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1. Introduction

This paper is concerned with evolution equations of hypersurfaces \Gamma_{t}

in R^{n} . We consider

V= \frac{-1}{\beta(\vec{n})}(\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}(\frac{\partial\gamma}{\partial p_{i}}(\vec{n}))+c) on \Gamma_{t} . (1. 1)

Here \vec{n} represents the unit normal vector (field) of \Gamma_{t} and V represents
the normal velocity of \Gamma_{t} . The function \gamma=\gamma(p_{1}, \cdots , p_{n}) is assumed to be
positively homogeneous of degree one and its restriction on the unit sphere
S^{n-1} is often called the interface energy density. The function \beta:S^{n-1}arrow

R is assumed to be positive and continuous; c is a constant. The sign in
front of 1/\beta is taken so that the equation (1. 1) becomes the mean curva-
ture flow equation if \gamma(p)=|p| , \beta\equiv 1 and c=0. The equation (1. 1) is con-
sidered as a mathematical model for the dynamics of surfaces of a melting
solid when the effect outside the surface is negligible. We refer to a
paper [AG 1] of Angenent and Gurtin for its derivation from the second
law in the thermodynamics and the force balances.

Usually, \gamma is assumed to be convex and C^{2} outside the origin. How-
ever, in physics there is also the possibility that \gamma is not convex as studied
in [AG 1,2]. If \gamma is not convex, the equation (1. 1) is not well-posed even
locally because it is backward parabolic in some direction of \vec{n} . To track
the evolution of the hypersurface it seems to be natural to consider the
convexification \tilde{\gamma} of \gamma when \gamma is not convex. We are interested in the
evolution of the hypersurface by (1. 1) where \gamma is replaced by \overline{\gamma} .

In this paper we consider the evolution when the hypersurface \Gamma_{t} is a
curve represented by the graph of a function on R. Even in this simple
case there arise several problems. First, solution \Gamma_{t} may develop singu-
larities in a finite time because \tilde{\gamma} may not be strictly convex. Second, \tilde{\gamma}

may not be C^{2} even if \gamma is smooth, so the interpretation of (1. 1) is not
clear. Instead of considering general convexified \tilde{\gamma} we restrict ourselves
to handle typical one by assuming that \tilde{\gamma} is not C^{2} at most in finitely
many directions and the gradient of \overline{\gamma} is locally Lipschitz outside zero.
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For this \tilde{\gamma} our equation (1. 1) is still degenerate parabolic. We thus
adapt the theory of viscosity solutions to show the unique global-in-time
existence of solutions \Gamma_{t} for given initial data \Gamma_{0} when \Gamma_{0} is represented as
the graph of a function growing at most linearly at the space infinity.
The equation (1. 1) is of the form

u_{t}-a(u_{x})u_{xx}-b(u_{x})=0 (1. 2)

when \Gamma_{t} is represented by the graph of a function u(t, x) , where a and b

are determined by \gamma , \beta , c . A comparison principle plays an important
role to prove the unique existence of viscosity solutions. Sine a may have
jump discontinuities more than two, our unique existence theorem in not
included in the literature although basic strategy is close to [CGG 1] and
[GGIS]. The theory in [CGG 1, GGIS] applies to the case when a is
bounded and nonnegative and has only one jump. Our theory generalized
those in [GGIS] when the space dimension is one. For existence, different
from [CGG 1, GGIS] we do not assume that the equation is geometric
[CGG 1], although our equation is not fully nonlinear but quasilinear.

If \gamma is not convex, \overline{\gamma} may not be strictly convex. For (1. 2) we
observe that a may be on finitely many union of some intervales; here
assumptions on \overline{\gamma} is invoked. The set of x where u_{x}(t, x) belongs to
these intervals is called nonparabolic region (for precise definition see \S 6).
In this region diffusion effect is not observed. Moreover we give a condi-
tion on \beta such that the portion of \Gamma_{t} corresponding to nonparabolic region
moves just by a translation except near the boundary of the portion.

We are interested in the behavior of nonparabolic region by assuming
that a in (1. 2) vanishes only on an interval [p_{1}, p_{2}] and the infimum of a

outside [p_{1}, p_{2}] is positive. Under the above mentioned conditions on a

we conclude that nonparabolic region is decreasing in time at least for
convex initial data u(0, x) if u_{x}(0, x)<p_{1} , u_{x}(0, x’)>p_{2} for some x and x’

If b\geq 0 near p_{1} and p_{2} we conclude that the nonparabolic region disappears
in a finite time. We do not know whether this restriction is technical or
not. In this situation we prove that u(t, x) becomes singular in a finite
time even if u(0, x) is smooth (Theorem 6. 15). For special a with b=0,

(1. 2) becomes the Stefan problem by taking U=u_{x} as a new variable [AG
1]. Some of our results may be proved by applying the theory of the
Stefan problem [M] since U is a generalized solution of the Stefan prob-
lem at least formally. However, we directly analyze viscosity solutions of
(1. 2) without using the theory of the Stefan problem. As a bonus our
method applies to the case b\not\equiv 0 .
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The equation (1. 1) with anisotropic \gamma attracts many mathematicians
as well as the mean curvature flow problems. In [CGG 1] Chen, Goto and
the author constructed a global (unique) generalized solution by a level
set approach provided that \Gamma_{0} is compact and that \gamma is convex and C^{2},\cdot

see also [GG 1]. (The paper [CGG 3] includes corrections of technical
errors in [CGG 1] ) . Nearly at the same time the similar idea is applied to
the mean curvature flow problem by Evans and Spruck [ES]. Properties
of solutions \Gamma_{t} for anisotropic \gamma studied by Soner [S], [CGG 2] and [GG 2].
If \gamma is strictly convex and c=0, extension problem of the solution \Gamma_{t} after
singularities is also studied by Angenent [A] when \Gamma_{t} is a closed curve by
a different method. For the corvexified \overline{\gamma} Ohnuma and Sato [OhS]
extended the theory of [CGG 1] when n=2 under the same assumptions on

\overline{\gamma} as ours and constructed a unique global generalized solution for general
compact initial data \Gamma_{0} without assuming that \Gamma_{0} is represented as a
graph. Angenent and Gurtin [AG 2] solved (1. 1) with \gamma=\overline{\gamma} for n=2 at
least locally if no nonparabolic region appears for the initial curve.
There in a nice review article by Taylor, Cahn and Handwerker [TCH]
for various mathematical approaches to the motion by anisotropic \gamma .

In Section 2 we derive (1. 2) form (1. 1) and explain how related to
other notations in the literature. We also state our main results in \S 3 and
\S 4 applied to (1. 1). In Section 3 we establish fundamental comparison
theorem to (1. 2). The existence is proved in Section 4. Section 5 is
devoted to the condition on \beta so that nonparabolic region moves essen-
tially by a translation. In Section 6 we studied the behavior of nonpar-
abolic region directly.

During this work is prepared the author learned that Gurtin, Soner
and Souganidis [GSS] also studied generalized evolution \Gamma_{t} by (1. 1) with
the convexified energy when \Gamma_{0} is a closed curve. They in particular
obtained a similar comparison theorem obtained in [OhS] . They also
proved their solution is consistent with the one studied in [AG 2], where \beta

is taken as in Section 5. After this work was completed, the author
learned that results in Ohnuma and Sato [OhS] are extenced to n\geq 3 by
H. Ishii.

The author is grateful to Professor Morton Gurtin who brought this
problem to his attention. This work is partly supported by the Inamori
Foundation. This paper is dedicated to my first daughter Mo\’eko who
completed her 150 days life on May 23, 1992.
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2. Evolution equations for graphs

If the hypersurface \Gamma_{t} is given as the graph of a function u(t, x) , x\in

R^{n-1} , the upward unit normal vector field \vec{n} is of the form

\vec{n}=(\frac{-\nabla u}{\sqrt{1+|\nabla u|^{2}}} , \frac{1}{\sqrt{1+|\nabla u|^{2}}}),

where \nabla=(\frac{\partial}{\partial x_{1}} , \ldots

\frac{\partial}{\partial x_{n-1}}). The normal velocity V is given by

V= \frac{u_{t}}{\sqrt{1+|\nabla u|^{2}}} .

The equation (1. 1) becomes the equation for u

u_{t}= \sqrt{1+|\nabla u|^{2}}\frac{1}{\overline{\beta}|\nabla u|^{2}}( \sum_{i=1}^{n-1}\frac{\partial}{\partial x_{i}}\lambda_{i}(\nabla u)-c) (2. 1)

with \lambda_{i}(p’)=-\frac{\partial}{\partial p_{i}}\gamma(-p’, 1) , p’=(p_{1}, \ldots, p_{n-1}) ,

\overline{\beta}(p’)=\beta(-\frac{p^{r}}{\sqrt{1+|p’|^{2}}},\frac{1}{\sqrt{1+|p^{r}|^{2}}}) .

In this computation we have used the fact that \partial\gamma/\partial p_{i} is positively hom0-
geneous of degree zero.

If n=2 , i.e. , \Gamma_{t} is a curve, (2. 1) becomes

u_{t}= \sqrt{1+u_{x}^{2}}\frac{1}{\overline{\beta}(u_{x})}(\lambda(u_{x})_{x}-c) , \lambda=\lambda_{1} . (2.2)

The convexity of \gamma near (-p_{\acute{0}}, 1)\in R\cross R implies the nondecreasing prop-
erty of \lambda near p_{\acute{0}} . So if \gamma is convex on R\cross\{1\} , (2. 2) is a degenerate para-
bolic equation.

We may rewrite (2. 2) as
u_{t}-A(u_{x})_{x}-b(u_{x})=0 (2. 3)

with

A(q)= \int_{0}^{q}\frac{\sqrt{1+p^{2}}}{\overline{\beta}(p)}\frac{d\lambda}{dp}(p)dp

b(p)=-c \frac{\sqrt{1+p^{2}}}{\overline{\beta}(p)},

or
u_{t}-a(u_{x})u_{xx}-b(u_{x})=0 (2. 4)
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with
a(p)=dA/dp=\sqrt{1+p^{2}}\overline{\beta}(p)^{-1}d\lambda/dp .

We are interested in the case that \gamma is not convex which is equivalent
to the nonconvexity of the set \gamma\leq 1 in R^{2} . For \vec{m}\in S^{1} let \theta denote its
argument, i.e.,\vec{m}= ( \cos\theta , sin \theta ). As in [AG 1] we set

f(\theta)=\gamma(\vec{m}(\theta)) . (2. 5)

Then the level set \gamma=1 agrees with the polar diagram of 1/f (or Frank
diagram of f) i.e . the locus of \vec{m}(\theta)/f(\theta) , 0\leq\theta<2\pi , since \gamma(\vec{m}(\theta)/f(\theta))=

f(\theta)^{-1}\gamma(\vec{m}(\theta))=1 . Suppose that the polar diagram of 1/f(\theta) is a closed
curve. If it has negative curvature only on one open interval \alpha_{1}<\theta<\alpha_{2} ,

then the convexification \overline{\gamma} of \gamma is linear in the direction \vec{m}(\theta) for \theta_{1}\leq\theta\leq

\theta_{2} with some \theta_{1} , \theta_{2} satisfying \theta_{1}\leq\alpha_{1}<\alpha_{2}\leq\theta_{2} . Note that \overline{\gamma} may not be C^{2}

at \vec{m}(\theta_{1}),\vec{m}(\theta_{2}) even if \gamma is smooth. The following assumptions on \tilde{\gamma}

include the above mentioned example.

2. 1. Assumptions on \overline{\gamma} . The set \overline{\gamma}=1 is piecewise C^{2} except finitely
many points. The curvature of \overline{\gamma}=1 is bounded and nonnegative.

If we write (1. 1) with \gamma=\tilde{\gamma} as (2. 4), these assumptions imply that a
is (locally) bounded, nonnegative and continuous except finitely many
points. If \overline{\gamma} is linear in the direction \vec{m}(\theta) , \theta_{1}\leq\theta\leq\theta_{2} , we observe that
a(p^{\gamma})=0 provided that the argument of (-p^{\gamma}, 1) is in between \theta_{1} and \theta_{2} .
Unique existence of solutions to (2. 4) presented in \S 4 immediately yields:

2. 2. THEOREM. Assume 2. 1 on \tilde{\gamma} . Suppose that \beta is continuous
and positive on S^{n-1} . Let u_{0} be Lipschitz on R. Then there is a unique
viscosity solution u of (2. 2) {with \gamma=\tilde{\gamma} ) continuous on [0, \infty)\cross R such
that u(0, x)=u_{0}(x) and that for evemy T>0

|u(t, x)|\leq K(|x|+1) , x\in R, 0\leq t\leq T

with some K>0 .

2. 3. Capillary force. We conclude this section by studying the rela-
tion of derivatives of \gamma and the capillary force

\vec{C}(\theta)=-f(\theta)^{2}\frac{d}{d\theta}\frac{\vec{m}(\theta)}{f(\theta)}

=f(\theta) (\sin\theta, -cos \theta ) +f’(\theta) ( \cos\theta , sin \theta )

introduced in [AG 1]. By (2. 5) we see
f’(\theta)=\partial_{1}\gamma(\vec{m}) ( - sin \theta ) +\partial_{2}\gamma(\vec{m})(\cos\theta) , \partial_{i}\gamma=\partial\gamma/\partial p_{i} , i=1,2
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which yields

\vec{C}(\theta)=(\gamma sin \theta-\partial_{1}\gamma sin \theta cos \theta+\partial_{2}\gamma\cos^{2}\theta ,
-\gamma cos \theta-\partial_{1}\gamma sin2 \theta+\partial_{2}\gamma cos \theta sin \theta )

where \gamma , \partial_{1}\gamma , \partial_{2}\gamma are evaluated at \vec{m}= ( \cos\theta , sin \theta ). Using the homogene-
ity of \gamma :

\gamma=\partial_{1}\gamma\cos\theta+\partial_{2}\gamma\sin\theta ,

we observe that
\vec{C}(\theta)=(\partial_{2}\gamma(\sin^{2}\theta+\cos^{2}\theta), -\partial_{1}\gamma(\cos^{2}\theta+\sin^{2}\theta))

=(\partial_{2}\gamma(\vec{m}), -\partial_{1}\gamma(\vec{m})) .

Thus the capillary force equals the minus curl of \gamma in two dimensional
space, i.e. ,

\vec{C}(\theta)=-(\nabla^{\perp}\gamma) ( \cos\theta , sin \theta ), \nabla^{\perp}\gamma=(-\partial_{2}\gamma, \partial_{1}\gamma) .

3. Fundamental properties of viscosity solutions

We consider a degenerate parabolic equation:

u_{t}-a(u_{x})u_{xx}-b(u_{x})=0 in (0, \infty)\cross R (3. 1)

when a is not necessarily continuous. Here a is a nonnegative function
defined except on a finite subset \sum=\{p\}_{i=1}^{l} . The function a is assumed to
be continuous except at \sum and bounded on every compact set of R. The
function b is assumed to be continuous on R.

3. 1. COMPARISON THEOREM. Suppose that u and v are viscosity sub-
and supersolutions of (3. 1), respectively. Suppose that u and v are upper
and lower semicontinuous on [0, \infty)\cross R, respectively. Suppose that u and
v are continuous up to t=0 . Suppose furthermore that for each T>0

|u(t, x)-u(t, y)|\leq L_{T}|x-y| , 0\leq t<T

|v(t, x)-v(t, y)|\leq L_{T}|x-y| , 0\leq t<T

with L_{T} independent of x and y. If u(0, x)\leq v(0, x) , then u(t, x)\leq v(t, x)

for t\geq 0 , x\in R.

We shall prove a more general comparison theorem. To state the
general version we recall the notion of lower and upper semicontinuous
envelope (relaxation) of functions.

3. 2. Semicontinuous envelope. Suppose that h is a real-valued func-
tion from a subset L of R^{d} . The lower semicontinuous envelope (relaxa-
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(3. 3)

tion) h_{*} of h is defined by

h_{*}(x)= \lim_{\epsilon\downarrow 0} inf \{h(y);|y-x|<\epsilon, y\in L\}

for x\in\overline{L}, where \overline{L} denotes the closure of L. For example, suppose that

F(p, X)=-a(p)X-b(p) (3. 2)

is defined on (R \backslash \sum)\cross R , where a and b are as in (3. 1). Then it is easy
to see

F_{*}(p_{i}, X)=\{\begin{array}{l}-a^{*}(p_{i})X-b(p_{i})-a_{*}(p_{i})X-b(p_{i})\end{array} forX<0forX\geq 0 . p_{i}\in\Sigma .

The upper semicontinuous envelope h^{*} is defined by

h^{*}=-(-h)_{*} .

For the above F we have

F^{*}(p_{i}, X)=\{
-a_{*}(p_{i})X-b(p_{i}) for X\geq 0

p_{i}\in\Sigma . (3. 4)
-a^{*}(p_{i})X-b(p_{i}) for X<0 ’

We consider an equation of form

u_{t}+F(u_{x}, u_{xx})=0 in (0, T)\cross R . (3. 5)

We list assumptions on F to state a comparison result including Theorem
2. 1. Let \Sigma=\{p_{i}\}_{i=1}^{l} be a given finite subset of R.

F:(R\backslash \Sigma)\cross R -arrow R is continouns. (F1)
F is degenerate elliptic, i.e. , F(p, X)\leq F(p, Y) for X\geq Y (F2)
-\infty<F_{*}(p_{i}, 0)=F^{*}(p_{i}, 0)<\infty , p_{i}\in\Sigma . (F3)
For each M>0 the value (F4)
c_{M}= \sup\{|F(p, X)| ; |p|\leq M, |X|\leq M, p\not\in\Sigma\} is finite.

3. 3. GENERAL COMPARISON THEOREM. Assume (F1)-(F4) . Suppose
that u and v are viscosity sub-and supersolutions of (3. 5), respectively.
Suppose that there is a constant K>0 such that

u(t, x)\leq K(|x|+1) , v(t, x)\geq-K(|x|+1) on (0, T)\cross R,
u_{0}(x)-v_{0}(y)\leq K(|x-y|+1) ,

where u_{0}(x)=u^{*}(0, x) , v_{0}(x)=v_{*}(0, x) . Suppose furthermore that there is a
modulus \mathscr{M}_{0} such that

u_{0}(x)-v_{0}(y)\leq \mathscr{M}_{0}(|x-y|) .
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Then there is a modulus \mathscr{M} such that

u^{*}(t, x)-v_{*}(x, y)\leq \mathscr{M}(|x-y|) on (0, T)\cross R. (3. 6)

In particular u^{*}\leq v_{*} on (0, T)\cross R.

Here \mathscr{M} : [0, \infty) -arrow[0^{ },\infty) is called a modulus if \mathscr{M} is continuous and
nondecreasing with \mathscr{M}(0)=0 . If the set \sum consists of a single point, The-
orem 3. 3 easily follows from [GGIS, Theorem 2. 1], where the initial
boundary value problem is also discussed. Theorem 3. 3 can be also
entended to the intial boundary value problem; see \S 3. 5.

Theorem 3. 1 follows from Theorem 3. 3. Indeed, if we set F by
(3. 2), (F1) is trivial; (F2) follows from a\geq 0 . The property (F4) comes
from (3. 3)-(3.4) ; (F4) follows from local boundedness of a . The Lips-
chitz property of u in Theorem 3. 1 implies the growth conditions on u

and v . It also implies

u_{0}(x)-v_{0}(y)\leq L_{T}|x-y|

since u_{0}\leq v_{0} on R. We apply Theorem 3. 3 on an arbitrary interval (0, T)

to get Theorem 3. 1.
Recently, Ohnuma and Sato [OhS] obtained a comparison theorem

when F(p, X) has singularities other than p=0. They assumed that F(p,

X) is singular when p\in R^{n} belongs to finitely many half lines starting
from the origin. Their theory does not apply to the one dimensional prob-
lem so Theorem 3. 1 is not included in their results.

3. 4. REMARKS ON VISCOSITY SOLUTIONS. For later convenience we
recall a definition of viscosity subsolution of (3. 5). A function u:(0, T)\cross

Rarrow R is called a viscosity sub-(super)solution of (3. 5) if u^{*}<\infty (resp. u^{*}

>-\infty) on [0, T]\cross R and

\tau+F_{*}(p, X)\leq 0 for all (\tau, p, X)\in \mathscr{P}^{2,+}u^{*}(t, x) , (t, x)\in(0, T)\cross R .
(resp. \tau+F^{*}(p , X)\geq 0 for all (\tau, p, X)\in \mathscr{P}^{2,-}u_{*}(t , x) , (t, x)\in(0 , T)\cross R).

Here \mathscr{P}^{2,+} denotes the parabolic super 2-jet in (0, T)\cross R , i.e . \mathscr{P}^{2,+}u(t, x)

is the set of (\tau, p, X)\in R\cross R\cross R such that

u(s, y) \leq u(t, x)+\tau(s-t)+p(y-x)+\frac{1}{2}X(y-x)^{2}

+o(|s-t|+|y-x|^{2}) as (s, y)arrow(t, x) ;

similarly \mathscr{P}^{2,-}u=-\mathscr{P}2,+(-u) . The correspondisg definition of viscosity
supersolutions is easy to imagine so is omitted (cf. [GGIS]).

According to the sketch of the proof of Theorem 3. 3 presented below,
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to get a comparison renult one may replace F_{*} and F^{*} in the definition of
viscosity sub- and supersolutions by any lower and upper semicontinuous
function F_{\#} and F^{\#} respectively, provided that

F_{\#}(p, X)=F^{\#}(p, X)=F(p, X) for p\not\in\Sigma

-\infty<F_{\#}(p_{i}. 0)=F^{\#}(p_{i}, 0)<\infty for p_{i}\in\Sigma .

This alternative definition is sometimes useful especially to get a solution
by an approximation argument. This type of definition is first appeared
in Evans and Spruck [ES] for the level set equation to the mean unvature
flow problem (cf. [CGG2]).

3. 5. SKETCH OF THE proof OF THEOREM 3. 3. The proof parallels
that of [GGIS]. By adding a linear function to u and v we may assume
that 0=p_{1}<p_{2}<\ldots<p_{l} for p_{i}\in\Sigma . As in [GGIS, Proposition 2. 3], (F1),
(F4) and growth assumptions on u , v yields an estimate:

u(t, x)-v(t, y)\leq K’|x-y|+M(1+T) on (0, T)\cross R , (3. 7)

where K’>K is arbitrary and M depends on K’ Here and hereafter we
drop * of u and v . To find a good super 2-jet of

w(t, x, y)=u(t, x)-v(t, y) ,

we introduce a test function

\Psi(t, x, y)=f_{\epsilon}(x-y)+B(t, x, y)

B(t, x, y)=\delta(x^{2}+y^{2})+\gamma/(T-t)

with \epsilon , \delta , \gamma>0 . The choice of f_{\epsilon} is crucial. Let f be a smooth nonde-
creasing function on [0, \infty) such that

f(0)=f’(0)=f’(0)=0
f’(x)=p_{i} implies f’(x)=0,1\leq i\leq l

f(x)=x^{4} for sufficiently large x :

such a function, of couse, exists. We set
f_{\epsilon}(x)=\epsilon^{1/3}f(|x|/\epsilon^{1/3}) , x\in R .

Note that if \sum consists of a single point p_{1}=0 then one may take f_{\epsilon}(x)=

x^{4}/\epsilon . In this case the choice of \Psi is exactly the same as [GGIS, (2. 11)].
The following argument works even for initial boundary value problems.

Suppose that (3. 6) were false. Then

\alpha=\lim_{\theta\downarrow 0}\sup\{w(t, x, y) ; ^{1X}-y|<\theta, (t, x, y)\in[0, T)\cross R\cross R\}>0 .
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By (3. 7) we see \alpha<\infty . We shall discuss the maximum of

\Phi(t, x, y)=w(t, x, y)-\Psi(t, x, y) .

By the definition of \alpha for each \epsilon>0 we easily observe that there are \delta_{0}(\epsilon) ,
\gamma_{0}(\epsilon)>0 such that

I)\cross R^{2}\sup_{0,\tau}\Phi(t, x, y)>\alpha/2 .

This is [GGIS, Proposition 2. 4] where dependence of \epsilon is not explicitly
written. Let ( \hat{t}.\overline{x},\overline{y}) be a maximizer of \Phi over [0, T]\cross R^{2}- The exis-
tence follows from growth conditions of u and v , and the barrier B . By
the choice of f_{\epsilon} , as in [GGIS, Proposition 2. 5], we observe that |\overline{x}-\overline{y}|arrow

0 as \epsilonarrow 0 (uniform in 0<\delta<\delta_{0}(\epsilon) , 0<\gamma<\gamma_{0}(\epsilon) ) and that \delta\hat{x}arrow 0 , \delta\hat{y}arrow 0

as \deltaarrow 0 (uniform in \epsilon and \gamma). Since B plays a barrier near space infinity
and t=T. as in [GGIS, Proposition 2. 6] there is \epsilon_{0}>0 such that for 0<\epsilon

<\epsilon_{0},0<\delta<\delta_{0}(\epsilon) , 0<\gamma<\gamma_{0}(\epsilon) , ( \hat{t} \hat{x},\overline{y}) is interior point of (0, T)\cross R^{2} .
We shall fix \epsilon (and \gamma from now on. (Since our problem is the Cauchy
problem we may take \epsilon=1 .)

Since (\Psi t, \Psi_{X}, \Psi_{\mathcal{Y}}, \nabla^{2}\Psi)(\hat{t}-\overline{x},\overline{y})\in \mathscr{P}2,+w(\hat{t}.\hat{x}.\overline{y}) , applying the
Crandall-Ishii lemma [CI, Theorem 6] with (F4) we observe that for \lambda>0

there is (\tau_{1}, X)\in R\cross R , (\tau_{2}, Y)\in R\cross R such that
(\tau_{1},\hat{\Psi}_{x}, X)\in \mathscr{P}^{2,+}u(\hat{t}\hat{x})

(-\tau_{2}, -\overline{\Psi}_{\mathcal{Y}}, - Y)\in \mathscr{P}^{2,-}v(\hat{t}.\hat{y})

\hat{\Psi}_{t}=\tau_{1}+\tau_{2}

-( \frac{1}{\lambda}+|A|)I\leq(\begin{array}{ll}X 00 Y\end{array}) \leq A+\lambda A^{2} with A=\nabla^{2}\Psi(\overline{t} \overline{x},\hat{y}) , (3. 8)

where \wedge denotes the value at (\overline{\tau}.\overline{x},\overline{y}) and \nabla^{2}\Psi is the Hessian matrix

\nabla^{2}\Psi=(\begin{array}{ll}\Psi_{XX} \Psi_{xy}\Psi_{yx} \Psi_{\mathcal{Y}\mathcal{Y}}\end{array}) .

The bar over \mathscr{P}^{2,\pm} denotes the closure. Since u and v are sub- and
supersolutions, respectively and since F_{*} and F^{*} are semicontinuous, we
obtain

\tau_{1}+F_{*}(\overline{\Psi}_{X}, X)\leq 0 , -\tau_{2}+F^{*}(-\overline{\Psi}_{\mathcal{Y}},-Y)\geq 0

which yields

0\geq\gamma T^{2}+F_{*}(\hat{\Psi}_{X}, X)-F^{*}(-\overline{\Psi}_{y}, - Y) , (3. 9)

since \hat{\Psi}_{t}=\tau_{1}+\tau_{2}\geq\gamma/T^{2} . We fix \lambda=1 and divide the situation into two



Motion of a graph by convexified energy 195

cases
Case 1. f_{\epsilon}’(\overline{x}-\hat{y}) - arrow p_{i}\in\sum for some subsequence \delta_{k}arrow 0 .
Case 2. f_{\epsilon}’( \overline{x}-\overline{y})arrow p\not\in\sum for some subsequence \delta_{k}arrow 0 .
Case 1. From the choice of f it follows that f_{\epsilon}^{rr}(\overline{x}-\hat{y})arrow 0 an \delta_{k}arrow 0 .

Since
\hat{\Psi}_{x}=f_{\epsilon}’(\overline{x}-\overline{y})+2\delta\hat{x} , \hat{\Psi}_{y}=-f_{\epsilon}’(\hat{x}-\overline{y})-2\delta\hat{y}

A=f_{\epsilon}^{rr}(\overline{x}-\overline{y}) (\begin{array}{ll}1 -1-1 1\end{array}) +2\delta (\begin{array}{ll}1 00 1\end{array}) ,

we see
A\leq o(1) as \delta_{k}arrow 0

which yields X\leq o(1) , – Y\geq o(1) by (3. 8). By the degenerate ellipticity
(F2) we see

F_{*}(\hat{\Psi}_{x}, X)\geq F_{*}(\overline{\Psi}_{x}, o(1))

F^{*}(-\overline{\Psi}_{y}, -Y)\leq F^{*}(-\overline{\Psi}_{y}, o(1)) .

Since \delta\hat{x}arrow 0 , \delta\hat{y}arrow 0 as \delta_{k}arrow 0 , letting \delta_{k}arrow 0 in (3. 9) yields

0\geq\gamma/T^{2}+F_{*}(p_{i}, 0)-F^{*}(p_{i}, 0) .

By (F3) this contradicts \gamma>0 . As alluded in \S 3. 4 we may replace F_{*} and
F^{*} by F_{\#} and F^{\#} in the last paragraph of \S 3. 4.

Case 2. This is more standard. The estimate (3. 8) yields

X+Y\leq o(1) as \delta_{k}arrow 0 .

The estimate (3. 8) also says that X, Y are compact an \delta_{k}arrow 0 . Letting
\delta_{k}arrow 0 in (3. 9) and using (F2) yields a contradiction to \gamma>0 .

3. 6. LIPSCHITZ PRESERVING THEOREM. Suppose that F satisfifies
(F1)-(F4) . Let u be a viscosity solution of (3. 5) which is continuous on
[0, T]\cross R . Assume that

|u(t, x)|\leq K(|x|+1) on [0, T]\cross R

with K>0 independent of t and x. Assume that u(0, x) is Lipschitz, i.e. ,

|u(0, x)-u(0, y)|\leq L|x-y|

with L>0 independent of x, y. Then

|u(t, x)-u(t, y)|\leq L|x-y| on [0, T]\cross R^{2}-

This is an easy Corollary of Theorem 3.3 (cf. [GGIS, Corollary 2. 11]).
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We only need to compare

v(t, x)=u(t, x+h)+L|h|

with u so that

u(t, x)-u(t, x+h)\leq L|h| , h\in R .

The left hand side is dominated by -L|h| from below using a similar
comparison. Note that v solves (3. 5).

3. 7. CONCAVITY PRESERVING THEOREM. Assume the same hypotheses

of Theorem 3. 6. Suppose that X-arrow F(p, X) is convex for all p\not\in\Sigma , X\in

R. If u(0, x) is concave, then x-, u(t, x) is concave for all t\in[0, T] .

We take f as in \S 3. 5 with a further requirement f’\geq 0 . This is of
course possible. Since f_{k}(x)=k^{1/3}f(|x|/k^{1/3}) intersects y=x at one point
for x>0 , there is a function g(k) , k>0 such that

x\leq f_{k}(x)+g(k) for x\geq 0

and that the equality holds at the only one point x=x(k) . The proof par-
allels that of [GGIS, Theorem 3. 1] if we set

f(\xi)=f_{k}(x+y-2z)+g(k) , \xi=(x, y, z)

in [GGIS, (3. 9)]. We omit the detail.

4. Existence of solutions

We construct a viscosity solution to (3. 1) when intial data is Lipschitz.
We present two methods-Perron’s method and approximation method.
Ishii [I] first adapted Perron’s method for viscosity solutions of the
Hamilton-Jacobi equations.

4. 1. EXISTENCE THEOREM. Let u_{0} be Lispschitz on R. Then there
is a unique viscosity solution u of (3. 1) continuous on [0, \infty)\cross R such
that u(0, x)=u_{0}(x) and that for every T>0

|u(t, x)|\leq K(|x|+1) , x\in R, 0\leq t\leq T

with some K>0 .

4. 2. Construction of a subsolution. Let L be the Lispschitz constant
of u_{0} . We set

M= \sup_{|p|\leq L}a(p) , N= \sup|b(p)||p|\leq L^{\cdot}
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Let v be the unique solution of a linear equation:

v_{t}-Mv_{xx}+N=0 in (0, \infty)\cross R

v(0, x)=-L|x| on R.

By differentiating the equation it follows from the weak maximum princi-
ple that v_{xx}\leq 0 and |v_{x}|\leq L for t\geq 0 and x\in R . We thus observe that

v_{t}-a(v_{x})v_{xx}-b(v_{x})\leq v_{t}-Mv_{xx}+N=0

which implies v is a subsolution of (3. 1). Since a supremum of subsolu-
tions is still a subsolution the function

u_{-}(t, x)=su\xi\in\#(v(t, x-\xi)+u_{0}(\xi))

is a (viscosity) subsolution of (3. 1). Since u_{0} is Lipschitz with L we see
u_{-}(0, x)=u_{0}(x) . Since v_{t}\leq 0 , the definition of u implies

u_{-}(t, x)\leq u_{0}(x) .

On the other hand

u_{-}(t, x)\geq v(t, x)+u_{0}\geq(0)\geq-L|x|+v(t, 0)+u_{0}(0) .

We thus observe that for each T>0
|u_{-}(t, x)|\leq K(|x|+1) , x\in R , 0\leq t\leq T

with K>0 . We now obtain the next lemma; the supersolution u_{+} can be
constructed in the similar way.

4. 3. LEMMA. Suppose that u_{0} is Lipschitz continuous. There is a
lower (upper) semicontinuous viscosity sub-(super) solution u_{-} (resp. u_{+} )
of (3. 1) such that

u_{-}(t, x)\leq u_{0}(x)\leq u_{+}(t, x) , x\in R, t\geq 0

u_{\pm}(0, x)=u_{0}(x)

|u_{\pm}(t, x)|\leq K_{T}(|x|+1) , 0\leq t\leq T

with some K_{T}>0 independent of x and t.

4. 4. Perron’s method. According to this method the viscosity solu-
tion of (3. 1) with initial data u_{0}(x) is given by

u(t, x)= \sup\{w(t, x):w(t, x) is a viscosity subsolution
such that u_{-}\leq w\leq u_{+} on [0, \infty)\cross R\} .

By the growth condition in Lemma 4. 3 it is easy to see Theorem 3. 3 is
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applicable to get u^{*}\leq u_{*} which implies the continuity on [0, \infty)\cross R . By
Lipschitz Preserving Theorem x-arrow u(t, x) is Lipschitz continuous.

4. 5. Approximation. There is another way to construct a solution.
We just indicate this method. We approximate u_{0} by smooth global Lips-
chitz function u_{08} with bounded second derivatives. Also approximate a
by a_{\epsilon} so that c/\epsilon\geq a_{\epsilon}\geq\epsilon>0 with some c and that a_{\epsilon}arrow a uniformly on
every compact set in R \backslash \sum . Since the approximate equation

u_{t}-a_{\epsilon}(u_{x})u_{xx}-b(u_{x})=0

is uniformly parabolic, there is a unique solution u^{\epsilon,8}[LSU] .
By the choice of u_{08}, , |\nabla u^{\epsilon,8}| , |u_{t}^{\epsilon,8}| is bounded as \epsilonarrow 0 . Ascoli-Ar-

zela’s theorem yields a convergent subsequence of u^{\epsilon,8} as \epsilonarrow 0 (uniformly
on every compact set in [0, \infty)\cross R) . By the stability theorem (see e.g.
[CGG 1, Proposition 2. 4] ) we see the limit is the viscosity solution of (3. 1)
with u(0, x)=u_{08}(x) . Note that the definition using F_{\#} and F^{\#} is easier to
check that the limit is the viscosity solution.

It remains to take \delta\downarrow 0 . We should observe that

\sup_{x}|u(t, x)-v(t, x)|\leq\sup_{x}|u(0, x)-v(0, x)|=A

for viscosity solutions. (This is obtained by comparing v with u\pm A by
Theorem 3. 3). Then the solution u with u(0, x)=u_{0}(x) is given as the
uniform limit of the Cauchy sequence u^{8}(t, x) (with intital data u_{08} .)

I_{-}\eta [ES] Evans and Spruck constructed a solution to the level set equa-
tion

u_{t}-|\nabla u| div ( \frac{\nabla u}{|\nabla u|})=0

for the mean curvature flow by an approximation method.

5. Effects of lower order terms

We study a role of \beta(\vec{n}) in (1. 1) when the curvature term involving \gamma

does not effect in the direction of \vec{n} . For \vec{m}= ( \cos\theta , sin \theta ) we set
g(\theta)=\beta(\vec{m}(\theta)) (n=2) .

For 0\leq\theta<2\pi let \Gamma^{\theta} be an oriented line containing the origin such that its
unit normal equals \vec{m}(\theta) . Let \Gamma_{t}^{\theta} be a solution of (1. 1) with intial data
\Gamma^{\theta} . where c\neq 0 .

5. 1. LEMMA ON MOTION OF LINES. Suppose that 0<\theta_{2}-\theta_{1}<\pi. Then
the following two statements are equivalent.
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(i) The polar diagram of g consists of a straight line for \theta_{1}\leq\theta\leq\theta_{2} .
(ii) There is a (unique) \vec{R}\in R^{2} such that \Gamma_{t}^{\theta}=\Gamma^{\theta}+\vec{R}t.

PROOF. Since \Gamma^{\theta} is a line we may assume \gamma\equiv 0 . We may also
assume c=-1 without the loss of generality. Since the speed of \Gamma_{t}^{\theta} is
constant we may assume t=1 in (ii). The proof is based on elementary
geometry.
Let \vec{R} be the intersection of \Gamma_{1}^{\theta_{1}} and \Gamma_{1}^{\theta_{2}} ; the length of \vec{R} denotes R . Let
\vec{q}(\theta)=q(\theta)\vec{m}(\theta) be a vector such that \vec{q}(\theta)-\vec{R} is orthogonal to \vec{R} .

Comparing the similarity ratio of triangles we observe that

R/q(\theta_{i})=R^{-1}/g(\theta_{i}) (i=1,2) .
Similarly \Gamma_{1}^{\theta} intersects with \vec{R} if and only if

R/q(\theta)=R^{-1}/g(\theta) .

We thus observe that (i) and (ii) are equivalent. \square

5. 2. REMARK. Although we restrict ourselves to the case n=2 ,

Lemma 5. 1 can be generalized to the case n=3 with obvious
modifications.

5. 3. THEOREM. Suppose that the polar diagram of 1/f(f(\theta)=
\gamma(\vec{m}(\theta))) consists of a straight line for \theta_{1}\leq\theta\leq\theta_{2},0<\theta_{2}-\theta_{1}<\pi. Then
there is a (unique) \vec{R} {determined by g and c) such that the right hand
side of (1. 1) becomes \vec{R}\cdot n^{\neq}with \tilde{n}=\vec{n}(\theta) for \theta_{1}\leq\theta\leq\theta_{2} if and only if the
polar diagram of g consists of a straight line for \theta_{1}\leq\theta\leq\theta_{2} . Here \theta in
\vec{n}(\theta) denotes the argument of \vec{n} .

This follows immediately from Lemma 5. 1 since the curvature term in
(1.1) vanishes for \theta_{1}<\theta<\theta_{2} . Theorem 5. 3 gives a condition for rigid
motion where diffusion plays no effect. We apply Theorem 5. 3 when \Gamma_{t}

is represented as a graph of a function u(t, x) . We set

v(t, x)=u(t, x+R_{1}t)-R_{2}t , \vec{R}=(R_{1}, R_{2}) . (5. 1)

If u solves (2. 2), then v solves

u_{t}-A(v_{x})_{x}-c(v_{x})=0 (5. 2)

with c(p)=b(p)+R_{1}p-R_{2} , where A and b are defined in (2. 3).

5. 4. COROLLARY. Assume the hypotheses of Theorem 5. 3 concerning
\gamma and B so that \vec{R} is defifined. Suppose that 0<\theta_{1}<\theta_{2}<\pi . Then a(p)=
c(p)=0 if \theta_{1}<Arctanp+\pi/2<\theta_{2} , where a=A’
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6. Motion of nonparabolic regions

We are interested in the case that \gamma in (1. 1) is not convex although it
is at least C^{2} outside the origin. We consider the same example
mentioned just before Assumption 2. 1. In other words suppose that \gamma\geq 0

and the second derivative of \gamma has negative eigenvalues only in the direc-
tion \vec{m}(\theta) for some \alpha_{1}<\theta<\alpha_{2} . Let \tilde{\gamma} be the convexification of \gamma . Then

\overline{\gamma} is linear in the direction \vec{m}(\theta) for \theta_{1}<\theta<\theta_{2} with some \theta_{1} , \theta_{2} satisfying
\theta_{1}\leq\alpha_{1}<\alpha_{2}\leq\theta_{2} .

We further assume that the set \overline{\gamma}=1 has positive curvature in the
direction \vec{m}(\theta) with \theta\leq\theta_{1} , \theta_{2}\leq\theta . (This in particular implies \theta_{i}\neq\alpha_{i}(i=1 ,
2).) To fix the idea we assume 0<\theta_{1}<\theta_{2}<\pi . We rewrite above
mentioned assumptions on \overline{\gamma} which of coure implies Assumption 2. 1.
Note that the curve \tilde{\gamma}=1 is the polar diagram of 1/\tilde{\gamma}(\vec{m}(\theta)) parametrized
by \theta .

6. 1. Assumptions on \overline{\gamma} . The curve \overline{\gamma}=1 is closed C^{1} curve and C^{2}

except at \theta=\theta_{i}(i=1,2) , where 0<\theta_{1}<\theta_{2}<\pi . Its curvature is positive for
\theta<\theta_{1} , \theta_{2}<\theta and can be continuously extended to \theta=\theta_{i}(i=1,2) with posi-
tive values. For \theta_{1}\leq\theta\leq\theta_{2} the curve \overline{\gamma}=1 is a straight line.

If the curve \Gamma_{t} moved by (1. 1) is given as the graph of a function
u(t, x) , it solves (2. 4). If \beta is assumed to be continuous, Assumption 6. 1
yields the following properties of a in (2. 4); actually both are equivalent.

a is continuous on R except p_{1} and p_{2} (p_{1}<p_{2}) (6. 1)

and is left(right) continuous at p=p_{1} (p=p_{2}) .
a\equiv 0 on (p_{1}, p_{2}) . (6. 2)

inf \{a(p);p\leq p_{1}, p_{2}\leq p, |p|\leq L\}>0 for each L>0 . (6. 3)

Here p_{i}=\tan(\theta_{i}-\pi/2)(i=1,2) .

6. 2. Assumptions on \beta . The polar diagram of \beta(\vec{m}(\theta)) is a Lips-
chitz closed curve and is a straight line for \theta_{1}\leq\theta\leq\theta_{2} where \theta_{1} , \theta_{2} are as
in Assumption 6. 1.

By Corollary 5. 4 we may shift u as in (5. 1) to get (5. 2) with

c(p)\equiv 0 for p_{1}\leq p\leq p_{2} .

We shall thus study (3. 1)

u_{t}-a(u_{x})u_{xx}-b(u_{x})=0

under the assumptions of (6. 1)-(6.3) with

b(p)\equiv 0 for p_{1}\leq p\leq p_{2} (6. 4)
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g is locally Lipschitz cotinuous. (6. 5)

Of course Comparison Theorem 3.1 and Existence Theorem 4. 1 apply to
our problem. We suppress the word viscosity from now on.

6. 3. LEMMA ON SPACIAL SOLUTIONS. Assume that (6. 1)-(6.5) for
(3. 1).
(i) Suppose that u_{0}(x) is Lipschitz with p_{1}\leq u_{0X}(x)\leq p_{2} for a. e. x. Then
u_{0}(x) itself solves (3. 1). In other words u_{0} is a stationary solution of (3.
1).
(ii) Let u be the solution of (3. 1) with globally Lipschitz initial data
u_{0}(x) . If u_{0x}\leq p_{1}a . e . x, then u_{x}\leq p_{1} a. e. x for all t\geq 0 . Moreover, u

solves
u_{t}-\overline{a}(u_{x})u_{xx}-b(u_{x})=0

with \overline{a}(p)=a(p_{1}-0) for p\geq p_{1} and \overline{a}(p)=a(p) for p<p_{1} , where a(p_{1}-0)

denotes the left limit at p_{1} .
(iii) If in addition to ( ii) , u_{0}(x)=qx for x<0 and u_{0}(x)=p_{1}x for x\geq 0

with some q<p_{1} , then u(t, x)>p_{1}x for all x, t. Moreover \lim_{tarrow\infty}u(t, x)=\infty

provided that b\geq 0 on [q, p_{1}] .

PROOF. ( i) If

(\tau, p, X)\in \mathscr{P}^{2,\pm}u(t, x)

with u(t, x)=u_{0}(x) , then \tau=0 , p_{1}\leq p\leq p_{2} . Since a(p)=b(p)=0 on (p_{1}, p_{2}) ,

b is continuous and a\geq 0 , we observe by (3. 3), that u_{0}(x) is a solution of
(3. 1).
(ii) As in the proof of Lipschitz Preserving Theorem 3. 6, we have u_{x}\leq

p_{1} for all t\geq 0 . Therefore

(\tau, p, X)\in \mathscr{P}^{2,\pm}u(t, x)

implies p\leq p_{1} . We thus observe that u solves

u_{t}-\overline{a}(u_{x})u_{xx}-b(u_{x})=0 .

(iii) We may assume p_{1}=0 by adding a linear function to u . As in the
proof of Lipschitz Preserving Theorem 3. 6 we observe that q\leq u_{x}\leq 0(a .
e . x ). By Theorem 3. 7 u(t, x) is convex in x . Thus, by ( ii) , u is a
supersolution of

v_{t}-a_{0}v_{xx}-b(v_{x})=0 (6. 6)

with a_{0}= \inf_{q\leq p\leq 0}a(p) , which is positive by (6. 3). By comparison it suffices to



202 Y. Giga

prove (iii) for solution v of (6. 6) with initial data u_{0}(x) . Since b is Lips-
chitz and b(0)=0 , v solves

v_{t}-a_{0}v_{xx}-B(t, x)v_{x}=0

with bounded coefficient B . Applying the strong maximum principle, we
observe that v(t, x)>0 for all t>0 since u_{0}\geq 0 .

It remains to prove that \lim_{tarrow\infty}v(t, x)=\infty . Since also q\leq v_{x}\leq 0 holds, v

satisfies
v_{t}-a_{0}v_{xx}\geq 0

provided that b\geq 0 on [q, 0] . We consider

w_{t}-a_{0}w_{xx}=0

with w(0, x)=u_{0}(x) . It suffices to prove that \lim_{tarrow\infty}w(t, x)=\infty since v\geq w by

comparison. We may assume that a_{0}=1 . The solution w is expressed as

w(t, x)= \frac{1}{\sqrt{4\pi t}}\int_{-\infty}^{0}e^{-|x-y|^{2}/4t}qydy .

An elementary calculation shows

w(t, x)= \sqrt{\frac{t}{\pi}}e^{-\chi 2/4t}(-q)+qx\frac{1}{\sqrt{4\pi t}}\int_{-\infty}^{0}e^{-|x-y|^{2}/4t}dy .

Since the second term is bounded in t , this shows \lim_{tarrow\infty}w(t, x)=\infty . \square

6. 4. Local supersolutions. We study the initial boundary value prob-
lem for a semilinear heat equation

u_{t}-a_{0}u_{xx}-b(u_{x})=0 on (0, \infty)\cross(-\infty, \xi) (6. 7)
u|_{t=0}=u_{0} on (-\infty, \xi)

u(t, \xi)=u_{0}(\xi) for t>0 ,

where a_{0} is a positive constant and b is bounded and continuous. A stan-
dard parabolic theory [LSU] guarantees that the global existence of
unique solutions in Sobolev spaces at least when u_{0} is smooth up to x=\xi

and grows at most linearly as xarrow-\infty . One can also prove, by Sobolev’s
embeddings, that u_{x} is H\"older continuous of any exponent (since b is
bounded) in t and x even near the corner point (t, x)=(0, \xi) . Moreover,
such H\"older norm depends on b only through its bound, so the following
stability is easily obtained by Ascoli-Arzela’s theorem.

Suppose that u_{n} is a solution of (6. 7) with b replaced by b_{n} . Then
near (0, \xi) , u_{nx} converges uniformly to u_{x} provided that b_{n} converges to b
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pointwise with uniform bound for b_{n} in n . Note that such stability results
hold near any point (t_{0}, x_{0}) , x_{0}<\xi , t_{0}\geq 0 . All results mentioned above are
standard and by no means optimal. We refer to [LSU] for the compre-
hensive theory of parabolic equations.

6. 4. A. LEMMA. For (6. 7) suppose that \xi>0 , a_{0}>0 and that b is
continuous and bounded. Suppose that b vanishes on [0, \infty) . Suppose that
u_{0} is smooth up to x=\xi with u_{oX}(\xi)>0 , globally Lipschitz and convex on
(-\infty, \xi) . Assume that 0\leq u_{0X}(x)\leq 1 if and only if 0\leq x\leq\xi. Let u be the
solution of (6. 7). Then

(i) \frac{\partial u}{\partial x}(t, \xi)\leq 1 for all t\geq 0 .
(ii) There are T>0 and \delta_{0}>0 such that

[mathring]_{\frac{\gamma u}{\partial x}}(t, \xi)\geq\delta_{0}>0 for 0\leq t<T

(iii) The mapping x\vdash u(t, x) is convex for 0\leq t<T

PROOF. ( i) By the stability of solution u with respect to b we
may assume that b is smooth and vanishes in a neighborhood of [0, \infty) .
Differentiating the equation in x yields the equation for w=u_{x} :

w_{t}-a_{0}w_{xx}-b’(u_{x})w_{x}=0 in (0, \infty)\cross(-\infty, \xi) . (6. 8)

Let T_{0} denote

T_{0}= \sup\{t ; u_{x}(t, \xi)\leq 1\} .

If T_{0}<\infty , we have a small interval ( T_{0}, T_{0}+\xi) such that u_{x}(t, \delta)>1 for
T_{0}<t<T_{0}+\delta . Since

a_{0}w_{x}(t, \xi)=u_{t}(t, \xi)-b(u_{x}(t, \xi))

=0-0 for T_{0}<t<T_{0}+\delta ,

w solves (6. 8) with

w_{x}(t, \xi)=0 for T_{0}<t<T_{0}+\delta

w=w(T_{0}, x) at t=T_{0} .

By the maximum principle we see w(t, x)\leq 1 for T_{0}<t<T_{0}+\delta . This con-
tradicts T_{0}<\infty .
(ii) This is just by continuity of u_{x} and u_{0x}(\xi)>0 .
(iii) We may assume that ( ii) holds with T. \delta_{0} independent of any
approximate solutions u_{n} of (6. 7) with b replaced by b_{n} . Recall (6. 8) for
w=u_{x} . If we extend w by
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w(t, x)=w(t, 2\xi-x) for x>\xi ,

w_{x}=0 at x=\xi for 0\leq t\leq T since \delta_{0}\leq u_{x}(t, \xi)\leq 1 . Thus w solves

w_{t}-a_{0}w_{xx}-B(t, x)w_{x}=0(0, \infty)\cross(-\infty, \infty) (6. 9)

with B=b’(u_{X}(t, x)) for x\leq\xi , - b’(u_{X}(t, 2\xi-x)) for x>\xi . Since \delta_{0}\leq

u_{x}(t, \xi)\leq 1 for 0\leq t\leq T . we see B=0 near x=\xi so B is continuous.
Since constants are solutions of (6. 9), the number of local maxima cannot
increase. Since w(0, x) takes its only maximum at \xi=0 and monotone in
x>\xi and x<\xi , w(t, x) must take its only maximum at \xi=0 . Then w is
nondecreasing in x<\xi which means that u is convex in x .

6. 4. B. LEMMA ON LOCAL SUPERSOLUTIONS. Assume (6. 1)-(6.5) for
(3. 1). Suppose that u_{0} is globally Lipschitz and that u_{0x} is nondecreasing

in (-\infty, z] , where -\infty<z<\infty . Suppose that

x_{0}= \inf\{x:u_{0X}(x+0)>p_{1}\}<z

and that u_{0x}(x-0)\leq p_{2} for x<z . For each \epsilon>0 there is T>0 and a con-
tinuous supersolution of (3. 1) on (0, T)\cross(-\infty, z) such that

\overline{u}=u_{0} on [0, T)\cross(x_{0}+\epsilon, z) ,
\overline{u}_{t=0}\geq u_{0} .

PROOF. We may assume p_{1}=0 , p_{2}=1 by adding a linear function and
multiplying a constant with u . We may also assume x_{0}=0 . For \xi=\epsilon let
u be the solution of the initial-boundary value problem of (6. 7) with

a_{0}= \sup\{a(p);-L\leq p\leq 0\} ,

where L is a Lipschitz constant of u_{0} . We then set

\overline{u}(t, x)=\{

u(t, x) x\leq\xi

u_{0}(x) \xi\leq x<z

for t\geq 0 .
By the form of \overline{u} it suffices to prove that \overline{u} is a supersolution on (0,

T)\cross(-\infty, z) for some T>0 . Let T be as in Lemma 6. 4. A. For x<\xi

since u is convex in x by Lemma 6. 4. A, we observe that

\overline{u}_{t}-a(\overline{u}_{x})\overline{u}_{xx}-b(\overline{u}_{x})

=u_{t}-a_{0}u_{xx}-b(u_{x})+(a_{0}-a(u_{x}))u_{xx}=(a_{0}-a(u_{x}))u_{xx}\geq 0 .

At x=\xi we observe that
(\tau, p, X)\in \mathscr{P}^{2,-}\overline{u}(t, \xi)
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implies that \tau=0,0<p\leq 1 by Lemma 6. 4. A. Thus \overline{u} is a supersolution
up to x=\xi . For x>\xi since u_{0x}(x-0)\leq 1 , u_{0x}(x+0)\geq 0,\overline{u}=u_{0} is a super-
solution (cf. Lemma 6. 3(i) .) We thus observed that \overline{u} is a supersolution
of (3. 1) on (0, T)\cross(-\infty, z) . \square

6. 5. Nonparabolic region. Suppose that g is convex on (-\infty, z) and
that g_{x}(z-O)<p_{2} . We set

x= \inf\{y;g_{x}(y+0)>p_{1}\}

and call the interval [x, z) a nonparabolic region. If we set

x_{*}= \inf\{y;g_{x}(y+0)\geq p_{1}\} ,

the interval [x_{*}, z) is called a weakly nonparabolic region. Roughly speak-
ing (x, z) corresponds to the region where p_{1}<g_{x}<p_{2} while [x_{*}, z) corre-
sponds to the region where p_{1}\leq g_{x}<p_{2} . We are interested in the motion of
the nonparabolic region for solution u(t^{ }, \cdot ) of (3. 1).

Assume (6. 1)-(6.5) for (3. 1). Suppose that u is a solution of (3. 1)
with globally Lipshitz initial data u_{0} . Suppose that u_{0} is convex on (-\infty ,
z) and [x_{0}, z) is its nonparabolic region where x_{0}<z . Let [x(t) , z) denote
the nonparabolic region of u(t^{ }, \cdot ) if it exists.

6. 6. DECREASING LEMMA ON N oNPARABOLIC REGION. (i) The
nonparabolic region [x(t) , z) exists for 0\leq t<T with some T_{f}O<T\leq\infty .
If T<\infty , then one of following holds:

\lim_{tarrow T}x(t)=z , u_{x}(T, z-O)=p_{2} , u_{x}(T, z+O)=p_{1} .

(ii) u(t, x)=u_{0}(x) for x\in[x(t), z) .
(iii) x(t) is a continuous, increasing function on [0, T) .
(iv) For t>0 the nonparabolic region [x(t) , z) agrees with the weakly
nonparabolic region.
(v) For t>0 , u_{x}(t, x-O)<p_{1} with x<x(t) .
(vi) If b\geq 0 on some [q_{0}, p_{1}](q_{0}<p_{1}) , then T<\infty for z<\infty and \lim_{tarrow\infty}x(t)

=\infty for z=\infty .

We shall prove this lemma in several steps. We may assume that p_{1}

=0, p_{2}=1 in this lemma and following statements. Suppose that z=\infty so
that u(t^{ }, \cdot ) is globally Lipschitz and convex on R (by Theorems 3. 6 and
3. 7.) For t_{0}\geq 0 suppose that x(t_{0})>-\infty is well defined. We set

v_{0}(x)=\{
-\delta(x-x(t_{0}))+u(t_{0}, x(t_{0})) for x<x(t_{0})-\epsilon

u(t_{0}, x(t_{0})) for x\geq x(t_{0})-\epsilon .
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Here \epsilon , \delta>0 is taken so that u(t_{0}, x)\geq v_{0}(x) . Since we have assumed p_{1}=

0 , p_{2}=1 , the solution v of (3. 1) with v(t_{0}, x)=v_{0}(x) solves a uniform para-
bolic equation as proved in Lemma 6. 3 ( ii) . By the proof of Lemma 6. 3
(iii) we observe v(t, x)>u(t_{0}, x(t_{0}))(t>t_{0}) by the strong maximum princi-
ple. On the other hand the comparison principle for (3. 1) yields u(t, x)\geq

v(t, x) . This implies that u(t, x(t_{0}))>u(t_{0}, x(t_{0})) .
We shall show that u(t, x)\geq u(t_{0}, x) for x(t_{0})\leq x . We set w_{0}(x)=u(t_{0} ,

x(t_{0})) for x\leq x(t_{0}) and w_{0}(x)=u(t_{0}, x) for x\geq x(t_{0}) . Then by Lemma 6. 3
(i ) , w_{0}(x) is a stationary solution of (3. 1). Since w_{0}(x)\leq u(t_{0}, x) , we
have u(t, x)\geq w_{0}(x) (t\geq t_{0}) by comparison. We have proved:

6. 7. LEMMA. Under the assumptions of Lemma 6. 6 with z=\infty

(i) u(t, x)\geq u(t_{0}, x) for t\geq t_{0}\geq 0 , x\geq x(t_{0}) ,
(ii) u(t, x(t_{0}))>u(t_{0}, x(t_{0})) for t>t_{0} .

We shall study the behavior of

\eta(t)=\inf\{x;u(t, x)=u_{0}(x)\} for t>0 .

6. 8. LEMMA. Under the assumptions of Lemma 6. 7 we have
(i) \eta(t) is a nondecreasing continuous function on (0, \infty) .
(ii) \eta(t)>\eta(t_{0}) for t>t_{0} provided that \eta(t_{0})=x(t_{0}) .
(iii) \lim_{t\downarrow 0}\eta(t)=x(0) .

PROOF. ( i) By Lemma 6. 7 ( ii) we observe x(0)<\eta(t_{1}) for t_{1}>0 .
Suppose that \eta(t_{2})<\eta(t_{1}) for some t_{2}>t_{1} . Then there would exist x such
that x(0)\leq x<\eta(t_{1}) and \eta(t_{2})<x . Lemma 6. 7 ( i) yields u_{0}(x)\leq u(t_{1}, x)\leq

u(t_{2}, x) . Since \eta(t_{2})<x , we would have u(t_{2}, x)=u_{0}(x) so that u(t_{1}, x)=

u_{0}(x) which leads a contradiction x \geq\eta(t_{1}) . We have thus proved that
\eta(t) is nondecreasing.

Since the set of (t, x) such that u(t, x)=u_{0}(x) is closed in [0, \infty)\cross R ,
\eta(t) is lower semicontinuous. Since \eta(t) is nondecreasing, this implies
that \eta is left continuous. By comparing local supersolutions of Lemma 6.
4. B we observe that \eta(t) is right continuous and that \eta(t) takes finite
values for all t>0 .

(ii) By Lemma 6. 7 ( ii) it is clear \eta(t)>x(t_{0})=\eta(t_{0}) for t>to .
(iii) This can be proved by comparison with local supersolutions as in
the proof of ( i ) . We omit the detail. \square

6. 9. LEMMA. Assume the same hypotheses of Lemma 6. 7. Then
x(t)=\eta(t) for t\geq 0 by setting \eta(0)=x(0) .
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PROOF. We first observe that x(t) is left upper semicontinuous, i . e .

\varlimsup_{t\uparrow r}x(t)\leq x(r)

for r>0 . Indeed, suppose that this were false. Then there would exist a
sequence t_{j}\uparrow r such that \lim_{jarrow\infty}x(t_{j})=x_{0}>x(r) and x(t_{j})>x(r) . We may

assume p_{0}=0 . By the definition of x(t) we observe that

u(t_{j}, x(t_{j}))= \int_{x(r)}^{x(t_{j})}u_{x}(t, y)dy+u(t_{j}, x(r))\leq 0+u(t_{j}, x(r)) .

Since u is continuous, letting jarrow\infty yields

u(r, x(r))\geq u(r, x_{0}) .

Since u_{x}\geq 0 on (x(r), x_{0}) , this implies u_{x}=0 on (x(r), x_{0}) . However, this
contradicts the definition of x(r) .

Suppose that x(t_{0})<\eta(t_{0}) for some t_{0}>0 . We set

s_{0}= \inf{s;x(t)<\eta(t) for all t , s\leq t\leq t_{0}}.

Since \eta is continuous by Lemma 6. 8, the left upper semicontinuity of x
implies s_{0}<t_{0} and \eta(s_{0})=x(s_{0}) . We regard u(t_{1}, x)(s_{0}<t_{1}<t_{0}) as initial
data. By Lemma 6. 7( i) and comparison with local supersolutions we
observe that u(t_{1}, x)=u(t,x) for t , x(t_{1}\leq t<t_{1}+\delta, x(t_{1})+\delta<x) with some
\delta>0 . In particular, \eta(t)=\eta(t_{1}) for t_{1}\leq t<t_{1}+\delta . This implies that \eta(t) is
constant on [s_{0}, t_{0}] by the continuity of \eta . By Lemma 6. 8(ii)(iii) , \eta(t)>

\eta(s_{0}) for t>s_{0} since \eta(s_{0})=x(s_{0}) . This leads a contradiction so we have
proved x(t)\geq\eta(t) . The opposite inequality is trivial. \square

We need a kind of strong maximum principle for viscosity solutions to
prove Lemma 6. 6(iv) . The next lemma is well known for classical solu-
tions for equations with less regular coefficients ([N] see also [PW]).
The version presented here is by no means optimal.

6. 10. LEMMA. Suppose that u is continuous viscosity subsolution of
Lu=u_{t}-a_{0}u_{xx}-b_{0}u_{x}=0

in K=\{(t, x);(x-x_{1})^{2}+(t-t_{1})^{2}<R^{2}-t\leq t_{1}\} for a given (t_{1}, x_{1}) and R>0 .
Here a_{0}\geq 0 and b_{0} are constants. Suppose that u<M on K for t<t_{1} .
Then u(t_{1}, x_{1})<M.

PROOF. The idea of the proof is almost the same as [PW, Chap. 3,
Lemma 3] except the last step. We use a barrier function

u=e^{-((x-x_{1})^{2}+a(t-t_{1}))}-1
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so that Lv\leq-c_{0} in K, t\leq t_{1} with some positive constant Co by taking \alpha

large. Let D denote

D=\{(t, x)\in K ; (x-x_{1})^{2}+\alpha(t-t_{1})<0\} .

For sufficiently small \epsilon>0 we can arrange that w=u+\epsilon v satisfies w\leq M

on \partial D . Using comparison principle for viscosity solution of Lw=0 in D,
we observe that w\leq M in D . Here we need some regularity of a_{0} and b_{0} .
Note that usual proof for comparison principle for degenerate parabolic
equation is given for cylindical domains but the proof works for this case
[CIL].

Suppose that w takes the value M at (t_{1}, x_{1}) . Since w\leq M in D, w
-\psi with \phi=M+N(x-x_{1})^{4} takes its maximum 0 over K at (t_{1}, x_{1}) for
sufficiently large N. By a definition of viscosity subsolution [CIL], L\psi(t_{1} ,
x_{1})\leq-\epsilon c_{0} since w is a subsolution of Lw=-\epsilon c_{0} . However since L\phi=

LM=0 at (t_{1}, x_{1}) , this lead a contradiction. So we have proved u(t_{1}, x_{1})=

w(t_{1}, x_{1})<M . \square

PROOF OF LEMMA 6. 6. We first assume z=\infty . By Lemmas 6. 8 and
6. 9 we obtain ( i ) , ( ii) , (iii) with T=\infty .

If z<\infty , we take a continuous function on R such that U_{0}=u_{0} for x\leq

z and that U_{\acute{0}}(x)=u_{\acute{0}}(z-0) for all x\geq z . Let U be the solution of (3. 1)
with initial data U_{0} . Let X(t) be the infimum of the nonparabolic region
of U. If non of equalities in ( i) holds for T=T_{0} , x(t)=X(t) and u ,
we can prove that u=U for 0\leq t\leq T_{0} , x\leq z , since u_{0}(x) is a solution of
(3. 1) near z. (cf. Lemma 6. 3). This yields ( i ) , ( ii) , (iii) for z<\infty .

To prove ( iv) we may assume z=\infty and p_{1}=0 . Suppose that \alpha=

x_{*}(t_{1})<x(t_{1})=\beta for some t_{1}>0 so that M=u(t_{1}, x)=u_{0}(\beta) for \alpha\leq x\leq\beta .
For t<t_{1} , we set m(t)= \sup\{x;u(t, x)\geq M\} . Since u is convex, u>M for
x<m(t) and u<M for x>m(t) if t<t_{1} .
Case 1. m_{0}=\varlimsup_{t\uparrow t_{1}}m(t)<\beta .

It is not difficult to see that u is a solution of
u_{t}-\overline{a}(u_{x})u_{xx}-b(u_{x})=0 for x<x(t) (6. 10)

with \overline{a} defined in Lemma 6. 3. Since u is convex in x , this implies

u_{t}-Au_{xx}-b(u_{x})\leq 0 for x<x(t) ,

where A= \sup\{a(p): |p|\leq L\} with L\geq|u_{0x}| . We recall that b is Lipschitz
and b(0)=0 and that u_{x}\leq 0 for x\leq x(t) . Thus

u_{t}-Au_{xx}-Bu_{x}\leq 0 for x<x(t)
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with some constant B . Since m_{0}<\beta , there is x_{1} , m_{0}<x_{1}<\beta such that u<
M on K with t<t_{1} if R is sufficiently small; K is defined in Lemma 6. 10.
We may assume

K \subset\bigcup_{0<t\leq t},\{t\}\cross(-\infty, x(t))=U

by taking R smaller. By Localization lemma [CGG3, 8] u is a viscosity
subsolution of

u_{t}-Au_{xx}-Bu_{x}=0

on K. We now apply Lemma 6. 10 and conclude that u(t_{1}, x_{1})<M . This
lead a contradiction.
Case 2. m_{0}=\beta

Since u_{xx} , u_{X} has a definite sign, from (6. 10) we also observe that u is a
viscosity supersolution of

u_{t}-a_{0}u_{xx}-b_{0}u_{x}=0 for x<x(t)

with a_{0}= \inf\{a(p);-L\leq p<0\} and some b_{0}\in R . If the limit

\lim_{t\uparrow t_{1}}m(t)=\overline{m}_{0}

exists, there is x_{1} , \alpha<x_{1}<m_{0}=\tilde{m}_{0} such that u>M on K with t<t_{1} for
small R so that K\subset U . Applying Lemma 6. 10 for - u yields a contradic-
tion as in Case 1.

It remains to prove that \overline{m}_{0} exists. Since a viscosity solution of (6.
10) (with given initial and boundary data) is obtained as a local uniform
limit of solutions of a more regular equation approximating (6. 10), u
solves

u_{t}-a_{0}u_{xx}-b_{0}u_{x}\geq 0 , x<x(t) (6. 11)

in the sense of distribution. Let u^{\epsilon} be a mollified function obtained by
convolution with a space-time mollifier. Then u^{\epsilon} solves (6. 11) classically
for x<x(t)-\sigma_{1}(\epsilon) , t>\sigma_{2}(\epsilon) where \sigma_{j}(\epsilon)-0 as \epsilonarrow 0 . We may assume that
u^{\epsilon} is convex and decreasing there. For \sigma_{2}(\epsilon)<t<t_{1}-\sigma_{3}(\epsilon) one can
uniquely define m^{\epsilon}(t) by u^{\epsilon}(t, m^{\epsilon}(t))=M with some \sigma_{3} . Since

\frac{d}{dt}u^{\epsilon}(t, m(t))=0 yields m^{\epsilon}(t)’=-u_{t}^{\epsilon}/u_{x}^{\epsilon},

and u_{xx}^{\epsilon}\geq 0 , the inequality (6. 11) yields u_{t}^{\epsilon}\geq b_{0}u_{x}^{\epsilon}. Since u_{x}\leq 0 , this yields
m^{\epsilon}(t)’\geq-b_{0} . Letting \epsilon\downarrow 0 yields

m(s)-m(t)\geq-b_{0}(s-t) , 0<\tau<s<t_{1} .
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Thus m(t) does not oscillate so that the limit \tilde{m}_{0} exists.
To prove(v) suppose that u_{x}(t, x-O)\geq p_{1} . Then the monotonicity of

u_{X} implies u_{x}(t, x+O)\geq p_{1} so that x belongs to the weakly parabolic
region. By (iii) this implies x\geq x(t) which leads a contradiction.

The last assertion (iv) can be proved by comparing u with a solution
which agrees with a special solution in Lemma 6. 3(iii) up to translations
and additive constants. \square

6. 11. REMARK. If we know that x(t) is Lipschitz on [0, T’] for
each T’<T . then

u_{x}(t, x(t)-0)=p_{1},0<t<T

Indeed, if not, for some t we see
u_{x}(t, x(t)-0)=q<p_{1}

by Lemma 6. 6(v) . Since x(t) is Lipschitz continuous, for each q_{1} , q<q_{1}

<p_{1} there is \tau such that for every X\geq 0 it holds

u(s, x)-u(t, x(t))\geq\tau(s-t)+q_{1}(x-x(t))+2^{-1}X(x-x(t))^{2}

+o(|x-x(t)|^{2}+|s-t|) as xarrow x(t) , s\uparrow t

for s\leq t , x near x(t) . By Localization lemma [CGG3, 8( i )] we see (\tau, q_{1} ,
X) must satisfy

\tau-a(q_{1})X\geq 0 .

Since a(q_{1})\geq a_{0}>0 and X is arbitrary, this inequality is contradictory.
We thus proved u_{x}(t, x(t)-0)=p_{1} .

We do not know whether x(t) is Lipschitz in time in this generality.

As in \S 6. 5 for a convex function g on R we set

x_{1}= \inf\{y ; g_{x}(y+0)>p_{1}\} , x_{2}= \sup\{y ; g_{x}(y-0)<p_{2}\}

and call [x_{1}, x_{2}] is a nonparabolic region for g . A weakly nonparabolic
region is similarly defined. Using Lemma 6. 6 for u and u(t, -x) , we
obtain:

6. 12. THEOREM. Assume Assumptions 6. 1 and 6. 2 on \tilde{\gamma} and \beta.
Suppose that u_{0} is globally Lipschitz and convex. Let [x_{1}(t), x_{2}(t)] is a
nonparabolic region for v(t^{ }, \cdot ) defifined by (5. 1) from u solving (2. 4) with
initial data u_{0} . Suppose that -\infty<x_{1}(0)<x_{2}(0)<\infty . Then x_{1}(t) ( resp.
x_{2}(t)) is a continuous, increasing (resp. decreasing) function for 0\leq t<T

Here T is either infifinity or the time when x_{1}(T)=x_{2}(T) , where x_{i}(T)=
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\lim_{t\uparrow T}x_{i}(t) . Moreover, [x_{1}(t), x_{2}(t)] agrees with the weakly nonparabolic

region of v(t^{ }, \cdot ) for t>0 .
6. 13. COROLLARY. Assume the same hypotheses of Theorem 6. 12.

Suppose that c=0 or that c>0 and \beta(m(\theta))=\rho(\theta) for \theta, \theta_{1}\leq\theta\leq\theta_{2} with
\rho(\theta)=\alpha_{1} cos \theta+\alpha_{2} sin \theta+\alpha_{3} , \alpha_{i}\in R . Suppose that \beta(\vec{m}(\theta))\geq\rho(\theta) for \theta near
\theta_{1} and \theta_{2} . Then T<\infty .

PROOF. It is not difficult to see that assumption b\geq 0 in Lemma 6. 6
(vi) is fulfilled under the assumption of Corollary 6. 13. The conclusion T
<\infty easily follows from Lemma 6. 6(vi) . \square

6. 14. REMARK. Note that Lemma 6. 6 applies to the case when Lip-
schitz initial data u_{0} is convex on (-\infty, x_{1}(0)) and concave in (x_{2}(0), \infty) ,

where p_{1}<u_{0x}(x)<p_{2} if and only if x_{1}(0)<x<x_{2}(0) . We can define nonpar-
abolic region and prove that it decreases in time. We do not state results
explicitly. We note that such a configuration of initial data appeared in a
material science literature of Mullins [Mu].

6. 15. THEOREM ON INSTANT loss OF SMOOTHNESS. Suppose that \mathcal{U}0

is convex and smooth with bounded fifirst derivative. Suppose that u_{0x} is
increasing and -\infty<x_{1}(0)<x_{2}(0)<\infty . Then v (in Theorem 6. 12) becomes
nondijferentiable in x for t>0 close to zero.

PROOF. We apply Lemma 6. 6 to get

v(t, x)=u_{0}(x) for x_{1}(t)\leq x\leq x_{2}(t)

and v(t, x_{1}(t)-0)\leq p_{1} . Since u_{0X}(x) and x_{1}(t) are increasing, v(t, x_{1}(t)+0)

>p_{1} for 0<t<T Thus v is not differnetiable in x at x=x_{1}(t) . \square
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