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A remark on parabolic projective foliations
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Abstract. In this paper we consider parabolic foliations on the complex I) r\epsilon)ject ivc I)1aI1C

\mathbb{C}P(2) . It is known that if such a foliation has only with hyperbolic singularities t local
it must be linear after some rational change of coordinates [1] Our results enforce 111(^{1}

idea that projective parabolic foliations with nondegenerate singularities must be lillea’
in the above sense. We prove that if we relax the hypothesis of hyperbolic si_{I1}gu1arit ic.s,
allowing also Martinet-Ramis type singularities (definition in \S 1), then t he foliat ioll is
also linear hyperbolic This same conclusion holds for a parabolic foliation with simple
singularities and having an algebraic leaf. If the algebraic leaf contains singularities w11ie\}_{1}

are either simple nonresonant, Martinet-Ramis arld Poincare’-Dulac resonant singular it ics ,

or saddle-nodes in good-position (see \S 1) then the foliation is given by a ( loscd 1 ati()nal
1-form Several examples and an application to complete polynomial vector fields oll

\mathbb{C}^{2}

are glven

Key words holomorphic foliation, parabolic Riemann surface, holonomy group.

1. Introduction

Let X be a polynomial vector field on the affine space \mathbb{C}^{2} . Since Xi_{L}s^{\tau}

algebraic its local flow induces a singular (holomorphic) foliation 1)yc11rv(_{u}^{Y}b^{1}

\mathcal{F} on the projective space \mathbb{C}P(2) , and any foliation by curves on \mathbb{C}P(2) is
obtained this way. The leaves of \mathcal{F} are open Riemann surfaces \dot{\epsilon}lnd t1_{1(^{1}}i_{1}.

generic conformal type may (in some cases) be related to \mathcal{F} , and t1_{1}cre^{1}f()rc

to X .
A remarkable class of Riemann surfaces is the one of parabolic surfaces.

A Riemann surface R is parabolic if it does not admit nonconstant 11cg\dot{c}1 -

tive subharmonic functions or equivalently does not admit a (finite) Green
function, ([26], [30]) ) . Examples are punctured compact Riemann surf_{c}‘:c(^{\backslash }s

and closed Riemann surfaces minus zero logarithmic capacity subsets.
A foliation by curves \mathcal{F} is a parabolic foliation if its leaves are par‘d [)()lie .

Riemann surfaces with the induced conformal structure. An outstanding
theorem of M. Suzuki states that a parabolic foliation with prope r 1^{1}‘ av(^{1s}

on a Stein surface has a meromorphic first integral:
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Theorem 1.1 [26] Let \mathcal{F} be a holomorphic foliation by curves on a Stein
space X^{2} of complex dimension 2. Assume that the leaves of \mathcal{F} are properly
embedded and that the set P(\mathcal{F})= {p\in X^{2}\backslash sing \mathcal{F}|L_{p} is parabolic} has
positive transverse logarithmic capacity. Then \mathcal{F} is parabolic and admits a

nonconstant meromorphic first integral on X .

In this paper we regard the problem of classifying parabolic foliations
on \mathbb{C}P(2) . This problem has also been considered in [1] where we find the
following result:

Theorem 1.2 [1] Let \mathcal{F} be a foliation with hyperbolic singularities on
\mathbb{C}P(2) . Assume that the set P(\mathcal{F})= {p\in \mathbb{C}P(2)\backslash sing \mathcal{F}|L_{p} is parabolic}
has positive transverse logarithmic capacity. Then \mathcal{F} is parabolic and there-

fore it is a linear hyperbolic foliation xdy-\lambda ydx=0 , \lambda\in \mathbb{C}\backslash \mathbb{R} for some
affine chart (x, y)\in \mathbb{C}^{2}\subset \mathbb{C}P(2) .

Let X be a holomorphic vector field on a neighborhood of the origin 0\in

\mathbb{C}^{2} , with an isolated singularity at 0. We consider the foliation \mathcal{F} defined by
X ill a neighborhood of the origin. The singularity is called nondenegerate
if the linear part DX(0) is nonsingular. In this case we may write \mathcal{F} :
xdy-\lambda ydx+f1.0 .t. =0, for some \lambda\in \mathbb{C}^{*} When \lambda\in \mathbb{Q} the singularity
will be called resonant. A nondegenerate singularity is called simple if
\lambda\not\in \mathbb{Q}_{+} . A simple singularity exhibits exactly two (smooth and transverse)
separatrices [16]. If \lambda\in \mathbb{C}\backslash \mathbb{R}_{-} the singularity is in the Poincar\’e domain
and the leaves of \mathcal{F} are transverse to the small 3-spheres S_{\epsilon}^{3}(0) centered at
tl_{l}e singularity. If \lambda\in \mathbb{R}_{-} then it is in the Siegel domain and exhibits a
saddle-like behaviour: if a local leaf (which is not a separatrix) accumulates
the singularity then it accumulates both separatrices. The singularity is
hyperbolic if \lambda\not\in \mathbb{R} . Hyperbolicity implies linearization of the foliation
around the singular point [16]. The Reduction Theorem of Seidenberg [24]
gives two final types of singularities for holomorphic foliations in dimension
2: (i) simple singularities (ii) saddle-node singularities of the form y^{p+1}dx-

[x(1+\lambda y^{p})+h.0.t.]dy=0 , \mathbb{N}\ni p\geq 1 . We call (y=0) the strong separatrix
of the saddle-node.

If \lambda or \lambda^{-1}\in \mathbb{N} the singularity is either linearizable or can be put in
the (analytic) Poincar\’e-Dulac form: xdy-(ny+x^{n})dx=0[17] . In this
last case there exists only one separatrix, its holonomy map is tangent to
the identity and nonperiodic.
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Definition 1.3 (Martinet-Ramis singularity) A germ of nondegenerate
singularity will be called of Martinet-Ramis type if \lambda\in \mathbb{Q}_{-} and the singu-
larity is not linearizable 1.

We recall that an algebraic leaf for a foliation on an algebraic surface is
an algebraic invariant curve (assumed to be irreducible).

Definition 1.4 [4] Let \Lambda be an algebraic leaf of \mathcal{F} . A germ of saddle-
node singularity q\in\Lambda\cap sing\mathcal{F} is in good position (with respect to \Lambda ) if its
strong separatrix is contained in \Lambda .

Finally, we recall the definition of the Robin constant [29]: Given a
Riemann surface R and a point x\in R , the Robin constant \lambda(x) , of R with
respect to the point x is defined by the equation:

G_{x}(Z)=- log |\varphi_{x}(Z)|+\lambda(x)+h_{x}(\varphi_{x}(Z))

where \varphi_{x}(Z) is a local parametrization of a neighborhood of x\in R onto a
disk D \subset \mathbb{C} , \varphi_{x}(x)=0 , h_{x}(w) is a harmonic function on D, with h_{x}(0)=0 ,
and G_{x}(Z) is the Green function of R with pole on x . Clearly \lambda(x) depends
on the local chart, but the fact that \lambda(x)=+\infty or not, does not depend.
By definition R is parabolic if and only if \lambda(x)=+\infty .

Examples of parabolic foliations are given by linear foliations, rational
foliations (with rational first integrals) and by Bernoulli foliations as in thc
example below.

Example 1.5 Let \mathcal{F} be a Bernoulli foliation on \overline{\mathbb{C}}\cross\overline{\mathbb{C}} , that is, \mathcal{F} : \omega=

p(x)dy-(y^{k+1}a(x)+yb(x))dx=0 in some affine chart (x, y)\in \mathbb{C}^{2}\subset\overline{\mathbb{C}}\cross\overline{\mathbb{C}} .
We can assume that k=1 , since the finite ramified covering (x, y)-, (x, y^{k})

does not affect the parabolicity of the leaves (Lemma 1.8 below). Now, since
\mathcal{F} is a particular case of a Riccati foliation ([3]) it follows that the leaves
of \mathcal{F} are either invariant vertical lines (given on \mathbb{C}^{2} by p(x)=0) or are
transverse to the vertical fibration \pi(x, y)=x . In fact, given any leaf L of
\mathcal{F} , the restriction \pi|_{L} : Larrow\pi(L)\subset\overline{\mathbb{C}}\backslash sing \mathcal{F} is a covering map [15]. This
shows that \mathcal{F} has parabolic leaves in the case \#\{sing \mathcal{F}\cap\overline{(y=0)}\}\leq 2 . Thc
horizontal line \overline{(y=0)} is invariant. If \mathcal{F} has nondegenerate singularities
on \overline{\mathbb{C}}\cross\overline{\mathbb{C}} , then a(x) , b(x) must be constant, so that \mathcal{F} is given by a closed
rational 1-form, namely \omega=\frac{dy}{ay^{k+1}+yb}+\frac{dx}{p(x)} . On the other hand in general, a

1r This is equivalent to the fact that the local holonomy of any separatrix is not periodic
[16].
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Ric(j\acute{\epsilon}\lambda ti foliation \mathcal{F} : p(x)dy-(a(x)y^{2}+b(x)y+c(x))dx=0 , is not a parabolic
foliation. Ir1 fact, mostly if c(x)\not\equiv 0 , then there exists no algebraic invariant
curve transverse to the invariant vertical lines. Thus the holonomy group
()f tllc line \overline{(\uparrow/=0)} , (see [15] for a definition), is a subgroup of PSL(2; \mathbb{C})

without fixed points, and free. However, except for a countable set of leaves,
t1_{1}c le aves have trivial holonomy. Therefore, using the projection (x, y)-\# x ,
we \iota\cdot one\cdot ludc that the generic leaf is simply-connected and thus (by Picard’s
Theorem) it is diffeomorphic to the disk D.

Example 1.6 Consider a polynomial Poincar\’e-Dulac form \mathcal{F} : \omega=xdy -
(\lambda y+x^{\lambda})dx=0 , \lambda\in \mathbb{N} , on \mathbb{C}^{2} . To this 1-form we associate the vector
fifie^{1}1dX=x\frac{\partial’}{\partial x} - \vdash(\lambda y+x^{\lambda})\frac{\partial’}{\partial y} . The affine leaves of \mathcal{F} are the orbits of X .
using tllG flow of X we can parametrize the orbits and conclude that they
ar(^{Y}\acute{(}r11 diffe omorphic to \mathbb{C} except for the one contained on (x=0) , which
is diffffce)rne)rphic to \mathbb{C}^{*} \mathcal{F} is parabolic on \mathbb{C}P(2) and is given by the closed
r^{\tau}a fi()nal 1 form \frac{\omega}{x^{\lambda+1}}=d(\frac{y}{x^{\lambda}})-\frac{dx}{x} .

Example 1.7 Let \mathcal{F} be a logarithmic foliation on \mathbb{C}P(2)[21] , say \mathcal{F}|_{\mathbb{C}^{2}} is
giverl t).y

\omega=(\prod_{i=1}^{r}f_{i})\sum_{j=1}^{r}\lambda_{j}.\frac{df_{j}}{f_{j}}=0

w11e^{Y}re^{1}f_{j} is a polynomial, \lambda_{j}\in \mathbb{C}^{*} , and \mathbb{C}P(2)\backslash \mathbb{C}^{2} is generically transverse to
\mathcal{F} . According to the Residue Theorem we know that \sum_{j=1}^{r}\lambda_{j}.\deg(f_{j})=0 ,

so that \Omega:=\frac{\omega}{(\prod_{i=1}^{r}f_{i})}=d log ( ( \frac{f_{2}^{\deg(f_{1})}}{f_{1}^{\deg(f_{2})}})^{\lambda_{2}} . ( \frac{f_{r}^{\deg(f_{11})}}{f_{1}^{\deg(f)}})^{\lambda_{\Gamma}} ) is closed In

particular, if r=3 then \omega is the rational pull-back by \pi : \mathbb{C}P(2) -arrow

\mathbb{C}\Gamma(2) , \pi(x, y)=(\frac{f_{2}^{\deg(f_{1})}}{f_{1}^{\deg(f_{2})}}(x, y), \frac{f_{3}^{\deg(f_{1})}}{f_{1}^{\deg(f_{3})}}(x, y)) of the linear (parabolic) f0-

liation \mathcal{L} : \lambda_{2}\frac{dx}{x}+\lambda_{3}\frac{dy}{y}=0 . It follows from the lemma below that \mathcal{F} is
(in this case r=3) a parabolic foliation. On the other hand, by Poincar\’e’s

lemma \mathcal{F} may have nonhyperbolic singularities (outside the polar set of
\Omega) , with holomorphic first integral.

Lemma 1.8 Let \pi : \tilde{S}

– S be a proper holomorphic mapping where S
and \tilde{S} are Riemann surfaces. Then, S is parabolic if, and only if, so it is
\tilde{S} .

Proof. If S is not parabolic then we have two possibilities: If S is compact
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then since \pi is proper it follows that \tilde{S} is also compact and therefore it is not
parabolic. If S is hyperbolic, i.e , if there exists a nonconstant holomorphic
mapping f : Sarrow D , then clearly there exists a nonconstant holomorphic
mapping f\circ\pi : \tilde{S}arrow D , so that \tilde{S} is hyperbolic. Conversely, let us assume
that \tilde{S} is not parabolic. If \tilde{S} is compact then so it is S . Thus we may assume
that \tilde{S} is hyperbolic. In this case, there exists a nonconstant holomorphic
mapping \tilde{f} : \tilde{S}arrow D. On the other hand, the proper mapping \pi is a
finite ramified covering, i.e., there exists a discrete subset B\subset S , such that
\pi|_{\overline{S}\backslash \pi^{-1}(B)} : \tilde{S}\backslash \pi^{-1}(B) – S\backslash B is a finite covering of order say r\in \mathbb{N} . We_{J}

fix a symmetric function \sigma\in \mathbb{C}[x_{1}, . , x_{r}] , of the r variables x_{1} , \ldots , x_{r} ,
and an arbitrary point p\in S\backslash B . Using \sigma and \tilde{f} we define a germ of
holomorphic mapping f_{p}^{\sigma} : U_{p}\subset Sarrow \mathbb{C} , as f_{p}(z)=\sigma(\tilde{f}(z_{1}), \ldots , \tilde{f}(z_{r})) ,
where \{z_{1}, \ldots, z_{r}\}=\pi^{-1}(z) . Standard arguments on analytic functions
(as Riemann’s Extension Theorem) show that these mappings f_{p}^{\sigma} glue and
extend into a global holomorphic mapping f^{\sigma} : S –

\mathbb{C} . Since \tilde{f}(\tilde{S})\subset D ,
it follows that f^{\sigma} is bounded. Now, it is easy to see that some f^{\sigma} must
be nonconstant (otherwise \tilde{f} would be constant) and this shows that S is
hyperbolic. \square

Our main results are as follows:

1.9 Theorem A Let \mathcal{F} be a parabolic foliation on \mathbb{C}P(2) having hyper-
bolic and Martinet-Ramis singularities. Then \mathcal{F} is a linear hyperbolic foli-
ation xdy-\lambda ydx=0 , \lambda\in \mathbb{C}\backslash \mathbb{R} in some affine chart (x, y)\in \mathbb{C}^{2}\subset \mathbb{C}P(2) .

This result enforces the idea that the only parabolic foliations on \mathbb{C}P(2)

with nondegenerate singularities are the linear. In addition we have the
following result (see Example 1.7):

1.10 Theorem B Let \mathcal{F} be a parabolic foliation with simple singulari-
ties on \mathbb{C}P(2) having an algebraic leaf Then \mathcal{F} is logarithmic.

Examples of foliations considered in Theorem C below may be produced
by taking linear hyperbolic foliations on \mathbb{C}P(2) and performing pull-back
by rational maps \pi : \mathbb{C}P(2) - \mathbb{C}P(2) (Lemma 1.8).

1.11 Theorem C Let \mathcal{F} be a parabolic foliation with nondeqenerate sin-
gularilies on \mathbb{C}P(2) such that any leaf containing a separatrix, contains the
separatrix of a hyperbolic, Martinet-Ramis or Poincar\’e-Dulac singularity.
Then \mathcal{F} has an algebraic leaf \Lambda with solvable holonomy. If moreover the
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resonant singularities in \Lambda are Martinet-Ramis or Poincar\’e-Dulac singular
ities then \mathcal{F} is given by a closed rational l-form.
Example 1.12 Let \mathcal{F}|_{\mathbb{C}^{2}} : y^{2}dx-x(1+y)dy=0 . We call \Lambda : \overline{(y=0)}\subset

\mathbb{C}P(2) . Then sing \mathcal{F}\cap\Lambda=\{0,p_{\infty}\} where p_{\infty} appears in the line at the
infinity and is a Poincar\’e-Dulac form (u+v)dv-vdu=0 for (u, v)=
(1/x, y/x) . It follows that \mathcal{F} is parabolic and given by a closed rational
1-form which is not logarithmic (Example 1.6). The singular set sing \mathcal{F}\cap\Lambda

satisfies the conditions of the following theorem:

1.13 Theorem D Let \mathcal{F} be a parabolic foliation on \mathbb{C}P(2) having an
algebraic leaf \Lambda . Assume that the resonant singularities in \Lambda are Martinet-
Ramis or Poincar\’e-Dulac singularities, and that the degenerate singularities
are saddle-nodes in good-position. Then \mathcal{F} is given by a closed rational 1-
form

A closed integrating factor for a holomorphic integrable 1-form \omega is a
closed meromorphic 1-form \eta , with simple poles, such that d\omega=\eta\wedge\omega ,
(\eta)_{\infty} is invariant. Such a 1-form defines an affine transverse structure for

\mathcal{F} : \omega=0 outside the (invariant) polar set (\eta)_{\infty}[21] , [3].

1.14 Theorem E Let \mathcal{F} be a parabolic foliation on \mathbb{C}P(2) having an
algebraic leaf containing simple singularities, Poincar\’e-Dulac singularities
and saddle-nodes in good-position. Then \mathcal{F}|_{\mathbb{C}^{2}} is given by a polynomial 1-
form \omega which admits a rational closed integrating factor \eta .

Example 1.15 Not all parabolic foliations of \mathbb{C}P(2) are given by closed
rational 1-forms. Let us consider \mathcal{F}:\omega=xdy-(a(x)y+b(x))dx=0 in affine
coordinates. Then as it is easy to see from the integration of the associated
vector field, the leaves of \mathcal{F} are covered by the plane \mathbb{C} and are therefore
parabolic. On the other hand, the 1-form \omega admits the closed integrating
factor \eta=\frac{1+a(x)}{x}dx . \mathcal{F} is therefore transversely affine in \mathbb{C}^{2}\backslash \{x=0\}[21] .
In particular if we write \eta=d\log H , then we obtain d( \frac{\omega}{H})=0 . In general,
the function H is not rational, that is, in general the foliation \mathcal{F} is not
given by a closed rational 1-form. On the other hand, as it is easy to see, \mathcal{F}

exhibits degenerate singularities along the invariant line L_{\infty}=\mathbb{C}P(2)\backslash \mathbb{C}^{2} .

Example 1.16 This example illustrates a parabolic foliation given by
a closed 1-form, whose algebraic leaves always contain some degenerate
singularity. For relatively prime k , \ell\in \mathbb{N} we consider the polynomial 1-
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form \omega=kxdy+\ell y(1+\frac{\sqrt{-1}}{2\pi}x^{\ell}y^{k})dx , which admits the integrating factor
h=x^{\ell+1}y^{k+1} , and gives us the following closed rational 1-form \frac{1}{x^{\ell+1}y^{k+1}}.\omega=

d (- \frac{1}{x^{\ell}y^{k}}+ log ( \frac{\sqrt{-1}\ell}{2\pi}x) ). Thus the leaves of \omega=0 are parametrized by
x(t)=x_{o}e^{kt} ,

y(t)=[mathring]_{\frac{y}{(1+\frac{\sqrt{-1}^{\ell}}{2\pi}kty_{0}^{k}x_{o}^{\ell})^{\frac{1}{k}}}}
; so that the generic leaf is diffe0-

morphic to \mathbb{C}^{*} It follows that \omega=0 defines a parabolic foliation \mathcal{F} on
\mathbb{C}P(2) . We have sing \mathcal{F}\cap \mathbb{C}^{2}=\{0\} and since this singularity is a Martinet-
Ramis normal form [17] it is not linearizable and therefore of Martinet-
Ramis type. On the other hand there are two other singularities (botll
degenerate) contained in L_{\infty} which is an algebraic leaf of \mathcal{F} . One given by
-ku^{\ell+k+1}dv+[( \ell+k)vu^{\ell+k}+\frac{\sqrt{-1}^{\ell}}{2\pi}v^{k+1}]du=0 for (u, v)=(1/x, y/x) . The
other singularity is of the form -(k+ \ell)\frac{ds}{s}+\ell\frac{dr}{r}+\frac{\sqrt{-1}}{2\pi}\frac{r^{\ell}}{s^{k+\ell}} ( \frac{ds}{s}+\frac{dr}{r})=0 ,
for (r, s)=(x/y, 1/y) .

Remark 1.17 From \mathbb{C}P(2) to \overline{\mathbb{C}}\cross\overline{\mathbb{C}} .

Now we make a simple remark, but which is useful in the search of
examples of parabolic foliations (see for instance Example 1.5 above). First
we recall that \mathbb{C}P(2) is obtained from \overline{\mathbb{C}}\cross\overline{\mathbb{C}} by a sequence of one blow-up
and two blow-downs: Given an affine chart (x, y)\in \mathbb{C}^{2}\subset\overline{\mathbb{C}}\cross\overline{\mathbb{C}} , first we
blow-up the point (x=\infty, y=\infty) . The transforms of the lines \overline{(x=\infty)}

and \overline{(y=\infty)} have Chern class -1 and can be blowed-down. First we blow-
down the transform of \overline{(x=\infty)} . Then we blow-down the transform of the
line (x=0) to obtain \mathbb{C}P(2) . Notice that the afine system (x, y)\in \mathbb{C}^{2} is
“preserved” and we introduce L_{\infty}=\mathbb{C}P(2)\backslash \mathbb{C}^{2} as an “exceptional curve”
on \mathbb{C}P(2) . Let us call \sigma : \overline{\mathbb{C}}\cross\overline{\mathbb{C}}arrow \mathbb{C}P(2) such standard morphism. Given a
foliation \tilde{\mathcal{F}} on \overline{\mathbb{C}}\cross\overline{\mathbb{C}} , the morphism \sigma induces a foliation \mathcal{F} on \mathbb{C}P(2) which
satisfies \tilde{\mathcal{F}}=\sigma^{*}\mathcal{F} . As it is plain to see, we can assume that \sigma preserves
the singularities of \tilde{\mathcal{F}} , and introduces three new singularities. Two of these
are dicritical singularities p_{1} , p_{2} , of the radial type, that is of the local
form xdy – ydx=0. The remaining singularity p_{3} is holomorphic first
integral type, in particular it is in the Siegel domain. However, by [16], p_{3}

is linearizable and has finite local holonomy. The singularities p_{1},p_{2}\in L_{\infty}

come from the lines \{0\}\cross\overline{\mathbb{C}} and \overline{\mathbb{C}}\cross\{0\} , not completely transverse to \mathcal{F} ,
and p_{3} appears in the middle of the “exceptional curve” on \mathbb{C}P(2) .

Lemma 1.18 The following conditions are equivalent:
(i) \tilde{\mathcal{F}} has parabolic leaves.
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(ii) \mathcal{F} has parabolic leaves.
(iii) The restriction \mathcal{F}^{*}=\mathcal{F}|_{\mathbb{C}^{2}} has parabolic leaves, for any affine space

\mathbb{C}^{2}\subset \mathbb{C}P(2) , such that L_{\infty}=\mathbb{C}P(2)\backslash \mathbb{C}^{2} is (generically) transverse to
\mathcal{F} .

(iv) We have

\log capac{p\in \mathbb{C}^{2}\backslash sing \mathcal{F}^{*} . L_{p}^{*} is parabolic } >0

where \mathcal{F}^{*} is as in (iii).

Proof. We consider an affine chart \mathbb{C}^{2}\subset \mathbb{C}P(2) , such that \mathbb{C}P(2)\backslash \mathbb{C}^{2}

is not invariant by the foliation, and for any leaf L of \mathcal{F} we denote by L^{*}

the corresponding leaf of \mathcal{F}^{*} as above. We denote by \overline{L^{*}} the holonomy
covering of the leaf L^{*} on \mathbb{C}^{2} , ([26]). Assume (iv). Since except for a
countable set of leaves the leaf L^{*} has trivial holonomy it follows from the
hypothesis that log capac{ p\in \mathbb{C}^{2}\backslash sing \tilde{\mathcal{F}}^{*},\overline{L_{p}^{*}} is parabolic} >0 . Since \mathbb{C}^{2}

is a Stein manifold [25] it follows that {p \in \mathbb{C}^{2}\backslash sing \mathcal{F}^{*},\overline{L_{p}^{*}} is parabolic} =
\mathbb{C}^{2}\backslash sing \mathcal{F}^{*}([26], [30]) . This implies that the leaves oF \mathcal{F}^{*} are parabolic.
Now, given any leaf L^{*} of \mathcal{F}^{*} , we denote by \tilde{L} and L the corresponding leaves
of \mathcal{F}\sim (on \overline{\mathbb{C}}\cross\overline{\mathbb{C}}) and \mathcal{F} (on \mathbb{C}P(2) ) respectively. Then \tilde{L}\backslash L^{*} is discrete on
\tilde{L} . Since a discrete subset has null logarithmic capacity, it follows that \tilde{L} is
parabolic if, and only if L^{*} is parabolic. The same argument shows that L
is parabolic if, and only if, L^{*} is parabolic. The remaining equivalences can
be found in [1]. This ends the proof of the proposition. \square

Remark 1.19 A well-known theorem of Huber [13], [28] asserts that given
a Riemann surface M. if there exists a complete minimal immersion \psi :
M – \mathbb{R}^{n} , n\geq 3 , having finite total curvature then M is parabolic. Using
this and our above results one may study polynomial vector fields over \mathbb{C}^{2}

whose orbits have bounded geometry with respect to the standard hermitian
geometry of \mathbb{C}^{2}[22] .

2. Construction of harmonic measures

In this section we construct harmonic measures (with respect to a suit-
able hermitian metric) for a given foliation with nondegenerate singularities
\mathcal{F}^{2}on.\mathbb{C}P(2)

. Such measures will be supported also outside the singular set of

21 am grateful to P. Sad for showing me Proposition 2.1
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Proposition 2.1 Let \mathcal{F} be a foliation with nondegenerate singularities
over \mathbb{C}P(2) . There exists an harmonic measure \mu whose support is not
contained in the singular set of \mathcal{F} .

2.2. The case of Poincar\’e type singularities [1]
Let us first assume that \mathcal{F} is a foliation on \mathbb{C}P(2) and that the singu-

larities are all in the Poincar\’e domain. We know that in this case the local
leaves around a singularity are transverse to the small spheres centered at
this singularity. This allows the following construction [1]:

Let \{p_{1}, . , p_{r}\}=sing\mathcal{F} . Choose small balls B_{j} centered at p_{j} and
construct the double \mathcal{F}_{d} of the restriction \mathcal{F}|_{\mathbb{C}P(2)-\cup B_{j}} (see also paragraph
2.4 below). This is a regular C^{\infty} foliation on a compact real manifold de-
noted M_{d}=(\mathbb{C}P(2)-\cup B_{j})_{d} and its leaves are naturally Riemarm surfaces
endowed with the complex structure given by the Schwarz Reflection Prin-
ciple. Moreover (as it is noticed in [1]) these leaves are still parabolic as
a consequence of [14]. Fix a Riemannian metric g on (\mathbb{C}P(2)-\cup B_{j})_{d} ,
hermitian along the leaves of \mathcal{F}_{d} . Denote by \triangle=\triangle^{F_{d}} the foliated lapla-
cian associated to the pair (\mathcal{F}_{d}, g) . According to [9], [10] we have: Given
any compact \mathcal{F}_{d}-saturated K\subset(\mathbb{C}P(2)-\cup B_{j})_{d} , there exists \partial harmonic
measure \mu whose support is contained in K .

2.3. The general case
Now we consider the general case, i.e., \mathcal{F} is a foliation with nondegen-

erate singularities on \mathbb{C}P(2) . We write sing \mathcal{F}=\{p_{1}, \ldots,p_{r}\}\cup\{q_{1}, \ldots, q_{s}\} ,
where p_{j} is in the Poincar\’e domain, and q_{i} is in the Siegel domain. We con-
sider a sequence of foliations \mathcal{F}_{n} on \mathbb{C}P(2) , with \mathcal{F}_{nn\vec{arrow\infty}}\mathcal{F} , in thc usual
topology of the space of foliations [15], and such that \mathcal{F}_{n} has all its sin-
gularities in the Poincar\’e domain. Moreover, we also have for each q_{i} a
singularity q_{i}^{n}\in sing\mathcal{F}_{n} , which converges to q_{i} , i\in\{1, . ’ s\} . Fixed i we
consider compact neighborhoods V_{n}\ni q_{i}^{n} and holomorphic diffeomorphims
\varphi_{n} : V_{n} – \overline{B}_{2}=\{(x, y)\in \mathbb{C}^{2}, |x|^{2}+|y|^{2}\leq 2\} , \varphi_{n}(q_{i}^{n})=0 , in such a way
that \varphi_{n}^{-1} converges uniformly to \varphi^{-1} : \overline{B}_{2}arrow V_{o} , V_{o}\ni q_{i} , \varphi(q_{i})=0 , and we
can write

(\varphi_{n})_{*}(\mathcal{F}_{n}) : [x+xAn(x, y)]dy-[(\mu+\sqrt{-1}.\delta_{n})y+yB_{n}(x, y)]dx=0

(\varphi)_{*}(\mathcal{F}) : [x+xA(x, y)]dy-[\mu y+yB(x, y)]dx=0

where \mu\in \mathbb{R}_{-} , is the eigenvalue quotient for \mathcal{F} at q_{i} , \delta_{n}\neq 0 , \delta_{n}arrow 0 .
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Then if r_{n}>0 is sufficiently small, we have that (\varphi_{n})_{*}(\mathcal{F}_{n}) is transverse
to the spheres S_{r}=\{|x|^{2}+|y|^{2}=r^{2}\} , for r\leq 2r_{n} .

2.4. The double
We take X^{(n)} the holomorphic vector field [x+xA_{n}(x, y)] \frac{\partial}{\partial x}+[\mu+

\sqrt{-1}\delta_{n})y+yB_{n}(x, y)]\frac{\partial}{\partial y} , which is tangent to (\varphi_{n})_{*}(\mathcal{F}_{n}) , and transverse to
the spheres S_{r}=\partial B_{r} for all r\leq 2r_{n} . We restrict the flow of X^{(n)} to a
real flow X_{t}^{(n)} . with the same transversality property (in fact, X_{t}^{(n)} “en-
ters” the spheres). We take -t_{n}\leq t\leq t_{n} , for t_{n}>0 small enough. We
define \psi_{n} : \triangle_{n} -arrow\triangle_{n} ( \triangle_{n} is the region between X_{-t_{o}}^{(n)}(S_{r}) and X_{t_{o}}^{(n)}(S_{r}) )
as \psi_{n}(X_{t}^{(n)}(z))=X_{-t}^{(n)}(z) , for z\in S_{r_{n}} . Then \psi_{n} is of class C^{\infty} and hol0-
morphic along the leaves of (\varphi_{n})_{*}(\mathcal{F}_{n}) . We define the double of \mathcal{F}_{n} using
the identification given by \psi_{n} . Given any point (x, y)\in\triangle_{n} , we denote by
[(x, y)] the corresponding point in the double, that is, the equivalence class
of (x, y) . In \overline{B}_{1} we consider the function U(x, y)=|x|^{2}+|y|^{2} , extended in a
C^{\infty} way to \overline{B}_{2} so that it is \equiv 0 in a small neighborhood of \partial B_{2} . This function
induces in the double a function U_{n}([x, y])= \max\{U(x, y), U(\psi_{n}(x, y))\} , in
[\triangle_{n}] ; and U_{n}(x, y)=U(x, y) outside [\triangle_{n}]=\{[(x, y)]|(x, y)\in\triangle_{n}\} . We

serve that U_{n} is C^{\infty} except along S_{r_{n}} , where it is continuous and has r_{n}^{2}

as its minimum value.

2.5. Estimatives on the double
In the double of \mathcal{F}_{n} , (say \mathcal{F}_{n}^{d} on (\mathbb{C}P(2)-\cup B_{j})_{d} ), we consider a her-

mitian metric (fixed independently of n) defined outside \varphi_{n}^{-1}(\overline{B}_{2}) , which
extends also as an hermitian metric, being |dx|^{2}+|dy|^{2} in \varphi_{n}^{-1}(B_{1}\backslash \triangle_{n}) .
The Laplacian of U in the region between B_{1} and \triangle_{n} is Lap U\equiv 2 . If
t_{n}>0 is small enough then we can extend this metric to [\triangle_{n}] in such a way
that the smoothing of U has Laplacian \geq 3/2 in [\triangle_{n}] .

Let \mu_{n} be an harmonic probability associated to this double, let D_{1}^{(n)}

be the region inside B_{1} (including [\triangle_{n}] ) and D_{2}^{(n)} be the complement of B_{1} .
Let us denote by M_{n}^{d} the double associated to \mathcal{F}_{n} , i.e., M_{n}^{d}=D_{1}^{(n)}\cup D_{2}^{(n)}

Then:

0= \int_{M_{n}^{d}} Lap Ud \mu_{n}=\int_{D_{1}^{(n)}} Lap Ud \mu_{n}+\int_{D_{2}^{(n)}} Lap Ud\mu_{n}

Therefore

\int_{D_{2}^{(n)}} Lap Ud \mu_{n}=-\int_{D_{1}^{(n)}} Lap Ud \mu_{n}\leq-\frac{3}{2}\mu_{n}(D_{1}^{(n)})
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Let c>0 be such that Lap U|_{D_{2}^{(n)}}\geq-c (recall that \mathcal{F}_{n} -arrow \mathcal{F}). Then
-c \mu_{n}(D_{2}^{(n)})\leq-\frac{3}{2}\mu_{n}(D_{1}^{(n)}) so that c \mu_{n}(D_{2}^{(n)})\geq\frac{3}{2}(1-\mu_{n}(D_{2}^{(n)}) and finally
\mu_{n}(D_{2}^{(n)})\geq\frac{\frac{3}{2}}{\frac{3}{2}+c} . Therefore \mu has nontrivial support outside B_{1} .

On \mathbb{C}P(2) we define a probability \mu_{n} from the above one, by taking
it as zero on the Borelians of the interior of X_{-t_{o}}^{(n)}(S_{r_{n}}) . Let \mu_{n}

-arrow\mu , up
to passing to a subsequence. Then \mu is a harmonic probability such that
\mu(D_{2}^{(n)})\geq\alpha>0 . This shows Proposition 2.1 \square

3. Existence of an algebraic leaf

Here we prove the existence of an algebraic leaf for \mathcal{F} as in Theorem C.
Our main inspiration comes from [1], nevertheless the techniques may differ.
Consider the harmonic probability measure \mu given in Proposition 2.1. Such
a measure can be decomposed as a product of a holonomy invariant trans-
verse measure with the area form along the leaves; provided that (see [10],
[9] ) \mu ( \{p, L_{p} admits a nonconstant negative harmonic function}) =0. Wc
take \phi\neq K\subset \mathbb{C}P(2)\backslash sing \mathcal{F} as the support of \mu|_{\mathbb{C}P(2)\backslash sing\mathcal{F}} . Notice that
by Proposition 2.1 K\neq\emptyset . Since the leaves of \mathcal{F} are parabolic and therefore
do not support negative (sub)harmonic functions, the remark above applies
to give us a holonomy invariant transverse measure \mu’ on \mathbb{C}P(2)\backslash sing \mathcal{F} ,
satisfying K=Supp(\mu’) . We denote by \mathcal{M} the closure of K on \mathbb{C}P(2) . Let
L\subset \mathcal{M} be any leaf of \mathcal{F} . We want to prove that either \overline{L} is an algebraic
invariant curve on \mathbb{C}P(2) , or it accumulates some singularity with a sepa-
ratrix contained in some algebraic leaf. First we notice that \overline{L}\cap sing\mathcal{F}\neq\emptyset :
In fact, otherwise \overline{L}\subset \mathcal{M} contains a nontrivial minimal set of \mathcal{F} on \mathbb{C}P(2) .
But this is not possible because the measure \mu induces a holonomy invari-
ant transverse measure supported on \mathcal{M} , which is not possible by [2]. Thus
we may choose a singular point q\in sing\mathcal{F}\cap\overline{L} , that can be written as
xdy-\lambda ydx+h.0.t=0 for some local coordinates (x, y)\in U centered at q .
We may also assume that (x=0)\cup(y=0) contains the local separatrices of
\mathcal{F} at q and (y=0) is actually a separatrix. Denote by L_{q} the leaf of \mathcal{F} that
contains the separatrix (y=0) . Let us fix local transverse disk \Sigma : (x=1)
to \mathcal{F} , \Sigma\cong D , \Sigma\cap(y=0)=q_{1} , and let h : (\Sigma, q_{1}) – (\Sigma, q_{1}) , be either
the local holonomy associated to q (in case q is a hyperbolic, Martinet-
Ramis or Poincar\’e-Dulac singularity) or the holonomy map associated to
a hyperbolic, Martinet-Ramis or Poincar\’e-Dulac singularity having a local
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separatrix contained in L_{q} . We will prove:

Lemma 3.1 Let q\in sing\mathcal{F} be accumulated by L. Then locally around q,
\overline{L} is contained in the union of the two separatrices of \mathcal{F} at q . In particular
\overline{L} is an analytic subset of \mathbb{C}P(2) of dimension one.

Proof We fix local coordinates (x, y)\in U as above. We may reduce our
argumentation to the following cases:

(i) \lambda\in \mathbb{C}\backslash \mathbb{R} : In this case the singularity is linearizable and the same
holds for h so that we may assume that h(y)=\nu.y , for \mathfrak{l}J=\exp(2\pi i\lambda) , with
|\nu|<1 . It follows that h maps a disk D_{1}\subset D into a smaller disk D_{2}\subset D_{1}

and therefore the measure \mu restricted to \Sigma , vanishes outside the origin, so
that Supp(/i)\cap \Sigma =\{0\} . Thus \overline{L}\cap U must be contained in the union of
separatrices of \mathcal{F} at q .

(ii) q is a Martinet-Ramis singularity: A well-known consequence of
the saddle-like behaviour of these type singularities, (see [16] for instance)
is the following:

Lemma 3.2 If a leaf L_{1} of \mathcal{F} accumulates the singularity q then, either it
is locally contained in the union of separatrices of \mathcal{F} at q , or it accumulates
some of these separatrices.

Let us assume that L is not locally contained in the union of separatrices
of \mathcal{F} at q . We regard the intersection L\cap\Sigma . We already know (Lemma 3.2)
that L\cap\Sigma accumulates the origin 0\in\Sigma . Choose a flow-box neighborhood
V\cross D_{1} where D_{1}\subset\Sigma is a subdisk, and V\subset(y=0) is a small disk centered
at 0\in\Sigma . We may assume that in some coordinates (u, v) in V\cross D_{1} , the
foliation \mathcal{F}|_{V\cross D_{1}} is given by v=cte . In particular, if L_{1} is any leaf of
\mathcal{F} which intersects V\cross D_{1} , then L_{1} contains a plaque v=cte and may
prolonged to outside V\cross D_{1} . We know from [17] that the holonomy local
diffeomorphism h\in Diffff(D_{1},0) associated to a separatrix of \mathcal{F} through q has
the following property: there are invariant sectors U_{\theta}\subset D_{1} , with 0\in\overline{U_{\theta}}\backslash U_{\theta} ,
\theta\in(0,2\pi) , where h behaves like an attractor. In particular, given a small
open disk D\subset U_{\theta} we have that h^{n}(D)\subset U_{\theta} is a sequence of disks converging
uniformly to the origin, and also h^{n}(D)\cap h^{m}(D)=\emptyset if n\neq m . If we take
such a disk D with D\cap L\neq\emptyset then \mu(V\cross D)=\epsilon>0 because L\subset Supp(\mu) .
Also we have \mu(V\cross h^{n}(D))=\epsilon because the measure \mu|_{L} is a product
measure and is invariant by holonomy. Finally, [V\cross h^{n}(D)]\cap[V\cross h^{m}(D)]=\emptyset

if n\neq m .
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(iii) q_{0} is a Poincare’-Dulac singularity. This case is similar to the
preceeding case, it uses the fact that the local holonomy of q_{0} must be
tangent to the identity but nontrivial.

This all implies that (since L is not contained in the union of 1()cal

separatrices of \mathcal{F} at q) the leaf L has infinite area for the fixed Riemannian
metric. This is an absurd because \mu is a probability measure. This ends
the proof of Lemma 3.1. \square

Lemma 3.1 shows that there is a leaf L whose closure \overline{L} is an analytic
dimension one subset ot \mathbb{C}P(2) . Using Chow’s Theorem [11] we conclude
that \Lambda=\overline{L} is an algebraic leaf of \mathcal{F} .

4. Solvable holonomy

In this section we prove that the algebraic leaf in Theorem C has solv-
able holonomy group. Let \Lambda\subset \mathbb{C}P(2) be an algebraic leaf ()f a parabolic
foliation \mathcal{F} . Denote by \Lambda_{o}=\Lambda\backslash sing \mathcal{F} . Then \Lambda_{o} is parabolic anel wc I_{1}avc

two possibilities:
(i) \Lambda_{o} is uniformized by the plane \mathbb{C} . In this case we have clearly \Lambda_{o}\equiv

\mathbb{C}^{*} (because since \Lambda is algebraic invariant it must contain some singularity
of \mathcal{F}), and therefore \pi_{1}(\Lambda_{o})\cong \mathbb{Z} is abelian. It follows that the holonomy of
\Lambda_{o} (denoted by Ho1(\Lambda_{o}) ) is abelian.

(ii) \Lambda_{o} is uniformized by the disc D. In this case we have \Lambda_{o}\equiv D/H

for some subgroup H\subset Diffff(D) , such that H\cong\pi_{1}(\Lambda_{o}) . Thc holonomy
covering \hat{\Lambda}_{o} of \Lambda_{o} is given by H/\hat{H} where H/\hat{H} is a finite extensio n of \mathbb{Z}

and \hat{H} is the kernel of the holonomy homomorphism \pi_{1}(\Lambda_{o}) - Diff(C, 0),
[1].

Proposition 4.1 The holonomy group Ho1(\Lambda_{o}) of the leaf \Lambda_{o} is solvable.
Moreover if Ho1(\Lambda_{o}) is nonabelian then the simple singularities of \mathcal{F} in \Lambda

must consist of resonant singularities, i.e. , u)ith rational quotient of eigen-
values.

We use the following lemma.

Lemma 4.2 Let G\subset Diffff(\mathbb{C}, 0) be a nonsolvable subgroup. There exist

f, h\in G such that 1\neq f^{n}\neq h^{m}\neq 1 , \forall n , m\in \mathbb{N} .

Proof. Since G is nonsolvable the derived subgroup [G, G] contains cle-
ends f , h of distinct orders of flatness [7], [19], say f=z+az^{k}+h.0.t. , h=
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z+bk^{l}+h.0.t . Then we have f^{n}=z+naz^{k}+h.0.t. , h^{m}=z+mbz^{\ell}+h.0.t. ,
so that clearly we have 1\neq f^{n}\neq h^{m}\neq 1 . \square

According to the lemma above (since a finite extension of \mathbb{Z} cannot con-
tain two infinity order disjunct cyclic subgroups), it follows that Ho1(\Lambda_{o})\cong

H/\hat{H} must be solvable. This same remark shows that if Ho1(\Lambda_{o}) is non-
abelian, then all flat elements must have the same flatness order (which in
fact shows that the subgroup of commutators [G, G] must be ciclic), and
the nonflat ones must be of finite order and therefore they are linearizable
as rational rotations. By [16], [17] we conclude that the simple singularities
in sing \mathcal{F}\cap\Lambda must be resonant. This proves Proposition 4.1 \square

Fr()m the discussion above we obtain:

Corollary 4.3 Let \mathcal{F} be a parabolic foliation on \mathbb{C}P(2) , with an algebraic
leaf \Lambda . Then the holonomy of \Lambda is solvable.

5. Construction of closed 1-forms and of closed integrating
factors

We^{s} refer to [8], [12] for the notion of transversely formal object over a
divisor on a projective surface.

Proposition 5.1 Let \mathcal{F} be a foliation on a projective surface M and \Lambda\subset

M an algebraic leaf Assume that sing \mathcal{F}\cap\Lambda consists of simple singularities,
Poincar\’e-Dulac singularities and saddle-nodes in good-position. Let \mathcal{F} be
given by a rational 1-form \omega on M

(i) If the holonomy of \Lambda is abelian then \omega admits a transversely formal
integrating factor \hat{h} over \Lambda , i.e.,\hat{h} is a transversely formal function over
the divisor \Lambda , such that \frac{\omega}{\hat{h}} is closed.

(ii) If the holonomy of \Lambda is solvable then \omega admits a transversely
formal closed integrating factor \hat{\eta} defined over \Lambda , i.e.,\hat{\eta} is a transversely
formal 1-form over \Lambda , closed, with simple poles and such that d\omega=\hat{\eta}\wedge\omega .

Proof. We give here just the main ideas. Further details are found in
[8], [4], they also come from a careful reading of [20]. We may assume for
simplicity that the polar set of \omega is transverse to \Lambda , and cuts \Lambda outside
sing \mathcal{F} . First we recall that according to [16], [17], [18] a nondegenerate
singularity as well as a saddle-node always admits a formal integrating fac-
tor. Moreover, if q_{0} is such a singularity, and \hat{h}_{o} is such an integrating
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factor (defined as a formal expression at q_{0} ), with respect to \omega (that is,
\frac{\omega}{\hat{h}_{o}} is closed as a formal 1-form), then we can extend \hat{h}_{o} as a transversely
formal integrating factor for \omega , over a small disk D_{q_{0}}\subset\Lambda , centered at q_{0} ,
using the resommation properties of the integrating factors along tlle sep-
aratrices for simple and Martinet-Ramis saddle-node singularities. This is
done by means of choosing a local system of coordinates (x, y) , centered
at q_{0} , and such that \Lambda : (y=0) . Then, in these coordinates, we consider
formal expressions \hat{h}_{o}(x, y)=\sum_{j=0}^{+\infty}a_{j}(x)y^{j} , where the a_{j}(x) are also formal
positive series in the variable x . Now, imposing that \hat{h}_{o} is an integrati_{1l}g

factor for \omega , we obtain a differential equation which has a formal solution
as remarked above, and the coefficients a_{j}(x) are in fact analytic functions
of x , in a fixed small disk centered at the origin, this is a consequence of
Briot-Bouquet’s Theorem type argument [8].

Now we proceed: first we assume that Hol(A) is abelian. According to
[8], [20] there exists a transversely formal integrating factor \hat{h} for \omega , (defined
over the open curve \Lambda_{o}=\Lambda\backslash sing \mathcal{F} . We will show that \hat{h} extends in a
transversely formal way to sing \mathcal{F}\cap\Lambda as a consequence of the fact that

\frac{\hat{h}}{\hat{h}_{o}} is a transversely formal first integral for the foliation near q_{0} , that is,

\omega\wedge d(\frac{\hat{h}}{\hat{h}_{o}})=0 as a formal expression. Given any singularity q_{0}\in\Lambda , we have
the following possibilities:

(1) q_{0} is formally linearizable with a holomorphic local first integral.
According to [16] q_{0} admits a holomorphic first integral, and therefore wc
may assume that \hat{h}_{o} is in fact holomorphic in a neighborhood of q_{0} . TIllls

\frac{\hat{h}}{\hat{h}_{o}} extends to q_{0} as a consequence of the fact that it is already defined
over the separatrix through q_{0} tangent to \Lambda_{o} . In fact, we can find analytic
coordinates (x, y) centered at q_{0} , such that (y=0) corresponds to \Lambda , and \mathcal{F}

is given in these coordinates by pxdy+qydx=0 , with p, q\in \mathbb{N} , \langle p, q\rangle=1 .
We take \hat{h}_{o}=xyg where g is the meromorphic function defined by \omega(x, y)=

g.(pxdy+qydx) . Then we have d( \frac{\omega}{\hat{h}_{o}})=0 . Now, the fact that d( \frac{\omega}{\hat{h}})=0 ,

outside (x=0) , implies that d([mathring]_{\frac{\hat{h}}{\hat{h}}})\wedge\omega=0 . Thus \hat{f}=[mathring]_{\frac{\hat{h}}{\hat{h}}} is a meromorphic

first integral for \mathcal{F} along (x\neq 0) , (y=0) . Then \hat{f}=\hat{\varphi}(\hat{f}_{o}) , for some
holomorphic one variable function \varphi\in \mathbb{C}\{z\} , where \hat{f}_{o}=x^{q}y^{p} is a primitive
holomorphic formal first integral for \mathcal{F} at q_{0} and so \hat{f}=\varphi(x^{q}y^{p}) . The fact
that \hat{f} is holomorphic formal along (y=0)\subset\Lambda minus q_{0} , and the fact that
y=0\Rightarrow x^{q}y^{p}=0 , implies that \hat{\varphi} is holomorphic and therefore \hat{f} extends
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holomorphically as \varphi(\hat{f}_{o}) to q_{0} . This shows that \hat{h} extends in a transversely
fo rmal way to q_{0} in thc case \hat{f} is nonconstant. If \hat{f} is constant then the
extension of \hat{h} to q_{0} is immediate.

(2) q_{0} is formally linearizable but admits no formal holomorphic first
integral (called nonresonant). Here \hat{h} extends to q_{0} as a consequence of the
fact that t\dot{n}e quotient \frac{\hat{h}}{\hat{h}_{o}} over a punctured neighborhood of q_{0} in \Lambda , must
bc a transversely formal first integral, and q_{0} admits no such nonconstant
first integrals.

(3) q_{0} is a resonant singularity but not formally linearizable (simple
Martinet-Ramis singularity). In this case we have (\mathcal{F}, q_{0}) : kxdy+\ell ydx+

h.0 .t. =0 and k , \ell\in \mathbb{N} , (k, \ell)=1 . Once again [mathring]_{\frac{\hat{h}}{\hat{h}}} is a formal meromorphic
first integral for \omega over a punctured disk in \Lambda centered at q_{0} . But the
singularity is supposed to be nonlinearizable, so that its local holonomy
associated to \Lambda is not periodic and so \frac{\hat{h}}{\hat{h}_{o}} must be constant, which implies

that \hat{h}e^{1}xte^{1}11ds formally to q_{0} .
(4) q_{0} is of the form xdy-\lambda ydx+h.0.t . =0 with \lambda=n\in \mathbb{N} and

nonlinearizable. In this case by Poincar\’e-Dulac Theorem [17] there exists
a holomorphic system of coordinates (still denoted (x , y)) that puts q_{0} in
thc fe)rm ydx-(nx+y^{n})dy=0 with \Lambda : (y=0) . Thus we have (\mathcal{F}, q_{0}) :
\frac{dy}{?/}-d(\frac{x}{y^{n}} which is a closed meromorphic 1-form admitting no holomorphic

first integral. Again we find that \hat{h}/\hat{h}_{o} extends must be constant and this
implies the extension of \hat{h} to q_{0} .

(5) q_{0} is a saddle-node in good-position. Here we have use the fact
that the strong manifold is contained in \Lambda and its local holonomy is tangent
to the identity, but nontrivial [18], and therefore leaves invariant no formal
meromorphic function, except the constants. This implies again that \hat{h}

extends to q_{0} as a constant multiple of \hat{h}_{o} .

Now we assume that Hol(A) is solvable nonabelian. Using the tech-
niq\iota les of [8], [20] we obtain a transversely formal closed meromorphic 1-
form \hat{\eta} , defined over \Lambda_{o} , and satisfying d\omega=\hat{\eta}\wedge\omega . Moreover, accord-
ing to [7] we have a formal embedding Ho1(\Lambda)\subset \mathbb{H}_{k} , where by definition
\mathbb{H}_{k}=\{\varphi\in Diffff(\mathbb{C}, 0);\varphi(z)^{k}=\frac{\mu_{\varphi}z^{k}}{1+a_{\varphi}z^{k}}, \mu_{\varphi}\in \mathbb{C}^{*}, a_{\varphi}\in \mathbb{C}\} . The number
k is a formal invariant called the ramification order of the group [7]. The
construction of the 1-form \hat{\eta} gives {\rm Res}_{\Lambda_{o}}\hat{\eta}=k+1[8] , [20]. Fix a singularity
q_{0}\in\Lambda . Using the formal normal forms for q_{0} we may obtain a formal l-form
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\hat{\eta}_{o} at q_{0} , which is a (formal) closed integrating factor for \omega . As above wc
may extend \hat{\eta}_{o} as a transversely formal 1-form over a small disk D_{q_{0}}\subset\Lambda

centered at q_{0} . The difference \hat{\eta}-\hat{\eta}_{o} is a closed multiple of \omega , so that wc
may write it as \hat{h}.\omega for some transversely formal integrating factor \hat{f}\iota()v(^{\backslash }r

D_{q_{0}} . This already shows (according to the above considerations) t11\dot{c}\mathfrak{i}\{\hat{7\int}

extends to q_{0} in a transversely formal way. However we want \uparrow()re^{1r}11ark

that it is possible to choose \hat{\eta}_{o} so that it coincides with \hat{\eta} and wc^{1} rlced this
information later. Again five are the cases to be considered. Wc de tail th\iota^{Y}

following:
(a) q_{0} admits a holo morphic first integral x^{q}y^{p} . Using the rc11lark

above we find \hat{\eta}-\hat{\eta}_{o}=d\hat{\varphi}(x^{q}y^{p}).(q\frac{dx}{x}+p\frac{dy}{y}) for some formal hol()\ln()rplli( .

function \hat{\varphi}(z)\in \mathbb{C}\{\{z\}\} , which shows the extension of \hat{\eta} to q_{0} .
(b) q_{0} is a Martinet-Ramis singularity. According to the i_{I1(^{\backslash }}1u\llcorner b^{\urcorner}i()11

Hol(A) \subset \mathbb{H}_{k} the local holonomy associated to the separatrix S at q_{0}i_{\backslash }s^{B}

(tangent to 1) and formally conjugate to a map of the form \varphi(z)=\underline{z}-T.
(1+rrz^{k})k

In fact, we know that any homography which is not tangent to 1 is 1ineari^{r}/_{\lrcorner}-

able, and on the other hand the linearization on the local holonomy i_{1}np1ic\llcorner s^{Y}

the linearization of the singularity. On the other hand \varphi is the 1_{1()}1()11()111v

of the germ of singularity \omega_{k,\ell}=\ell xdy+ky(1+\frac{\sqrt\overline{-1}}{2\pi}x^{k}y^{\ell})dx=0 . Thus (\llcorner s^{1}c^{1}(^{1}

[17] , [8] ) the singularity q_{0} is formally conjugated to the foliation \omega_{k,l}-- 0 .

Therefore there are formal coordinates (\hat{x},\hat{y}) centered at q_{0} such tlla\dagger ft ) r

some formal meromorphic function \hat{g} , \omega(\hat{x}, \hat{y})=\hat{g}\omega_{k,\ell}(\hat{x},\hat{y}) . Moreover if wc
define \hat{\eta}_{o}=(k+1)\frac{d\hat{y}}{\hat{y}}+(\ell+1)\frac{d\hat{x}}{\hat{x}}+\frac{d\hat{g}}{\hat{g}} , then we obtain d\omega=\hat{r/}_{O}\wedge\omega . Wt^{1}

have \hat{\eta}-\hat{\eta}_{o}=\hat{h}.\omega for some formal expression \hat{h} which satisfies d(\hat{h}.\omega)=() .

On the other hand, we know that by construction {\rm Res}_{\Lambda_{o}}\eta=k+1 , so that
\hat{h}.\omega is closed, and holomorphic along \Lambda_{o}\backslash \{q_{0}\} . Since the singularity q_{0} is
of the (nonlinearizable) formal normal form above, it follows that \hat{f}\iota.\omega=0 .

Therefore we extend \hat{\eta} as \hat{\eta}_{o} to q_{0} .
(c) q_{0} is a Poincar\’e-Dulac normal form. In this case we have \omega(x, y)=

gy^{n}( \frac{dy}{y}-d(\frac{x}{y^{n}})) for some meromorphic function g and some local holorrl()r-

phic chart (x, y) , with \Lambda : (y=0) . We define \hat{\eta}_{o}:=\frac{dg}{g}+n\frac{dy}{y} . Then th(^{Y}

difference \hat{\eta}-\hat{\eta}_{o} must be of the form c.(( \frac{dy}{y}-d(\frac{x}{y^{n}})) for some constant (. \in \mathbb{C} .
Since \hat{\eta} and \hat{\eta}_{o} have simple poles on \Lambda it follows that c=0 and \hat{\eta}=\hat{7/}0 .

(d) q_{0} is formally linearizable but admits no holomorphic first inte gral.
In this case we choose formal coordinates (x, y) such that \omega(x, y)=g(xdy-

\lambda ydx) with \lambda\in \mathbb{C}\backslash \mathbb{Q} and g formal meromorphic. We define \hat{\eta}_{o}=\frac{dg}{g}+c): \frac{dx}{x}-\vdash
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ff \frac{cl\iota/}{l/}.\cdot ft)r\alpha , (f \in \mathbb{C}sa1i\llcorner s^{\tau}fying\alpha+\mathcal{B}\lambda=1+\lambda . Then \hat{\eta}_{o} is a closed integrating
f_{d}. (^{\backslash }[()r for \omega(x, y)[21\rceil, [3] . ()11t1_{1}‘ s other hand \hat{\eta}-\hat{\eta}_{o}=f(\frac{dy}{y}-\frac{dx}{x}) for some
f\cdot()1^{\cdot}111_{\dot{\zeta}}11111C\Gamma()rn()r1)1\iota ic ftlnctiorl tllatsatisf_{\grave{1}}esdf\wedge(\frac{dy}{y}-\frac{dx}{x})=0 . Since \lambda\not\in \mathbb{Q}

‘\partial ft)rrIl\acute{\epsilon}il(.()nl\bm{I})utation s_{k}^{\gamma}ht)ws^{t} that f=c\in \mathbb{C} is constant and we conclude
t11\dot{\epsilon}1\uparrow’\int‘\backslash Xt(^{1}I1(1kb^{1}t()q_{0} .

(t^{Y}) q_{()}is_{k}^{\urcorner}.\partial saclellc-node in gr)oo1-position. We have in analytic coor-
( 1i11^{\cdot}\partial t‘\backslash ,s^{1}(\mathcal{F}, q_{0}) : X^{k+1}dY-Y(1+\lambda X^{k})dX+(h.0.t.)dX=0 with (Y=
()) \subset\Lambda . We^{1} nl\dot{\epsilon}ly(.1_{1}oo‘\backslash ^{T}c^{1} fe)rnlal coordinates (x, y) at q_{0} such that give
\omega-.(/(.l^{l^{y+1}}.dt/-\backslash |/(1+\lambda.c^{1)})d:x\cdot)[18], alld X|x as formal expressions. Take
\eta()--r\frac{l(_{(J}r^{pr}}{qrl^{)}T}\frac{+1!/}{1_{t/}}\underline{)} . Sir1(.(^{1} (10 is i_{11}gr ) ()d position, \Lambda contains the (strong) separa-
t_{1}\cdot ix (.l\cdot-- ()) 1 11(^{1}I1t1_{1(^{1}}1()c\dot{t}\{1ho1011()n_{1}y being embeddable in \mathbb{H}_{k} implies that
\lambda--()\dot{c}111(1p=k[4] . This gives {\rm Res}_{\Lambda}\hat{\eta}_{o}=k-\tau^{I}1 and therefore the difference
\hat{\prime}, -7_{()}\hat{l} is lllJl ()lrl()rI)hit \cdot (1)ofh1-forms have simple poles) over D_{q_{0}}-\{q_{0}\} .
T1_{1}\iota\iota s this r1if1^{\cdot}c^{1}r(^{l}n(.c must \})e zero. In particular the residues of the form \hat{\eta}

il r‘\backslash A\cdot\dot{(}:r1(11 .
W’(^{1}t1_{\dot{\zeta}}1V(^{1}\{1_{1t^{1}r}‘ 1ft)r(^{1}(.()1lStrue\cdot teol\hat{\eta} over the curve \Lambda as in the statement.

’\Gamma 11i_{\backslash }*^{\urcorner}1)1^{\cdot}()vt_{\iota}^{\backslash }t^{1}th(^{1}I)rol)()sifion . \square

6. Proof of the main results

It f()11()W_{\iota}b^{1}f\cdot r()111[4] , [ 8\rfloor tllai, since \mathbb{C}P(2)\backslash \Lambda is a Stein manifold [25],
Ifi1^{\cdot}()11\subset.1k\dot{c}1-\perp\backslash 4a\{Lb^{1}11II1ur\cdot dt11t^{Y}t)rcrll [12] asserts that both \hat{h} as well as \hat{\eta} , con-
c\backslash ^{t}tr11t.t(^{Y}(1irlP_{1^{\cdot}()}1)()_{b}s^{\tau} if irJll 5.1, (^{1}xte^{3}11d meromorphically to \mathbb{C}P(2) . This already
I)1^{\cdot}()\backslash ’(_{t}^{Y}b^{1}T11(^{1}()rc^{1}1Y1 E. Tll‘ Y()re\ln D is proved as follows:

Le mma 6.1 Lct\mathcal{F} , \Lambda b_{f_{J}^{J}} as ’in Theorem D. Assume that Hol(A) is non-
af)clian , t,fien \hat{\eta} has entire residues and poles of order one on \mathbb{C}P(2) .

I^{)}7^{\cdot}()()f. Ir1f\cdot act , according to the last part of Proposition 4.1 we may assume
t1_{1}.at\dot{\zeta}111t1_{1(^{Y}}ts^{\tau}iInp1^{3}‘singularities q_{0}\in\Lambda are resonant of Martinet-Ramis type.
\prime rl\downarrow\iota\iota swc^{\backslash }.i\iota 1ks^{t}t have to observe that from the proof of Proposition 5.1 above, it
fi)11()ws t11\dot{c}1\{\hat{\eta}11a_{\backslash }s^{\tau} simple poles and entire residues, all of these along \Lambda and
t11()b_{k}^{\tau}()1)_{\dot{C}}1\Gamma\dot{c}Jtrie\cdot c_{\subset}s^{1} t1_{1ro11}g^{r}h these points q_{0} which are transverse to \Lambda (notice
t1l_{\dot{C}}l\{(_{\dot{\zeta}}.)_{\llcorner}\backslash ^{\urcorner} ( \backslash ^{1}(‘ d) and (d) are excluded). \square

It f()11()wsfr()111 the lellllna above that if the holonomy of \Lambda is nonabelian
\dagger 11t^{1}11W() (.a11 ()t ) tairl\hat{\eta} with simple poles and entire residues on \mathbb{C}P(2) . The
I11{ ( gr.d tioll L\epsilon^{1}rnn1a[5]iml)lies therefore that \hat{\eta} is of the form \hat{\eta}=d\log(R)
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for some rational function R on \mathbb{C}P(2) . Thus it is clear that d( \frac{\omega}{R})=0 . The
proof of Theorem D is finished. Notice that this argumentation together
with the result of section 3 implies Theorem C.

Now we proceed the proof of Theorem B. According to Theorem E\mathcal{F}|_{\mathbb{C}^{2}}

is given by a polynomial 1-form \omega which admits a closed integrating factor
\eta . We have two possibilities of argumentation: (1) since the singularities of
\mathcal{F} are simple it follows that (\eta)_{\infty} contains some algebraic leaf \Gamma such that
{\rm Res} r\eta\not\in\{2,3,4, \ldots\} and therefore the holonomy of \Lambda is abelian linearizable
(see [21]) which implies that \mathcal{F} is logarithmic [21], [3]; (2) using the fact
that the singularities of \mathcal{F} are simple we may conclude as in [21] that the
invariant part of (\eta)_{\infty} is a nodal curve S (recall that a simple singularity
exhibits two transverse separatrices) that satisfies the equality in Poincar\’e
Problem \deg(S)=\deg(\mathcal{F})+2 where \deg(\mathcal{F}) is the degree of \mathcal{F} (see [6], [21]).
Thus using the main result of [6] we conclude that \mathcal{F} is logarithmic. This
ends the proof of Theorem B.

Finally, we prove Theorem A. According to Theorem C\mathcal{F} is given by a
closed rational 1-form and therefore it has some algebraic leaf [3]. It follows
from Theorem B that \mathcal{F} is logarithmic. Using the fact that a Martinet-
Ramis singularity cannot be defined by a simple poles closed 1-form [3], we
conclude that there are no Martinet-Ramis singularities. Therefore \mathcal{F} has
only hyperbolic singularities and must be linear as in [1]. Theorem A is now
proved.

Let us give an application of our results to the study of holomorphic
flows on \mathbb{C}^{2} . Holomorphic flows on a Stein surface have been studied by
Suzuki in [27]. Our contribution is the following (a singularity is dicritical
if it has infinitely many separatrices):

Corollary 6.2 Let X be a complete polynomial vector field on \mathbb{C}^{2} and
denote by \mathcal{F} the corresponding foliation on \mathbb{C}P(2) .

(i) If L_{\infty} is noninvariant then \mathcal{F} admits a rational first integral.
(ii) Assume that L_{\infty} is invariant. If sing \mathcal{F}\cap L_{\infty} contains some dicrit-

ical singularity then X admits a meromorphic first integral. If sing \mathcal{F}\cap L_{\infty}

consists of simple singularities then \mathcal{F} is given by a closed rational l-form
If the singularities in L_{\infty} are simple, Poincar\’e-Dulac and saddle-nodes in
good position then \mathcal{F} admits a rational closed integrating factor.
Proof. Since \mathbb{C}^{2} contains no compact complex Torus the orbits of X
must be diffeomorphic to \mathbb{C} or \mathbb{C}^{*} and \mathcal{F} is parabolic. If the line at infinity
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L_{\infty} is noninvariant then there exists a rational first integral ([23]). Thus
we may assume that L_{\infty} is an algebraic leaf of \mathcal{F} . If L_{\infty} contains some
dicritical singularity then the generic leaf is diffeomorphic to \mathbb{C}^{*}[23] and
\mathcal{F}|_{\mathbb{C}^{2}} admits a meromorphic first integral [27]. It remains to consider the
case L_{\infty} contains only singularities as in Theorem D. Using Theorems D

and E we complete tfie proof. \square

Before finishing this paper we would like to state a conjecture:

Conjecture 6.3 Let \mathcal{F} be a parabolic foliation on \mathbb{C}P(2) . Then we have
the following possibilities:
(i) \mathcal{F} admits a rational first integral
(ii) \mathcal{F} is given by a closed rational l-form
(iii) \mathcal{F} admits a closed rational integrating factor and is a rational pull-back

of a Bernoulli foliation.
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