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Preconditioning cubic collocation method for
elliptic equations
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Abstract. In this paper we provide the preconditioning results of the linear system
generated by the cubic spline collocation discretization with penalty terms for an elliptic
equation with Neumann boundary conditions. Moreover, we show that the linear system
of an elliptic equation with Dirichlet or mixed boundary conditions can be directly derived
from the linear system of the same equation with Neumann boundary conditions.
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1. Introduction

In this paper, we will provide preconditioning results of the cubic spline
collocation discretization with penalty terms for a positive definite second
order elliptic boundary value problem with Neumann boundary conditions.

In the course of patching collocation method introduced by Orszag in
[O] for elliptic boundary value problems, Funaro has provided a method
to handle different types of boundary conditions in [F2]. The idea is to
collocate an equation at both the interior nodes and the boundary nodes
of a given interval for the equations to be solved at the boundary points.
In this paper, we will deal with the preconditioning cubic spline collocation
method for the Neumann problem following the ideas provided in [F2] and
[KP].

Let us consider an equation

-u’+cu=f in (0, 1) (1.1)

with the Neumann boundary conditions

u’(0)=0, u’(1)=0, (1.2)
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where f and c are continuous functions and

0<m\leq c(x)\leq M<\infty for 0\leq x\leq 1 .

Let us introduce the space S_{\triangle,3} of C^{1} -cubic spline functions with C^{1} -cubic
Lagrange spline basis \{\psi_{i}\}_{i=0}^{2N+1} with respect to a given partition \triangle:=

\{t_{i}\}_{i=0}^{N} of the unit interval I where \psi_{i}(\xi_{j})=\delta_{ij} for given collocation points
\{\xi_{j}\}_{j=0}^{2N+1} such that, for j=1,2 , . . ’ N ,

\xi 0=0 , tj-1<\xi 2j-1<\xi_{2j}<tj , \xi 2N+1=1 .

Notice that \{\psi_{i}\}_{i=1}^{2N} can be chosen from [KK] or [KS] in the sense that \psi_{i}

satisfies the Dirichlet boundary conditions, i.e. , \psi_{i}(0)=0 and \psi_{i}(1)=0 ,
and in order to handle the Neumann boundary conditions \psi_{0} and \psi_{2N+1}

can be added by following the ideas in the proceeding references.
Concerning the numerical approximation, we look for u\in S_{\triangle,3} , and we

collocate the Eq. (1.1) at the interior points \xi_{j} , i.e. ,

(-u’+cu)(\xi_{j})=f(\xi_{j}) , j=1,2 , , 2N. (1.3)

For the equation to be solved at the boundary points 0 and 1, we will impose
the following conditions as penalty terms:

(-u’+cu)(0)-w_{0}^{-1}u’(O)=f(0) ,
(1.4)

(-u’+cu)(1)+w_{2N+1}^{-1}u’(1)=f(1)

where \{w_{i}\}_{i=0}^{2N+1} are the quadrature weights relative to the points \{\xi_{i}\}_{i=0}^{2N+1}

The analogous scheme for the pseudospectral approximation was
showned and analyzed in [F2]. Hence, stability and convergence for our
approximation can be obtained by adapting the theory in [F2].

The purpose of this paper is to give preconditioning results for the linear
system obtained from the proceeding schemes (1.3) and (1.4).

Multiplying both sides of the linear system B_{N}U_{h}=F_{h} obtained from
the scheme (1.3) and (1.4) by the weights matrix W_{N} , we have a symmetric
linear system such that \tilde{B}_{N}U_{h}:=W_{N}B_{N}U_{h}=W_{N}F_{h} . It is well-known
that the condition number of \tilde{B}_{N} increase like N^{2} . Here, we shall study the
preconditioning which is important for the sucessful application of conjugate
gradient method.

As a preconditioner we take a stiffness matrix \beta_{N} associated with the
same Eq. (1.1) on the space S_{\triangle,1} of the continuous piecewise linear functions



Preconditioning cubic collocation method for elliptic equations 599

which break at the collocation points. Now, we have a preconditioned linear
system such that

QNUh :=\beta_{N}^{-1}\tilde{B}_{N}U_{h}=\beta_{N}^{-1}W_{N}F_{h} .

Following the ideas in [KP], we will show that the matrix Q_{N} has all positive
bounded eigenvalues independent of mesh size on a quasi-uniform mesh. In
[KP], using Hermite cubic splines, Kim and Parter gave preconditioning
results for the same problem (1.1) immediately, where they didn’t collocate
at boundary points. Indeed, our work is quite similar to the work in [KP]
so that we will quote their results for the proofs of our results.

One major difference is that we handle the Neumann boundary condi-
tions by a different way. The other difference is that we can directly derive
one collocation matrix B_{N}^{d} associated with Dirichlet boundary conditions,
i.e. , u(0)=0 , u(1)=0 , taking the interior (2N)\cross(2N) elements of B_{N}

and the other collocation matrix B_{N}^{m} associated with mixed boundary con-
ditions, i.e. , u(0)=0, u’(1)=0 , eliminating the first row and the first
column from B_{N} . Of course, we can obtain the preconditioning results for
the Eq. (1.1) with Dirichlet boundary conditions or mixed boundary condi-
tions using the matrix B_{N}^{d} or B_{N}^{m} . Moreover, using the tensor products we
can also extend the preconditioning strategy to a positive definite second
order elliptic partial differential equation.

The rest of the paper is organized as follows. In section 2, we give
some preliminary ideas, notations, etc. In section 3, we will give one dimen-
sional preconditioning result for the Neumann problem. And our discussions
are extended to a positive definite second order elliptic partial differential
equation with Neumann boundary conditions in section 4. We give the
computational results about one dimensional problem in section 5.

2. Preliminary

Let I be the unit interval and let \Omega:=I\cross I be the unit square. Let \triangle

be a partition of I such as

\triangle : 0=t_{0}<t_{1}< <t_{N}=1 , h_{i}:=t_{i}-t_{i-1} , I_{i}=[t_{i-1}, t_{i}] .

Let h and \rho be the mesh size and the bounded global mesh ratio of the
partition \triangle , respectively, such that
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h:=1\leq i\leq Nmax\{h_{i}\} and 1 \leq\rho:=1\leq i,j\leq Nmax\frac{h_{i}}{h_{j}}\leq\gamma . (2.1)

Throughout this paper, the work is based on the quasi-uniform mesh.
Using Legendre-Gauss points and Legendre-Gauss-Radau points (see

[CHQZ] ) , we define the collocation points \{\xi_{i}\}_{i=0}^{2N+1} with the corresponding
quadrature wights \{w_{i}\}_{i=0}^{2N+1} such as

\{

\xi_{0} =0

\xi_{1} = \frac{h_{1}}{2}(\frac{6-\sqrt{6}}{5})

\xi_{2} = \frac{h_{1}}{2}(\frac{6+\sqrt{6}}{5})

\xi_{2i-1}=\frac{h_{i}}{2}(1-\frac{1}{\sqrt{3}})+t_{i-1}

\xi_{2i} = \frac{h_{i}}{2}(1+\frac{1}{\sqrt{3}})+t_{i-1}

\xi_{2N-1}=\frac{h_{N}}{2}(\frac{4-\sqrt{6}}{5})+t_{N-1}

\xi_{2N} = \frac{h_{N}}{2}(\frac{4+\sqrt{6}}{5})+t_{N-1}

\xi_{2N+1}=1

\{

w_{0}
= \frac{h_{1}}{9}

w_{1} = \frac{h_{1}}{2}(\frac{5^{3}(4+\sqrt{6})}{9(58+12\sqrt{6})})

w_{2} = \frac{h_{1}}{2}(\frac{5^{3}(4-\sqrt{6})}{9(58-12\sqrt{6})})

w_{2i-1}= \frac{h_{i}}{2}

(2.2)
w_{2i} = \frac{h_{i}}{2}

w_{2N-1}= \frac{h_{N}}{2}(\frac{5^{3}(4-\sqrt{6})}{9(58-12\sqrt{6})})

w_{2N} = \frac{h_{N}}{2}(\frac{5^{3}(4+\sqrt{6})}{9(58+12\sqrt{6})})

w_{2N+1}= \frac{h_{N}}{9} .

Let S_{\triangle,3} be the space of all C^{1} -cubic splines for the partition \triangle , i.e. ,

S_{\triangle,3}= { u\in C^{1}[0,1] : u|_{I_{i}} is a cubic polynomial for each i }

and let \{\psi_{i}\}_{i=0}^{2N+1} be the C^{1} -cubic Lagrange spline basis for the space S_{\triangle,3}

which satisfy \psi_{i}(\xi_{j})=\delta_{i,j} for i , j=0,1 , . , 2N+1 .
Let S_{\triangle,1} be the space of continuous piecewise linear functions with basis

\{\phi_{i}\}_{i=0}^{2N+1} which break at the collocation points \{\xi_{i}\}_{i=0}^{2N+1} . i.e. , \phi_{i}(\xi_{j})=\delta_{i,j} .
Let \pi:=\triangle\cross\triangle be a partition of \Omega and let us denote by two dimensional

function spaces S_{\pi,3}:=S_{\triangle,3}\otimes S_{\triangle,3} and S_{\pi,1}:=S_{\triangle,1}\otimes S_{\triangle,1} .
Let (\cdot. \cdot)_{I} and || || denote by the usual L_{2} inner product and the cor-

responding norm:

(u, v)_{I}= \int_{I}uvdt and ||u||_{0}=\sqrt{(u,u)_{I}} .
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We will use the usual Sobolev norm. Let H^{1}(I) be a Sobolev space

H^{1}(I)=\{v\in L_{2}(I) : v’\in L_{2}(I)\} .

The inner product and its associated norm on H^{1}(I) are given by

(u, v)_{H^{1}(I)}= \int_{I}(u’v’+uv)dt , ||u||_{1}=\sqrt{(u,u)_{H^{1}(I)}} .

Define a quadratic form [\cdot, \cdot]_{N} on S_{\triangle,3}\cross S_{\triangle,3} by

[u, v]_{N}:= \sum_{i=0}^{2N+1}w_{i}u(\xi_{i})v(\xi_{i}) for u , v\in S_{\triangle,3} .

Let us define the cubic spline interpolation operator I_{N} as

(I_{N}u)(t)=2N+1 \sum u(\xi_{i})\psi_{i}(t)\in S_{\triangle,3} for u\in S_{\triangle,1} .
i=0

3. Preconditioning on 1D case

Theorem 3.1 For \{\psi_{i}\}_{i=0}^{2N+1} , there exists a positive constant C_{1} , inde-
pendent of mesh size, such that

t_{j-1} \leq t\leq t_{j}max|\psi_{i}(t)|\leq C_{1}(\frac{1}{7})^{|j-i^{*}|} (3.1)

where i^{*} denotes the largest integer less than or equal to (i+1)/2 .

Proof. Using Theorem 1 in [KS], we can easily check that there is a pos-
itive constant C_{1} which satisfies the estimate (3.1) for \psi_{i}(i=1,2, . , 2N)

and in addition, for \psi_{0} and \psi_{2N+1} . \square

Using Theorem 3.1 and repeating the appropriate modifications of the
works in [KP], we have the following lemma:

Lemma 3.1 There exist positive constants C_{2} , C_{3} and C_{4} , independent
of mesh size, such that

C_{2}||u||_{0}^{2}\leq[u, u]_{N}\leq C_{3}||u||_{0}^{2} for every u\in S_{\triangle,3} (3.2)

and
||u’||_{0}\leq||(I_{N}u)’||_{0}\leq C_{4}||u’||_{0} for every u\in S_{\triangle,1} . (3.1)
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Lemma 3.2 For every u\in S_{\triangle,3} , we have

||u’||_{0}^{2} \leq[-u’, u]_{N}+u’(1)u(1)-u’(0)u(0)\leq\frac{5}{3}||u’||_{0}^{2} . (3.4)

Proof. Denote that [f, g]_{I_{j}} and (f, g)_{I_{j}} are the restrictions of [f, g]_{N} and
(f, g)_{I} on I_{j} , respectively. Since f’g is a polynomial of degree \leq 4 for f, g
\in S_{\triangle,3} on subintervals I_{1} and I_{N} , by Legendre-Gauss-Radau integration,
we have

-[f’, g]_{I_{1}}+f’(t_{1})g(t_{1})-f’(0)g(0)=(f’, g’)_{I_{1}} , (3.5)

-[f’, g]_{I_{N}}+f’(1)g(1)-f’(t_{N-1})g(t_{N-1})=(f’, g’)_{I_{N}} . (3.6)

By Lemma 3.1 in [CP] and [DD], there is a positive constant P such that,
for k=2,3 , \ldots , N-1 ,

-[f’, g]_{I_{k}}+f’(t_{k})g(t_{k})-f’(t_{k-1})g(t_{k-1})

=(f’, g’)_{I_{k}}+ \frac{2}{3}Pf_{k}^{(3)}g_{k}^{(3)}h_{k}^{5} (3.7)

where f_{k}^{(3)} is the third derivative of f on I_{k} .
Combining (3.5), (3.6) and (3.7), we have

-[f’, g]_{N}+f’(1)g(1)-f’(0)g(0)

=(f’, g’)_{I}+ \frac{2}{3}P\sum_{k=2}^{N-1}f_{k}^{(3)}g_{k}^{(3)}h_{k}^{5} . (3.8)

From Lemma 3.2 in [DD], we observe that

P \sum_{k=2}^{N-1}f_{k}^{(3)}g_{k}^{(3)}h_{k}^{5}\leq(f’, g’)_{I} . (3.9)

Setting f=u and g=u and combining (3.8) and (3.9), we have

(u’, u’)_{I} \leq-[u’, u]_{N}+u’(1)u(1)-u’(0)u(0)\leq\frac{5}{3}(u’, u’)_{I} ,

so it completes the proof. \square

Define two bilinear forms a_{N}(\cdot, \cdot) and b_{N}(\cdot, \cdot) on S_{\triangle,3}\cross S_{\triangle,3} as

a_{N}(f, g)=f’(1)g(1)-f’(0)g(0):=f’g’|_{0}^{1} , (3.10)
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b_{N}(f, g)=[-f’, g]_{N}+[cf, g]_{N}+a_{N}(f, g) . (3.11)

Using (3.8), we can rewrite the bilinear form b_{N} as

b_{N}(f, g)=(f’, g’)_{I}+[cf, g]_{N}+ \frac{2}{3}P\sum f_{i}^{(3)}g_{i}^{(3)}h_{i}^{5}N-1 (3.12)
i=2

which implies that b_{N}(\cdot, \cdot) is symmetric.

Theorem 3.2 For every u\in S_{\triangle,1} , there are positive constants C_{5} , C_{6}

and C_{7} , independent of mesh size, such that

||u’||_{0}^{2}\leq[-(I_{N}u)’, I_{N}u]_{N}+a_{N}(I_{N}u, I_{N}u)\leq C_{5}||u’||_{0}^{2} (3.13)

and

C_{6}||u||_{0}^{2}\leq[I_{N}u, I_{N}u]_{N}\leq C_{7}||u||_{0}^{2} . (3.14)

Proof. From (3.4), we have

||(I_{N}u)’||_{0}^{2} \leq[-(I_{N}u)’, I_{N}u]_{N}+a_{N}(I_{N}u, I_{N}u)\leq\frac{5}{3}||(I_{N}u)’||_{0}^{2} .

Hence, by (3.3), we have one of the conclusion (3.13) with C_{5}=5C_{4}/3 .
Once the estimate (3.2) is done, applying the arguments in Theorem

4.1 and Theorem 4.2 in [KP] word by word to a quasi-uniform mesh, we
have another conclusion (3.14). \square

Theorem 3.3 For every u\in S_{\triangle,1} , there are positive constants C_{8} and
C_{9} , independent of mesh size, such that

C_{8}||u||_{1}^{2}\leq b_{N}(I_{N}u, I_{N}u)\leq C_{9}||u||_{1}^{2} . (3.15)

Proof. Since 0<m\leq c(t)\leq M<\infty , using(3.14) we have

mC_{6}||u||_{0}^{2}\leq[cI_{N}u, I_{N}u]_{N}\leq MC_{7}||u||_{0}^{2} . (3.16)

Now, combining (3.13) and (3.16) we have the conclusion (3.15). \square

With

u= \sum_{j=0}^{2N+1}u(\xi_{j})\psi_{j}\in S_{\triangle,3} ,
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we collocate the Eq. (1.1) at the interior collocation points
\xi_{i} (i=1,2, . . ’ 2N) such as

\sum_{j=0}^{2N+1}[-u(\xi_{j})\psi_{j}’(\xi_{i})+c(\xi_{j})u(\xi_{i})\psi_{j}(\xi_{i})]=f(\xi_{i}) . (3.17)

To impose boundary conditions, we can choice the following conditions

-u’(0)+c(0)u(0)-w_{0}^{-1}u’(0)=f(0)
(3.18)

-u’(1)+c(1)u(1)+w_{2N+1}^{-1}u’(1)=f(1) .

Then, combining the schemes (3. 17) and (3. 18) we have the collocation
matrix B_{N} for the Eq. (1.1) with the Neumann boundary conditions (1.2)
such that

B_{N}U_{h}=F_{h}

where U_{h}= (u(\xi_{0}), u(\xi_{1}) , , u(\xi_{2N+1}))^{t} . F_{h}=(f(\xi_{0}), f(\xi_{1}) , . , f(\xi_{2N+1}))^{t}

and the elements of B_{N} are represented as

B_{N}(0, j)=-\psi_{j}’(0)+c(0)\delta_{0,j}-w_{0}^{-1}\psi_{j}’(0)

B_{N}(i, j)=-\psi_{j}’(\xi_{i})+c(\xi_{i})\delta_{i,j}

B_{N}(2N+1, j)=-\psi_{j}’(1)+c(1)\delta_{2N+1,j}+w_{2N+1}^{-1}\psi_{j}’(1)

for i=1,2 . , 2N and j=0,1 , . . , 2N+1 .
Let \tilde{B}_{N}:=W_{N}B_{N} be the symmetric matrix where W_{N} is a weights

matrix. Comparing \tilde{B}_{N}(i, j) with b_{N}(\psi_{j}, \psi_{i}) in (3.11) we have

\tilde{B}_{N}(i, j)=[W_{N}B_{N}](i, j)=b_{N}(\psi_{j}, \psi_{i}) (3.19)

so that \tilde{B}_{N} is symmetric.
Consider the stiffness matrix \beta_{N} associated with the finite element dis-

cretization of the Eq. (1.1) in the space S_{\triangle,1} as preconditioner:

\beta_{N}(i, j)=(\phi_{i}’, \phi_{j}’)_{I}+(c\phi_{i}, \phi_{j})_{I} . (3.20)

The condition m\leq c(t)\leq M for t\in I implies that U_{h}^{t}\beta_{N}U_{h} is equivalent
to ||u||_{1}^{2} in S_{\triangle,1} , in the sense that

\min\{1, m\}||u||_{1}^{2}\leq U_{h}^{t}\beta_{N}U_{h}

\leq\max\{1, M\}||u||_{1}^{2} for u\in S_{\triangle,1} . (3.21)
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Multiplying \tilde{B}_{N} by \beta_{N}^{-1} . we have a preconditioned linear system such that

Q_{N}U_{h}:=\beta_{N}^{-1}\overline{B}_{N}U_{h}=\beta_{N}^{-1}W_{N}F_{N} . (3.22)

Now we will prove the main results that the preconditioned matrix Q_{N} has
all positive bounded eigenvalues, independent of mesh size.

Theorem 3.4 For every u\in S_{\triangle,1} , there are two positive constants C_{10}

and C_{11} , independent of mesh size, such that

C_{10}(U_{h}^{t}\beta_{N}U_{h})\leq U_{h}^{t}\tilde{B}_{N}U_{h}\leq C_{11}(U_{h}^{t}\beta_{N}U_{h}) (3.23)

with U_{h}= (u(\xi_{0}), u(\xi_{1}) , , u(\xi_{2N+1}))^{t} .
Moreover the eigenvalues \{\lambda_{j}\}_{j=0}^{2N+1} of the matrix Q_{N}:=(\beta_{N})^{-1}\tilde{B}_{N}

satisfy

C_{10}\leq\lambda_{j}\leq C_{11} for j=0,1 , . , 2N+1 . (3.24)

Proof Since U_{h} represents both u and I_{N}u , we have

b_{N}(I_{N}u, I_{N}u)= \sum_{i,j}u(\xi_{i})u(\xi_{j})b_{N}(\psi_{i}, \psi_{j})

= \sum_{i,j}u(\xi_{i})u(\xi_{j})\tilde{B}_{N}(i, j)=U_{h}^{t}\tilde{B}_{N}U_{h}
.

By (3. 15), we have

C_{8}||u||_{1}^{2}\leq U_{h}^{t}\tilde{B}_{N}U_{h}\leq C_{9}||u||_{1}^{2}

Combining this estimate and (3.21), we have one of the conclusions (3.23).
Now if \lambda is one of the eigenvalues of Q_{N} and U_{h} is the corresponding eigen-
vector, then

Q_{N}U_{h}=(\beta_{N})^{-1}\tilde{B}_{N}U_{h}=\lambda U_{h} or \tilde{B}_{N}U_{h}=\lambda\beta_{N}U_{h} .

Hence, we have U_{h}^{t}\tilde{B}_{N}U_{h}=\lambda U_{h}^{t}\beta_{N}U_{h} which implies the other conclusion
(3.24). \square

Remark. From the linear system of order (2N+2)\cross(2N+2) for the
Eq. (1.1) with a Neumann boundary conditions (1.2), we can directly de-
rive the two linear systems for the same Eq. (1.1) with Dirichlet boundary
conditions u(0)=0, u(1)=0 and mixed boundary conditions u(0)=0 ,
u’(1)=0 , and we can also investigate preconditioning results for these
problems by a similar way as the case of Neumann problem.
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1) For the case of Dirichlet boundary value problem, we have a linear
system of order (2N)\cross(2N) such as

B_{N}^{d}U_{h}^{d}=F_{h}^{d} or (\beta_{N}^{d})^{-1}W_{N}^{d}B_{N}^{d}U_{h}^{d}=(\beta_{N}^{d})^{-1}W_{N}^{d}F_{h}^{d}

where B_{N}^{d} , W_{N}^{d} and \beta_{N}^{d} are (2N)\cross(2N) matrices whose elements are given
by

B_{N}^{d}(i, j)=B_{N}(i, j) , W_{N}^{d}=W_{N}(i, j) , \beta_{N}^{d}(i, j)=\beta_{N}(i, j) ,

(i, j=1,2, . , 2N) ,

and U_{h}^{d}:= (u(\xi_{1}), u(\xi_{2}) , \ldots , u(\xi_{2N}))^{t} , F_{h}^{d}:=(f(\xi_{1}), f(\xi_{2}) , , f(\xi_{2N}))^{t} .
2) For the case of mixed boundary value problem, we have a linear

system of order (2N+1)\cross(2N+1) such as

B_{N}^{m}U_{h}^{m}=F_{h}^{m} or (\beta_{N}^{m})^{-1}W_{N}^{m}B_{N}^{m}U_{h}^{m}=(\beta_{N}^{m})^{-1}W_{N}^{m}F_{h}^{m}

where B_{N}^{m} , W_{N}^{m} and \beta_{N}^{m} are (2N+1)\cross(2N+1) matrices whose elements
are given by

B_{N}^{m}(i, j)=B_{N}(i, j) , W_{N}^{m}=W_{N}(i, j) , \beta_{N}^{m}(i, j)=\beta_{N}(i, j) ,

(i, j=1,2, . , 2N+1) ,

and U_{h}^{m}:= (u(\xi_{1}), u(\xi_{2}) , \ldots , u(\xi_{2N+1}))^{t} , F_{h}^{m}:=(f(\xi_{1}), f(\xi_{2}) , , f(\xi_{2N+1}))^{t} .

4. Preconditioning on 2D case

Let L_{\pi} be a differential operator such that

L_{\pi}:=-\triangle u+(c_{1}(x)+c_{2}(y))u in \Omega (4.1)

with Neumann boundary condition

\frac{\partial u}{\partial n}=0 on \partial\Omega

where \partial\Omega is the boundary of \Omega , \frac{\partial u}{\partial n} denotes the outward normal derivative
of u on \partial\Omega and, c_{1} and c_{2} are continuous functions such that

0<m\leq c_{1}(x) , c_{2}(y)\leq M<\infty for 0\leq x , y\leq 1 .

Let us decompose the operator L_{\pi}:=L_{x}+L_{y} such that

(L_{x}u)(x, y)=-u_{xx}(x, y)+c_{1}(x)u(x, y) ,

(L_{y}u)(x, y)=-u_{yy}(x, y)+c_{2}(y)u(x, y) .
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Ordering the collocation points P_{\mu}:=(\xi_{i}, \xi_{j})(\mu=j+i(2N+2)) and follow-
ing the ideas in (3.19), we can obtain the symmetric matrix representations
\tilde{B}_{N_{x}}\otimes W_{N} and W_{N}\otimes\tilde{B}_{N_{y}} of the cubic spline collocation discretization
of L_{x} and L_{y} , respectively (see [PR] and [WM]). Combining these matri-
ces we have the symmetric matrix representation \tilde{B}_{N^{2}} of the cubic spline
collocation discretization of L_{\pi} in the space S_{\pi,3} such that

\tilde{B}_{N^{2}}=\tilde{B}_{N_{x}}\otimes W_{N}+W_{N}\otimes\tilde{B}_{N_{y}} . (4.2)

Furthermore we have the stiffness matrix \beta_{N^{2}} associated with the finite
element discretization of L_{\pi} in the space S_{\pi,1} such that

\beta_{N^{2}}=\beta_{N_{x}}\otimes M_{N}+M_{N}\otimes\beta_{N_{y}} (4.3)

where M_{N}(i, j)=(\phi_{i}, \phi_{j})_{I} and

\beta_{N_{x}}(i, j)=(\phi_{i}’, \phi_{j}’)_{I}+(c_{1}\phi_{i}, \phi_{j})_{I} ,
\beta_{N_{y}}(i, j)=(\phi_{i}’, \phi_{j}’)_{I}+(c_{2}\phi_{i}, \phi_{j})_{I} .

Note that \tilde{B}_{N^{2}} and \beta_{N^{2}} are symmetric and positive definite.

Lemma 4.1 There are positive constants T_{1} and T_{2} , independent of mesh
size, such that for all nonzero U_{\pi}\in \mathbb{R}^{(2N+2)^{2}}

T_{1} \leq\frac{U_{\pi}^{t}(\tilde{B}_{N_{x}}\otimes W_{N})U_{\pi}}{U_{\pi}^{t}(\beta_{N_{x}}\otimes M_{N})U_{\pi}}\leq T_{2} (4.4)

and

T_{1} \leq\frac{U_{\pi}^{t}(W_{N}\otimes\tilde{B}_{N_{y}})U_{\pi}}{U_{\pi}^{t}(M_{N}\otimes\beta_{N_{y}})U_{\pi}}\leq T_{2} . (4.5)

Proof. Observe that

(\beta_{N_{x}}\otimes M_{N})^{-1}(\tilde{B}_{N_{x}}\otimes W_{N})=\beta_{N_{x}}^{-1}\tilde{B}_{N_{x}}\otimes M_{N}^{-1}W_{N} . (4.6)

By Theorem 3.4 all eigenvalues \lambda_{j} of \beta_{N_{x}}^{-1}\tilde{B}_{N_{x}} satisfy C_{10}\leq\lambda_{j}\leq C_{11} . By
(3.14) in Theorem 3.2 we can show that all eigenvalues \mu_{j} of M_{N}^{-1}W_{N} satisfy
C_{6}\leq\mu_{j}\leq C_{7} . Therefore the eigenvalues l/_{j}=\lambda_{j}\mu_{j} of (4.6) satisfy C_{10}C_{6}\leq

l/_{j}\leq C_{11}C_{7} where the constants C_{6} , C_{7} , C_{10} and C_{11} are independent of
mesh size.
Hence we have (4.4). Also, we can obtain the conclusion (4.5) by a similar

\squareway.
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Theorem 4.1 Let Q_{N^{2}}:=\beta_{N^{2}}^{-1}\tilde{B}_{N^{2}} . Then we have the following main
results:

For all nonzero U_{\pi}\in \mathbb{R}^{(2N+2)^{2}} ,

T_{1} \leq\frac{U_{\pi}^{t}\tilde{B}_{N^{2}}U_{\pi}}{U_{\pi}^{t}\beta_{N^{2}}U_{\pi}}\leq T_{2} . (4.7)

Furthermore, the eigenvalues \{\Lambda_{\mu}\} of the matrix Q_{N^{2}} satisfy

T_{1}\leq\Lambda_{\mu}\leq T_{2} . (4.8)

Proof. From (4.2) and (4.3), we can see that

U_{\pi}^{t}\tilde{B}_{N^{2}}U_{\pi}=U_{\pi}^{t}(\tilde{B}_{N_{x}}\otimes W_{N})U_{\pi}+U_{\pi}^{t}(W_{N}\otimes\tilde{B}_{N_{y}})U_{\pi}

and

U_{\pi}^{t}\beta_{N^{2}}U_{\pi}=U_{\pi}^{t}(\beta_{N_{x}}\otimes M_{N})U_{\pi}+U_{\pi}^{t}(M_{N}\otimes\beta_{N_{y}})U_{\pi} .

Using (4.4) and (4.5), we can easily obtain that

T_{1}U_{\pi}^{t}\beta_{N^{2}}U_{\pi}\leq U_{\pi}^{t}\tilde{B}_{N^{2}}U_{\pi}\leq T_{2}U_{\pi}^{t}\beta_{N^{2}}U_{\pi} .

This estimate completes the conclusion (4.7) which implies (4.8). \square

5. Computational Results

Consider the following boundary-value problem:

Lu:=-u’+u=f in I (5.1)

u’(0)=0 and u’(1)=0 . (5.2)

From (3.19), we have the symmetric matrix representation \tilde{B}_{N} for the
Eq. (5.1) with the Neumann boundary conditions (5.2) such that

\tilde{B}_{N}U_{h}:=W_{N}B_{N}U_{h}=W_{N}F_{h}

where U_{h}=(u(\xi_{i}))^{t} and F_{h}=(f(\xi_{i}))^{t} .
From (3.22), we have preconditioned algebraic linear system:

Q_{N}U_{N}:=\beta_{N}^{-1}W_{N}B_{N}U_{N}=\beta_{N}^{-1}W_{N}F_{N} .

For \tilde{B}_{N} , we have all positive real eigenvalues epending on N . Unfortunately,
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the condition number

k( \tilde{B}_{N}):=\frac{\max\{Eigenvaluesof\tilde{B}_{N}\}}{\min\{Eigenvaluesof\tilde{B}_{N}\}}

increases like N^{2} . This results in a very slow convergence by iterative
method (e.g., Conjugate Gradient method and Richardson method).

For Q_{N} based on the quasi uniform mesh, we have all positive bounded
eigenvalues independent of N . Hence the condition number k(Q_{N}) of Q_{N}

turns out to be bounded, independent of N .

N \tilde{B}_{N} Q_{N}

8 2812 2.163556
16 11243 2.187724
32 44969 2.194010
64 179876 2.195612
128 719500 2.196017
256 2877997 2.196118

Table 1. Condition numbers of \tilde{B}_{N} and Q_{N}

In Table 1, we report the condition numbers of \tilde{B}_{N} and Q_{N} , respectively,
where the work is based on the uniform mesh (i.e., h =h_{i} for all i).
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