{*}=<b^{*}|T^{*}|b> on \bigwedge_{f}(\mathscr{K}_{C}) .

In particular, each <b^{\#}|T|b^{\mathfrak{h}}> is closable.

PROOF. See [1, 2] . \blacksquare

We denote the closure of <b^{\#}|T|b^{\mathfrak{h}}>by the same symbol.
The following lemma also will be used later.

LEMMA 2. 4. For every \psi\in \mathscr{K}_{c}\otimes \mathscr{K}_{C}, there exists a unique operator
\Lambda(\phi)\in \mathscr{I}_{2}(\mathscr{K}_{c}) such that for all u , v\in \mathscr{K}_{c}

(u, \Lambda(\phi)v)_{\mathscr{H}_{c}’}=(u\otimes\overline{v}, \phi)_{X_{c}\otimes X_{c}} . (2. 11)

Moreover, we have
||\Lambda(\phi)||_{2}=||\phi||_{\mathscr{H}_{C}}\otimes_{{?}_{\acute{c}} , (2. 12)

where ||T||_{2} denotes the Hilbert-Schmidt norm of T The Hilbert space
\mathscr{K}_{c}\otimes \mathscr{K}_{c} is isomorphic to \mathscr{I}_{2}(\mathscr{K}_{C}) under the linear transformation \Lambda :
\mathscr{K}_{c}\otimes \mathscr{K}_{C}arrow \mathscr{I}_{2}(\mathscr{K}_{C}) .

PROOF. The existence of \Lambda(\phi) can be proven by using the Riesz
lemma. The uniqueness is obvious by (2. 11). It is an easy exercise to
prove (2. 12). To prove the surjectivity of \Lambda , let T\in \mathscr{I}_{2}(\mathscr{K}_{C}) , so that it is
represented as (2. 7). It is easy to show that

\phi_{T} := \sum_{n=1}^{N}\lambda_{n}\phi_{n}\otimes\overline{\phi}_{n} , (2. 13)

strongly converges in \mathscr{K}_{c}\otimes \mathscr{K}_{c} and
\Lambda(\phi_{T})=T (2. 14)

Thus \Lambda is surjective. \blacksquare

We denote by \tau the transposition on \mathscr{K}_{C}\otimes \mathscr{K}_{C} , i . e. , \tau is the unitary
operator on \mathscr{K}_{c}\otimes \mathscr{K}_{c} such that for all u , v\in \mathscr{K}_{c}

\tau(u\otimes v)=v\otimes u .

For \psi\in \mathscr{K}_{C}\otimes \mathscr{K}_{C} , we set
\overline{\phi}=J^{{?}’}\otimes J_{X}\phi .

LEMMA 2. 5. For all \phi\in \mathscr{K}_{c}\otimes \mathscr{K}_{c} ,

\Lambda(\phi)^{*}=\Lambda(\overline{\tau\phi}) . (2. 15)

PROOF. Let u , v\in \mathscr{K}_{c} . Then we have
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(u, \Lambda(\phi)^{*}v)_{X_{c}}=(\psi, v\otimes\overline{u})_{X_{c}}

=(\tau\phi,\overline{u}\otimes v)_{\mathscr{H}_{c}\otimes \mathscr{H}^{-}c}

=(u\otimes\overline{v}, \overline{\tau\phi})_{x_{c}\otimes_{Xc}}

=(u, \Lambda(\overline{\tau\phi})v)_{L}\chi_{C} .

Hence (2. 15) follows. \blacksquare

LEMMA 2. 6. ( i) Let \emptyset\in \mathscr{K}_{c}\otimes \mathscr{K}_{C} and u_{j}\in \mathscr{K}_{C} , j=1 , \cdots . p . Then
(<b|\Lambda(\phi)|b>u_{1}\wedge\cdots\wedge u_{p})^{(p-2)}

= \frac{2}{\sqrt{(p-1)p}}\sum_{k<j}^{p}(-1)^{j+k}(\overline{u}_{k}\wedge\overline{u}_{j}, \phi)_{\mathscr{H}_{C}^{-}\otimes{?}_{C}’}

\cross u_{1}\wedge\cdots\wedge\hat{u}_{k}\wedge\cdots\wedge\overline{u}_{j}\wedge\cdots\wedge u_{p}

for all p\geq 2 and

(<b|\Lambda(\phi)|b>u_{1}\wedge\cdots\wedge u_{p})^{(q)}=0 , q\neq p-2 .

(ii) For all T\in \mathscr{I}_{2}(\mathscr{K}_{C}) ,

<b^{*}|T|b>=d\Gamma_{f}(T) . (2. 16)

PROOF. Part (i) follows from a direct computation using (2. 5),
(2. 9), (2. 13) and (2. 14). As for part (ii), using (2. 5), (2. 6) and (2. 10),
one first proves (2. 16) on \bigwedge_{f}(\mathscr{K}_{c}) and then, by a limiting argument,
extends it as an operator equality.

2. 3. BFFS, operators of the de Rham type, and free Dirac operators

The BFFS we are concerned with is defined by

\wedge(\mathscr{H}. \mathscr{K})=L^{2}(E, d\mu)\otimes\wedge(\mathscr{K}_{c})

=L^{2}(E, d\mu;\wedge(\mathscr{K}_{c})) .

We have

\wedge(\mathscr{H}, \mathscr{K})=\bigoplus_{p=0}^{\infty}\wedge^{p}(\mathscr{H}, \mathscr{K}) ,

where
\wedge^{p}(\mathscr{H}, \mathscr{K})=L^{2}(E, d\mu;\wedge^{p}(\mathscr{K}_{C}))=L^{2}(E, d\mu)\otimes\wedge^{p}(\mathscr{K}_{C}) .

Let A:\mathscr{H}_{C}arrow \mathscr{K}_{c} be a densely defined closed linear operator such that
the nonnegative self-adjoint operator A^{*}A is reduced by \mathscr{H}.- We intr0-
duce a subspace \mathfrak{D}_{A,P} of \wedge^{p}(\mathscr{H}, \mathscr{K}) by

\mathfrak{D}_{A,p}=\mathscr{L}\{P_{n}(\phi(f_{1}), \cdots. \phi(fn))u_{1}\wedge\cdots\wedge u_{p}|n\geq 0 , P_{n}\in P_{n} , f_{j}\in D(A)\cap \mathscr{H},
u_{k}\in \mathscr{K}_{c} , j=1,2 , \cdots n ; k=1,2 , \cdots , p}.
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Since D(A^{*}A) is dense in \mathscr{H} and D(A^{*}A)\cap \mathscr{H}\subset D(A)\cap \mathscr{H} . it follows that
\mathfrak{D}_{A,p} is dense in \wedge^{p}(\mathscr{H}, \mathscr{K}) .

For each p\geq 0 , we define an operator d_{A,p} : \wedge^{p}(\mathscr{H}, \mathscr{K})-\wedge^{p+1}(\mathscr{H}, \mathscr{K})

with domain \mathfrak{D}_{A,p} by

d_{A,p} \Psi=\sqrt{p+1}\sum_{j=1}^{n}(\partial_{j}P_{n})(\phi(f_{1}), \cdots, \phi(f_{n}))Af_{j}\wedge u_{1}\wedge\cdots\wedge u_{p}

for vectors \Psi\in \mathfrak{D}_{A,p} of the form
\Psi=P_{n}(\phi(f_{1}), \cdots. \phi(f_{n}))u_{1}\wedge\cdots\wedge

\mathcal{U}p (2. 17)

and extending it by linearity to all vectors \Psi\in \mathfrak{D}_{A,p} . In the same way as
in the proof of Lemma 2. 1, one can show that the operator d_{A} is well
-defined (i . e. , if \Psi , \Phi\in \mathfrak{D}_{A,p} , \Psi=\Phi a . e. , then d_{A,p}\Psi=d_{A,p}\Phi a . e .).

LEMMA 2. 7. ( i) For all p\geq 0 ,

d_{A,p}\mathfrak{D}_{A,p}\subset \mathfrak{D}_{A,p+1}

and

d_{A,p+1}d_{A,p}=0 .

Moreover, d_{A,p} is closable.
(ii) Let

\mathfrak{D}_{A,p}^{*}=\mathscr{L}\{P_{n}(\phi(f_{1}), \cdots\wedge\phi(f_{n}))u_{1}\wedge\cdots\wedge u_{p+1}|n\geq 0 , P_{n}\in P_{n} , f_{j}\in \mathscr{H},
u_{k}\in D(A^{*}) , j=1,2 , \cdots n;k=1,2 , \cdots , p+1\} .

Then, for all p\geq 0 ,

\mathfrak{D}_{A,p}^{*}\subset D(d_{A,p}^{*})

and
d_{A,p-1}^{*}\Psi=\Sigma^{p}(-1)^{k-1}(\phi(A^{*}u_{k})\tilde{P}_{n}-\tilde{\nabla}f_{{?}},A^{*}u_{k}\overline{P}_{n})u_{1}\wedge\cdots\wedge\overline{u}_{k}\wedge\cdots\wedge\underline{1}

\mathcal{U}p

\sqrt{p}k=1

for vectors \Psi\in \mathfrak{D}_{A,p-1}^{*} of the form (2. 17), where \overline{P}_{n}=P_{n}(\phi(f_{1}), \cdots. \phi(f_{n})) .

Proof. See [1]. \blacksquare

We denote the closure of d_{A,p} by the same symbol. One can define
from the sequence \{d_{A,p}\}_{p=0}^{\infty} of operators a de Rham type operator d_{A} act-
ing in \wedge(\mathscr{H},\mathscr{K}) by

D(d_{A})= \{\Psi=\{\Psi^{(p)}\}_{p=0}^{\infty}\in\wedge(\mathscr{H}, \mathscr{K})|\Psi^{(p)}\in D(d_{A,p}),\sum_{p=0}^{\infty}||d_{A,p}\Psi^{(p)}||^{2}<\infty\} ,

(d_{A}\Psi)^{(0)}=0 , (d_{A}\Psi)^{(p)}=d_{A,p-1}\Psi^{(p-1)} , p\geq 1 , \Psi\in D(d_{A}) .
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Let
\mathfrak{D}_{A}=\{\Psi=\{\Psi^{(p)}\}_{p=0}^{\infty}\in\wedge(\mathscr{H},\mathscr{K})|\Psi^{(p)}\in \mathfrak{D}_{A,p}\cap \mathfrak{D}_{A,p-1}^{*} , \Psi^{(p)}=0

for all but finitely many p}.

LEMMA 2. 8. ( i) The operator d_{A} is densely defifined with

\mathfrak{D}_{A}\subset D(d_{A})

and closed. Moreover
d_{A}^{2}=0 .

(ii) The adjoint d_{A}^{*} is given by

D(d_{A}^{*})= \{\Psi=\{\Psi^{(p)}\}_{p=0}^{\infty}\in\wedge(\mathscr{H},\mathscr{K})|\Psi^{(p+1)}\in D(d_{A,p}^{*}),\sum_{p=0}^{\infty}||d_{A,p}^{*}\Psi^{(p+1)}||^{2}<\infty\} ,

(d_{A}^{*}\Psi)^{(p)}=d_{A,p}^{*}\Psi^{(p+1)} , p\geq 0 , \Psi\in D(d_{A}^{*}) .

Proof. See [1]. \blacksquare

We define

Q_{A}=d_{A}+d_{A}^{*}

with D(Q_{A})=D(d_{A})\cap D(_{A}^{*}) . We call Q_{A} a free Dirac-K\"ahler operator or
simply a free Dirac operator.

The free Laplacian associated with the de Rham operator d_{A} is
defined by

\triangle_{A}=d_{A}^{*}d_{A}+d_{A}d_{A}^{*}

with D(\triangle_{A})=D(d_{A}^{*}d_{A})\cap D(d_{A}d_{A}^{*}) . The following theorem has been proven
in [1] (cf. also [2]).

THEOREM 2. 9. ( i) The free Laplacian \triangle_{A} is a nonnegative self-ad-
joint operator and the operator equality

\triangle_{A}=d\Gamma_{b}(A^{*}A)\otimes I+I\otimes d\Gamma_{f}(AA^{*})

holds.
(ii) The free Dirac operator Q_{A} is self-adjoint and essentially self

-adjoint on every core for \triangle_{A} . Moreovcr, the operator equality

\triangle_{A}=Q_{A}^{2}

holds.

REMARK. Let \{e_{n}\}_{n=1}^{\infty} be a complete orthonormal system (C. O. N. S.)
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of \mathscr{K}_{c} with e_{n}\in D(A^{*}) , n\geq 1 , such that \sum_{n=1}^{\infty}||A^{*}e_{n}||_{\mathscr{H}_{c}}^{2}<\infty . Then we can

show that for all \Psi\in \mathfrak{D}_{A}

d_{A} \Psi=\sum_{n=1}^{\infty}\overline{\nabla}_{A^{*}e_{n}}\otimes b(e_{n})^{*}\Psi ,

d_{A}^{*} \Psi=\sum_{n=1}^{\infty}\tilde{\nabla}_{A^{*}en}^{*}\otimes b(e_{n})\Psi

in the sense of strong convergence. Putting

\Phi(f)=\frac{\overline{\nabla}_{f}+\tilde{\nabla}_{f}^{*}}{\sqrt{2}} , f\in \mathscr{H}_{C} ,

\gamma_{2n-1}=b(e_{n})+b(e_{n})^{*} , \gamma_{2n}=i(b(e_{n})^{*}-b(e_{n})) ,

h_{2n-1}= \frac{A^{*}e_{n}}{\sqrt{2}} , h_{2n}= \frac{iA^{*}e_{n}}{\sqrt{2}} ,

we have

Q_{A}= \sum_{n=1}^{\infty}\Phi(h_{n})\otimes\gamma_{n}

on \mathfrak{D}_{A} in the strong topology. Note that \gamma_{n} is a bounded self-adjoint oper-
ator with

\{\gamma_{n}, \gamma_{m}\}=2\delta_{mn} , m, n\geq 1 ,

which means that \{\gamma_{n}\}_{n=1}^{\infty} is a self-adjoint representation of an infinite
dimensional Clifford algebra [13]. Thus Q_{A} is a generalization of the
Dirac type operator B_{h} given in Example 2 in Section IV of [13]; If A^{*}e_{n}

and A^{*}e_{m} are orthogonal for all m\neq n , then Q_{A} is of the form of ff_{h} and,
in this case, Theorem 4. 7 in [13] gives another proof of the self-adjoint-
ness of Q_{A} .

The BFFS \wedge(\mathscr{H}, \mathscr{K}) admits the orthogonal decomposition

\wedge(\mathscr{H}, \mathscr{K})=\bigwedge_{+}(\mathscr{H}, \mathscr{K})\oplus\bigwedge_{-}(\mathscr{H},\mathscr{K}) , (2. 18)

with

\bigwedge_{+}(\mathscr{H},\mathscr{K})=\bigoplus_{p=0}^{\infty}\wedge^{2p}(\mathscr{H},\mathscr{K}) , \bigwedge_{-}(\mathscr{H}, \mathscr{K})=\bigoplus_{p=0}^{\infty}\wedge^{2p+1}(\mathscr{H},\mathscr{K}) .

The spaces \bigwedge_{+}(\mathscr{H},\mathscr{K}) and \bigwedge_{-}(\mathscr{H},\mathscr{K}) may be regarded as a space of
“ even forms ” and of “ odd forms ” on E, respectively [1, 2, 5, 6].

Let P_{\pm} be the orthogonal projections onto \bigwedge_{\pm}(\mathscr{H},\mathscr{K}) , respectively,
and define
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\Gamma=P_{+}-P_{-} .

Then \Gamma satisifies
\Gamma^{2}=I , \Gamma^{*}=\Gamma .

i . e. , \Gamma is a grading operator on \wedge(\mathscr{H}, \mathscr{K}) . The following proposition has
been proven in [1].

PROPOSITION 2. 10.
\Gamma D(Q_{A})=D(Q_{A})

and

Q_{A}\Gamma+\Gamma Q_{A}=0 on D(Q_{A}) .

REMARKS. ( i) Proposition 2. 10 and Theroem 2. 9 imply that the
quadruple \{\wedge(\mathscr{H}, \mathscr{K}), \triangle_{A}, Q_{A}, \Gamma\} defines a supersymmetric quantum theory
[3, 4, 8, 12, 16, 23].

(ii) More detailed properties of Q_{A} and \triangle_{A} are given in [1].
(iii) Decomposition theorems of the de Rham-Hodge-Kodaira type

for the “ de Rham complex ”
\{d_{A,p}\}_{p=0}^{\infty} and related aspects have been dis-

cussed in [5, 11] .
(iv) For a generalization of the above formalism to the case where

the measure \mu is not necessarily Gaussian, see [5, 6, 9].

III. Perturbation of the free Dirac operator and self-adjoint
extensions

In this section we consider a perturbation of the free Dirac perator Q_{A}

introduced in the last section. Let F be a \mathscr{K}_{c^{-}}valued measurable function
on (E, \mu) . Then we define an operator \overline{b}(F) acting in the BFFS with the
identification

\wedge(\mathscr{H},\mathscr{K})=\int_{E}^{\oplus}\wedge(\mathscr{K}_{c})d\mu(\phi)

by

\tilde{b}(F)=\int_{E}^{\oplus}b(F(\phi))d\mu(\phi) . (3. 1)

(For the notation, see Appendix.) The following lemma can be proven by
applying Propositions A. 1 and A. 2 in Appendix A.

LEMMA 3. 1. Let F\in L^{r}(E, d\mu;\mathscr{K}_{C}) with some r>2 . Then the fol-

lowing ( i )-(ii) hold :
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(i) The operator \overline{b}(F) is densely defifined with
\mathfrak{D}_{A}\subset D(\overline{b}(F))

and closed.
(ii) We have

\mathfrak{D}_{A}\subset D(\overline{b}(F)^{*})

and

\tilde{b}(F)^{*}=\int_{E}^{\oplus}b(F(\phi))^{*}d\mu(\phi) . (3. 2)

In what follows, we assume that F\in L^{r}(E, d\mu;\mathscr{K}_{c}) for some r>2 .
We introduce a perturbed de Rham operator d_{A}(F) by

d_{A}(F)=d_{A}+\overline{b}(F)^{*}

with D(d_{A}(F))=D(d_{A})\cap D(\tilde{b}(F)^{*}) . By Lemma 3. 1, we have
\mathfrak{D}_{A}\subset D(d_{A}(F)^{\#})

and

d_{A}(F)^{*}=d_{A}^{*}+\tilde{b}(F) on D(d_{A}^{*})\cap D(\tilde{b}(F)) .

In particular, d_{A}(F) is closable.
We now define a perturbed Dirac operator by

Q_{A}(F)=d_{A}(F)+d_{A}(F)^{*}

with D(Q_{A}(F))=D(Q_{A})\cap D(\tilde{b}(F))\cap D(\tilde{b}(F)^{*}) . It is obvious that Q_{A}(F) is
a symmetric operator. We denote the closure of Q_{A}(F) by \overline{Q}_{A}(F) . We
are concerned with the self-adjointness of \overline{Q}_{A}(F) . We first show that
\overline{Q}_{A}(F) has self-adjoint extensions. A key fact for that is given by the
following proposition.

PROPOSITION 3. 2.
\Gamma D(\overline{Q}_{A}(F))=D(\overline{Q}_{A}(F))

and

\{\overline{Q}_{A}(F), \Gamma\}=0 on D(\overline{Q}_{A}(F)) .

PROOF. It is sufficient to prove these facts for \overline{Q}_{A}(F) replaced by
Q_{A}(F) . Let \Psi=\{\Psi^{(p)}\}_{p=0}^{\infty}\in D(\overline{b}(F)^{*}) . Then we have

(\Gamma\Psi)^{(p)}=(-1)^{p}\Psi^{(p)} . p\geq 0 . (3. 3)
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Hence
||b(F(\phi))^{*}(\Gamma\Psi)(\phi)||_{\Lambda(\mathscr{H}_{\vee}^{-})}^{2}=||b(F(\phi))^{*}\Psi(\phi)||_{\Lambda(ff_{C})}^{2} ,

which implies that \Gamma\Psi\in D(\overline{b}(F)^{*}) . Thus \Gamma D(\overline{b}(F)^{*})\subset D(\overline{b}(F)^{*}) . Since
\Gamma^{2}=I , it follows that D(\tilde{b}(F)^{*})\subset\Gamma D(\overline{b}(F)^{*}) . Thus we obtain

\Gamma D(\tilde{b}(F)^{*})=D(\tilde{b}(F)^{*}) . (3. 4)

Moreover, we have by (3. 3) and (2. 6)

(\tilde{b}(F)^{*}\Gamma\Psi)^{(p)}(\phi)=(-1)^{p-1}\sqrt{p}F(\phi)\wedge\Psi^{(p-1)}(\phi) ,
(\Gamma\tilde{b}(F)^{*}\Psi)^{(p)}(\phi)=(-1)^{p}\sqrt{p}F(\phi)\wedge\Psi^{(p-1)}(\phi) .

Hence
\{\overline{b}(F)^{*}, \Gamma\}=0 on D(\tilde{b}(F)^{*}) . (3. 5)

Similarly we can show that
\Gamma D(\tilde{b}(F))=D(\overline{b}(F)) (3. 6)

and
\{\tilde{b}(F), \Gamma\}=0 on D(\overline{b}(F)) . (3. 7)

Proposition 2. 10 and (3. 4)-(3.7) imply the desired result. \blacksquare

Jorgensen [18] introduced a notion of abstract Dirac operator: Let \mathscr{H}

be a complex Hilbert space and \gamma be a grading operator on \mathscr{H}, i . e. , \gamma is a
self-adjoint operator on \mathscr{H} such that \gamma^{2}=I(\gamma\neq\pm I) . A closed symmetric
operator T in \mathscr{H} is called an abstract Dirac operator w. r . t . \gamma if \gamma leaves
D(T) invariant and

\{\gamma, T\}=0 on D(T) .

In terms of this notion, Proposition 3. 2 is rephrased as follows: The oper-
ator \overline{Q}_{A}(F) is an abstract Dirac operator w. r . t . \Gamma

It has been shown in [18] that every abstract Dirac operator has a
self-adjoint extension which is also an abstract Dirac operator. Here we
explicitly construct two self-adjoint extensions of \overline{Q}_{A}(F) by employing an
idea used in [6, 7] .

By (2. 18), every \Psi\in\wedge(\mathscr{H},\mathscr{K}) can be represented as

\Psi=(\begin{array}{l}\Psi_{+}\Psi_{-}\end{array}) , \Psi_{\pm}\in\bigwedge_{\pm}(\mathscr{H}, \mathscr{K}) .

Then every linear operator in \wedge(\mathscr{H}, \mathscr{K}) is given by a 2\cross 2 matrix with
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entries being linear operators. For example, we have

r=(\begin{array}{ll}I 00 -I\end{array}) (3. 8 )

It follows from Proposition 3. 2 that there exists a unique densely defined
closed linear operator Q_{A}(F)_{+}(resp. Q_{A}(F)_{-}) from \bigwedge_{+}(\mathscr{H}, \mathscr{K})(resp . \bigwedge_{-}(\mathscr{H},
\mathscr{K})) to \bigwedge_{-}(\mathscr{H},\mathscr{K}) (resp. \bigwedge_{+}(\mathscr{H}, \mathscr{K}) such that

\overline{Q}_{A}(F)=(\begin{array}{ll}0 Q_{A}(F)_{-}Q_{A}(F)_{+} 0\end{array}) (3. 9)

The symmetricity of \overline{Q}_{A}(F) implies that

Q_{A}(F)_{+}\subset Q_{A}(F)_{-}^{*} . (3. 10)

Let

Q_{A}^{(1)}(F)=(\begin{array}{ll}0 Q_{A}(F)_{+}^{*}Q_{A}(F)_{+} 0\end{array}) (3. 11 )

and

Q_{A}^{(2)}(F)=(\begin{array}{ll}0 Q_{A}(F)_{-}Q_{A}(F)_{-}^{*} 0\end{array}) . (3. 12)

PROPOSITION 3. 3. Each Q_{A}^{(j)}(F) is a self-adjoint extension of \overline{Q}_{A}(F)

and an abstract Dirac operator w. r. t. \Gamma .

PROOF. It is easy to see that Q_{A}^{(j)}(F) is self-adjoint. By (3. 9) and
(3. 10), Q_{A}^{(j)}(F) is an extension of \overline{Q}_{A}(F) . Using (3. 8), one can easily
check that Q_{A}^{(j)} is an abstract Dirac operator w. r . t . \Gamma r

\blacksquare

IV. The Laplacian associated with the perturbed Dirac operator

By von Neumann’s theorem (e . g. , [20, Theorem X. 25]), the operator

\triangle_{A}(F):=\overline{Q}_{A}(F)^{*}\overline{Q}_{A}(F)

is self-adjoint and nonnegative. We call this operator the Laplacian as-
sociated with the perturbed Dirac operator \overline{Q}_{A}(F) or simply the perturbed
Laplacian. The essential self-adjointness of Q_{A}(F) is closely related to
that of \triangle_{A}(F) as is shown in the following lemma.

LEMMA 4. 1. Let \mathfrak{D} be a core for \triangle_{A}(F) such that \mathfrak{D}\subset D(Q_{A}(F)^{2}) .
Then Q_{A}(F) is essentially self-adjoino on \mathfrak{D} .

Lemma 4. 1 follows from an application of a general fact given in the
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following lemma.

LEMMA 4. 2. Let T be a symmetric operator in a Hilbert space \mathscr{H}.
Suppose that there exists a dense subspace D such that D\subset D(T^{2}) and T^{2} is
essentially self-adjoint on D. Then T is essentially self-adjoint on D .

PROOF. The fact stated in this lemma should be more or less
well-known (cf. [20, Chapter X, Problem 28]), but, for the sake of com-
pleteness, we give a proof. Let \overline{T} be the closure of T Then, by von
Neumann’s theorem, the operator

L=(\overline{T})^{*}\overline{T}=T^{*}\overline{T}

is self-adjoint and nonnegative. Since T is symmetric, we have T^{2}\subset L .
Hence it follows that D is a core for L. We can easily show that for all
f\in D ,

||Tf|| \leq\frac{1}{\sqrt{2}}||(L+1)f|| .

Moreover, for all f\in D ,

0=|(Tf, (L+1)f)-((L+1)f, Tf)|\leq||(L+1)^{1/2}f||^{2} .

Thus, by applying a variant of Nelson’s commutator theorem (e. g. , [20,

Theorem X. 37]), we obtain the desired result.

PROOF OF LEMMA 4. 1.
Apply Lemma 4. 2 with \mathscr{H}=\wedge(\mathscr{H}, \mathscr{K}) and T=Q_{A}(F) . \blacksquare

Employing Lemma 4. 1, we shall prove, for a class of F, the essential
self-adjointness of Q_{A}(F) by proving that of \triangle_{A}(F) on a domain included
in D(Q_{A}(F)^{2}) . For this purpose, we need to know an explicit form of
Q_{A}(F)^{2} on a suitable domain. The rest of this section is devoted to the
computaion of Q_{A}(F)^{2} .

We introduce a class of \mathscr{K}_{c}-valued measurable functions on E . Let
1\leq r , s<\infty and define a norm ||\cdot||_{r,s} on \mathscr{P}_{A}\otimes D(A^{*})\wedge by

||\Phi||_{r,s}=||\Phi||_{L^{r}(E,d\mu,{?}_{C}’)}+||A\nabla\otimes I\Phi||_{L^{s}(E,d\mu,ff_{c}\otimes \mathscr{H}_{c}^{-)}}

+||\overline{A}\nabla\otimes I\Phi||_{L^{s}(E,d\mu,X_{C}\otimes X_{c})} ,

where
\overline{A}=J{?} AJ\mathscr{H} .

We denote by \mathscr{V}_{A}^{r,s}(\mathscr{K}_{C}) the completion of \mathscr{P}_{A}\otimes D(A^{*})- in the norm ||\cdot||_{r,s} .
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DEFINITION 4. 3. We say that a \mathscr{K}_{c}-valued function \Phi on E is in the
set F_{A}^{r,s} if \Phi\in D((A\nabla)^{*})\cap \mathscr{V}_{A}^{r,s}(\mathscr{K}_{C}) and, for all f\in D(A)\cap \mathscr{H}. (\Phi, Af)_{\mathscr{H}_{c}^{-}} is
a real-valued function on E.

Let G be a \mathscr{K}_{c}\otimes \mathscr{K}_{c}-valued measurable function on E. Then, for a . e .
\phi\in E , we can define three kinds of quadraic operators <b^{\#}|\Lambda(G(\phi))|b^{\mathfrak{h}}>

(see Section 2. 2). These operators can be extended to operators in \wedge(\mathscr{H},
\mathscr{K}) as decomposable operators:

< \overline{b}^{\#}|\Lambda(G)|\tilde{b}^{\mathfrak{h}}>:=\int_{E}^{\oplus}<b^{\#}|\Lambda(G(\phi))|b^{\mathfrak{h}}>d\mu(\phi) .

We introduce
\mathfrak{D}_{A}^{(2)}=\mathscr{L}\{P_{n}(\phi(f_{1}), \cdots\phi(f_{n}))u_{1}\wedge\cdots\wedge u_{p}|n , p\geq 0 , P_{n}\in P_{n} , f_{j}\in D(A^{*}A)\cap \mathscr{H} .

u_{k}\in D(AA^{*}) , j=1,2 , \cdots . n;k=1,2 , \cdots , p},

which is dense in \wedge(\mathscr{H}, \mathscr{K}) . We denote the closures of the operators A\nabla ,
\overline{A}\nabla:L^{2}(E, d\mu)arrow L^{2}(E, d\mu;\mathscr{K}_{C}) with domain \mathscr{P}_{A} by the same symbols.
The main result of this section is the following.

THEOREM 4. 4. Let F\in F_{A}^{r,s} with r>4 and s>2 . Then, \mathfrak{D}_{A}^{(2)}\subset

D(Q_{A}(F)^{2}) and
\triangle_{A}(F)=Q_{A}(F)^{2}

=\triangle_{A}+(A\nabla)^{*}F+||F||_{\mathscr{H}_{c}^{-}}^{2}+<\tilde{b}^{*}|\Lambda(\overline{\overline{A}\nabla\otimes IF})|\tilde{b}>

+<\overline{b}^{*}|\Lambda(\overline{\overline{A}\nabla\otimes IF})^{*}|\overline{b}>+<\tilde{b}^{*}|\Lambda(A\nabla\otimes IF)|\overline{b}^{*}>

+<\overline{b}|\Lambda(A\nabla\otimes IF)^{*}|\overline{b}> (4. 1)

on \mathfrak{D}_{A}^{(2)} .

Formula (4. 1) has been derived in [1] with a different notation for
the quadratic operators in \tilde{b}^{\#}(\cdot) and under slightly different conditions,
although the details of the derivation of (4. 1) was not given there. The
present formulation gives a refinement of the corresponding result in [1]
and may be a most general one to obtain such an explicit form of \triangle_{A}(F)

as (4. 1). For these reasons and for the sake of completeness, here we
present, by a series of lemmas, a detailed proof of (4. 1).

In what follows, we often omit the subscript \mathscr{H} in the inner product
(\cdot,\cdot)_{\mathscr{L}} of the Hilbert space \mathscr{H} if there is no danger of confusion.

Let T be a densely defined closed linear operator from \mathscr{H}_{C} to \mathscr{K}_{c} such
that D(T)\cap \mathscr{H} is dense in \mathscr{H}.

LEMMA 4. 5. Let G\in L^{s}(E, d\mu;\mathscr{K}_{C})\cap D((T\nabla)^{*}) with some s>2 .
Suppose that there exist sequences \{G_{n}\}_{n=1}^{\infty}\subset \mathscr{P} and \{e_{n}\}_{n=1}^{\infty}\subset D( T^{*}) such
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that \sum_{n=1}^{N}G_{n}e_{n}arrow G in L^{s}(E, d\mu;\mathscr{K}_{C}) as Narrow\infty . Then, for all \Psi\in \mathscr{P}_{T} ,

((T \nabla)^{*}G, \Psi)_{L^{2}(E,d\mu\rangle}=\sum_{n=1}^{\infty}(-\tilde{\nabla}_{J_{\mathscr{H}^{T^{*}e_{n}}}}G_{n}+\phi(T^{*}e_{n})G_{n}, \Psi)_{L^{2}(E,d\mu)} . (4. 2)

Proof. Let \Psi\in \mathscr{P}_{T} . Then we have

((T\nabla)^{*}G, \Psi)=(G, T\nabla\Psi)

= \sum_{n=1}^{\infty}(G_{n},\overline{\nabla}_{T^{*}e_{n}}\Psi)

= \sum_{n=1}^{\infty}(\tilde{\nabla}_{T^{*}e_{n}}G_{n}, \Psi) .

Then, using Lemma 2. 2, we obtain (4. 2). \blacksquare

For each function G\in L^{s}(E, d\mu;\mathscr{K}_{C}) with s>2 , we define an operator
\overline{\nabla}_{T,G} in L^{2}(E, d\mu) by

D(\overline{\nabla}_{T,G})=\mathscr{P}_{T} ,
\tilde{\nabla}_{T,G}\Psi=(G, T\nabla\Psi)_{{?}_{c^{-}} , \Psi\in \mathscr{P}_{T} .

By H\"older’s inequality, one can easily show that \tilde{\nabla}_{T,G}\Psi\in L^{2}(E, d\mu) .

LEMMA 4. 6. Let G be as in Lemma 4. 5. Then, \tilde{\nabla}_{T,G} is closable with
D(\tilde{\nabla}_{T,G}^{*})\supset \mathscr{P}\tau (4. 3)

and
\tilde{\nabla}_{T,G}^{*}\Psi=\Psi(T\nabla)^{*}G-\tilde{\nabla}_{\overline{T}\overline{G}},\Psi , \Psi\in \mathscr{P}_{T} . (4. 4)

Proof. Let \Psi , \Phi\in \mathscr{P}_{T} . Then

( \tilde{\nabla}_{T,G}\Phi, \Psi)=\int_{E}(T\nabla\Phi(\phi), G(\phi))_{{?}_{\acute{c}}\Psi(\phi)d\mu

= \sum_{n=1}^{\infty}(\tilde{\nabla}_{T^{*}c_{n}}\Phi, G_{n}\Psi)

= \sum_{n=1}^{\infty}(\Phi,\tilde{\nabla}_{T^{*}e_{n}}(G_{n}\Psi)) .

Then, using Lemma 2. 2 and 4. 5, we see that (4. 3) and (4. 4) hold. \blacksquare

LEMMA 4. 7. Let F\in \mathscr{V}Ar,s with r>2 and s>2 . Then the following
(i )-(iv) hold :

(i) \mathfrak{D}_{A}\subset D(d_{A}\tilde{b}(F)^{*})\cap D(\tilde{b}(F)^{*}d_{A}) and
\{d_{A},\tilde{b}(F)^{*}\}=<\overline{b}^{*}|\Lambda(A\otimes IF)|\tilde{b}^{*}> (4. 5)

on \mathfrak{D}_{A} .
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(ii) \mathfrak{D}_{A}\subset D(d_{A}^{*}b(F))\cap D(b(F)d_{A}^{*}) and
\{d_{A}^{*}, b(F)\}=<\tilde{b}|\Lambda(A\otimes IF)^{*}|\overline{b}> (4. 6)

on \mathfrak{D}_{A} .

(iii) \mathfrak{D}_{A}\subset D(d_{A}\overline{b}(F))\cap D(\overline{b}(F)d_{A}) and
\{d_{A},\tilde{b}(F)\}=<\overline{b}^{*}|\Lambda(\overline{\overline{A}\nabla\otimes IF})|\overline{b}>+\tilde{\nabla}_{A,F} (4. 7)

on \mathfrak{D}_{A} .

(iv) \mathfrak{D}_{A}\subset D(_{A}^{*}\tilde{b}(F)^{*})\cap D(\overline{b}(F)^{*}d_{A}^{*}) and
\{d_{A}^{*},\overline{b}(F)^{*}\}=<\tilde{b}^{*}|\Lambda(\overline{\overline{A}\nabla\otimes IF})^{*}|\tilde{b}>-\overline{\nabla}_{\overline{A},\overline{F}}+(A\nabla)^{*}F (4. 8)

on \mathfrak{D}_{A} .

PROOF. It is easy to see that \mathfrak{D}_{A}\subset D(\tilde{b}(F)^{\#}) . It is sufficient to prove
(4. 5)-(4.8) for vectors of the form

\Psi=\{0, \cdots, 0, \Psi^{(p)}, 0, \cdots\}\in \mathfrak{D}_{A} (4. 9)

with
\Psi^{(p)}=P_{m}(\phi(f_{1}), \cdots. \phi(f_{m}))u_{1}\wedge\cdots\wedge u_{p} ,
f_{j}\in D(A)\cap \mathscr{H}, u_{k}\in D(A^{*}) , j=1 , \cdots . m, k=1 , \cdots p .

Throughout the proof, we set
\overline{P}_{m}=P_{m}(\phi(f_{1}), \cdots. \phi(f_{m})) .

(i) For \Psi given by (4. 9), ( \tilde{b}(F)^{*}\Psi)^{(k)}=0 for k\neq p+1 and

(\tilde{b}(F)^{*}\Psi)^{(p+1)}(\phi)=\sqrt{p+1}\tilde{P}_{m}F(\phi)\wedge u_{1}\wedge\cdots\wedge u_{p} . (4. 10)

By the assumption on F, there exist sequences \{F_{n}\}_{n=1}^{\infty}\subset \mathscr{P}_{A} and \{e_{n}\}_{n=1}^{\infty}\subset

D(A^{*}) such that F^{(N)} := \sum_{n=1}^{N}F_{n}e_{n} satisfies

||F^{(N)}-F||_{L^{r}(E,d\mu,\mathscr{H}_{C})}arrow 0 , (4. 11)
||A\nabla\otimes IF^{(N)}-A\nabla\otimes IF||_{L^{s}(E,d\mu,{?}_{C}’)\otimes X_{c}}arrow 0 , (4. 12)
||\overline{A}\nabla\otimes IF^{(N\rangle}-\overline{A}\nabla\otimes IF||_{L^{s}(E,d\mu,\mathscr{H}_{C})\otimes{?}_{c}^{-}}\veearrow 0 , (4. 13)

as Narrow\infty . By (4. 10) and H\"older’s inequality, we have

||\overline{b}(F^{(N)})^{*}\Psi-\tilde{b}(F)^{*}\Psi||^{2}=||\overline{b}(F-F^{(N)})^{*}\Psi||^{2}

\leq C\int_{E}d\mu|\overline{P}_{m}|^{2}||F-F^{(N)}||_{Xc}^{2}

\leq C(\int_{E}d\mu|\overline{P}_{m}|^{q})^{2/q}(\int_{E}d\mu||F^{(N)}-F||_{\mathscr{H}_{C}^{-}}^{r)^{2/r}}
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with a constant C>0 , where 1/q+1/r=1/2 . Hence, by (4. 11), we obtain
\overline{b}(F^{(N)})^{*}\Psiarrow\overline{b}(F)^{*}\Psi

as N - \infty . Since F_{n}\in \mathscr{P}_{A} , it follows that \overline{b}(F^{(N)})^{*}\Psi\in D(d_{A}) and

(d_{A}\tilde{b}(F^{(N)})^{*}\Psi^{(p+2)}=\sqrt{(p+1)(p+2)}\{\eta_{N}^{(1)}+\eta_{N}^{(2)}\} ,

where

\eta_{N}^{(1)}=\sum_{j=1}^{m}\overline{\partial_{j}P_{m}}Af_{j}\wedge F^{(N)}\wedge u_{1}\wedge\cdots\bigwedge_{\mathcal{U}p}

\eta k^{2)}=\sum_{n=1}^{N}\overline{P}_{m}A\nabla F_{n}\wedge e_{n}\wedge u_{1}\wedge\cdots\wedge u_{p}

=\overline{P}_{m}A_{p+2}((A\nabla\otimes IF^{(N)})\otimes u_{1}\otimes\cdots\otimes u_{p}) .

All the other components of d_{A}\tilde{b}(F^{(N)})^{*}\Psi are zero. As in the preceding
case, we have

\eta_{N}^{(1)}=\sum_{j=1}^{m}\overline{\partial_{j}P_{m}}Af_{j}\wedge F^{(N)}\wedge u_{1}\wedge\cdots\wedge u_{p} .

Simlarly, using (4. 12), we have
\eta k^{2)} - \tilde{P}_{m}A_{p+2}((A\nabla\otimes IF)\otimes u_{1}\otimes\cdots\otimes u_{p}) .

Since d_{A} is closed, we conclude that \tilde{b}(F)^{*}\Psi\in D(d_{A}) and

(d_{A} \tilde{b}(F)^{*}(\Psi)^{(p+2)}=\sqrt{(p+1)(p+2)}\{\sum_{j=1}^{m}\partial_{j}P_{m}Af_{j}\wedge F\wedge u_{1}\wedge\cdots\wedge u_{p}

+\overline{P}_{m}A_{p+1}((A\nabla\otimes IF)\otimes u_{1}\otimes\cdots\otimes u_{p})\} .

On the other hand, it is easy to see that \Psi\in D(\overline{b}(F)^{*}d_{A}) and

( \overline{b}(F)^{*}d_{A}\Psi)^{(p+1)}=\sqrt{(p+1)(p+2)}\sum_{j=1}^{m}\overline{\partial_{j}P_{m}}F\wedge Af_{j}\wedge u_{1}\wedge\cdots\wedge u_{p} .

Using the antisymmetry of wedge product, we obtain

(\{d_{A},\tilde{b}(F)^{*}\}\Psi)^{(p+2)}=\sqrt{(p+1)(p+2)}\tilde{P}_{m}A_{p+2}(A\nabla\otimes IF\otimes u_{1}\otimes\cdots\otimes u_{p}) .

We have

\sum_{n=1}^{N}b(A\nabla F_{n})^{*}b(e_{n})^{*}u_{1}\wedge\cdots\wedge u_{p}
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=\sqrt{(p+1)(p+2)}A_{p+2}((A\nabla\otimes IF^{(N)})\otimes u_{1}\otimes\cdots\otimes u_{p}) .

Hence

( \{d_{A},\tilde{b}(F)^{*}\}\Psi)^{(p+2)}=\lim_{Narrow\infty}\sum_{n=1}^{N}b(A\nabla F_{n})^{*}b(e_{n})^{*}u_{1}\wedge\cdots\wedge u_{p} (4. 14)

in \wedge^{p+2}(\mathscr{H},\mathscr{K}) . There exists a subsequene \{N_{k}\} such that (4. 14) with
N=N_{k} holds a . e . in the strong topology of \wedge(\mathscr{K}_{c}) . Hence we have for
all v_{k}\in \mathscr{K}_{c} , k=1 , \cdots , p+2 ,

(v_{1}\wedge\cdots\wedge v_{p+2}, (\{d_{A},\tilde{b}(F)^{*}\}\Psi)^{(p+2)})

= \lim_{harrow\infty}\sum_{n=1}^{N_{k}}(b(e_{n})b(A\nabla F_{n})v_{1}\wedge\cdots\wedge v_{p+2}, \Psi^{(p)})

= \sum_{i<j}^{p+2}\frac{1}{\sqrt{(p+1)(p+2)}}(-1)^{i+j}

\cross\lim_{karrow\infty n}\sum_{=1}^{N_{k}}((\overline{v}_{i}\wedge\overline{v}_{j},\overline{e}_{n}\otimes\overline{A\nabla F_{n}})v_{1}\wedge\cdots\wedge\hat{v}_{i}\wedge\cdots\wedge\hat{v}_{j}\wedge\cdots\wedge v_{p+2}, \Psi^{(p)})

=(<\overline{b}|\Lambda(A\nabla\otimes IF)^{*}|\overline{b}>v_{1}\wedge\cdots\wedge v_{p+2}, \Psi^{(p)})

=(v_{1}\wedge\cdots\wedge v_{p+2}, (<\overline{b}^{*}|\Lambda(A\nabla\otimes IF)|\tilde{b}^{*}>\Psi)^{(p+2)}) ,

where, in the third equality, we have used Lemmas 2. 5 and 2. 6. Therefore
we obtain

(\{d_{A},\tilde{b}(F)^{*}\}\Psi)^{(p+2)}=(<b^{*}|\Lambda(A\nabla\otimes IF)|b^{*}>\Psi)^{(p+2)} , a . e .

Thus (4. 5) follows.
(ii) We need only to show that \Psi\in D(d_{A}^{*}\overline{b}(F))\cap D(\overline{b}(F)d_{A}^{*}) . Then

(4.6) follows from taking the adjoint of (4.5) on \mathfrak{D}_{A} . It is easy to see
that \Psi\in D(\overline{b}(F)d_{A}^{*}) . We have

( \overline{b}(F)\Psi)^{(p-1)}=\frac{1}{\sqrt{p}}\sum_{j=1}^{p}(-1)^{j-1}\tilde{P}_{m}(F, u_{j})u_{1}\wedge\cdots\wedge\overline{u}_{j}\wedge\cdots\wedge u_{p} .

Hence, in the same way as in the proof of part ( i ) , we can show that

\tilde{b}(F^{(N)})\Psiarrow\tilde{b}(F)\Psi

in \wedge(\mathscr{H},\mathscr{K}) as Narrow\infty . Obviously \overline{b}(F^{(N)})\Psi\in D(d_{A}^{*}) . Moreover, we
have

(d_{A}^{*}\tilde{b}(F^{(N)})\Psi)^{(p-2)}

=- \Sigma(-1)^{j-1}\sum_{k<j}(-1)^{k-1}\{\nabla_{J_{\mathscr{H}^{A^{*}u_{k}}}}\overline{P}_{m}(F^{(N)}, u_{j})\underline{1}p

\sqrt{p(p-1)}j=1

-\nabla_{J_{\mathscr{H}}A^{*}u_{J}}\overline{P}_{m}(F^{(N)}, u_{k})

+\tilde{P}_{m}(A\nabla F^{(N)}. u_{k}\otimes u_{j})-\tilde{P}_{m}(A\nabla F^{(N)}, u_{j}\otimes u_{k})
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-\phi(A^{*}u_{k})\overline{P}_{m}(F^{(N)}. u_{j})+\phi(A^{*}u_{j})\overline{P}_{m}(F^{(N)}, u_{k})\}

\cross u_{1}\wedge\cdots\wedge\overline{u}_{k}\wedge\cdots\overline{u}_{j}\wedge\cdots up.

arrow\infty.Thus\tilde{b}(F)\Psi\in D(d_{A}^{*}),iBy(4.1l)and(4.12)
,therigh.t e.,\Psi\in D(d_{A}^{*}\tilde{b}(F))handsideconver.ges

in \wedge^{p-2}(\mathscr{H}, \mathscr{K}) as N

(iii) We have

(d_{A} \overline{b}(F^{(N)})\Psi)^{(p)}=\sum_{j=1}^{p}(-1)^{j-1}\{(F^{(N)}. u_{j})(A\nabla\tilde{P}_{m})\wedge u_{1}\wedge\cdots\overline{u}_{j}\wedge\cdots\wedge u_{p}

+ \sum_{n=1}^{N}\overline{P}_{m}(e_{n}, u_{j})(A\nabla F_{n}^{*})\wedge u_{1}\wedge\cdots\overline{u}_{j}\wedge\cdots\wedge u_{p}\} . (4. 15)

In general, we have for all u_{n} , u_{n} , u\in \mathscr{K}_{c} and N\geq 1

|| \sum_{n=1}^{N}(u_{n}, u)v_{n}||\leq||\sum_{n=1}^{N}v_{n}\otimes\overline{u}_{n}||||u|| .

Hence

|| \sum_{n=1}^{N}(e_{n}, u_{j})A\nabla F_{n}^{*}||_{X_{c}}\leq||\overline{A}\nabla\otimes IF^{(N)}||_{\mathscr{H}_{c}^{-}\otimes x_{c}}||u_{j}|| .

Using this estimate and (4. 13), we see that the right hand side of (4. 15)
converges in \wedge^{p}(\mathscr{H}, \mathscr{K}) . Thus \Psi\in D(d_{A}\tilde{b}(F)) . As in part ( ii) , we can
show that

(d_{A}\tilde{b}(F)\Psi)^{(p)}

= \sum_{j=1}^{p}(-1)^{j-1}(F, u_{j})(A\nabla\tilde{P}_{m})\wedge u_{1}\wedge\cdots\overline{u}_{j}\wedge\cdots\wedge u_{p}

+\overline{P}_{m}(<\tilde{b}^{*}|\Lambda(\overline{\overline{A}\nabla\otimes IF})|\tilde{b}>u_{1}\wedge\cdots\hat{u}_{j}\wedge\cdots\wedge u_{p})^{(p)} .

On the other hand, it is easy to see that \Psi\in D(\overline{b}(F)d_{A}) and
(\tilde{b}(F)d_{A}\Psi)^{(p)}=(F, A\nabla\tilde{P}_{m})u_{1}\wedge\cdots\wedge u_{p}

- \sum_{j=1}^{p}(-1)^{j-1}(F, u_{j})(A\nabla\tilde{P}_{m})\wedge u_{1}\wedge\cdots\hat{u}_{j}\wedge\cdots\wedge u_{p} .

Thus (4. 7) follows.

(iv) In the same way as in the preceding cases, we can show that
\Psi\in D(d_{A}^{*}b(F)^{*})\cap D(\tilde{b}(F)^{*}d_{A}^{*}) . Then, taking the adj oint of (4. 7) on

\mathfrak{D}_{A,-}

,,

we obtain (4. 8).

LEMMA 4. 8. Let F\in L^{r} (E, d\mu : _{\mathscr{K}c}) with r>4 . Then \mathfrak{D}_{I}\subset

D(\tilde{b}(F)^{\#}\tilde{b}(F)^{\#}) and
\{\overline{b}(F),\tilde{b}(F)^{*}\}=||F||_{{?}_{c}}^{2} , \{ \tilde{b}(F),\tilde{b}(F)\}=0 , \{ \tilde{b}(F)^{*},\overline{b}(F)^{*}\}=0(4.16)

on \mathfrak{D}_{I} .
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PROOF. Let \Psi\in \mathfrak{D}_{I} . Then, by H\"older’s inequality, we have

|| \tilde{b}(F)^{\#}\tilde{b}(F)^{\#}\Psi||^{2}\leq\int_{E}||F(\phi)||_{Xc}^{4}||\Psi(\phi)||_{\Lambda({?}_{C^{-})}^{2}d\mu(\phi)

\leq(\int_{E}||F(\phi)||_{{?}_{C’}^{r}d\mu(\phi))^{4/r}(\int_{E}||\Psi(\phi)||_{\Lambda(.r_{C})}^{q}d\mu(\phi))^{2/q}

<\infty ,

where 4/r+2/q=1 . Hence \mathfrak{D}_{I}\subset D(\tilde{b}(F)^{\#}\tilde{b}(F)^{\#}) . Formula (4. 16) follows
from the CARs of b^{\#}(\cdot) . \blacksquare

PROOF OF THEOREM 4. 4.

We have \mathfrak{D}_{A}^{(2)}\subset D(d_{A}^{*}d_{A})\cap D(d_{A}d_{A}^{*})\subset \mathfrak{D}_{A} . Hence the domain properties
stated in Lemmas 4. 7 and 4. 8 imply that \mathfrak{D}_{A}^{(2)}\subset D(Q_{A}(F)^{2}) and we have

Q_{A}(F)^{2}=Q_{A}^{2}+\{d_{A},\tilde{b}(F)\}+\{d_{A},\tilde{b}(F)^{*}\}+\{d_{A}^{*},\tilde{b}(F)\}+(d_{A}^{*},\tilde{b}(F)^{*}\}

+(\tilde{b}(F)+\overline{b}(F)^{*})^{2}

on \mathfrak{D}_{A}^{(2)} . Then (4. 5)-(4.8) and (4. 16) yield (4. 1). \blacksquare

As a corollary of Lemma 4. 7, we have

PROPOSITION 4. 9. Let F\in \mathscr{V}_{A}^{r,s} with r>2 and s>2 . Then
d_{A}(F)^{2}=0 on \mathfrak{D}_{A}

if and only if
A\nabla\otimes IF(\phi)\in\wedge^{2}(\mathscr{K}_{c})^{\perp}a.e.\phi . (4. 17)

PROOF. By part ( i) of Lemma 4. 7, we have
d_{A}(F)^{2}=\{d_{A},\tilde{b}(F)^{*}\}=<\tilde{b}^{*}|\Lambda(A\nabla\otimes IF)|\tilde{b}^{*}>

on \mathfrak{D}_{A} . By the proof of part ( i) of Lemma 4. 7, <\tilde{b}^{*}|\Lambda(A\nabla\otimes IF)|\tilde{b}^{*}>=0

on \mathfrak{D}_{A} if and only if (4. 17) holds. Thus the desired result follows. \blacksquare

Proposition 4. 9 gives a necessary and sufficient condition for d_{A}(F) to
be nilpotent on \mathfrak{D}_{A} . Under condition (4. 17), the last two terms on the
right hand side of (4. 1) vanish, so that the form of \triangle_{A}(F) becomes sim-
pler.

V. Essential self-adjointness of the perturbed Laplacian
and the perturbed Dirac operator

In this section we prove that for a class of F, \triangle_{A}(F) and Q_{A}(F) are
essentially self-adjoint on a suitable domain.

Let
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\mathfrak{D}_{A}^{\infty}=\mathscr{L}\{P_{n}(\phi(f_{1}), \cdots, \phi(f_{n}))u_{1}\wedge\cdots\wedge u_{p}|n , p\geq 0 , P_{n}\in P_{n} , f_{j}\in C^{\infty}(A^{*}A) ,
u_{k}\in C^{\infty}(AA^{*}) , j=1 , \cdots\Gamma\prime n;k=1 , \cdots , p\} ,

where C^{\infty}(T):= \bigcap_{n=1}^{\infty}D(T^{n}) ( T. a linear operator in a Hilbert space). We

denote by N_{b} the number operator on the Boson Fock space L^{2}(E, d\mu);N_{b}

=d\Gamma_{b}(I) , i . e. , N_{b} is the self-adjoint operator such that N_{b}\uparrow\Gamma_{n}(\mathscr{H})=n .
We prove the following theorem.

THEOREM 5. 1. Let F\in F_{A}^{r,s} with r>4 and s>2 . Suppose that F\in

\bigoplus_{n=0}^{M}\Gamma_{n}(\mathscr{H})\otimes \mathscr{K}_{C} for some M<\infty and there exists constant C>0 such that

||||F||_{Xc}^{2}\Psi||_{L^{2}(E,d\mu)}\leq C||(N_{b}+1)^{2}\Psi||_{L^{2}(E,d\mu)} , (F. 1)
||(A\nabla)^{*}F\Psi||_{L^{2}(E,d\mu)}\leq C||(N_{b}+1)^{2}\Psi||_{L^{2}(E,d\mu)} , (F. 2)
||||A\nabla\otimes IF||_{X_{c}\otimes X_{c}}^{2}\Psi||_{L^{2}(E,d\mu)}\leq C||(N_{b}+1)^{2}\Psi||_{L^{2}(E,d\mu)} , (F. 3)
||||\overline{A}\nabla\otimes IF||_{x_{c}\otimes x_{c}}^{2}\Psi||_{L^{2}(E,d\mu)}\leq C||(N_{b}+1)^{2}\Psi||_{L^{2}(E,d\mu)} , (F. 4)

for all \Psi\in D(N_{b}^{2}) . Then \triangle_{A}(F) is essentially self-adjoint on \mathfrak{D}_{A}^{\infty} .

As a corollary of Theorem 5. 1, we have the following result.

THEOREM 5. 2. Under the assumption of Theorem 5. 1, Q_{A}(F) is
essentially self-adjoint on \mathfrak{D}_{A}^{\infty} .

PROOF. This follows from Theorems 4. 4, 5. 1, and an application of
Lemma 4. 1 with \mathfrak{D}=\mathfrak{D}_{A}^{\infty}\subset \mathfrak{D}_{A}^{(2)} . \blacksquare

The rest of this section is devoted to the proof of Theorem 5. 1. The
basic idea for that is to employ the following theorem.

THEOREM 5. 3 ([10], cf.also [17]). Let \mathscr{M}n , n\geq 0 , be Hilbert spaces
and

\mathscr{M}=\bigoplus_{n=0}^{\infty}\mathscr{M}_{n}

be the infifinite dircet sum of \{\mathscr{M}_{n}\}_{n=0}^{\infty} . Let

\mathscr{D}_{0}=[f=\{f^{(n)}\}_{n=0}^{\infty}\in \mathscr{M}\psi^{(n)}=0 for all but fifinitely many n}.

Let \hat{N} be the self-adjoint operator such that \hat{N}[\mathscr{M}n=n (the degree opera-
tor on \mathscr{M} ). Let T be a self-adjoint operator in \mathscr{M} which is reduced by
each \mathscr{M}_{n} and S be a symmetric operator in \mathscr{M} which satisfifies the following
conditions ( i) and ( ii) :

(i) \mathscr{D}_{0}\subset D(S) and there exists a constant C>0 such that
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||Sf||\leq C||(\hat{N}+1)^{2}f|| , f\in \mathscr{D}_{0} .

(ii) There exists an integer p\geq 0 such that for all f\in \mathscr{D}_{0} and for
|m-n|>p+1 ,

(f^{(m)}, Sf^{(n)})=0 .

Suppose that T+S is bounded from below on \mathscr{D}0\cap D(T) . Then T+S is
essentially self-adjoint on \mathscr{D}_{0}\cap D(T) .

REMARK. Condition ( i) is a special case of the condition (B1) of
Theorem 2. 1 in [10], i . e. , the case L=I with the notation there.

We prepare some lemmas. Let
\mathscr{P}_{n}=\mathscr{L}\{:\phi(f_{1})\cdots\phi(f_{n})) : |f_{j}\in \mathscr{H}, j=1, \cdots. n,\}\subset\Gamma_{n}(\mathscr{H}) , n\geq 0 .

Note that \mathscr{P}_{n}\perp \mathscr{P}_{m} for n\neq m .

LEMMA 5. 4. Let G \in\bigoplus_{j=0}^{M}\mathscr{P}_{j} for some M<\infty and \Phi_{m}\in \mathscr{P}_{m} and \Psi_{n}\in

\mathscr{P}_{n} . Then the following ( i) and ( ii) hold:

(i) If|m-n|>M , then
(\Phi_{m}, G\Psi_{n})_{L^{2}(E,d\mu)}=0 .

(ii) If|m-n|>M-1 , then
(\Phi m, (\nabla_{f}G)\Psi_{n})_{L^{2}(E,d\mu)}=0

for all f\in \mathscr{H}c .

PROOF. We need only to note that G \Psi n\in\bigoplus_{k=0}^{M+n}\mathscr{P}k and (\nabla_{f}G)\Psi n\in

\bigoplus_{k=0}^{M-1+n}\mathscr{P}_{k} . \blacksquare

We can write

\wedge(\mathscr{H},\mathscr{K})=\bigoplus_{n=0}^{\infty}\mathscr{F}_{n}

with

\mathscr{F}_{n}=\bigoplus_{m+p=n}\Gamma_{m}(\mathscr{H})\otimes\wedge^{p}(\mathscr{K}_{c}) .

Each element \Psi^{(n)}\in \mathscr{T}_{n} is written as
\Psi^{(n)}=\sum_{m+p=n}\Psi_{n}^{(m,p)}
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with \Psi_{n}^{(m,p)}\in\Gamma_{m}(\mathscr{H})\otimes\wedge^{p}(\mathscr{K}_{c}) . Let
\mathscr{P}_{A,n}^{\infty}=\mathscr{L}\{:\phi(f_{1})\cdots\phi(f_{n})):|f_{j}\in C^{\infty}(A^{*}A), j=1, \cdots\backslash n,\} , n\geq 0 .

Then the subspace

\mathscr{D}_{n} := \bigoplus_{m+p=n}\mathscr{P}_{A,m}^{\infty}\otimes A_{p}(C^{\infty}(AA^{*})\otimes\cdot\cdot\otimes C^{\infty}(AA^{*})\wedge-.\sim)

is dense in \mathscr{I}_{n}^{-} .

LEMMA 5. 5. Let F \in F_{A}^{r,s}\cap[\bigoplus_{m=1}^{M}\Gamma_{m}(\mathscr{H})\otimes \mathscr{K}_{c}] with r>4 , s>2 and M

<\infty . Let \Phi^{(n)}\in \mathscr{D}_{n} , \Psi^{(m)}\in \mathscr{D}_{m} . Then the following ( i)-(v) hold :
(i) If|n-m|>2M , then

(\Phi^{(n)}, ||F||_{\mathscr{H}_{c}’}^{2}\Psi^{(m)})_{\Lambda(\mathscr{H},\mathscr{H}^{-})}=0 . (5. 1)

(ii) If|n-m|>M+1 , then
(\Phi^{(n)}, (A\nabla)^{*}F\Psi^{(m)})_{\Lambda(\mathscr{H},\mathscr{H}^{-)}}=0 .

(iii) If|n-m|>M-1 , then
(\Phi^{(n)}, <\overline{b}^{*}|\Lambda(\overline{A}\nabla\otimes IF)^{\#}|\overline{b}>\Psi^{(m)})_{\Lambda(\mathscr{H}\mathscr{H}^{-})},=0 . (5. 2)

(iv) If|n-m-2|>M-1 , then
(\Phi^{(n)}, <\tilde{b}^{*}|\Lambda(A\nabla\otimes IF)|\overline{b}^{*}>\Psi^{(m)})_{\Lambda(\mathscr{H},X)}=0 . (5. 3)

(v) If|n-m+2|>M-1 , then
(\Phi^{(n)}, <\overline{b}|\Lambda(A\nabla\otimes IF)^{*}|\tilde{b}>\Psi^{(m)})_{\Lambda(\mathscr{H},\mathscr{H})}=0 .

PROOF. ( i) Let F^{(N)} be as in the proof of Lemma 4. 7. Then we
have

( \Phi^{(n)}, ||F||_{X_{c}}^{2}\Psi^{(m)})=\lim_{Narrow\infty}(\Phi^{(n)}, ||F^{(N)}||_{X_{c}}^{2}\Psi^{(m)})

= \lim_{Narrow\infty}\sum_{k,l=1}^{N}(e_{k}, e_{l})(\Phi^{(n)}, F_{k}^{*}F_{l}\Psi^{(m)}) .

= \lim_{Narrow\infty}\sum_{k,l=1}^{N}(e_{k}, e_{l})\sum_{s+p=n}\sum_{r+p=m}(\Phi_{n}^{(s,p)}, F_{k}^{*}F_{l}\Psi_{m}^{(r,p)}) .

Since F_{k} \in\bigoplus_{m=0}^{M}\Gamma_{m}(\mathscr{H}) for all k , it follows that F_{k}^{*}F_{l} \in\bigoplus_{m=0}^{2M}\Gamma(\mathscr{H}) . Hence, by

Lemma 5. 4( i ) ,

(\Phi_{n}^{(s,p)}, F_{k}^{*}F_{l}\Psi_{m}^{(r,p)})=0

if |s-r|=|n-m|>2M . Thus (5. 1) follows.
(ii) It is sufficient to show that, if |s-r|>M+1 , then
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(P_{s}, (A\nabla)^{*}F)Q_{r})=0 (5. 4)

for all P_{s}\in \mathscr{P}_{A,S}^{\infty} , Q_{r}\in \mathscr{P}_{A,r}^{\infty} . We have by Lemma 4. 5

(P_{S}, (A \nabla)^{*}FQ_{r})=\lim_{Narrow\infty}\sum_{k=1}^{N}(P_{S}, (-\overline{\nabla}_{J\approx}A*F_{k}e_{k}+\phi(A^{*}j_{k})F_{k})Q_{r}) ,

which, together with Lemma 5. 4 ( ii) , implies (5. 4).
(iii) By the proof of Lemma 4. 7 (iii), we have

( \Phi^{(n)}, <\tilde{b}^{*}|\Lambda(\overline{\overline{A}\nabla\otimes IF})|\tilde{b}>\Psi^{(m)})=\lim_{Narrow\infty}\sum_{k=1}^{N}(\Phi^{(n)}, b(AJ_{\mathscr{H}}\nabla F_{k})^{*}b(e_{n})\Psi^{(m)}) .

Since b(u)^{*}b(v) maps \wedge^{p}(\mathscr{K}_{C}) into itself, it turns out that we need only to
show that, if |s-r|>M-1 , then

(P_{s}, (u, AJ_{\mathscr{H}}\nabla F_{k})-r_{c}Q_{r})=0

for all P_{s}\in \mathscr{P}_{A,S}^{\infty} , Q_{r}\in \mathscr{P}_{A,\gamma}^{\infty} , u\in \mathscr{K}_{C} and k\geq 1 . This follows from Lemma 5.
4 ( ii) . Thus (5. 2) follows.

(iv) By the proof of Lemma 4. 7 ( ii) , we have

( \Phi^{(n)}, <\tilde{b}^{*}|\Lambda(A\nabla\otimes IF)|\tilde{b}^{*}>\Psi^{(m)})=\lim_{Narrow\infty}\sum_{k=1}^{N}(\Phi^{(n)}. b(A\nabla F_{k})^{*}b(e_{n})^{*}\Psi^{(m)}) .

Since b(u)^{*}b(v)^{*} maps \wedge^{p}(\mathscr{K}_{c}) into \wedge^{p+2} , it turns out that we need only
to show that, if |s-r|>M-1 , then

(P_{s}, (u, A\nabla F_{k})_{{?}’c}Q_{r})=0

for all P_{s}\in \mathscr{P}_{A,S}^{\infty} , Q_{r}\in\sigma_{A,r}^{\infty}u\in \mathscr{K}_{C} and k\geq 1 . This follows from Lemma 5.
4 ( ii) . Thus (5. 3) follows.

(v) Similar to the proof of (iv) or consider the adjoint relation of
(5. 3). \blacksquare

We denote by N_{f} the number operator in \wedge(\mathscr{K}_{C}):N_{f}=d\Gamma_{f}(I) , i . e. ,
N_{f} is the selfadjoint operator in \wedge(\mathscr{K}_{C}) such that N_{f}[\wedge^{p}(\mathscr{K}_{c})=p .

LEMMA 5. 6. Let T\in \mathscr{I}_{2}(\mathscr{K}_{C}) . Then, for all \Psi\in D(N_{f}^{1/2}) ,

||<b^{*}|T|b>\Psi||\leq||T||_{2}||N_{f}^{1/2}\Psi|| , (5. 5)
||<b|T|b>\Psi||\leq||T||_{2}||N_{f}^{1/2}\Psi|| , (5. 6)
||<b^{*}|T|b^{*}>\Psi||\leq||T||_{2}||(N_{f}+2)^{1/2}\Psi|| . (5. 7)

PROOF. Let T be as in (2. 7). Let \Phi\in\wedge(\mathscr{K}_{C}) and \Psi\in\bigwedge_{f}(\mathscr{K}_{C}) .
Then
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|( \Phi, <b^{*}|T|b>\Psi)|\leq\sum_{n=1}^{N}|\lambda_{n}||(b(\phi_{n})\Phi, b(\phi_{n})\Psi)|

\leq\sum_{n=1}^{N}|\lambda_{n}|||\Phi||||b(\phi_{n})\Psi)||

\leq(\sum_{n=1}^{N}|\lambda_{n}|^{2})^{1/2}(\sum_{n=1}^{N}||b(\phi_{n})\Psi||^{2})^{1/2}||\Phi|| .

We have

\sum_{n=1}^{N}|\lambda_{n}|^{2}=||T||_{2}^{2}

and

\sum_{n=1}^{N}||b(\psi_{n})\Psi||^{2}=\sum_{n=1}^{\infty}(\Psi, b(\phi_{n})^{*}b(\phi_{n})\Psi)

\leq(\Psi, N_{f}\Psi)

=||N_{f}^{1/2}\Psi||^{2} .

Hence we obtain
|(\Phi, <b^{*}|T|b>\Psi)|\leq||T||_{2}||N_{f}^{1/2}\Psi||||\Phi|| ,

which implies (5. 5) with \Psi\in\bigwedge_{f}(\mathscr{K}_{c}) . Since \bigwedge_{f}(\mathscr{K}_{C}) , is a core for N_{f} , a
limiting argument gives (5. 5) with \Psi\in D(N_{f}^{1/2}) . Similarly we can prove
(5. 6).

To prove (5. 7), we recall that, if T\in \mathscr{I}_{2}(\mathscr{K}_{C}) , then T^{*}\in \mathscr{I}_{2}(\mathscr{K}_{C}) and
||T||_{2}=||T^{*}||_{2}(e. g., [18, \S VI. 6]) and note that (5. 6) implies that K:=
<b|T^{*}|b>(N_{f}+\epsilon)^{-1/2} is bounded for all \epsilon>0 with ||K||\leq||T^{*}||_{2}=||T||_{2} .
Hence its adjoint is bounded with ||K^{*}||\leq||T||_{2} . On the other hand,

K^{*}=(N_{f}+ \epsilon)^{-1/2}<b^{*}|T|b^{*}>on\bigwedge_{f}(\mathscr{K}_{C}) .

Hence, for all \Psi\in\bigwedge_{f}(\mathscr{K}_{c}) ,

||(N_{f}+\epsilon)^{-1/2}<b^{*}|T|b^{*}>\Psi||\leq||T||_{2}||\Psi|| .

Note that
(N_{f}+\epsilon)^{-1/2}<b^{*}|T|b^{*}>\Psi=<b^{*}|T|b^{*}>(N_{f}+2+\epsilon)^{-1/2}\Psi .

Thus we obtain
||<b^{*}|T|b^{*}>\Psi||\leq||T||_{2}||(N_{f}+2+\epsilon)^{1/2}\Psi|| .

Taking the limit \epsilonarrow 0 , we have

||<b^{*}|T|b^{*}>\Psi||\leq||T||_{2}||(N_{f}+2)^{1/2}\Psi|| .

Thus (5. 7) follows. \blacksquare
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We are now ready to prove Theorem 5. 1

Proof OF THEOREM 5. 1.
Let

H_{1}=||F||_{\chi_{c}}^{2} , H_{2}=(A\nabla)^{*}F ,
H_{3}=<\tilde{b}^{*}|\Lambda(\overline{\overline{A}\nabla\otimes IF})|\overline{b}> , H_{4}=<\overline{b}^{*}|(\Lambda(\overline{\overline{A}\nabla\otimes IF})^{*}|\overline{b}> ,
H_{5}=<\tilde{b}^{*}|\Lambda(A\nabla\otimes IF)|\overline{b}^{*}> , H_{6}=<\overline{b}|(\Lambda(A\nabla\otimes IF)^{*}|\tilde{b}> ,

and

U_{F}= \sum_{j=1}^{6}H_{j} ,

so that, by Theorem 4. 4,

\triangle_{A}(F)=Q_{A}(F)^{2}=\triangle_{A}+U_{F} on \mathfrak{D}_{A}^{(2)} .

Let

N=N_{b}\otimes I+I\otimes N_{f} .

Then we have
N[\mathscr{F}_{n}=n .

By Lemma 5. 6 and (2. 12), we have

||H_{3}\Psi||^{2} . ||H_{4} \Psi||^{2}\leq\int_{E}||\overline{A}J\nabla\otimes IF(\phi)||^{2}||N_{f}^{1/2}\Psi(\phi)||_{\Lambda(ff_{c})}^{2}d\mu(\phi) ,

||H_{5}\Psi||^{2} , ||H_{6} \Psi||^{2}\leq\int_{E}||A\nabla\otimes IF(\phi)||^{2}||(N_{f}+2)^{1/2}\Psi(\phi)||_{\Lambda(X_{c})}^{2}d\mu(\phi) ,

for all \Psi such that the right hand sides are finite. Let G be a function on
E such that

||G^{2}\Psi||_{L^{2}(E,d\mu)}\leq C||(N_{b}+1)^{2}\Psi||_{L^{2}(E,d\mu)} .

Then, for all c>0 and \epsilon>0 , we have

\int_{E}|G(\phi)|^{2}||(N_{f}+c)^{1/2}\Psi(\phi)||_{\Lambda(X_{c})}^{2}d\mu(\phi)

\leq\int_{E}|G(\phi)|^{2}||\Psi(\phi)||_{\Lambda(x_{c})}||(N_{f}+c)\Psi(\phi)||_{\Lambda(x_{c})}d\mu(\phi)

\leq\epsilon\int_{E}||(N_{f}+c)\Psi(\phi)||_{\Lambda({?}_{c}^{-})}^{2}d\mu(\phi)+\frac{1}{4\epsilon}\int_{E}|G(\phi)|^{4}||\Psi(\phi)||_{\Lambda(r_{c})}^{2}Ld\mu(\phi)

= \epsilon||(N_{f}\otimes I+c)\Psi||_{\Lambda(\mathscr{H},X)}^{2}+\frac{1}{4\epsilon}|||G|^{2}\otimes I\Psi||_{\Lambda(\mathscr{H},X\rangle}^{2}

\leq C_{1}||(N+1)^{2}\Psi||_{\Lambda(\mathscr{H},X)}^{2}

with a constant C_{1}>0 . Hence, using the conditions (F. 1 ) -(F. 4) , we obtain
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||H_{j}\Psi||_{\Lambda(\mathscr{H},X)}\leq D||(N+1)^{2}\Psi||_{\Lambda(\mathscr{H},\mathscr{H})} , \Psi\in D(N^{2}) , j=1 , \cdots , 6, (5. 8)

with a constant D>0 . Lemma 5. 5 implies that, for all \Phi^{(n)}\in \mathscr{D}_{n} , \Psi^{(m)}\in

\mathscr{D}_{m} with |n-m|> \max\{2M, M+1\} ,

(\Phi^{(n)}, H_{j}\Psi^{(m)})_{\Lambda(\mathscr{H},\mathscr{H}^{-)}}=0 , j=1,3 \cdot\cdot , 6. (5. 9)

Since \mathscr{D}_{n} is a core for N^{2} and we have (5. 8), we can extend (5. 9) to all
\Phi^{(n)}\in \mathscr{I}_{n}^{-} and \Psi^{(m)}\in \mathscr{F}_{m} . Hence if follows that

(\Phi^{(n)}, U_{F}\Psi^{(m)})_{\Lambda(\mathscr{H},X_{1}}=0 , \Phi^{(n)}\in \mathscr{P}_{n}^{-} , \Psi^{(m)}\in \mathscr{F}_{m} .

We also have from (5. 8)

||Q_{A}(F)^{2}\Psi||\leq C||(\triangle_{A}+N^{2}+I)\Psi|| , \Psi\in \mathfrak{D}_{A}^{\infty} , (5. 10)

with a constant C>0 . It is not so difficult to show that \mathfrak{D}_{A}^{\infty} is a core for \triangle_{A}

+N^{2} (e . g. , apply Theorem VIII. 11 in [19]). Hence we can extend (5. 10)

to all \Psi\in D(\triangle_{A})\cap D(N^{2}) , at the same time, obtaining

D(\triangle_{A})\cap D(N^{2})\subset D(\overline{Q}_{A}(F)^{2})

and
\triangle_{A}(F)=\overline{Q}_{A}(F)^{2}=\triangle_{A}+U_{F} on D(\triangle_{A})\cap D(N^{2}) .

By these results, we can can apply Theorem 5. 3 to the present case with

\mathscr{M}=\wedge(\mathscr{H}, \mathscr{K}) , \mathscr{M}_{n}=\mathscr{I}_{n}^{-},\hat{N}=N , T=\triangle_{A} , S=U_{F}

to conclude that \triangle_{A}(F)=\overline{Q}_{A}(F)^{2} is essentially self-adjoint on D(\triangle_{A})\cap \mathfrak{D}_{0}

with \mathfrak{D}_{0}=\{\Psi=\{\Psi^{(n)}\}_{n=0}^{\infty}\in\wedge(\mathscr{H}, \mathscr{K})|\Psi^{(n)}\in \mathscr{F}_{n}^{-} , \Psi^{(n)}=0 for all but finitely
many n }.

Finally we show that \mathfrak{D}_{A}^{\infty} is a core for \triangle_{A}(F)=\overline{Q}_{A}(F)^{2} . Let \Psi=

\{\Psi^{(m)}\}_{m=0}^{\infty}\in D(\triangle_{A})\cap \mathfrak{D}_{0} . Then there exists an M<\infty such that \Psi^{(m)}=0 for
all m>M . Let \Psi^{(m)}=\sum_{s+p=m}\Psi_{m}^{(s,p)} with \Psi_{m}^{(s,p)}\in\Gamma_{S}(\mathscr{H})\otimes\wedge^{p}(\mathscr{K}_{c}) . Since \triangle_{A}

is reduced by each
\mathscr{I}^{\vee}s,p:=\Gamma_{S}(\mathscr{H})\otimes\wedge^{p}(\mathscr{K}_{C})

and

\mathscr{D}_{s,p}
:=\mathscr{P}_{A,S}^{\infty}\otimes A_{p}(C^{\infty}(AA^{*})\otimes\cdots\otimes C^{\infty}(AA^{*}))\subset \mathfrak{D}_{A}^{\infty}\wedge

is a core for \triangle_{A}[\mathscr{I}_{S}^{-},p , there exists a sequence \{\Psi_{l1i}^{sp}(n)\}_{n=1}^{\infty}\subset \mathscr{D}_{s,p} such that

\triangle_{A}\Psi_{m}^{(s,p)}(n)arrow\triangle_{A}\Psi_{m}^{(s,p)}\Psi_{m}^{(s,p)}(n)arrow\Psi_{m}^{(s,p)},

,
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as n – \infty . Hence, putting

\Psi(n)=\sum_{n=0}^{M}\sum_{s+p=m}\Psi_{m}^{(s,p)}(n)\in \mathfrak{D}_{A}^{\infty} ,

we have
\Psi(n)arrow\Psi ,
\triangle_{A}\Psi(n)arrow\triangle_{A}\Psi , (5. 11)

as n - \infty . Since N^{2}\Psi_{m}^{(s,p)}=m^{2}\Psi_{m\uparrow}^{s,p}

, it follows that

N^{2}\Psi(n)arrow N^{2}\Psi

as n – \infty . Hence, by (5. 8),

U_{F}\Psi(n)arrow U_{F}\Psi

as n - \infty , which, together with (5. 11), gives

\triangle_{A}(F)\Psi(n)arrow\triangle_{A}(F)\Psi

as n - \infty . Thus D(\triangle_{A})\cap \mathfrak{D}_{0} is included in the domain of the closure of
\triangle_{A}(F) restricted to \mathfrak{D}_{A}^{\infty} . This result and the essential self-adjointness of
\triangle_{A}(F) on D(\triangle_{A})\cap \mathfrak{D}_{0} imply that \triangle_{A}(F) is essentially self-adjoint on \mathfrak{D}_{A}^{\infty} . \blacksquare

VI. Application to models of SSQFT

In [1] the author showed that some models of SSQFT are given as
concrete realizations of the abstract theory described in Sections II-IV.
In each of those models, the Dirac operator Q_{A}(F) and the Laplacian
\triangle_{A}(F) correspond to a supercharge and the supersymmetric Hamiltonian,
respectively. Hence we can apply the results obtained in the present
paper to those SSQFT models to prove the essential self-adjointness of
their supercharges and supersymmetric Hamiltonians. Here we only state
the results on the N=1 and the N=2 Wess-Zumino (WZ) models. For
the details of these models, see [1, 16] . We follow the notations of Sec-
tion VII in [1].

6. 1. The N=1 WZ model

The Hilbert space of state vectors of this model is the BFFS
L^{2}(\mathscr{D}(T_{l}^{1})’, d\mu_{0})\otimes\wedge(L^{2}(T_{l}^{1}))(the case where E=\mathscr{D} ( T_{l}^{1})’ , \mathscr{K}_{C^{=}}L^{2}(T_{l}^{1}) ) and
a supercharge of the model is given by

Q_{\kappa}=Q_{0}+ \frac{1}{\sqrt{2}}\int_{Tf}(\phi_{+}(x)+\phi_{-}(x))(a:\phi_{\kappa}(x)^{2} : +b\phi_{\kappa}(x))dx ,
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where a and b are real constants. Applying Theorems 5. 1 and 5. 2, we
can show that Q_{\kappa} and Q_{\kappa}^{2} (the supersymmetric Hamiltonian of the model)
are essentially self-adjoint on the subspace

\mathscr{L}\{P_{n}(\phi(f_{1}), \cdots\phi(f_{n}))u_{1}\wedge\cdots\wedge u_{p}|P\in P_{n} , f_{j} , u_{k}\in C^{\infty}(T_{l}^{1}) , j=1 , \cdots . n ,
k=1 , \cdots , p;n , p\geq 0\} .

6. 2. The N=2 WZ model

The BFFS for this model in L^{2}(\mathscr{D}(T_{l}^{1})’\cross \mathscr{D}(T_{l}^{1})’d\mu_{0}\otimes d\mu_{0})\otimes

\wedge(L^{2}(T_{l}^{1})\oplus L^{2}(T_{l}^{1})) . A supercharge of the model is given by

\tilde{Q}_{\kappa}=Q_{0}-\frac{i}{\sqrt{2}}\int_{T:}\{\psi_{1}(x)P(\Phi_{\kappa}(x))+\phi_{2}(x)P(\Phi_{\kappa}(x))^{*}+\phi_{1}(x)^{*}P(\Phi_{\kappa}(x))^{*}

+\phi_{2}(x)^{*}P(\Phi_{\kappa}(x))\}dx ,

where

P(z)=\lambda z^{2}+\mu z , z\in C ,

with constants \mu , \lambda\in C . Applying Theorems 5. 1 and 5. 2, we can prove
that \tilde{Q}_{\kappa} and \tilde{Q}_{\kappa}^{2} are essentially self-adjoint on the subspace

\mathscr{L}\{P_{n}(\phi(f_{1}\oplus g_{1}), \cdots. \phi(f_{n}\oplus g_{n}))(u_{1}\oplus v_{1})\wedge\cdots\wedge(u_{p}\oplus v_{p})|P_{n}\in P_{n} ,
f_{j} , g_{j} , u_{k} , v_{k}\in C^{\infty}(T_{l}^{1}) , j=1 , \cdots . k=1 , \cdots , p;n, p\geq 0 }.

REMARK. The above results can be extended to the case where the
one-torus T_{l}^{1} is replaced by R and a space-cutoff function with suitale
regularities is introduced in the interaction term of Q_{\kappa} (resp. \overline{Q}_{\mathcal{K}} ).

Appendix. Some facts on decomposable operators

Let (M, \mu) be a measure space and \mathscr{H} be a separable Hilbert space.
We say that an operator A in the Hilbert space

L^{2}(M, d \mu;\mathscr{H})=\int_{M}^{\oplus}\mathscr{H}d\mu(m)

is decomposable if for a . e . m\in M , there exists an operator A(m) in \mathscr{H}

such that

D(A)=\{f\in L^{2}(M, d\mu:\mathscr{H})|f(m)\in D(A(m))a . e . m\in M , A(m)f(m) is
measurable,

\int_{M}||A(m)f(m)||_{\mathscr{H}}^{2}d\mu<\infty\} ,

and, for all f\in D(A) ,
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(Af)(m)=A(m)f(m) a . e . m .

In this case we write

A= \int_{M}^{\oplus}A(m)d\mu(m) .

The A(m) are called fibres of A (cf. [21, \S XIII. 16]).

PROPOSITION A. 1. Let A be a decomposable operator in L^{2}(M, d\mu,\cdot

\mathscr{H}) such that each fibre A(m) is closed. Then A is closed.

PROOF. Let f_{n}\in D(A) such that Af_{n}arrow g\in L^{2}(M, d\mu:\mathscr{H}) and f_{n}arrow

f\in L^{2}(M, d\mu,\cdot \mathscr{H}) as narrow\infty . Then it follows that there exists a subse-
quence \{n_{k}\}_{k=1}^{\infty} such that for a . e . m

f_{n_{k}}(m)arrow f(m) , A(m)fnk(m) -arrow g(m) ,

as karrow\infty in the norm of \mathscr{H}_{-} The closedness of A(m) implies that f(m)\in
D(A(m)) and g(m)=A(m)f(m) . Hence f\in D(A) and Af=g. Thus A is
closed. \blacksquare

We denote by L^{p}(M, d\mu)\otimes-\mathscr{H} the algebraic tensor product of L^{p}(M ,
d\mu) and \mathscr{H} .

PROPOSITION A. 2. Let (M, \mu) be a probability measure space. Let A
be a decomposable operator in L^{2}(M, d\mu;\mathscr{H}) such that each fifibre A(m) is
bounded on \mathscr{H} and ||A(\cdot)||\in L^{p}(M, d\mu) for some p>2 . Let r=2p/(p-2) .
Then A is densely defifined with

D(A)\supset L^{r}(M, d\mu)\otimes\wedge \mathscr{H} (A. 1)

and A^{*} is given by

A^{*}= \int_{M}^{\oplus}A(m)^{*}d\mu(m) . (A. 2)

PROOF. Since A(m) is bounded, D(A(m))=\mathscr{H} so that for all u\in

L^{2}(M, d\mu) and f\in \mathscr{H}, we have u(m)f\in D(A(m)) . Let u\in L^{r}(M, d\mu) .
Then, by H\"older’s inequality, we have

\int_{M}||A(m)u(m)f||_{\mathscr{H}}^{2}d\mu\leq\int|u(m)|^{2}||A(m)||^{2}||f||_{\mathscr{H}}^{2}d\mu

\leq(\int_{M}|u(m)|^{r}d\mu)^{r/2}(\int_{M}||A(m)||^{p}d\mu)^{p/2}||f||_{\mathscr{H}}^{2}<\infty .

Hence u(\cdot)f\in D(A) . Thus (A. 1) follows. Since the subspace L^{r}(M, d\mu)

\otimes\wedge \mathscr{H} is dense in L^{2}(M, d\mu;\mathscr{H}) , it follows that D(A) is dense in L^{2}(M, d\mu,\cdot
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\mathscr{H}) .
Let f\in D(A^{*}) and A^{*}f=g . Then, for all h\in \mathscr{H} and u\in L^{r}(M, d\mu) ,

we have

\int_{M}u(m)^{*}\eta(m)d\mu=0 (A. 3)

where \eta(m)=(A(m)h, f(m))_{\mathscr{H}}-(h, g(m))_{\mathscr{H}} . Let s=2p/(p+2) , so that 1/r
+1/s=1 . Then, by H\"older’s inequality, we have

\int_{M}(||A(m)||||f(m)||_{\mathscr{H}})^{s}d\mu\leq(\int_{M}||A(m)||^{p}d\mu)^{2/(p+2)}

\cross(\int_{M}||f(m)||_{\mathscr{H}}^{2}d\mu)^{p/(p+2)}<\infty .

Hence (A(\cdot)h, f(\cdot))_{\mathscr{H}}\in L^{s}(M, d\mu) . Similarly we have (/, g(\cdot))_{\mathscr{H}}\in L^{s}(M ,
d\mu) . Therefore \eta\in L^{s}(M, d\mu) . Since L^{s}(M, d\mu) is the dual space of
L^{r}(M, d\mu) , (A. 3) implies that \eta(m)=0a . e . m . Hence (A(m)h, f(m))_{\mathscr{H}}=

(h, g(m))_{\mathscr{H}}a . e . m . Since \mathscr{H} is separable, it follows that A(m)^{*}f(m)=
g(m)a. e . m. Hence we obtain

D( A^{*})\subset D(\int_{M}^{\oplus}A(m)^{*}d\mu(m)) . (A. 4)

It is easy to see that the converse inclusion relation of (A. 4) holds. Thus
(A. 2) follows. \blacksquare
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