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Blow-analytic SV-sufficiency does not always imply
Blow-analytic sufficiency

Satoshi KOIKE
(Received May 8, 1998)

Abstract. Thanks to the Kuiper-KuO-Bochnak-Lojasiewicz theorem, we have known
that SV-sufficiency of jets is equivalent to C^{0}-sufficiency of jets in the case of functions.
This fact is compatible with the Thom-Kuo principle. C^{0}-equivalence generically implies
blow-analytic equivalence. Since sufficiency of jets is a generic property, it is natural to
ask whether the Thom-Kuo principle holds also in the blow-analytic category. In this
note we give a negative answer to this problem.
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1. Introduction

Let K=R or C , and let f, g:(K^{n}, 0) – (K, 0) be function germs. In
the real case they are C^{s} functions, and in the complex case they are hol0-
morphic functions. We say that f and g are SV equivalent (or (K^{n}, f^{-1}(0))

and (K^{n}, g^{-1}(0)) are C^{0}-equivalent), if there is a local homeomorphism
\sigma : (K^{n}, 0)arrow(K^{n}, 0) such that \sigma(f^{-1}(0))=g^{-1}(0) . We further say that f
and g are C^{0}-equivalent (or more precisely, R- C^{0}-equivalent), if there is a
local homeomorphism \sigma : (K^{n}, 0) -arrow(K^{n}, 0) such that f=g\circ\sigma .

Observation 1.1 Let f_{t} : (K^{n}, 0) – (K, 0)(t \in I) be a family of analytic
functions with isolated singularities. Here I is a closed interval. If the topO-
logical type of (K^{n}, f_{t}^{-1}(0)) is constant, then is the family \{(K^{n}, f_{t}^{-1}(0))\}_{t\in I}

topologically trivial ?
(1) In the complex case the answer is yes for n\neq 3 . For the constancy

of topological types implies \mu -constancy (B. Teissier [19]), and \mu constancy
implies topological triviality of the family for n\neq 3 (L\^e D\tilde{u}ng R\’ang \cdot\cdot C.P .
Ramanujan [16] ) . We have no counterexample in the case n=3 . In this
note, \mu means the Milnor number.

(2) In the real case the answer is no. Consider the family f_{t} : (R^{2},0) -

(R, 0) (t\in R) defined by
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f_{t}(x, y)=y^{2}-tx^{3}-x^{5} .

Let F(x, y, t)=f_{t}(x, y) . The figure of F^{-1}(0) is the following

x

Then the topological type of (R^{2}, f_{t}^{-1}(0)) is constant, but the family
\{(R^{2}, f_{t}^{-1}(0))\}_{t\in R} is not topologically trivial at 0\in R .

Now we recall the notion of sufficiency of jets. We say that an r-
j et w\in J_{K}^{r}(n, 1) is SV-suffiffifficient (resp. C^{0}- suffiffifficient) in \mathcal{E} , if any two
functions f, g\in \mathcal{E} such that j^{r}f(0)=j^{r}g(0)=w are SV-equivalent (resp.
C^{0}-equivalent). Here \mathcal{E} denotes the set of C^{s} functions (s\geq r) in the real
case and the set of holomorphic functions in the complex case. We shall
identify r-jets with their polynomial representatives of degree not exceeding
r . Concerning the notions above, we have

Theorem 1.2 (N. Kuiper [12], T.C. Kuo [13], J. Bochnak - S. Lojasiewicz
[1] ). For an r -jet w \in J_{R}^{r}(n,1), the following conditions are equivalent.
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(1) w is SV-suffiffifficient in C^{r} (resp. C^{r+1} functions.
(2) w is C^{0} -suffiffifficient in C^{r} (resp. C^{r+1} functions.

Theorem 1.3 (S.H . Chang \cdot Y.C . Lu [3], J. Bochnak - W. Kucharz [2]).
For an r-jet w\in J_{C}^{r}(n, 1) , the following conditions are equivalent.

(1) w is SV-suffiffifficient in holomorphic functions.
(2) w is C^{0} -suffiffifficient in holomorphic functions.
(3) For any holomorphic function f such that j^{r}f(0)=w , \mu(f)=

\mu(w) .

Remark 1.4 This theorem is also recovered in the recent paper of A.
Parusin’ski [17].

These results are very reasonable in certain sense. Ren\’e Thom had an
insight into the fact that to every theorem on C^{0}-sufficiency of jets, there
is a similar theorem on V- or SV-sufficiency of jets, in particular, their
results coincide in the case of functions. See Kuo [14] for the definition of V-
sufficiency jets. Tzee-Char Kuo is the first singularitist who demonstrated
the Thom’s insight. Nowadays it is called the Thom-Kuo Principle (see
[11] also). Therefore the results above are compatible with the Thom-Kuo
Principle.

In Theorems 1.2 and 1.3, the implication (2)\Rightarrow(1) is obvious from
the definitions of SV- and C^{0}-sufficiencies of jets. We next consider the
implication (1)\Rightarrow(2) . Let f, g : (K^{n}, 0) -arrow(K, 0) be functions such that
j^{r}f(0)=j^{r}g(0)=w , and let I be a closed disk in K containing the interval
[0, 1] . Define f_{t} : (K^{n}, 0) – (K, 0)(t\in I) by f_{t}(x)=(1-t)f(x)+tg(x) .
Then, by the proof of this implication we have the following property:

SV-suffiffifficiency of w implies the topological triviality of \{f_{t}\}_{t\in I}

as a family of functions.

This means that the constancy of topological type of zer0-sets for any
higher degree’s direction implies the topological triviality of the family of
functions, nevertheless the constancy of topological type of zer0-sets does
not always imply even topological triviality of zer0-sets in the real case, as
seen in Observation 1.1. (We can say that SV-sufficiency of w controls not
only its realizations but also the homotopy connecting them. So this is also
one of reasons why we consider the question below.)

Let f, g : (R^{n}, 0) -arrow(R, 0) be analytic functions. We defined the n0-
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tions of C^{0} equivalence and SV-equivalence for analytic functions. If C^{0}
-

equivalence (resp. C^{0}-equivalence of embedded zer0-sets) is attained from an
analytic isomorphism via blowings-up, then we call it Blow-analytic equiv-
alence (resp. Blow-analytic SV-equivalence). Namely, we say that f and g
are Blow-analytically equivalent (resp. Blow-analytically SV-equivalent), if
there are two successive blowings-up with smooth centers \beta : \mathcal{M}arrow R^{n} and
\beta’ : \mathcal{M}’arrow R^{n} and an analytic isomorphism \Phi : \mathcal{M} – \mathcal{M}’ which induces
a local homeomorphism \phi : (R^{n}, 0)arrow(R^{n}, 0) such that f=go\phi (resp.
\phi(f^{-1}(0))=g^{-1}(0)) .

We define the notions of Blow-analytic sufficiency of jets and Blow-
analytic SV-sufficiency of jets in the similar way to C^{0}-sufficiency of jets
and SV-sufficiency of jets, respectively. Blow-analytic equivalence preserves
more quantities than C^{0}-equivalence. But the difference is not so large. In
fact, C^{0}-equivalence generically implies Blow-analytic equivalence in the
sense that the Thom- Var\check{c}enko type’s theorem holds. Thus this gives rise
to the following question naturally:

Question 1.5 Does Blow-analytic SV-suffiffifficiency imply Blow-analytic
suffiffifficiency in the function case ?

The answer is no. In other words, the Thom-Kuo Principle does not
hold in the Blow-analytic category.

Example 1.6 Let w=x^{3}+3xy^{2k}\in J_{R}^{2k+1}(2,1)(k\geq 3) . Then w is
Blow-analytically SV-sufficient, but not Blow-analytically sufficient.

These jets look like the s0-called Koike-Kucharz jets ([10]): w=x^{3}\pm

3xy^{2k-1}\in J_{R}^{2k}(2,1)(k\geq 3) , but they are not the same.

2. Proof of Example 1.6

Here we show the case k=3 . Therefore let w=x^{3}+3xy^{6}\in J_{R}^{7}(2,1) .
The other cases follow similarly. We first make the following remark.

Remark 2.1 Any analytic function f : (R^{2}, O)arrow(R, 0) with j^{7}f(0)=w
has an isolated singularity at 0\in R^{2} .

This is not valid for w=x^{3}-3xy^{6}\in J_{R}^{7}(2,1) . For instance, f=
x^{3}-3xy^{6}+2y9 does not have an isolated singularity at 0\in R^{2} .

We next recall some important results on Blow-analytic equivalence and
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Blow-analytic SV-equivalence to show this example.

Theorem 2.2 (T. Fukui . E. Yoshinaga [4], Tr Fukui.. L. Paunescu [8]).
Given a system of weights \alpha=(\alpha_{1}, \alpha_{2}) . Let f_{t} : (R^{2},0) -arrow(R, 0) be an
analytic function for t\in I=[0,1] . Suppose that for each t\in I , the weighted
initial form of f_{t} with respect to \alpha is of the same weighted degree and has
an isolated singularity at 0\in R^{2} . Then \{f_{t}\}_{t\in I} is Blow-analytically trivial
over I .

We can show 2.2 using the result in [4]. Fukui and Paunescu [8] proved
that under the same hypothesis as the theorem above, \{f_{t}\}_{t\in I} is blow-
analytically trivial over I for general n variables. Note that blow-analytic
equivalence is a different notion from Blow-analytic equivalence and the
latter always implies the former. For the details on blow-analyticity, consult
the survey article [6].

Here we recall the definition of blow-analytic equivalence. Let g : U -arrow

R, U open in R^{n} , be a continuous function. We say that g is blow-analytic,
if there exists a multi-blowing-up \beta such that the composition go\beta is ana-
lytic. Let h:(R^{n}, 0) - (R^{n}, 0) be a local homeomorphism. We say that h is
blow-analytic, if the components of both h and h^{-1} are blow-analytic func-
tions. Given f, g:(R^{n}, 0) - (R, 0) , we say that they are blow-analytically
equivalent, if there exists such an h with f=g\circ h .

T. Fukui ([5]) gave some invariants for Blow-analytic equivalence. One
of them is defined as follows:

For an analytic function f : (R^{n}, 0) -arrow(R, 0) , set

A(f)=\{O(f\circ\lambda)\in N\cup\{\infty\}|\lambda : (R, 0)arrow(R^{n}, 0)C^{\omega}\} .

Then we have

Theorem 2.3 (Fukui’s invariant). Suppose that analytic functions f, g :
(R^{n}, 0) - (R, 0) are Blow-analytically equivalent (or blow-analytically
equivalent). Then A(f)=A(g) .

On the other hand, concerning Blow-analytic SV-equivalence, we have

Theorem 2.4 (M. Kobayashi T.C . Kuo [9]). Let (R^{2}, \{f=0\}) and
(R^{2}, \{g=0\}) be germs of analytic curves such that their complexifications
have only one branch. Then they are Blow-analytically equivalent, namely,
f and g are Blow-analytically SV-equivalent.
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Before starting the proof of the example, we make one more remark.

Remark 2.5 In the two variables case, Blow-analytic equivalence and
Blow-analytic SV-equivalence are equivalence relations. It’s a hard problem
to know whether they are equivalence relations or not in general. On the
other hand, blow-analytic equivalence and blow-analytic SV equivalence are
equivalence relations in the general case. For the details, see [6] and [15].

We first show w is Blow-analytically SV-sufficient. Let f : (R^{2},0) -arrow

(R, 0) be an analytic function such that j^{7}f(0)=x^{3}+3xy^{6} . Consider the
Taylor expansion of f :

f(x, y)=x^{3}+3xy^{6}+ \sum_{i=0}^{8}a_{i}x^{8-i}y^{i}+\sum_{i=0}^{9}b_{i}x^{9-i}y^{i}+\cdot .

In the case a_{8}\neq 0 , x^{3}+a_{8}y^{8} is the weighted initial form of f with
respect to the system of weights ( \frac{1}{3}, \frac{1}{8}) and has an isolated singularity. By
Theorem 2.2, f is Blow-analytically equivalent to x^{3}+a_{8}y^{8} . On the other
hand, x^{3}+a_{8}y^{8} is linearly equivalent to x^{3}+y^{8} (resp. x^{3}-y^{8} ) in the case
a_{8}>0 (resp. a_{8}<0 ). Since x^{3}+y^{8} and x^{3}-y^{8} are RL-linearly equivalent,
they are Blow-analytically SV-equivalent. It follows from Remark 2.5 that
f is Blow-analytically SV equivalent to x^{3}+y^{8} .

In the case a_{8}=0 , it follows from Remark 2.1 and Theorem 2.2 that
f is Blow-analytically equivalent to x^{3}+3xy^{6} . As set-germs, (R^{2}, \{x^{3}+

3xy^{6}=0\})=(R^{2}, \{x=0\}) . Therefore (R^{2}, \{f=0\}) is Blow-analytically
equivalent to (R^{2}, \{x=0\}) .

By Theorem 2.4, it is easy to see that (R^{2}, \{x^{3}+y^{8}=0\}) is Blow-
analytically equivalent to (R^{2}, \{x=0\}) . Therefore it follows from Re-
mark 2.5 that w=x^{3}+3xy^{6}\in J_{R}^{7}(2,1) is Blow-analytically SV-sufficient.

We next consider the Fukui’s invariants of x^{3}+y^{8} and x^{3}+3xy^{6} . Then
we have

A(x^{3}+y^{8})=\{3,6,8,9,12,15,16,18,21,24,25,26,27, \ldots , \infty\}

A(x^{3}+3xy^{6})=\{3,6,9,10,11,12, \ldots, \infty\} .

The former contains 8, but the latter does not contain 8. By TheO-
rem 2.3, x^{3}+y^{8} is not Blow-analytically equivalent to x^{3}+3xy^{6} . On the
other hand, as seen in the above, x^{3}+y^{8} is Blow-analytically equivalent to
x^{3}+3xy^{6}+y^{8} . Therefore it follows from Remark 2.5 that w=x^{3}+3xy^{6}\in
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J_{R}^{7}(2,1) is not Blow-analytically sufficient.

Remark 2.6 (1) It follows from the proof above that in Example 1.5 we
can replace “Blow-analytically” by “blow-analytically.”

(2) We say that an analytic function f : (R^{n}, 0) – (R, 0) is a Nash
function if the graph of f is semialgebraic in R^{n}\cross R. We can define the
notions of Blow-Nash sufficiency and Blow-Nash SV-sufficiency in Nash
functions.

As a matter of course, the above w=x^{3}+3xy^{6}\in J_{R}^{7}(2,1) is Blow-
analytically SV-sufficient in Nash functions. Then we can approximate the
Blow-analytic SV-equivalence between any two Nash realizations of w by a
Blow-Nash SV-equivalence, using the similar arguments in [7]. Therefore
in Example 1.5, we can replace also “Blow-analytically” by ((Blow-Nash.”

Remark 2.7 Let s be the number of elements of the quotient set of

\{f _{:} (’R^{2},0)arrow(R, 0)C^{\omega}|j^{7}f(0)=x^{3}+3xy^{6}\}

by Blow-analytic equivalence. In the proof above, we have shown that s is
equal to the number of elements of the quotient set of

\{x^{3}+3xy^{6}, x^{3}+y^{8}, x^{3}-y^{8}\}

by Blow-analytic equivalence and s\geq 2 . We can easily see that x^{3}+y^{8} is
R-C^{0} equivalent to x^{3}-y^{8} and A(x^{3}+y^{8})=A(x^{3}-y^{8}) . In the sense of
the Blow-analytic type, we cannot distinguish x^{3}+y^{8} from x^{3}-y^{8} , using
only A(f) . But by the invariant on the graph introduced by Fukui [5] we
see that x^{3}+y^{8} is not Blow-analytically equivalent to x^{3}-y^{8} . Therefore
s=3 .
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