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A note on comparison principles for viscosity
solutions of fully nonlinear second order

partial differential equations
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Abstract. This note contains two comparison principles from the author’s thesis [4]
for viscosity sub- and supersolutions of fully nonlinear, second order, partial differential
equations. One of these comparison principles is based on a result by R Jensen [7]
The other one is an application of an idea, mentioned in [11]. A new kind of structure
condition is introduced to prove the comparison result based on Theorem 3.1 in [7]. It
allows us to compare viscosity sub- and supersolutions of the equation F (u , Du, D^{2}u ) =0
in \Omega\subset \mathbb{R}^{N} , where F does not satisfy the usual monotonicity conditions as in [3], [5], [6],
[7], [9] or [11].
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1. Introduction

In this note we look at fully nonlinear second order elliptic partial dif-
ferential equations with Dirichlet boundary data of type

F(u(x) , Du(x), D^{2}u(x) ) =0
u(x)=f(x)

onin\Omega\partial\Omega\} (1)

for some given function F\in C(\mathbb{R}\cross \mathbb{R}^{N}\cross S(N)) and a given function
f\in C(\partial\Omega) . Problems of this kind have also been investigated in [7]. Here
and in the sequel I will use the notation S(N) for the space of symmetric
N\cross N matrices.

The goal of this note is to compare viscosity sub- and supersolutions
under new and weaker conditions than before. Various comparison princi-
ples for viscosity solutions of fully nonlinear second order partial differential
equations have been introduced for Dirichlet problems of type (1). To quote
some famous results, let me mention [3], [6], [7] and [9]. In [3], [6] and [9]
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the authors even gave a comparison result for Dirichlet problems of type

F(x, u(x) , Du(x), D^{2}u(x))=0

u(x)=f(x)
onin\Omega\partial\Omega

,
\} (2)

where the functions F and f are as in (1). All of these comparison results
for equations or systems of partial differential equations (see for example
[3], [5], [6], [9] or [11] ) require the existence of a positive constant \gamma such
that for r, s\in \mathbb{R} with r\geq s

\gamma(r-s)\leq F(r,p, X)-F(s,p, X) . (3)

In general operators satisfying inequality (3) are called decreasing. The
only ones I know, who did not use this condition up to now were N. Kutev
and B. Kawohl in [10] and R. Jensen, who presented in [7] the following
comparison principle:

Theorem 1 [7] Let u , v\in C(\overline{\Omega})\cap W^{1,\infty}(\Omega) . Assume u is a viscosity
supersolution of (1) and v is a viscosity subsolution of (1). If either (i) or
(ii) holds:

(i) F(r,p, X) is degenerate elliptic and decreasing, or
(ii) For all r, s\in \mathbb{R} with s<r and all pairs (p, X)\in \mathbb{R}^{N}\cross S(N) the

inequality F(s,p, X)\leq F(r,p, X) holds and there exist constants c_{0} and c_{1} ,
such that

F(r,p, Y)-F(r, q, X)\leq c_{0} trace(F - X) +c_{1} |p-q|

then

\sup_{\partial\Omega}(u-v)^{+}\geq\sup_{\Omega}(u-v)^{+}

Here and in the following the operator F is called degenerate elliptic,
if for all X, Y\in S(N) with X\leq Y , the inequality

F(r,p, Y)\leq F(r,p, X) (4)

holds. The inequality X\leq Y means \langle X\xi, \xi\rangle\leq\langle Y\xi, \xi\rangle for all \xi\in \mathbb{R}^{N} , with
\langle\cdot, \cdot\rangle denoting the scalar product in \mathbb{R}^{N} Operators satisfying

F(s,p, X)\leq F(r,p, X) , whenever s\leq r , (5)

are said to be proper. In [7] Jensen did not look at generalized viscosity
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solutions of the Dirichlet problem as they are defined for example in [3],
but it is possible to relax his conditions and to prove a similar theorem for
generalized viscosity solutions. There has been a remark about this fact
made by Jensen et al. in [9]. So one goal is to introduce a comparison
principle for generalized viscosity sub- and supersolutions of problem (1)
with an operator F, which is not necessarily decreasing in the sense of
(3). This is possible, as it will be shown in the following, by imposing
assumptions on the ellipticity of the operator F .

But let me explain the motivation why this note deals with problems
of type (1) and not of type (2). If we look at the comparison results for
generalized problems of type (2), we notice that one of the assumptions
usually made on the operator F (see for example [3] and [9]) is tlle following:

There exists a monotone increasing function \omega : [0, \infty] -arrow[0, \infty] with
\omega(0+)=0 , such that for x , y\in\overline{\Omega} , r\in \mathbb{R} , p\in \mathbb{R}^{N} and matrices X, Y\in S(N)

satisfying

-3\alpha (\begin{array}{ll}I 00 I\end{array})\leq(\begin{array}{ll}X 00 -Y\end{array}) \leq 3\alpha (\begin{array}{ll}I -I-I I\end{array})

(with a constant \alpha>0), the inequality

F(y, r,p, Y)-F(x, r,p, X)\leq\omega(\alpha|x-y|^{2}+|x-y|(|p|+1)) (6)

holds.

As it is also mentioned in [9] (see remark on assumption (8) in [9]), this
condition is quite restrictive, which can be seen by looking at the following
example.

Example 1. For \Omega\subset \mathbb{R}^{N} we look at the equation -\triangle u(x)-c(x, u(x))=

0 , with a function c\in C(\Omega\cross \mathbb{R}) .

The operator F satisfies condition (6) only for special c(x, u(x)) . For a
function c(x, u(x))=g(x) u(x) with nonconstant g\in C(\Omega) this condition
is generally not fulfilled.

Furthermore in [1] the authors show that even for operators of the form

F(x, u(x) , Du(x), D^{2}u(x))=G (u(x) , Du(x), D^{2}u(x) ) – f(x) , (7)

with a H\"older-continuous function f uniqueness cannot be expected and
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that comparison must fail. Therefore we look at the following example.

Example 2 [1]. Let B(0, R)\subset \mathbb{R}^{N} denote the ball with radius R >0 .
The Dirichlet problem

-\triangle u(x)+|Du(x)|^{m}=\nu|x|^{\frac{m}{1-m}} in B(0, R)
(8)

u(x)=const on \partial B(0, R)

with lJ >0 and 0<m<1 , has more than one solution, whose differences
are not equal to a constant. Thus, as mentioned above, comparison fails in
such a case.

This motivates not to look at problems of type (2), but to face again
problems of type (1) and to try to weaken the assumptions on the operator
F made so far.

Since the whole paper will only deal with viscosity solutions, from now
on these solutions will just be called solutions. So let us start with some
basic tools.

2. Basic information

For the reader’s convenience I repeat the definitions of a generalized
viscosity sub- and supersolution of problem (1) and the maximum principle
for semicontinuous functions introduced by Crandall and Ishii in [2].

Definition 1 Let \Omega\subset \mathbb{R}^{N} be open and bounded and let V denote a
neighbourhood of \partial\Omega with respect to \overline{\Omega} . The function u\in USC(\overline{\Omega}) is
called a generalized viscosity subsolution of (1), if

\{

\forall(x, \varphi)\in\Omega\cross C^{2}(\mathbb{R}^{N}) with u\leq\varphi in \Omega and u(x)=\varphi(x) :
F(u(x), D\varphi(x) , D^{2}\varphi(x))\leq 0

\forall(x, \varphi)\in VxC^{2}(\mathbb{R}^{N}) with u\leq\varphi in V

and u(x)=\varphi(x) for x\in\partial\Omega :

\min\{u(x)-f(x), F(u(x), D\varphi(x), D^{2}\varphi(x))\}\leq 0

The function v\in LSC(\overline{\Omega}) is called a generalized viscosity supersolution of
(1), if
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\{

\forall(x, \psi)\in\Omega xC^{2}(\mathbb{R}^{N}) with v\geq\psi in \Omega and v(x)=\psi(x) :
F(v(x), D\psi(x) , D^{2}\psi(x))\geq 0

\forall(x, \psi)\in VxC^{2}(\mathbb{R}^{N}) with v\geq\psi in V

and v(x)=\psi(x) for x\in\partial\Omega :

\max\{v(x)-f(x), F(v(x), D\psi(x), D^{2}\psi(x))\}\geq 0

A function u\in C(\overline{\Omega}) is called a generalized viscosity solution of (1), if u is
a generalized viscosity sub- and supersolution.

The function \varphi (resp. \psi ) with the above properties is called testfunction
from above (resp. from below).

Many authors working with viscosity solutions define these solutions
by using the s0-called super- and subjets. Statements about the equiva-
lence of this definition and the one given here, can be found for example in
[8]. Readers who are familiar with the theory of viscosity solutions know
that proofs of comparison principles for these kind of viscosity solutions are
mostly based on the s0-called maximum principle for semicontinuous
functions which is described very precisely in [2] and [3]. Jensen did not
use this principle, when he presented his comparison result in [7], thus he
assumed the viscosity sub- and supersolution to be in C(\overline{\Omega})\cap W^{1,\infty}(\Omega) ,
but it is mentioned in “A uniqueness result for viscosity solutions of second
order fully nonlinear partial differential equations” [9] that it is possible to
extend the results of [7] to only continuous viscosity solutions. However,
the following Theorem from [2] is necessary, for this extension:

Theorem 2 [2] Let \mathcal{O}_{1} , \mathcal{O}_{2}\subseteq \mathbb{R}^{N} be local compact and \mathcal{O}=\mathcal{O}_{1}\cross \mathcal{O}_{2} .
Let v\in LSC(\mathcal{O}_{1}) and u\in USC(\mathcal{O}_{2}) . The function \varphi shall be twice dif-
ferentiable in a neighbourhood of \mathcal{O} . The function w is defined as w(x):=
u(x_{1})-v(x_{2}) with x=(x_{1}, x_{2})\in \mathcal{O} . Let \hat{x}=(\hat{x}_{1},\hat{x}_{2})\in \mathcal{O} be a local maxi-
mum of w-\varphi in \mathcal{O} . Then for all \epsilon>0 there exists X_{i}\in S(N) , (i=1,2) ,
such that the set of testfunctions for u and v is not empty. To be more pre-
cise, F(\hat{x}_{1}, u(\hat{x}_{1}) , D_{x_{1}}\varphi(\hat{x}) , X_{1})\leq 0 , F(\hat{x}_{2}, -v(\hat{x}_{2}), D_{x_{2}}\varphi(\hat{x}) , X_{2})\leq 0 and
for X_{1} , X_{2} the inequality

-( \frac{1}{\epsilon}+||A||)I\leq(\begin{array}{ll}X_{1} 00 X_{2}\end{array}) \leq A+\epsilon A^{2} ,
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where A=D^{2}\varphi(\hat{x})\in S(2N) and

||A||= \sup { |\lambda||\lambda is eigenvalue of A} = \sup\{|\langle A\xi, \xi\rangle|||\xi|\leq 1\}\backslash
,

is satisfied.
Instead of repeating the proof of Theorem 2 given in [2] I refer the

reader to [2] or [3]. Now having the necessary tools in hand, we can turn to
the comparison results promised in the first section.

3. Comparison principles for the generalized Dirichlet problem

First we look at a kind of generalization of the comparison principle
presented by Crandall, Ishii and Lions in [3] applied to problems of type
(1).

Instead of a decreasing operator in the sense of (3) we assume here that
monotone increasing functions \omega_{1} : [0, \infty] – [0, \infty] and \omega_{2} : [0, \infty] -arrow[0, \infty]

with \omega_{i}(0+)=0(i=1,2) exist, such that for all r, s\in \mathbb{R} with r>s ,
p , q\in \mathbb{R}^{N} and X\in S(N) :

0<\omega_{1}(r-s)\leq F(r,p, X)-F(s,p, X) (9)

and the inequality

|F(r,p, X)-F(r, q, X)|\leq\omega_{2}(|p-q|) (10)

holds. Now we can formulate the following Theorem.

Theorem 3 Let \overline{\Omega} be a compact C^{1} -submanifold with boundary of \mathbb{R}^{N} and
let F\in C(\mathbb{R}\cross \mathbb{R}^{N}\cross S(N)) be degenerate elliptic and satisfy assumptions (9)
and (10) mentioned above. Let u, v\in C(\overline{\Omega}) be a viscosity sub- respectively
supersolution of the generalized Dirichlet problem (1), then u\leq v on \overline{\Omega} .

To prove this Theorem I adapt an idea from S. Koike [11]. Therefore I
need the following Lemma:

Lemma 1 [11] Let K be a compact subset of \mathbb{R}^{N} and H : Karrow \mathbb{R} be an
upper semicontinuous function. Then, for almost all q\in \mathbb{R}^{N} the mapping
x->H(x)+\langle q, x\rangle has a unique maximum point in K

A proof of this Lemma can be found by the reader in “ Viscosity SO-
lutions of a System of Nonlinear Second-Order Elliptic PDE ’s Arising in
Switching Games” by H. Ishii and S. Koike [5]. So let us turn to the proof
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of Theorem 3.

Proof of Theorem 3. Let us suppose that \max_{x\in\overline{\Omega}}(u(x)-v(x))=M>0 .
We choose a small \delta\in(0, M/(4|x|^{+})) , where |x|^{+}:= \max\{|x||x\in\overline{\Omega}\} .
Following Lemma 1 there exists a number q=q(\delta)\in \mathbb{R}^{N} with |q|<\delta ,
such that u(x)-v(x)+\langle q, x\rangle attends its maximum at the unique point
z=z(\delta)\in\overline{\Omega} . Now set

M_{q}:= m_{\frac{a}{\Omega}}x(u(x)-v(x)+\langle q, x\rangle)\geq\frac{3M}{4} ,

exactly as in [11] and consider the following two cases.

Case 1: z\in\partial\Omega .
I will only prove the case that v(z)<f(z) since the other case can be

treated in an analogous way. Therefore we look for \alpha>1 and 0<\epsilon<1 at
the function

h(x, y)=u(x)-v(y)-|\alpha(x-y)+\epsilon n(z)|^{2}+\langle q, y\rangle ,

where n(z) will denote the outward normal vector to \partial\Omega in z . Let (x_{\alpha}, y_{\alpha})\in

\overline{\Omega}\cross\overline{\Omega} be the maximum point of h . For sufficiently large \alpha one can assume
that z-(\epsilon/\alpha)n(z)\in\Omega . The inequality h(x_{\alpha}, y_{\alpha})\geq h(z-(\epsilon/\alpha)n(z), z)

implies:

|\alpha(x_{\alpha}-y_{\alpha})+\epsilon n(z)|^{2}\leq u(x_{\alpha})-v(y_{\alpha})

-u(z-(\epsilon/\alpha)n(z))+v(z)+\langle q, y_{\alpha}-z\rangle .

For 0<\epsilon<1 arbitrary, but fixed, we have x_{\alpha} , y_{\alpha}
– z and \alpha(x_{\alpha}-y_{\alpha})+

\epsilon n(z)arrow 0 as \alphaarrow\infty . This can easily be verified. Since \alpha(x_{\alpha}-y_{\alpha}) remains
bounded as \alpha -arrow\infty we can conclude by the assumption that \alpha(x_{\alpha}-y_{\alpha}) -arrow w

and for subsequences x_{\alpha} , y_{\alpha}
– \tilde{z} as \alpha - \infty , that u(z)-v(z)+\langle q, z\rangle\leq

u(\tilde{z})-v(\tilde{z})+\langle q,\tilde{z}\rangle , which implies \tilde{z}=z by Lemma 1, exactly as x_{\alpha}=

y_{\alpha}-(\epsilon n(z)+o(1))/\alpha\in\Omega and |\alpha(x_{\alpha}-y_{\alpha})+\epsilon n(z)| -arrow 0 as \alpha -arrow\infty . The
inequality h(x_{\alpha}, y_{\alpha})\geq h(z, z) also implies

u(x_{\alpha})-v(y_{\alpha}) \geq M_{q}-\epsilon^{2}-\frac{M}{4}\geq\frac{M}{2}-\epsilon^{2} .

Now using Theorem 2 for \mathcal{O}:=\overline{\Omega}\cross\overline{\Omega} and \phi(x, y)=|\alpha(x-y)+\epsilon n(z)|^{2}-\langle q, y\rangle

one calculates

F(u(x_{\alpha}), 2\alpha(\alpha(x_{\alpha}-y_{\alpha})+\epsilon n(z)) , X)\leq 0
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F(v(y_{\alpha}), 2\alpha(\alpha(x_{\alpha}-y_{\alpha})+\epsilon n(z))+q , Y)\geq 0 ,

where

-6\alpha^{2}
(\begin{array}{ll}I 00 I\end{array})\leq(\begin{array}{ll}X 00 -Y\end{array}) \leq 6\alpha^{2} (\begin{array}{ll}I -I-I I\end{array}) ,

with

D\varphi(x_{\alpha})=2\alpha(\alpha(x_{\alpha}-y_{\alpha})+\epsilon n(z)) ,
-D\psi(y_{\alpha})=2\alpha(\alpha(x_{\alpha}-y_{\alpha})+\epsilon n(z))+q ,
D^{2}\varphi(x_{\alpha})=X and D^{2}\psi(y_{\alpha})=Y

for the testfunctions \varphi and \psi , whose existence is guaranteed by Theorem 2.
Now calculation preserves:

0\leq F(v(y_{\alpha}), 2\alpha^{2}(x_{\alpha}-y_{\alpha})+\alpha\epsilon n(z)+q, Y)
-F(u(x_{\alpha}), 2\alpha^{2}(x_{\alpha}-y_{\alpha})+\alpha\epsilon n(z), X)

\leq-\omega_{1}(u(x_{\alpha})-v(y_{\alpha}))+\omega_{2}(|q|)

\leq-\omega_{1}(\frac{M}{2}-\epsilon^{2})+\omega_{2}(|\delta|)

Sending \deltaarrow 0 and \epsilonarrow 0 one gets a contradiction:

0\leq F(v(y_{\alpha}), -D_{y}\phi(x_{\alpha}, y_{\alpha}), Y)-F(u(x_{\alpha}), D_{x}\phi(x_{\alpha}, y_{\alpha}), X)

\leq-\omega_{1}(\frac{M}{2}-\epsilon^{2})+\omega_{2}(|\delta|)arrow-\omega_{1}(\frac{M}{2})<0

The case that u(z)>f(z) is proved in an analogous way by looking at the
function

\tilde{h}(x, y)=u(x)-v(y)-|\alpha(x-y)-\epsilon n(z)|^{2}+\langle q, x\rangle .

Case 2: z lies in the interior of \Omega .
For \alpha>1 we now look at the function

k(x, y)=u(x)-v(y)- \frac{\alpha}{2}|x-y|^{2}+\langle q, x\rangle .

Similarly to the first case we can show for the maximum point (x_{\alpha}, y_{\alpha}) of
k(x, y) that \alpha|x_{\alpha}-y_{\alpha}|^{2}arrow 0 and x_{\alpha} , y_{\alpha}arrow z as \alphaarrow\infty . We also know that

u(x_{\alpha})-v(y_{\alpha})\geq M_{q}-(M/4)\geq M/2 .



Comparison principles for viscosity solutions 323

For \phi(x, y)=\frac{\alpha}{2}|x-y|^{2}-\langle q, x\rangle calculation shows that: D_{x}\phi(x, y)=\alpha(x-

y)-q and -D_{y}\phi(x, y)=\alpha(x-y) . Using again Theorem 2 we know that
there are testfunctions \varphi and \psi in x_{\alpha} respectively y_{\alpha} for the viscosity sub-
respectively viscosity supersolution, which fulfill the required inequalities
from Theorem 2. Thus we have:

0\leq F(v(y_{\alpha}), -D_{y}\phi(x_{\alpha}, y_{\alpha}), Y)-F(u(x_{\alpha}), D_{x}\phi(x_{\alpha}, y_{\alpha}), X)

\leq F(u(x_{\alpha}), -D_{y}\phi(x_{\alpha}, y_{\alpha}), Y)-F(u(x_{\alpha}), -D_{y}\phi(x_{\alpha}, y_{\alpha}), X)

-\omega_{1}(u(x_{\alpha})-v(y_{\alpha}))+\omega_{2}(|q|)

\leq-\omega_{1}(\frac{M}{2})+\omega_{2}(|\delta|)

Sending \deltaarrow 0 we obtain a contradiction, which proves together with the
first case that

u\leq v on \overline{\Omega} .
\square

Remark 1. It seems, that it is not possible to prove a comparison result
by using assumption (5) with strict inequalities instead of assuming (9).
Thus the assumptions made in Theorem 3 seem to be the weakest without
strengthening the ellipticity assumptions on F

Next I present a comparison result which requires a different assumption
on the operator F than previously used. Let us assume that there exist a
strict monotone increasing function \omega : [0, \infty) – [0, \infty] satisfying \omega(0+)=0

and constants c_{0}>0 and c_{1}\geq 0 , such that for all (r,p)\in \mathbb{R}\cross \mathbb{R}^{N} and
X, Y\in S(N) with Y>X the following (11) and (12) holds:

0<\omega ( c_{0} . trace(Y - X) ) \leq F(r,p, X)-F(r,p, Y) , (11)

as well as for all (r, X)\in \mathbb{R}\cross S(N) and p, q\in \mathbb{R}^{N}

|F(r,p, X)-F(r, q, X)|\leq\omega(c_{1} |p-q|) . (12)

This structure condition is stronger than assuming F to be uniformly elliptic
as defined for example in [3]. Operators which have this property will be
called \omega-elliptic. This new structure condition is quite restrictive, but it is
necessary for the comparison result presented below.

Theorem 4 Let \overline{\Omega} be a compact, strictly convex C^{1} -submanifold with
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boundary of \mathbb{R}^{N} Let F\in C(\mathbb{R}\cross \mathbb{R}^{N}\cross S(N)) be proper and \omega -elliptic.
If u , v\in C(\overline{\Omega}) are a viscosity sub- respectively a viscosity supersolution of
(1) then u(x)\leq v(x) on \overline{\Omega} .

Proof of Theorem 4. Let us assume that there exists a point z\in\overline{\Omega} such
that u(z)-v(z)>0 .

Case 1: There is a point z\in\partial\Omega , such that

u(z)-v(z)=ma_{\frac{x}{\Omega}}(u(x)-v(x))x\in=M>0 .

We fix such a point z\in\partial\Omega and look at the case u(z)>f(z) (The case
v(z)<f(z) is treated similarly.). By translation we can guarantee that
0\not\in\overline{\Omega} . Since \overline{\Omega} is strictly convex, a ball B(0, R) exists, such that

\circ\overline{\Omega}\subset B(0, R) and \circ\partial B(0, R)\cap\overline{\Omega}=\{z\}

For \alpha>1 and 0<\epsilon<1 we look at the function

h(x, y)=u(x)-v(y)- \frac{1}{2}|\alpha(x-y)-\epsilon n(z)|^{2}

+[e^{(\gamma|x|^{2})/2}-e^{(\gamma|R|^{2})/2}]

on \overline{\Omega}\cross\overline{\Omega} . For r(x)=[e^{(\gamma|x|^{2})/2}-e^{(\gamma|R|^{2})/2}] we have

\{

r(x)>0 for x\not\in B(0, R)

r(x)=0 for x\in\partial B(0, R)

r(x)<0 for x\in B(0, R)

for all \gamma>0 . Now let (x_{\alpha}, y_{\alpha})\in\overline{\Omega}\cross\overline{\Omega} be a maximum point of h(x, y) . It
is possible to show that x_{\alpha} , y_{\alpha}arrow z and y_{\alpha}=x_{\alpha}-(\epsilon n(z)+o(1))/\alpha\in\Omega

as \alpha -arrow\infty . This can be proved very briefly. For sufficiently large \alpha the
point z-(\epsilon/\alpha)n(z) lies in the interior of \Omega . Now the inequality h(x_{\alpha}, y_{\alpha})\geq

h(z, z-(\epsilon/\alpha)n(z)) implies:

\frac{1}{2}|\alpha(x_{\alpha}-y_{\alpha})-\epsilon n(z)|^{2}-[e^{\frac{\gamma|x_{\alpha}|^{2}}{2}}-e^{\frac{\gamma|R|^{2}}{2}}]

\leq u(x_{\alpha})-v(y_{\alpha})-u(z)+v(z-\frac{\epsilon n(z)}{\alpha})

Since \alpha(x_{\alpha}-y_{\alpha}) remains bounded as \alphaarrow\infty , we get under the assumption
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that \alpha(x_{\alpha}-y_{\alpha}) – w and (for subsequences) x_{\alpha} , y_{\alpha}arrow\hat{z} as \alphaarrow\infty :

0\leq|w-\epsilon n(z)|^{2}-[e^{(\gamma|\hat{z}|^{2})/2}-e^{(\gamma|R|^{2})/2}]\leq 0 for \alphaarrow\infty .

This implies \hat{z}=z and y_{\alpha}=x_{\alpha}-(\epsilon n(z)+o(1))/\alpha\in\Omega .
By the continuity of the subsolution we can assume that u(x_{\alpha})>f(x_{\alpha}) .

Let us now choose

\gamma>\gamma_{0}:=\max\{1, c_{1}|x|^{+}/c0(|x|^{-})^{2}\}

arbitrary, but fixed, where |x|^{+}:= \max\{|x||x\in\overline{\Omega}\}(<\infty) as in the proof
of Theorem 3 and |x|^{-}:= \min\{|x||x\in\overline{\Omega}\} (>0 , remember 0\not\in\overline{\Omega}).

Now applying the maximum principle for semicontinuous functions for
\mathcal{O}=\overline{\Omega}\cross\overline{\Omega} and \phi(x, y)=\frac{1}{2}|\alpha(x-y)-\epsilon n(z)|^{2}-[e^{(\gamma|x|^{2})/2}-e^{(\gamma|R|^{2})/2}] we
get:

D_{x}\phi(x_{\alpha}, y_{\alpha})=\alpha^{2}(x_{\alpha}-y_{\alpha})-\alpha\epsilon n(z)-\gamma x_{\alpha}e^{(\gamma|x_{\alpha}|^{2})/2} ,
-D_{y}\phi(x_{\alpha}, y_{\alpha})=\alpha^{2}(x_{\alpha}-y_{\alpha})-\alpha\epsilon n(z) ,

and the existence of X, Y\in S(N) such that the following inequalities hold:

F(u(x_{\alpha}), \alpha^{2}(x_{\alpha}-y_{\alpha})-\alpha\epsilon n(z)-\gamma x_{\alpha}e^{(\gamma|x_{\alpha}|^{2})/2} , X)\leq 0 ,
F(v(y_{\alpha}), \alpha^{2}(x_{\alpha}-y_{\alpha})-\alpha\epsilon n(z) , Y)\geq 0

and

(\begin{array}{ll}X 00 -Y\end{array}) \leq 3\alpha^{2} (\begin{array}{ll}I -I-I I\end{array}) + (\begin{array}{ll}-2\alpha^{2}I \alpha^{2}I\alpha^{2}I 0\end{array})

+ (\begin{array}{lll}D_{x}^{2}\phi(x_{\alpha},y_{\alpha})+ \frac{1}{\alpha^{2}}(D_{x}^{2}\phi(x_{\alpha},y_{\alpha}))^{2} -D_{x}^{2}\phi(x_{\alpha},y_{\alpha})-D_{x}^{2}\phi(x_{\alpha},y_{\alpha}) 0\end{array})

By multiplying this inequality from the left and from the right with a vector
(\begin{array}{l}\xi\xi\end{array})\in \mathbb{R}^{2N} , we derive

\langle\{X-( \frac{1}{\alpha^{2}}(D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}))^{2}-D_{x}^{2}\phi(x_{\alpha}, y_{\alpha})))\xi , \xi\rangle\leq\langle Y\xi, \xi\rangle .

Now we have to look at (D_{ij}^{\alpha}):= \frac{1}{\alpha^{2}}(D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}))^{2}-D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}) . This
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matrix has the following structure:

(D_{ij}^{\alpha})=\{

D_{ii}^{\alpha}=-\gamma^{2}x_{\alpha i}^{2}e^{(\gamma|x_{\alpha}|^{2})/2}-\gamma e^{(\gamma|x_{\alpha}|^{2})/2}+(S_{ii}/\alpha^{2})

D_{ij}^{\alpha}=-\gamma^{2}x_{\alpha i}x_{\alpha j}e^{(\gamma|x_{\alpha}|^{2})/2}+(S_{ij}/\alpha^{2}) for i\neq j

where

S_{ii}=\gamma e2\gamma|x_{\alpha}|^{2}(1+2\gamma x_{\alpha i}^{2}+\gamma^{2}x_{\alpha i}^{2}|x_{\alpha}|^{2}) and
S_{ij}=\gamma^{3}x_{\alpha i}x_{\alpha j}e^{\gamma|x_{\alpha}|^{2}}(2+\gamma|x_{\alpha}|^{2}) .

Since (S_{ii}/\alpha^{2}) , (S_{ij}/\alpha^{2})arrow 0 as \alpha - \infty calculation shows that for suffi-
ciently large \alpha the matrix (D_{ij}^{\alpha}) is negative definite. So we calculate:

0\leq F(v(y_{\alpha}), \alpha^{2}(x_{\alpha}-y_{\alpha})-\alpha\epsilon n(z), Y)

-F(u(x_{\alpha}), \alpha^{2}(x_{\alpha}-y_{\alpha})-\alpha\epsilon n(z)-\gamma x_{\alpha}e^{\frac{\gamma|x_{\alpha}|^{2}}{2}} , X)
\leq\omega(c_{1} |\gamma x_{\alpha}e^{(\gamma|x_{\alpha}|^{2})/2}|)

-\omega(c_{0} , trace (D_{x}^{2} \phi(x_{\alpha}, y_{\alpha})-\frac{1}{\alpha^{2}}(D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}))^{2}))

=-\omega(c_{0}\gamma e^{\frac{\gamma|x_{\alpha}|^{2}}{2}}(
\gamma|x_{\alpha}|^{2}+N-\frac{\gamma e^{\frac{\gamma|x_{\alpha}|^{2}}{2}}(N+2\gamma|x_{\alpha}|^{2}+\gamma^{2}|x_{\alpha}|^{4})}{\alpha^{2}}))

+\omega(c_{1}\gamma e^{(\gamma|x_{\alpha}|^{2})/2}|x_{\alpha}|)

Sending \alpha – \infty we get a contradiction by the strict monotonicity of \omega ,
since

\frac{\gamma e^{\frac{\gamma|x_{\alpha}|^{2}}{2}}(N+2\gamma|x_{\alpha}|^{2}+\gamma^{2}|x_{\alpha}|^{4})}{\alpha^{2}}arrow 0

and

\omega(c_{1}\gamma e^{(\gamma|x_{\alpha}|^{2})/2}|x_{\alpha}|)-\omega(c_{0}\gamma e^{(\gamma|x_{\alpha}|^{2})/2}(\gamma|x_{\alpha}|^{2}+N))<0

by the choice of \gamma .
The case v(z)<f(z) is treated similarly by replacing the function h by

\tilde{h}(x, y)=u(x)-v(y)-\frac{1}{2}|\alpha(x-y)+\epsilon n(z)|^{2}

+[e^{(\gamma|y|^{2})/2}-e^{(\gamma|R|^{2})/2}] .

Then we get the analogous results.
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Case 2: There exists a point z\in\Omega , such that for M>0 ,

u(z)-v(z)= \max_{x\in\Omega}(u(x)-v(x))=M>\max_{x\in\partial\Omega}(u(x)-v(x)) .

Let us look at the function

k(x, y)=u(x)-v(y)- \frac{\alpha}{2}|x-y|^{2}+\rho e^{(\gamma|x|^{2})/2}

where we fix \gamma>\gamma_{0} (with \gamma_{0} from Case 1) first and then choose 0<\rho
sufficiently small and fixed, such that the maximum of u(x)-v(x)+\rho e^{\gamma|x|^{2}/2}

remains in an interior point of \overline{\Omega} , where the difference of u and v is positive.
The constant \rho then depends on the fixed values \Lambda l , \gamma , |x|^{+} and |x|^{-} For the
maximum point (x_{\alpha}, y_{\alpha})\in\Omega\cross\Omega of k(x, y) we have that (\alpha/2)|x_{\alpha}-y_{\alpha}|^{2}arrow 0

as \alphaarrow\infty . For proving this claim let \hat{z}\in\Omega be the positive maximum of

g(x)=u(x)-v(x)+\rho e^{(\gamma|x|^{2})/2}

and set

\kappa(x)=u(x)+\rho e^{(\gamma|x|^{2})/2} .

The inequality k(x_{\alpha}, y_{\alpha})\geq k(\hat{z},\hat{z}) implies:

\kappa(\hat{z})-v(\hat{z})\leq\kappa(\hat{z})-v(\hat{z})+\frac{\alpha}{2}|x_{\alpha}-y_{\alpha}|^{2}\leq\kappa(x_{\alpha})-v(y_{\alpha})

Since \kappa and-v are bounded from above we get x_{\alpha} , y_{\alpha}arrow\tilde{z} and (\alpha/2)|x_{\alpha}-

y_{\alpha}|^{2}arrow 0 as \alpha – \infty . By this choice of \rho it is guaranteed that \lim_{\alphaarrow\infty}

\sup_{(x,y)\in\overline{\Omega}\cross\overline{\Omega}}k(x, y) approximates a point in \Omega , where the difference of the
sub- and the supersolution is strictly positive.

Using the well known strategy and applying Theorem 2 one gets

F(u(x_{\alpha}), \alpha(x_{\alpha}-y_{\alpha})-\gamma\rho x_{\alpha}e^{(\gamma|x_{\alpha}|^{2})/2} , X)\leq 0 ,

F(v(y_{\alpha}), \alpha(x_{\alpha}-y_{\alpha}) , Y)\geq 0

and the inequalities

-( \frac{1}{\delta}+||D^{2}\phi(x_{\alpha}, y_{\alpha})||) (\begin{array}{ll}I 00 I\end{array}) \leq (\begin{array}{ll}X 00 -Y\end{array}) ,

(\begin{array}{ll}X 00 -Y\end{array}) \leq (\begin{array}{lll}D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}) -\alpha I-\alpha I \alpha I\end{array})
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+\delta (\begin{array}{lllll}(D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}))^{2}+\alpha^{2}I -\alpha D_{x}^{2}\phi(x_{\alpha}, y_{\alpha})- \alpha^{2}I-\alpha D_{x}^{2}\phi(x_{\alpha},y_{\alpha})- \alpha^{2}I 2\alpha^{2}I \end{array})

S\epsilon^{Y}tting\delta=\frac{1}{\alpha} , the second inequality implies:

\langle\{ X-( \frac{1}{\alpha}(D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}))^{2}-D_{x}^{2}\phi(x_{\alpha}, y_{\alpha})))\xi , \xi\rangle\leq\langle Y\xi, \xi\rangle .

For sufficiently large \alpha the matrix \frac{1}{\alpha}(D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}))^{2}-D_{x}^{2}\phi(x_{\alpha}, y_{\alpha}) is negative
definite (as can be proved similarly to the first case). This leads to the
following calculations:

0\leq F(v(y_{\alpha}), \alpha(x_{\alpha}-y_{\alpha}), Y)
-F(u(x_{\alpha}), \alpha(x_{\alpha}-y_{\alpha})-\gamma\rho x_{\alpha}e^{(\gamma|x_{\alpha}|^{2})/2}, X)

\leq\omega(c_{1}\gamma\rho e^{(\gamma|x_{\alpha}|^{2})/2}|x_{\alpha}|)

- \omega(c_{0}\rho\gamma e^{(\gamma|x_{\alpha}|^{2})/2}(\gamma|x_{\alpha}|^{2}+N-\frac{S}{\alpha}))<0 .

Sending \alphaarrow\infty we reach a contradiction, since S/\alphaarrow 0 as \alphaarrow\infty , where

S:=\rho\gamma e^{\frac{\gamma|x\alpha|^{2}}{2}}(N+2\gamma|x_{\alpha}|^{2}+\gamma^{2}|x_{\alpha}|^{4}) .

This contradicts the assumption that there exists a positive maximum of
the difference between the sub- and the supersolution in the interior of \Omega .
Thitb^{\tau} (.ornpletes the proof of our Theorem. \square

As a direct consequence of Theorem 4 we can formulate the following
Corollary.

Corollary 1 Let \Omega\subset \mathbb{R}^{N} be open and bounded and let F\in C(\mathbb{R}\cross \mathbb{R}^{N}\cross

S(N)) be \omega -elliptic and proper. If u\in USC(\overline{\Omega}) is a viscosity subsolution
and v\in LSC(\overline{\Omega}) a viscosity supersolution of F=0 in \Omega with u\leq v on \partial\Omega ,
then u\leq v in \overline{\Omega} .

Remark 2. Corollary 1 is a generalization of case (ii) of Theorem 1 in [7].

Rcm,(\iota rk3 . For the proof of Theorem 4 it is essential, that matrices X, Y,\cdot

W\in S(N) exist, such that X+W\leq Y and 0<W
This is guaranteed by setting \phi(x, y)=\frac{1}{2}|\alpha(x-y)-\epsilon n(z)|^{2}-[e^{(\gamma|x|^{2})/2}-

e^{(\gamma|R|^{2})/2}] respectively \phi(x, y)=\frac{\alpha}{2}|x-y|^{2}-\rho e^{(\gamma|x|^{2})/2} , but it is not guaran-
{ (^{1}ed when using \phi(x, y)=\frac{1}{2}|\alpha(x-y)-\epsilon n(z)|^{2}+\epsilon|x-z|^{2} as it has been
d()1le in [3].
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4. Counterexamples

I will give three counterexamples where comparison fails and where the
operator F does not fulfill the \omega-ellipticity structure condition.

Example 3.
a) First we look at the problem

-u’(x)-(1+(u’(x))^{2})^{3/2}=0 in (-1, 1) (13)

u(-1)=0 and u(1)=0. (14)

This problem has the viscosity solution u(x)=\sqrt{1-x^{2}} . Every translate
u_{c}=u+c with c\geq 0 gives us a new generalized viscosity solution of
(13) and (14). To see this we notice that u_{c} is a solution of (13) and a
supersolution of the boundary value problem since u_{c}(-1)=u_{c}(1)>0 .
But u_{c} is also a subsolution, since there exist no testfunctions for u_{c} at the
boundary of [-1, 1].

b) Next we look at

\frac{-u’(x)}{\sqrt{1+(u(x))^{2}}},,+f(u’(x))=0 in (0, 1)

u(0)=u(1)=0,

where f is defined as

f(p)=\{
\sqrt{\frac{2-p^{2}}{3-3p+2p^{4}}} |p|\leq 1

1 |p|>1 .

This problem has the solution u(x)= \frac{2}{3}(x^{3/2}+(1-x)^{3/2})-\frac{2}{3} . Again every
translate u_{c}(x)=u(x)-c(c>0) is a generalized viscosity solution, since

F(u_{c}(x), u_{c}’(x) , u_{c}’(x))=0 in (0, 1)

u_{c}(0)=u_{c}(1)=-c<0 ,

and for every testfunction \psi from below \psi’(0)<-1 and \psi’(1)>1 , such
that f(\psi’(0))=f(\psi’(1))=1 . Since we have

-\psi’(0)/\sqrt{1+(\psi’(0))^{2}}\geq-1 and -\psi’(1)/\sqrt{1+(\psi’(1))^{2}}\geq-1 ,
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one gets the two following inequalities

\max\{u_{c}(0), F(u_{c}(0), \psi’(0), \psi’(0))\}\geq 0

and

\max\{u_{c}(1), F(u_{c}(1), \psi’(1), \psi’(1)\}\geq 0 .

So every translate u_{c} is a generalized viscosity solution. Thus comparison
must fail again.

c) For the last example I refer once more to [1] where the following
problem is given:

-\triangle u(x)+|Du(x)|^{m}=0 in B(0, R)

u(x)=c on \partial B(0, R)

where R>0,0<m<1 and c\in \mathbb{R} . This problem has the two classical
solutions u_{1}(x)\equiv c and u_{2}(x)=k(k+N-2)^{1/(m-1)}(R^{k}-|x|^{k})+c for
x\in B(0, R) with k=(2-m)/(1-m) . Thus comparison fails, but as the
two operators in a) and b) above the given operator is not \omega-elliptic.

Remark 4. The examples a) and b) were given to me by N. Kutev. Using
a generalization of the structural conditions from Theorem 4 of the present
manuscript, he and B. Kawohl derived related comparison principles in [10].

Acknowledgment The author thanks the referee for reading this manu-
script carefully.
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