Exotic circles of $PL_{+}(S^{1})$

Hiroyuki MINAKAWA

(Received January 6, 1995; Revised March 3, 1995)

Abstract. Let G be a subgroup of $Homeo_+(S^1)$. An exotic circle of G is a subgroup of G which is topologically conjugate to SO(2) but not conjugate to SO(2) in G. This shows us the subgroup G is far from being a Lie group. In this paper, we prove that $PL_+(S^1)$ has exotic circles.

Key words: exotic circle, $PL_{+}(S^{1})$, topologically conjugate, PL conjugate, bendeng point.

Introduction

Let G be a Lie group and M an oriented manifold of class $C^k (1 \le k \le \infty)$. Let $\mathrm{Diff}_+^k(M)$ denote the group of all C^k diffeomorphisms of M. A topological action is a continuous map $\varphi: G \times M \to M$ such that

- 1) $\varphi_e(x) = x$,
- $2) \varphi_{gh}(x) = \varphi_g(\varphi_h(x)).$

where e is the unit of G and $\varphi_g(x) = \varphi(g, x)$. D. Montgomery and L. Zippin proved the following theorem ([4]).

Theorem 0.1 Let φ be a topological action. If every φ_g belongs to $\operatorname{Diff}_+^k(M)$ then φ is a map of class C^k .

In the case where $G=M=S^1$, this theorem implies the following corollary.

Corollary 0.2 If every $h \circ R_x \circ h^{-1}$ is contained in $\text{Diff}_+^k(S^1)$, then h belongs to $\text{Diff}_+^k(S^1)$. Here, $R_x : S^1 \to S^1$ is the rotation of S^1 , i.e., $R_x(y) = x + y$.

Indeed, for $\varphi(x,y) = h \circ R_x \circ h^{-1}(y)$. $\varphi: S^1 \times S^1 \to S^1$ is a topological action with $\varphi_x \in \operatorname{Diff}_+^k(S^1)$. Then φ is of class C^k by Theorem 0.1. Fix a point y_0 and define the C^k diffeomorphism φ of S^1 by $\varphi(x) = \varphi(x,y_0)$. Then we can see easily $\varphi^{-1} \circ \varphi_x \circ \varphi = R_x$. So $\varphi^{-1} \circ h = R_z$ for some $z \in S^1$. This implies h belongs to $\operatorname{Diff}_+^k(S^1)$.

Let $SO(2) = \{R_x | x \in S^1\}$ be the group of all rotations of S^1 . Corollary

¹⁹⁹¹ Mathematics Subject Classification: 58E40, 58F03.

568 H. Minakawa

0.2 says that $\operatorname{Diff}_+^k(S^1)$ has no exotic circle in the following sense. Let G be a subgroup of $\operatorname{Homeo}_+(S^1)$.

Definition 0.3 1) A subgroup $S \subset \text{Homeo}_+(S^1)$ is called a *topological* circle if $S = h \circ SO(2) \circ h^{-1}$ for some $h \in \text{Homeo}_+(S^1)$.

2) A topological circle $S \subset G$ is an exotic circle of G if h does not belong to G.

The aim of this paper is to show the existence of an exotic circle of $PL_{+}(S^{1})$.

The author would like to thank the referee for his useful comments.

1. Piecewise linear homeomorphisms with two bending points

Let $\operatorname{Homeo}_+^{\sim}(S^1)$ be the group of all orientation preserving homeomorphisms of R which commutes with the translation T_1 . Here $T_b(x) = x + b$ $(x, b \in R)$ is the translation by b. Every $F \in \operatorname{Homeo}_+^{\sim}(S^1)$ induces a homeomorphism $f: S^1 \to S^1$ $(S^1 = R/Z)$. So we define

$$p: \operatorname{Homeo}_+^{\sim}(S^1) \to \operatorname{Homeo}_+(S^1)$$

by p(F) = f. Conversely for any $f \in \text{Homeo}_+(S^1)$, there exists a $\tilde{f} \in \text{Homeo}_+^{\sim}(S^1)$ such that $p(\tilde{f}) = f$. Such \tilde{f} is called a *lift* of f. We can easily check that

$$p^{-1}(f) = \{ T_n \circ \tilde{f} \mid n \in Z \}.$$

Let $PL_+^{\sim}(S^1)$ be the group of $\operatorname{Homeo}_+^{\sim}(S^1)$ defined as follows. $F \in \operatorname{Homeo}_+^{\sim}(S^1)$ belongs to $PL_+^{\sim}(S^1)$ if F is piecewise linear and bending points of F have no accumulation points in R. Then we define $PL_+(S^1) = p(PL_+^{\sim}(S^1))$.

Let $\pi: R \to S^1 = R/Z$ denote the quotient map. A point $\tilde{x} \in R$ with $\pi(\tilde{x}) = x$ is called a *lift* of x. We may use the notation $\pi(\tilde{x}) = [\tilde{x}]$.

Definition 1.1 Let f be an element of $PL_{+}(S^{1})$.

$$d_R f(x) = \lim_{\varepsilon \to 0, \varepsilon > 0} \frac{\tilde{f}(\tilde{x} + \varepsilon) - \tilde{f}(\tilde{x})}{\varepsilon}$$

$$d_L f(x) = \lim_{\varepsilon \to 0, \varepsilon > 0} \frac{\tilde{f}(\tilde{x}) - \tilde{f}(\tilde{x} - \varepsilon)}{\varepsilon}$$

This definition is well defined, because each right-hand side does not depend on the choices of lifts \tilde{f}, \tilde{x} .

Definition 1.2 $BP(f) = \{x \in S^1 \mid d_R f(x) \neq d_L f(x)\}.$

BP(f) is a finite set, since the bending points of \tilde{f} do not accumulate in R.

Lemma 1.3 For any $x \in S^1$, $\lambda(\lambda > 0, \lambda \neq 1)$ and $\beta > 0$, there exists the unique $f \in PL_+(S^1)$ such that

- 1) $BP(f) = \{x, f(x)\},\$
- 2) $d_R f(x) = d_L(f(x)) = \lambda, d_R f(f(x)) = d_L f(x) = \lambda^{-\beta}.$

Proof. By taking a conjugation by a rotation, we may assume x = [0]. We define $F_{\lambda,\beta} \in PL_+^{\sim}(S^1)$ by

$$F_{\lambda,\beta}|_{[0,1]} = \left\{ egin{array}{ll} \lambda ilde{y} & 0 \leq ilde{y} \leq ilde{a}_{\lambda,\beta} \\ \lambda^{-\beta}(ilde{y}-1) + 1 & ilde{a}_{\lambda,\beta} \leq ilde{y} \leq 1 \end{array}
ight.$$

where $\tilde{a}_{\lambda,\beta} = (\lambda^{\beta} - 1)/(\lambda^{1+\beta} - 1)$. $f = p(T_{\tilde{a}_{\lambda,\beta}} \circ F_{\lambda,\beta})$ is the required PL homeomorphism.

Suppose $g \in PL_+(S^1)$ satisfies 1),2). $g' = R_{-g(x)} \circ g$ fixes x. Then g' must be equal to $R_x \circ p(F_{\lambda,\beta}) \circ R_x^{-1}$. This implies the uniqueness of such g.

Let $f_{x,\lambda,\beta}$ denote the unique element of $PL_+(S^1)$ which satisfies 1), 2) of Lemma 1.3.

Lemma 1.4 Let x, λ, β be as above. $f_{x,\lambda,\beta}$ has no fixed points.

Proof. Since $f_{[0],\lambda,\beta} = R_x^{-1} \circ f_{x,\lambda,\beta} \circ R_x$, it suffices to prove the lemma for $f = f_{[0],\lambda,\beta}$. We show that the graph of the lift $T_{\tilde{a}_{\lambda,\beta}} \circ F_{\lambda,\beta}$ of f lies in the area $\{(s,t) \in R^2 | s < t < s + 1\}$. In fact,

$$0 < \tilde{a}_{\lambda,\beta} \le T_{\tilde{a}_{\lambda,\beta}} \circ F_{\lambda,\beta}(\tilde{y}) - \tilde{y} \le \lambda \tilde{a}_{\lambda,\beta} < 1,$$

if $\lambda > 1$ and

$$0 < \lambda \tilde{a}_{\lambda,\beta} \le T_{\tilde{a}_{\lambda,\beta}} \circ F_{\lambda,\beta}(\tilde{y}) - \tilde{y} \le \tilde{a}_{\lambda,\beta} < 1$$

if
$$0 < \lambda < 1$$
.

570 H. Minakawa

Lemma 1.5 For any $n \in N$,

$$BP(f_{x,\lambda,\beta}^n) \subset \{f_{x,\lambda,\beta}(x), f_{x,\lambda,\beta}^{-n+1}(x)\}.$$

Especially, if $f_{x,\lambda,\beta}^n(x) = x$, then $f_{x,\lambda,\beta}(x) = id$.

Proof. Let $f = f_{x,\lambda,\beta}$. Since $d_R f^2(x) = \lambda^{1-\beta} = d_L f^2(x)$, then we can see that f^n is differentiable at each point of $S^1 - \{f(x), f^{-n+1}(x)\}$. That is,

$$BP(f^n) \subset \{f(x), f^{-n+1}(x)\}.$$

If $f^n(x) = x$, then $f^{-n+1}(x) = f(x)$. So $\sharp BP(f^n) \leq 1$. Each $g \in PL_+(S^1)$ must have at least two bending points whenever $g \notin SO(2)$. Therefore f^n has no bending points and fixes x. Thus f^n must be identity.

The rotation number ρ : Homeo₊ $(S^1) \rightarrow S^1$ is a well-known semi-conjugacy invariant which has the following properties ([1], [5], [6]);

- 1) $\rho(R_{\alpha}) = \alpha$.
- 2) $\rho(f \circ g) = \rho(f) + \rho(g)$ if $f \circ g = g \circ f$.
- 3) If $\rho(f) = \alpha$, then $R_{\alpha}^{-1} \circ f$ has an fixed point.
- 4) If f^n has no fixed points for any $n \in \mathbb{Z}$, then $\rho(f)$ is irrational.

Corollary 1.6 If β is irrational. then the rotation number of $f_{x,\lambda,\beta}$ is irrational.

Proof. Suppose $f = f_{x,\lambda,\beta}$. For any $n \geq 1$, there exist $n_1, n_2 \in N$ with $n_1 + n_2 = n$ such that

$$d_R f^n(x) = \lambda^{n_1 - n_2 \beta}.$$

Since β is irrational, $d_R f^n(x) \neq 1$. Therefore f^n does not belong to SO(2). This means $\sharp BP(f^n) \geq 2$. Then $BP(f^n) = \{f(x), f^{-n+1}(x)\}$ and $f^n(x) \neq x$ by Lemma 1.5. Since $f^n(f^{-n+1}(x)) = f(x)$, Lemma 1.4 implies that f^n has no fixed points. Then f has an irrational rotation number.

Definition 1.7 Let $a^i, b^i (i = 1, 2)$ be points of S^1 such that $a^1 \neq a^2, b^2 \neq b^2$. Let $pl(a^1, a^2 : b^1, b^2)$ denote the element of $PL_+(S^1)$ such that

- 1) $BP(pl(a^1, a^2 : b^1, b^2)) = \{a^1, a^2\},\$
- 2) $pl(a^1, a^2 : b^1, b^2)(a^i) = b^i (i = 1, 2).$

We give the set of periodic functions on R the maximum norm. Then it induces the topologies of $\operatorname{Homeo}_+^{\sim}(S^1)$ and $\operatorname{Homeo}_+(S^1)$. We use this topology in the rest of this paper.

Lemma 1.8 Let $\{a_k^i\}_{k\in\mathbb{N}}$, $\{b_k^i\}_{k\in\mathbb{N}}\subset S^1\ (i=1,2)$ be two sequeces with $a_k^1\neq a_k^2$, $b_k^1\neq b_k^2$ and a^i , $b^i(i=1,2)$ two points of S^1 with $a^1\neq a^2$, $b^1\neq b^2$. If $a_k^i\to a^i$, $b_k^i\to b^i$ as $k\to\infty$, then $pl(a_k^1,a_k^2:b_k^1,b_k^2)\to pl(a^1,a^2:b^1,b^2)$ as $k\to\infty$.

Proof. Let $f_k = pl(a_k^1, a_k^2 : b_k^1, b_k^2)$ and $f = pl(a^1, a^2 : b^1, b^2)$. We take lifts $\tilde{f}, \tilde{a^1}, \tilde{a^2}$ such that $\tilde{a^1} < \tilde{a^2} < \tilde{a^1} + 1$. Since $a_k^i \to a^i, b_k^i \to b^i$ as $k \to \infty$, then there exist lifts $\tilde{a^i}_k, \tilde{b^i}_k$ such that $\tilde{a^i}_k \to \tilde{a^i}, \tilde{b^i}_k \to \tilde{b^i}$ as $k \to \infty$. Then we can take lifts \tilde{f}_k such that $\tilde{f}_k(\tilde{a^i}_k) = \tilde{b^i}_k$. For any $\epsilon > 0$, we define

$$U_{\epsilon} = \{ (s,t) \in \mathbb{R}^2 \mid \tilde{f}(s) - \epsilon < t < \tilde{f}(s) + \epsilon \}.$$

Then U_{ϵ} is an open set of R^2 which contains the graph Γ of \tilde{f} . It suffices to show that for any U_{ϵ} there exists a positive integer N such that the graph Γ_k of \tilde{f}_k lies in U_{ϵ} if $k \geq N$. Now suppose U_{ϵ} is given. We take open convex sets O_1, O_2 such that

$$K_1 = \Gamma|_{\tilde{a^1},\tilde{a^2}} \subset O_1 \subset U_{\epsilon}$$

and

$$K_2 = \Gamma|_{\tilde{a^2}.\tilde{a^1}+1} \subset O_2 \subset U_{\epsilon}$$

where $\Gamma|[s,t] = \Gamma \cap [s,t] \times R$. This is possible, because K_i is a compact segment. Since $(\tilde{a^i},\tilde{b^i}) \in O^1$ (i=1,2), there exists a positive integr N_1 such that $(\tilde{a^i}_k,\tilde{b^i}_k) \in O^1$ for any $k \geq N_1$. That is, $\Gamma_k|_{[\tilde{a^i}_k,\tilde{b^i}_k]} \subset O^1 \subset U_\epsilon$, because O^1 is convex and $\Gamma_k|_{[\tilde{a^i}_k,\tilde{b^i}_k]}$ is the segments with endpoints $(\tilde{a^i}_k,\tilde{b^i}_k), (\tilde{a^i}_k,\tilde{b^i}_k)$. We can show that there exists a positive integer N_2 such that $\Gamma_k|_{[\tilde{b^i}_k,\tilde{a^i}_k+1]} \subset O^2 \subset U_\epsilon$ for any $k \geq N_k$ in the same way. Since U_ϵ , Γ and $\Gamma_k(k=1,2)$ are all periodic, then this implies $\Gamma_k \subset U_\epsilon$ for any $k \geq \max\{N_1,N_2\}$. This completes the proof.

It is the time to show the existence of exotic circles of $PL_{+}(S^{1})$.

2. Existence of exotic circles

Let $x \in S^1$, $\lambda > 1$ and β a positive irrational number. Then $f = f_{x,\lambda,\beta}$ has an irrational rotation number $\alpha \in S^1$ by Cor 1.6. So there exists $h \in \text{Homeo}_+(S^1)$ such that

$$h \circ f \circ h^{-1} = R_{\alpha}.$$

572 H. Minakawa

We define

$$S = h^{-1} \circ SO(2) \circ h.$$

Lemma 2.1 $S \subset PL_{+}(S^{1})$ and $\sharp BP(g) \leq 2$ for any $g \in S$.

Proof. Any $g \in S$ is written as $g = h^{-1} \circ R_{\alpha_g} \circ h$. We can take a sequece $\{n_k\}_{k \in N} \subset N$ such that $R_{\alpha}^{n_k} \to R_{\alpha_g}$ and $R_{\alpha}^{-n_k} \to R_{\alpha_g}^{-1}$ as $k \to \infty$. Then $f^{n_k} \to g$ and $f^{-n_k} \to g^{-1}$ as $k \to \infty$. Since $BP(f^n) = \{f(x), f^{-n+1}(x)\}$, then

$$f^n = pl(f^{-n+1}(x), f(x) : f(x), f^{n+1}(x)).$$

By Lemma 1.8,

$$f_{n_k} = pl(f^{-n_k+1}(x), f(x) : f(x), f^{n_k+1}(x))$$
$$\longrightarrow f^{\infty} = pl(g^{-1}(f(x)), f(x) : f(x), g(f(x))).$$

Thus
$$g = f^{\infty} \in PL_{+}(S^{1})$$
.

Lemma 2.2 h does not belong to $PL_{+}(S^{1})$.

Proof. We assume $h \in PL_+(S^1)$ and deduce a contradiction. Since BP(f) is not empty, h must bend and $\sharp BP(h) \geq 2$. Since BP(h) is a finite set, there exists a rotation R_{α_1} such that

$$R_{\alpha_1}(h(BP(h))) \cap h(BP(h)) = \emptyset.$$

Then we have

$$BP(h^{-1} \circ R_{\alpha_1} \circ h) = BP(h) \cup h^{-1} \circ R_{\alpha_1}^{-1} \circ h(BP(h)).$$

The right hand side is the disjoint union by the choice of α_1 . So $BP(h^{-1} \circ R_{\alpha_1} \circ h)$ contains at least four points. On the other hand, since $h^{-1} \circ R_{\alpha_1} \circ h$ belongs to S, it has at most two bending points. This is the contradiction.

Thus we have shown the existence of exotic circles of $PL_+(S^1)$. For every element $f \in \text{Homeo}_+(S^1)$, let the symbol α_f donote the rotation number.

Proposition 2.3 Let $S = h \circ SO(2) \circ h^{-1}$ be an exotic circle of $PL_{+}(S^{1})$. Any element $f \in S$ is not PL conjugate to the rotation $R_{\alpha_{f}}$, if α_{f} is irrational.

Proof. Let $f \in PL_+(S^1)$ be with the irrational rotation number. Suppose $k \circ f \circ k^{-1} = R_{\alpha_f}$. Then we have $(k \circ h) \circ R_{\alpha_f} \circ (k \circ h)^{-1} = R_{\alpha_f}$. Since α_f is irrational, $k \circ h$ must belong to SO(2). By the fact that SO(2) is a subgroup of $PL_+(S^1)$ and h does not belong to $PL_+(S^1)$, we can see that k does not belong to $PL_+(S^1)$. This completes the proof.

References

- [1] Herman M., Sur la conjugasion differéntiable des difféomorphismes du cercle à des rotations. Inst. Hautes Etudes Sci. Publ. Math. 49 (1979), 5–234.
- [2] Herman M., Conjugaison C[∞] des difféomorphismes du cercle dont le nombre de rotation satisfait ùne condition arithmétique. C. R. Acad. Sci. Paris, 282 (1976), 503-506.
- [3] Herman M., Conjugaison C^{∞} difféomorphismes du cercle pour presque taut nombre de rotation. C. R. Acad. Sci. Paris, (1976), 579–582.
- [4] Montgomery D. and Zippin L., *Topological transformation group*. Interscience Tracts in Pure and Applied Math. No. 1, (1955).
- [5] Plante J., Foliations with measure preserving holonomy. Ann. of Math. 102, (1975), 327–361.
- [6] Hector G. and Hirsch U., Introduction to the geometry of foliations Part A. Vieweg, Braunschweig, (1981).

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan

E-mail: minakawa@math.hokudai.ac.jp