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A remark on parabolic projective foliations
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Abstract. In this paper we consider parabolic foliations on the complex projective plane
CP(2). Tt is known that if such a foliation has only with hyperbolic singularities then
it must be linear after some rational change of coordinates [1]. Our results enforce the
idea that projective parabolic foliations with nondegenerate singularities must be linear
in the above sense. We prove that if we relax the hypothesis of hyperbolic singularities,
allowing also Martinet-Ramis type singularities (definition in §1), then the foliation is
also linear hyperbolic. This same conclusion holds for a parabolic foliation with simple
singularities and having an algebraic leaf. If the algebraic leaf contains singularities which
are either simple nonresonant, Martinet-Ramis and Poincaré-Dulac resonant singularities,
or saddle-nodes in good-position (see §1) then the foliation is given by a closed rational
1-form. Several examples and an application to complete polynomial vector fields on C?

are given.
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1. Introduction

Let X be a polynomial vector field on the affine space C2. Since X is
algebraic its local flow induces a singular (holomorphic) foliation by curves
F on the projective space CP(2), and any foliation by curves on CI(2) is
obtained this way. The leaves of F are open Riemann surfaces and their
generic conformal type may (in some cases) be related to F, and therefore
to X.

A remarkable class of Riemann surfaces is the one of parabolic surfaces.
A Riemann surface R is parabolic if it does not admit nonconstant necga-
tive subharmonic functions or equivalently does not admit a (finite) Green
function, ([26], [30])). Examples are punctured compact Riemann surfaces
and closed Riemann surfaces minus zero logarithmic capacity subsets.

A foliation by curves F is a parabolic foliation if its leaves are parabolic
Riemann surfaces with the induced conformal structure. An outstanding
theorem of M. Suzuki states that a parabolic foliation with proper leaves
on a Stein surface has a meromorphic first integral:
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Theorem 1.1 [26] Let F be a holomorphic foliation by curves on a Stein
space X*? of complex dimension 2. Assume that the leaves of F are properly
embedded and that the set P(F) = {p € X*\sing F | L, is parabolic} has
positive transverse logarithmic capacity. Then F is parabolic and admits a
nonconstant meromorphic first integral on X.

In this paper we regard the problem of classifying parabolic foliations
on CP(2). This problem has also been considered in [1] where we find the
following result:

Theorem 1.2 [1] Let F be a foliation with hyperbolic singularities on
CP(2). Assume that the set P(F) = {p € CP(2)\sing F | L, is parabolic}
has positive transverse logarithmic capacity. Then F is parabolic and there-
fore it is a linear hyperbolic foliation xdy — Aydx = 0, A € C\R for some
affine chart (x,y) € C* C CP(2).

Let X be a holomorphic vector field on a neighborhood of the origin 0 €
C?, with an isolated singularity at 0. We consider the foliation F defined by
X in a neighborhood of the origin. The singularity is called nondenegerate
if the linear part DX(0) is nonsingular. In this case we may write F :
zdy — Aydz + h.o.t. = 0, for some A € C*. When A € Q the singularity
will be called resonant. A nondegenerate singularity is called simple if
A ¢ Q. A simple singularity exhibits exactly two (smooth and transverse)
separatrices [16]. If A € C\ R_ the singularity is in the Poincaré domain
and the leaves of F are transverse to the small 3-spheres S?(0) centered at
the singularity. If A € R_ then it is in the Siegel domain and exhibits a
saddle-like behaviour: if a local leaf (which is not a separatrix) accumulates
the singularity then it accumulates both separatrices. The singularity is
hyperbolic if A ¢ R. Hyperbolicity implies linearization of the foliation
around the singular point [16]. The Reduction Theorem of Seidenberg
gives two final types of singularities for holomorphic foliations in dimension
2: (i) simple singularities (ii) saddle-node singularities of the form yP*!dz —
[z(1+ AyP) +h.o.t.Jdy =0, N> p>1. Wecall (y = 0) the strong separatriz
of the saddle-node.

If A or A7 € N the singularity is either linearizable or can be put in
the (analytic) Poincaré-Dulac form: zdy — (ny + z™)dx = 0 [17]. In this
last case there exists only one separatrix, its holonomy map is tangent to
the identity and nonperiodic.
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Definition 1.3 (Martinet-Ramis singularity) A germ of nondegenerate
singularity will be called of Martinet-Ramis type if A € Q_ and the singu-
larity is not linearizable®.

We recall that an algebraic leaf for a foliation on an algebraic surface is
an algebraic invariant curve (assumed to be irreducible).

Definition 1.4 [4] Let A be an algebraic leaf of F. A germ of saddle-
node singularity ¢ € A Nsing F is in good position (with respect to A) if its
strong separatrix is contained in A.

Finally, we recall the definition of the Robin constant [29]: Given a
Riemann surface R and a point € R, the Robin constant A\(z), of R with
respect to the point z is defined by the equation:

Go(2) = —loglpz(Z)] + A(x) + he(p2(2))

where ¢,(Z) is a local parametrization of a neighborhood of z € R onto a
disk D C C, pz(z) = 0, hy(w) is a harmonic function on D, with h,(0) = 0,
and G(Z) is the Green function of R with pole on z. Clearly A(x) depends
on the local chart, but the fact that A(z) = 400 or not, does not depend.
By definition R is parabolic if and only if A(z) = +oo.

Examples of parabolic foliations are given by linear foliations, rational
foliations (with rational first integrals) and by Bernoulli foliations as in the
example below.

Example 1.5 Let F be a Bernoulli foliation on C x C, that is, F : w =
p(z)dy — (y*a(x) + yb(z))dz = 0 in some affine chart (z,y) € C> ¢ CxC.
We can assume that k = 1, since the finite ramified covering (z, y) — (z,y")
does not affect the parabolicity of the leaves (Lemma 1.8 below). Now, since
F is a particular case of a Riccati foliation ([3]) it follows that the leaves
of F are either invariant vertical lines (given on C? by p(x) = 0) or are
transverse to the vertical fibration 7(x,y) = x. In fact, given any leaf L of
F, the restriction 7|, : L — m(L) C C\sing F is a covering map [15]. This
shows that F has parabolic leaves in the case #{sing FN(y = 0)} < 2. The
horizontal line (y = 0) is invariant. If F has nondegenerate singularities
on C x C, then a(z), b(x) must be constant, so that F is given by a closed

rational 1-form, namely w = aykf?il oy +p‘f£‘ﬁ) . On the other hand in general, a

'This is equivalent to the fact that the local holonomy of any separatrix is not periodic

16).
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Riccati foliation F : p(x)dy— (a(x)y*+b(x)y+c(z))dz = 0, is not a parabolic
foliation. In fact, mostly if ¢(z) # 0, then there exists no algebraic invariant
curve transverse to the invariant vertical lines. Thus the holonomy group
of the line (y = 0), (sec [15] for a definition), is a subgroup of PSL(2;C)
without fixed pomts, and free. However, except for a countable set of leaves,
the leaves have trivial holonomy. Therefore, using the projection (z,y) — z,
we conclude that the generic leaf is simply-connected and thus (by Picard’s
Theorem) it is diffeomorphic to the disk D.

Example 1.6 Consider a polynomial Poincaré-Dulac form F : w = zdy —
(A\y + 2M)dz = 0, A € N, on C2. To this 1-form we associate the vector
field X = :L‘a'—(; + (Ay + a:A)a%. The affine leaves of F are the orbits of X.
Using the flow of X we can parametrize the orbits and conclude that they
are all diffeomorphic to C except for the one contained on (z = 0), which
is diffeomorphic to C*. F is parabolic on CP(2) and is given by the closed

o . N w Y\ _ dz
rational 1-form —% = d( %) — 2

Example 1.7 Let F be a logarithmic foliation on CP(2) [21], say F|p2 is
given by

T T d
w = (Hfl) Z/\J J{J =
i=1 J

where f; is a polynomial, A; € C*, and CP(2)\C? is generically transverse to
F. According to the Residue Theorem we know that Y77, A;.deg(f;) =0,

) w f;ieE(fl) Ao fdeg(fl) Ar .
so that € := T 7 = dlog<<m> (?’{“—i;am) ) is closed. In
1= 1

particular, if » = 3 then w is the rational pull-back by = : CP(2) —

fdeg(fl) deg(f1) ) )
CP(2), m(z,y) = (Jfgmz—)(:c,y), W(m,y)) of the linear (parabolic) fo-

liation L : Ag‘—f—f -+ )\3% = (. It follows from the lemma below that F is
(in this case r = 3) a parabolic foliation. On the other hand, by Poincaré’s
Lemma F may have nonhyperbolic singularities (outside the polar set of
), with holomorphic first integral.

Lemma 1.8 Let 7 : S — S be a proper holomorphic mapping where S
and S are Riemann surfaces. Then, S is parabolic if, and only if, so it is

S.

Proof. If S is not parabolic then we have two possibilities: If S is compact
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then since = is proper it follows that S is also compact and therefore it is not
parabolic. If S is hyperbolic, i.e, if there exists a nonconstant holomorphic
mapping f : S — D, then clearly there exists a nonconstant holomorphic
mapping fox: S — D, so that S is hyperbolic. Conversely, let us assume
that S is not parabolic. If S is compact then so it is S. Thus we may assume
that S is hyperbolic. In this case, there exists a nonconstant holomorphic
mapping f : S — D. On the other hand, the proper mapping 7 is a
finite ramified covering, i.e., there exists a discrete subset B C S, such that
Wig\w—l(B) : S\r~1(B) — S\B is a finite covering of order say r € N. We
fix a symmetric function o € C|zy,...,z,], of the r variables z,,...,z,,
and an arbitrary point p € S\B. Using o and f we define a germ of
holomorphic mapping f7 : U, C § = C, as fy(z) = o(f(z1),..., f(z)),
where {z1,...,2.} = 7 !(2). Standard arguments on analytic functions
(as Riemann’s Extension Theorem) show that these mappings fy glue and
extend into a global holomorphic mapping f° : § — C. Since f (S) C D,
it follows that f” is bounded. Now, it is easy to see that some f° must
be nonconstant (otherwise f would be constant) and this shows that S is
hyperbolic. L]

Our main results are as follows:

1.9 Theorem A Let F be a parabolic foliation on CP(2) having hyper-
bolic and Martinet-Ramis singularities. Then F is a linear hyperbolic foli-
ation zdy — Aydz = 0, A € C\R in some affine chart (z,y) € C* C CP(2).

This result enforces the idea that the only parabolic foliations on CP(2)
with nondegenerate singularities are the linear. In addition we have the
following result (see Example 1.7):

1.10 Theorem B Let F be a parabolic foliation with simple singulari-
ties on CP(2) having an algebraic leaf. Then F is logarithmic.

Examples of foliations considered in Theorem C below may be produced
by taking linear hyperbolic foliations on CP(2) and performing pull-back
by rational maps 7 : CP(2) — CP(2) (Lemma 1.8).

1.11 Theorem C Let F be a parabolic foliation with nondegenerate sin-
gularities on CP(2) such that any leaf containing a separatriz, contains the
separatriz of a hyperbolic, Martinet-Ramis or Poincaré-Dulac singularity.
Then F has an algebraic leaf A with solvable holonomy. If moreover the
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resonant singularities in A are Martinet-Ramis or Poincaré-Dulac singular-
ities then F is given by a closed rational 1-form.

Example 1.12 Let Fle, : y?dz — (1 +y)dy = 0. Wecall A: (y=0) C
CP(2). Then singF N A = {0,po} wWhere po, appears in the line at the
infinity and is a Poincaré-Dulac form (u + v)dv — vdu = 0 for (u,v) =
(1/z,y/x). It follows that F is parabolic and given by a closed rational
1-form which is not logarithmic (Example 1.6). The singular set sing F N A
satisfies the conditions of the following theorem:

1.13 Theorem D Let F be a parabolic foliation on CP(2) having an
algebraic leaf A. Assume that the resonant singularities in A are Martinet-
Ramis or Poincaré-Dulac singularities, and that the degenerate singularities
are saddle-nodes in good-position. Then F is given by a closed rational 1-
form.

A closed integrating factor for a holomorphic integrable 1-form w is a
closed meromorphic 1-form 7, with simple poles, such that dw = n A w,
(Moo is invariant. Such a 1-form defines an affine transverse structure for
F :w = 0 outside the (invariant) polar set (1) [21], [3].

1.14 Theorem E Let F be a parabolic foliation on CP(2) having an
algebraic leaf containing simple singularities, Poincaré-Dulac singularities
and saddle-nodes in good-position. Then F |2 is given by a polynomial 1-
form w which admits a rational closed integrating factor .

Example 1.15 Not all parabolic foliations of CP(2) are given by closed
rational 1-forms. Let us consider F : w = zdy—(a(z)y+b(x))dz = 0 in affine
coordinates. Then as it is easy to see from the integration of the associated
vector field, the leaves of F are covered by the plane C and are therefore
parabolic. On the other hand, the 1-form w admits the closed integrating
factor n = 1++(m)dm. F is therefore transversely affine in C? \ {z = 0} [21].
In particular if we write n = dlog H, then we obtain d(%) = 0. In general,
the function H is not rational, that is, in general the foliation F is not
given by a closed rational 1-form. On the other hand, as it is easy to see, F
exhibits degenerate singularities along the invariant line L, = CP(2)\C2.

Example 1.16 This example illustrates a parabolic foliation given by
a closed 1-form, whose algebraic leaves always contain some degenerate
singularity. For relatively prime k,¢ € N we consider the polynomial 1-
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form w = kxdy + fy(1 + ‘/_- y*)dz, which admits the integrating factor

h = zt1yk+1 and gives us the followmg closed rational 1-form —é—llyT W=

d( _Z_k' +log(\/*e )) Thus the leaves of w = 0 are parametrized by

z(t) = zoekt, y(t) = de T 80 that the generic leaf is diffeo-

(14+ Y ktykal) %
morphic to C*. It follows that w = 0 defines a parabolic foliation F on
CP(2). We have s1ng.7-' NC? = {0} and since this singularity is a Martinet-
Ramis normal form [17] it is not linearizable and therefore of Martinet-
Ramis type. On the other hand there are two other singularities (both
degenerate) contained in Lo, which is an algebraic leaf of F. One given by
—kufT dy 4 [(0+ k)vubth + ‘/2“_1£ "1 du = 0 for (u,v) = (1/z,y/z). The

other singularity is of the form —(k + 6) ds | éd’” + \/2:@(? + %) =0,
for (r,s) = (z/y,1/y).

Remark 1.17 From CP(2) to C x C.

Now we make a simple remark, but which is useful in the search of
examples of parabolic foliations (see for instance Example 1.5 above). First
we recall that CP(2) is obtained from C x C by a sequence of one blow-up
and two blow-downs: Given an affine chart (z,y) € C? ¢ C x C, first we
blow-up the point (z = 00,y = 00). The transforms of the lines (z = o)
and (y = oo) have Chern class —1 and can be blowed-down. First we blow-
down the transform of (z = 00). Then we blow-down the transform of the
line (z = 0) to obtain CP(2). Notice that the afine system (z,y) € C? is
“preserved” and we introduce Lo, = CP(2)\C? as an “exceptional curve”
on CP(2). Let us call 0 : CxC — CP(2) such standard morphism. Given a
foliation F on C x C, the morphism o induces a foliation F on CP(2) which
satisfies F = o*F. As it is plain to see, we can assume that o preserves
the singularities of F, and introduces three new singularities. Two of these
are dicritical singularities p;, p2, of the radial type, that is of the local
form zdy — ydz = 0. The remaining singularity ps is holomorphic first
integral type, in particular it is in the Siegel domain. However, by [16], ps
is linearizable and has finite local holonomy. The singularities p1,ps € Loo
come from the lines {0} x C and C x {0}, not completely transverse to F,
and p3 appears in the middle of the “exceptional curve” on CP(2).

Lemma 1.18 The following conditions are equivalent:
(i) F has parabolic leaves.
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(ii) F has parabolic leaves.

(iii) The restriction F* = F |c2 has parabolic leaves, for any affine space
C? C CP(2), such that Ly, = CP(2)\C? is (generically) transverse to
F.

(iv) We have

log capac{p € C?\ sing F*, Ly, is parabolic } > 0
where F* is as in (iii).

Proof.  We consider an affine chart C* C CP(2), such that CP(2) \ C?
18 not invariant by the foliation, and for any leaf L of F we denote by L*
the corresponding leaf of F* as above. We denote by L* the holonomy
covering of the leaf L* on C?, ([26]). Assume (iv). Since except for a
countable set of leaves the leaf L* has trivial holonomy it follows from the
hypothesis that log capac{p € C?\ sing F*, ﬁ is parabolic} > 0. Since C?
is a Stein manifold [25] it follows that {p € (CQ\ sing F*, L* is parabolic} =
C*\ sing F* (]26], [30]). This implies that the leaves of .7-'”k are parabolic.
Now, given any leaf L* of *, we denote by L and L the corresponding leaves
of F (on C x C) and F (on (CP( )) respectively. Then L\L* is discrete on
L. Since a discrete subset has null logarithmic capacity, it follows that L is
parabolic if, and only if L* is parabolic. The same argument shows that L
1s parabolic if, and only if, L* is parabolic. The remaining equivalences can
be found in . This ends the proof of the proposition. L]

Remark 1.19 A well-known theorem of Huber [13], asserts that given
a Riemann surface M, if there exists a complete minimal immersion 1 :
M — R", n > 3, having finite total curvature then M is parabolic. Using
this and our above results one may study polynomial vector fields over C2
whose orbits have bounded geometry with respect to the standard hermitian
geometry of C? [22].

2. Construction of harmonic measures

In this section we construct harmonic measures (with respect to a suit-
able hermitian metric) for a given foliation with nondegenerate singularities
on CP(2). Such measures will be supported also outside the singular set of
F.?

*I am grateful to P. Sad for showing me [Proposition 2.1
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Proposition 2.1 Let F be a foliation with nondegenerate singularities
over CP(2). There exists an harmonic measure j whose support is not
contained in the singular set of F.

2.2. The case of Poincaré type singularities [1]

Let us first assume that F is a foliation on CP(2) and that the singu-
larities are all in the Poincaré domain. We know that in this case the local
leaves around a singularity are transverse to the small spheres centered at
this singularity. This allows the following construction [1]:

Let {p1,...,p,} = singF. Choose small balls B; centered at p; and
construct the double Fy of the restriction F/| P(2)-UB, (see also paragraph
2.4 below). This is a regular C* foliation on a compact real manifold de-
noted My = (CP(2) — UB;)q and its leaves are naturally Riemann surfaces
endowed with the complex structure given by the Schwarz Reflection Prin-
ciple. Moreover (as it is noticed in [1]) these leaves are still parabolic as
a consequence of [14]. Fix a Riemannian metric g on (CP(2) — UB;)q,
hermitian along the leaves of F;. Denote by A = A%< the foliated lapla-
cian associated to the pair (Fg,g). According to [9], we have: Given
any compact Fg-saturated K C (CP(2) — UBj),, there exists a harmonic
measure | whose support is contained in K.

2.3. The general case

Now we consider the general case, i.e., F is a foliation with nondegen-
erate singularities on CP(2). We write sing F = {p1,...,p-} U{q1,...,qs},
where p; is in the Poincaré domain, and g¢; is in the Siegel domain. We con-
sider a sequence of foliations F, on CP(2), with 7, — F, in the usual
topology of the space of foliations [15], and such that F, has all its sin-
gularities in the Poincaré domain. Moreover, we also have for each ¢; a
singularity ¢’ € sing F,,, which converges to ¢;,i € {1,...,s}. Fixed i we
consider compact neighborhoods V,, 3 ¢' and holomorphic diffeomorphims
¢n Vo = By = {(z,y) € C%|z® + |y|* < 2}, pnlg?) = 0, in such a way
that ¢, ! converges uniformly to ¢! : By — V,, V, 3 ¢;, ¢(q;) = 0, and we
can write

(n)«(Fn) : [z + 2An(z, y)ldy — (1 + V=1.00)y + yBu(z, y)lde =0

(©)«(F) : [z + zA(z, y)ldy — [ny + yB(z,y)ldr = 0

where 1 € R_, is the eigenvalue quotient for F at ¢;, 6, #0, §, — 0.
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Then if r, > 0 is sufficiently small, we have that (,).(F;,) is transverse
to the spheres S, = {|z|? + |y|? = r?}, for r < 2r,.

2.4. The double

We take X (™ the holomorphic vector field [z + :cAn(m,y)]g% + [u +
vV—10,)y + yBn(z, y)]a%, which is tangent to (¢n)«(F,), and transverse to
the spheres S, = 9B, for all r < 2r,. We restrict the flow of X to a
real flow Xt(n), with the same transversality property (in fact, Xt(n) “en-
ters” the spheres). We take —t, < t < t,,, for t,, > 0 small enough. We
define ¢, : A, — A, (A, is the region between X(_zl(Sr) and Xt(on) (Sy))
as wn(Xt(n)(z)) = X(_T;)(z), for z € S;,,. Then 1, is of class C** and holo-
morphic along the leaves of (¢n,)«(F,). We define the double of F,, using
the identification given by ,. Given any point (z,y) € A,,, we denote by
[(z,y)] the corresponding point in the double, that is, the equivalence class
of (,y). In B, we consider the function U(z,y) = |z|? + |y|?, extended in a
C* way to By so that it is = 0 in a small neighborhood of 0By. This function
induces in the double a function Uy ([z,y]) = max{U(z,y), U(¢n(z,y))}, in
[An]; and Up(z,y) = U(z,y) outside [A,] = {[(z,y)]|(z,y) € Ap}. We
observe that U, is C* except along Sr,,, where it is continuous and has rfl
as 1ts minimum value.

2.5. Estimatives on the double

In the double of F,,, (say FZ on (CP(2) — UB;)4), we consider a her-
mitian metric (fixed independently of n) defined outside ¢, !(B,), which
extends also as an hermitian metric, being |[dz|? + |dy|? in ;1 (B;\A,).
The Laplacian of U in the region between B; and A, is LapU = 2. If
tn, > 0 is small enough then we can extend this metric to [A,] in such a way
that the smoothing of U has Laplacian > 3/2 in [A,].

Let p, be an harmonic probability associated to this double, let Dﬁ")
be the region inside B; (including [A,]) and Dgn) be the complement of B;.

Let us denote by M¢ the double associated to %, i.e., M2 = D™ U D,
Then:

0 :/ Lap Udu, :/ Lap Udu, +/ LapUduy,
M p{™ p{M
Therefore

3
[ oy apUdin =~ [ LapUdu, < 2, (D)
Dy D! 2
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Let ¢ > 0 be such that LapU| ) > —c (recall that F, — F). Then
2
—c,un(Dén)) < —%,un(Dgn)) so that cun(Dgn)) > 3(1- un(Dén)) and finally
3
,un(Dén)) > 32:5 Therefore p has nontrivial support outside Bj.

2
On CP(2) we define a probability u, from the above one, by taking

it as zero on the Borelians of the interior of X(_TQJ (Sr,). Let p, — p, up
to passing to a subsequence. Then p is a harmonic probability such that
,u(D:(zn)) > o > 0. This shows [Proposition 2.1 ]

3. Existence of an algebraic leaf

Here we prove the existence of an algebraic leaf for F as in Theorem C.
Our main inspiration comes from [1], nevertheless the techniques may differ.
Consider the harmonic probability measure u given in [Proposition 2.1. Such
a measure can be decomposed as a product of a holonomy invariant trans-
verse measure with the area form along the leaves; provided that (see [10],
[9]) u({p, L, admits a nonconstant negative harmonic function}) = 0. We
take ¢ # K C CP(2)\sing F as the support of ,uICP(Q)\SingT_. Notice that
by Proposition 2.1] K # ). Since the leaves of F are parabolic and therefore
do not support negative (sub)harmonic functions, the remark above applies
to give us a holonomy invariant transverse measure p’ on CP(2)\ sing F,
satisfying K = Supp(u’). We denote by M the closure of K on CP(2). Let
L C M be any leaf of 7. We want to prove that either L is an algebraic
invariant curve on CP(2), or it accumulates some singularity with a sepa-
ratrix contained in some algebraic leaf. First we notice that L Nsing F # 0:
In fact, otherwise L C M contains a nontrivial minimal set of F on CP(2).
But this is not possible because the measure p induces a holonomy invari-
ant transverse measure supported on M, which is not possible by [2]. Thus
we may choose a singular point ¢ € sing F N L, that can be written as
zdy — Aydzx + h.o.t = 0 for some local coordinates (x,y) € U centered at q.
We may also assume that (z = 0)U(y = 0) contains the local separatrices of
F at g and (y = 0) is actually a separatrix. Denote by Lg the leaf of F that
contains the separatrix (y = 0). Let us fix local transverse disk ¥ : (z = 1)
to F, X =D, ¥N(y =0) =q1, and let h: (X,q1) — (X,q1), be either
the local holonomy associated to ¢ (in case ¢ is a hyperbolic, Martinet-
Ramis or Poincaré-Dulac singularity) or the holonomy map associated to
a hyperbolic, Martinet-Ramis or Poincaré-Dulac singularity having a local
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separatrix contained in L,. We will prove:

Lemma 3.1 Let q € sing F be accumulated by L. Then locally around q,
L is contained in the union of the two separatrices of F at q. In particular
L is an analytic subset of CP(2) of dimension one.

Proof.  We fix local coordinates (z,y) € U as above. We may reduce our
argumentation to the following cases:

(i) A€ C\R: In this case the singularity is linearizable and the same
holds for h so that we may assume that h(y) = v.y, for v = exp(2miA), with
lv| < 1. It follows that h maps a disk D; C I into a smaller disk Dy C D,
and therefore the measure u restricted to X, vanishes outside the origin, so
that Supp(u) N X = {0}. Thus L N U must be contained in the union of
separatrices of F at q.

(ii) g is a Martinet-Ramis singularity: A well-known consequence of
the saddle-like behaviour of these type singularities, (see for instance)
is the following:

Lemma 3.2 Ifaleaf Ly of F accumulates the singularity q then, either it
is locally contained in the union of separatrices of F at q, or it accumulates
some of these separatrices.

Let us assume that L is not locally contained in the union of separatrices
of F at q. We regard the intersection LNY. We already know (Lemma 3.2)
that L NY accumulates the origin 0 € ¥. Choose a flow-box neighborhood
V x Dy where D; C ¥ is a subdisk, and V C (y = 0) is a small disk centered
at 0 € ¥. We may assume that in some coordinates (u,v) in V x Dy, the
foliation F IVX]D)1 is given by v = cte. In particular, if L; is any leaf of
F which intersects V' x Dj, then L; contains a plaque v = cte and may
prolonged to outside V' x ID;. We know from that the holonomy local
diffcomorphism h € Diff(Dy, 0) associated to a separatrix of F through ¢ has
the following property: there are invariant sectors Uy C Dy, with 0 € Uy \Up,
0 € (0,2m), where h behaves like an attractor. In particular, given a small
open disk D C Uy we have that h™(D) C Uy is a sequence of disks converging
uniformly to the origin, and also h™(D) N h™(D) = @ if n # m. If we take
such a disk D with DNL # 0 then u(V x D) = € > 0 because L C Supp(u).
Also we have p(V x h™(D)) = € because the measure y|; is a product
measure and is invariant by holonomy. Finally, [V xh™(D)]N[V xh™(D)] = 0
if n #m.
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(iii) ¢, is a Poincaré-Dulac singularity. This case is similar to the
preceeding case, it uses the fact that the local holonomy of g, must be
tangent to the identity but nontrivial.

This all implies that (since L is not contained in the union of local
separatrices of F at q) the leaf L has infinite area for the fixed Riemannian
metric. This is an absurd because p is a probability measure. This ends

the proof of [Lemma 3.1. O

Lemma 3.1 shows that there is a leaf L whose closure L is an analytic
dimension one subset ot CP(2). Using Chow’s Theorem we conclude
that A = L is an algebraic leaf of F.

4. Solvable holonomy

In this section we prove that the algebraic leaf in Theorem C has solv-
able holonomy group. Let A C CP(2) be an algebraic leaf of a parabolic
foliation F. Denote by A, = A\sing F. Then A, is parabolic and we have
two possibilities:

(i) A, is uniformized by the plane C. In this case we have clearly A, =
C* (because since A is algebraic invariant it must contain some singularity
of F), and therefore m1(A,) = Z is abelian. It follows that the holonomy of
A, (denoted by Hol(A,)) is abelian.

(ii) A, is uniformized by the disc D. In this case we have A, = D/H
for some subgroup H C Diff(D), such that H = m1(A,). The holonomy
covering A, of A, is given by H / H where H / H is a finite extension of Z
and H is the kernel of the holonomy homomorphism m;(A,) — Diff(C,0),

.

Proposition 4.1 The holonomy group Hol(A,) of the leaf A, is solvable.
Moreover if Hol(A,) is nonabelian then the simple singularities of F in A
must consist of resonant singularities, i.e., with rational quotient of eigen-
values.

We use the following lemma.

Lemma 4.2 Let G C Diff(C,0) be a nonsolvable subgroup. There exist
f,h € G such that 1 # f* #h™ # 1, Vn,m € N.

Proof.  Since G is nonsolvable the derived subgroup [G,G] contains ele-
ments f, h of distinct orders of flatness [7], [19], say f = z+az*+h.o.t., h =



244 B.C.A Scdrdua

z+ bk’ +h.o.t. Then we have f* = z+nazF +h.o.t., A" = z+mbz! +h.o.t.,
so that clearly we have 1 # f™ #£ h™ £ 1. ]

According to the lemma above (since a finite extension of Z cannot con-
tain two infinity order disjunct cyclic subgroups), it follows that Hol(A,) =
H/H must be solvable. This same remark shows that if Hol(A,) is non-
abelian, then all flat elements must have the same flatness order (which in
fact shows that the subgroup of commutators |G, G] must be ciclic), and
the nonflat ones must be of finite order and therefore they are linearizable
as rational rotations. By [16], we conclude that the simple singularities
in sing 7 N A must be resonant. This proves [Proposition 4.1 L]

From the discussion above we obtain:

Corollary 4.3 Let F be a parabolic foliation on CP(2), with an algebraic
leaf A. Then the holonomy of A is solvable.

5. Construction of closed 1-forms and of closed integrating
factors

We refer to [8], for the notion of transversely formal object over a
divisor on a projective surface.

Proposition 5.1 Let F be a foliation on a projective surface M and A C
M an algebraic leaf. Assume that sing FNA consists of simple singularities,
Poincaré-Dulac singularities and saddle-nodes in good-position. Let F be
gwen by a rational 1-form w on M.

(i) If the holonomy of A is abelian then w admits a transversely formal
integrating factor h over A, ie., his a transversely formal function over
the dwisor A, such that £ is closed.

(ii) If the holonomy of A is solvable then w admits a transversely
formal closed integrating factor 7 defined over A, i.e., ) is a transversely
formal 1-form over A, closed, with simple poles and such that dw = n A w.

Proof. ~ We give here just the main ideas. Further details are found in
[8], [4], they also come from a careful reading of [20]. We may assume for
simplicity that the polar set of w is transverse to A, and cuts A outside
sing F. First we recall that according to [16], [17], a nondegenerate
singularity as well as a saddle-node always admits a formal integrating fac-
tor. Moreover, if q, is such a singularity, and ho is such an integrating
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factor (defined as a formal expression at g,), with respect to w (that is,

ﬁi is closed as a formal 1-form), then we can extend h, as a transversely

formal integrating factor for w, over a small disk D, C A, centered at q,,
using the resommation properties of the integrating factors along the sep-
aratrices for simple and Martinet-Ramis saddle-node singularities. This is
done by means of choosing a local system of coordinates (z,y), centered
at go, and such that A : (y = 0). Then, in these coordinates, we consider

formal expressions ho(z,y) = J+:°8 a;(z)y’, where the a;(z) are also formal

positive series in the variable . Now, imposing that h, is an integrating
factor for w, we obtain a differential equation which has a formal solution
as remarked above, and the coefficients a;(z) are in fact analytic functions
of z, in a fixed small disk centered at the origin, this is a consequence of
Briot-Bouquet’s Theorem type argument [8].

Now we proceed: first we assume that Hol(A) is abelian. According to
8], there exists a transversely formal integrating factor h for w, defined
over the open curve A, = A\singF. We will show that h extends in a
transversely formal way to singF N A as a consequence of the fact that

;Li is a transversely formal first integral for the foliation near ¢,, that is,

WA d(h}L) = 0 as a formal expression. Given any singularity q, € A, we have
the foll:)wing possibilities:

(1) g, is formally linearizable with a holomorphic local first integral.
According to go admits a holomorphic first integral, and therefore we
may assume that h, is in fact holomorphic in a neighborhood of gq,. Thus

izi extends to ¢, as a consequence of the fact that it is already defined

over the separatrix through ¢, tangent to A,. In fact, we can find analytic
coordinates (x,y) centered at g,, such that (y = 0) corresponds to A, and F
is given in these coordinates by pxdy + qydx = 0, with p,q € N, (p,q) = 1.
We take ho = zyg where g is the meromorphic function defined by w(z,y) =
g.(pzdy + qydx). Then we have d(ﬁ“’;) = 0. Now, the fact that d(%) = 0,

outside (z = 0), implies that d(ﬁhﬂ) Aw=0. Thus f = %— is a meromorphic

first integral for F along (z # 0), (y = 0). Then f = $(f,), for some
holomorphic one variable function ¢ € C{z}, where fo = x9yP is a primitive
holomorphic formal first integral for F at ¢, and so f = p(x9yP). The fact
that f is holomorphic formal along (y = 0) C A minus g,, and the fact that
y = 0= 2%P = 0, implies that ¢ is holomorphic and therefore f extends
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holomorphically as ¢( fo) t0 go. This shows that h extends in a transversely
formal way to ¢, in the case f is nonconstant. If f is constant then the
extension of A to go is immediate.

(2) g, is formally linearizable but admits no formal holomorphic first
integral (called nonre s’onant) Here h extends to ¢, as a consequence of the
fact that the quotient —‘ over a punctured neighborhood of g, in A, must
be a transversely f()rmal first integral, and ¢, admits no such nonconstant
first integrals.

(3) ¢, is a resonant singularity but not formally linearizable (simple
Martinet-Ramis singularity). In this case we have (F,q,) : kzdy + fydx +
h.o.t. =0 and k,¢ € N, (k,¢) = 1. Once again };L—O is a formal meromorphic
first integral for w over a punctured disk in A centered at ¢,. But the
singularity is supposed to be nonlinearizable, so that its local holonomy
associated to A is not periodic and so ;:—‘— must be constant, which implies

o

that h extends formally to q,.

(4) q, is of the form xzdy — Aydx + h.o.t. = 0 with A = n € N and
nonlinearizable. In this case by Poincaré-Dulac Theorem there exists
a holomorphic system of coordinates (still denoted (x,y)) that puts g, in
the form ydx — (nz + y™)dy = 0 with A : (y = 0). Thus we have (F,q,) :
dl—/y - d(ﬁ which is a closed meromorphic 1-form admitting no holomorphic
first integral. Again we find that h/ h, extends must be constant and this
implies the extension of h to go.

(5) g, is a saddle-node in good-position. Here we have use the fact
that the strong manifold is contained in A and its local holonomy is tangent
to the identity, but nontrivial [18], and therefore leaves invariant no formal
meromorphic function, except the constants. This implies again that h
extends to g, as a constant multiple of ho.

Now we assume that Hol(A) is solvable nonabelian. Using the tech-
niques of , we obtain a transversely formal closed meromorphic 1-
form 7, defined over A,, and satisfying dw = 7% A w. Moreover, accord-
ing to [7] we have a formal embedding Hol(A) C Hi, where by definition
Hy = {p € Diff(C,0);p(2)* = T%’ po € C*, a, € C}. The number
k is a formal invariant called the ramification order of the group [7]. The
construction of the 1-form ) gives Resy, 7 = k+1 [8], [20]. Fix a singularity
do € A. Using the formal normal forms for g, we may obtain a formal 1-form
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N at o, which is a (formal) closed integrating factor for w. As above we
may extend 7), as a transversely formal 1-form over a small disk D,, C A
centered at g,. The difference 7 — 7, is a closed multiple of w, so that we
may write it as h.w for some transversely formal integrating factor h over
Dy,. This already shows (according to the above considerations) that 7
extends to ¢, in a transversely formal way. However we want to remark
that it is possible to choose 7, so that it coincides with 1 and we need this
information later. Again five are the cases to be considered. We detail the
following:

(a) ¢, admits a holomorphic first integral xz9y?. Using the remark
above we find 7 — 7 = dp(z9yP).(¢% + pd?y) for some formal holomorphic
function ¢(z) € C{{z}}, which shows the extension of 7 to .

(b) g, is a Martinet-Ramis singularity. According to the inclusion
Hol(A) C Hj the local holonomy associated to the separatrix S at g, is
(tangent to 1) and formally conjugate to a map of the form ¢p(z) =

T
(1+azk)%
In fact, we know that any homography which is not tangent to 1 is lineariz-

able, and on the other hand the linearization on the local holonomy implies
the linearization of the singularity. On the other hand ¢ is the holonomy
of the germ of singularity wy ¢ = lxdy + ky(1 + %xkye)dx = 0. Thus (sce
[17], [8]) the singularity g, is formally conjugated to the foliation wy. ¢ = 0.
Therefore there are formal coordinates (Z,y) centered at g, such that for
some formal meromorphic function G,w(Z,9) = gwke(Z,y). Moreover if we
define 7, = (k + l)dy (0+1)% + dg , then we obtain dw = 7, A w. We

have 7 — fj, = h.w for some formal expressmn h which satisfies d(h.w) = 0.
On the other hand, we know that by construction Resy,n = k + 1, so that
h.w is closed, and holomorphic along A,\{g,}. Since the singularity g, is
of the (nonlinearizable) formal normal form above, it follows that h.w = 0.
Therefore we extend 7 as 7, to go.

(c) g, is a Poincaré-Dulac normal form. In this case we have w(z,y) =
gy”(d?y - d(fﬁ)) for some meromorphic function g and some local holomor-
phic chart (z,y), with A : (y = 0). We define 7, := égg + n%y. Then the
difference 7 — 1), must be of the form c. ((‘Zy d(yin)) for some constant ¢ € C.
Since 77 and 7, have simple poles on A it follows that ¢ = 0 and 7 = 7,.

(d) go is formally linearizable but admits no holomorphic first integral.
In this case we choose formal coordinates (x, y) such that w(z,y) = g(ady —
Aydz) with A € C\Q and g formal meromorphic. We define 7, = %g— +a% -+
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Iv] ‘% for o, # € C satistying a + A =1+ A. Then 7, is a closed integrating
factor for w(z,y) [21], [3]. On the other hand 7 — 1), = f (‘L—y — 42 for some
formal meromorphic function that satisfies df A (%’i — Eif) = 0. Since A ¢ Q
a formal computation shows that f = ¢ € C is constant and we conclude
that 7 extends to q,.

(¢) ¢, is a saddle-node in good-position. We have in analytic coor-
dinates (F,qo) : XY — Y(1 + AX*)dX + (h.o.t.)dX = 0 with (Y =
0) ¢ A. We may choose formal coordinates (x,y) at g, such that give

w = g(aPdy — y(1 + AxP)dz) [18], and X |z as formal expressions. Take

o = (%;y‘—’l Since ¢, is in good position, A contains the (strong) separa-
trix (== 0) then the local holonomy being embeddable in Hj, implies that
A =0 and p = k [4]. This gives Resp 7, = k+ 1 and therefore the difference
1] — 7o is holomorphic (both 1-forms have simple poles) over Dy, — {go}-
Thus this difference must be zero. In particular the residues of the form 7
are k and 1.

We have therefore constructed 7 over the curve A as in the statement.
This proves the proposition. 0

6. Proof of the main results

It follows from [4], [8] that, since CP(2)\A is a Stein manifold [25],
Hironaka-Matsumura theorem asserts that both h as well as 7, con-
structed in Proposition 5.1, extend meromorphically to CP(2). This already
proves Theorem E. Theorem D is proved as follows:

Lemma 6.1 Let F, A be as in [Theorem D, Assume that Hol(A) is non-

abelian, then 1) has entire residues and poles of order one on CP(2).

Proof.  Tu fact, according to the last part of [Proposition 4.1 we may assume
that all the simple singularities q, € A are resonant of Martinet-Ramis type.
Thus we just have to observe that from the proof of [Proposition 5.1 above, it
follows that 7 has simple poles and entire residues, all of these along A and
the separatrices through these points g, which are transverse to A (notice
that cases (a) and (d) are excluded). U

It follows from the lemma above that if the holonomy of A is nonabelian
then we can obtain 7 with simple poles and entire residues on CP(2). The
Integration Lemma [5] implies therefore that 7 is of the form 7 = dlog(R)
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for some rational function R on CP(2). Thus it is clear that d(%) = 0. The
proof of Theorem D is finished. Notice that this argumentation together
with the result of section 3 implies Theorem C.

Now we proceed the proof of [Theorem B. According to Theorem E F|.
is given by a polynomial 1-form w which admits a closed integrating factor
n. We have two possibilities of argumentation: (1) since the singularities of
F are simple it follows that (1) contains some algebraic leaf I' such that
Resrn ¢ {2,3,4,...} and therefore the holonomy of A is abelian linearizable
(see [21]) which implies that F is logarithmic [21], [3]; (2) using the fact
that the singularities of F are simple we may conclude as in that the
invariant part of (7)c is a nodal curve S (recall that a simple singularity
exhibits two transverse separatrices) that satisfies the equality in Poincaré
Problem deg(S) = deg(F)+2 where deg(F) is the degree of F (see [6], [21]).
Thus using the main result of [6] we conclude that F is logarithmic. This
ends the proof of Theorem B.

Finally, we prove [Theorem Al According to Theorem C F is given by a
closed rational 1-form and therefore it has some algebraic leaf [3]. It follows
from Theorem B that F is logarithmic. Using the fact that a Martinet-
Ramis singularity cannot be defined by a simple poles closed 1-form [3], we
conclude that there are no Martinet-Ramis singularities. Therefore F has
only hyperbolic singularities and must be linear as in [I]. Theorem A is now
proved.

Let us give an application of our results to the study of holomorphic
flows on C?. Holomorphic flows on a Stein surface have been studied by
Suzuki in [27]. Our contribution is the following (a singularity is dicritical
if it has infinitely many separatrices):

Corollary 6.2 Let X be a complete polynomial vector field on C? and
denote by F the corresponding foliation on CP(2).

(i) If Lo is noninvariant then F admits a rational first integral.

(ii) Assume that Lo is invariant. If sing FNLy contains some dicrit-
ical singularity then X admits a meromorphic first integral. If sing F N Ly
consists of simple singularities then F is given by a closed rational 1-form.
If the singularities in Lo, are simple, Poincaré-Dulac and saddle-nodes in
good position then F admits a rational closed integrating factor.

Proof. Since C? contains no compact complex Torus the orbits of X
must be diffeomorphic to C or C* and F is parabolic. If the line at infinity
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Lo is noninvariant then there exists a rational first integral (|23]). Thus
we may assume that L., is an algebraic leaf of F. If L, contains some
dicritical singularity then the generic leaf is diffeomorphic to C* [23] and
Fle2 admits a meromorphic first integral [27]. It remains to consider the
case Lo, contains only singularities as in [Theorem D|. Using Theorems D
and E we complete the proof. ]

Before finishing this paper we would like to state a conjecture:

Conjecture 6.3 Let F be a parabolic foliation on CP(2). Then we have

the following possibilities:

(i) F admits a rational first integral

(ii) F is given by a closed rational 1-form

(iii) F admits a closed rational integrating factor and is a rational pull-back
of a Bernoulli foliation.
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