On the group-homological description of the second Johnson homomorphism

Yuji Yoкомizo

(Received April 28, 2000)

Abstract

The Johnson homomorphisms $\tau_{k}(k \geq 1)$ give abelian quotients of a series of certain subgroups of the mapping class group of a surface. Morita constructed the refinement $\widetilde{\tau}_{k}$ of τ_{k} in terms of group homology. In this paper, we describe $\widetilde{\tau}_{2}$ explicitly and show that the reduction of $\widetilde{\tau}_{2}$ to τ_{2} does not lose any informations.

Key words: mapping class group; Johnson homomorphism; group homology.

1. Introduction

Let $\mathcal{M}_{g, 1}$ be the mapping class group of a compact oriented surface $\Sigma_{g, 1}$ of genus $g \geq 2$ with one boundary component. To investigate the structure of the Torelli group $\mathcal{I}_{g, 1}$, which is the kernel of the classical representation

$$
\mathcal{M}_{g, 1} \longrightarrow \mathrm{Sp}(2 g ; \mathbb{Z})
$$

Johnson defined a surjective homomorphism

$$
\tau_{1}: \mathcal{I}_{g, 1} \longrightarrow \Lambda^{3} H_{1}\left(\Sigma_{g, 1} ; \mathbb{Z}\right)
$$

in [2]. Moreover, he generalized it to a series of homomorphisms $\left\{\tau_{k}\right\}$ such that τ_{k+1} is defind on the kernel of τ_{k} and the target of τ_{k} is an abelian group denoted by $\mathcal{L}_{k+1} \otimes H$ for each k (see [3]).

As a clue to determine the image of τ_{k}, Morita constructed a refinement $\widetilde{\tau_{k}}$ of the Johnson homomorphism in terms of group homology. According to his work [6], the target of $\widetilde{\tau_{k}}$ is the third homology $H_{3}\left(N_{k}\right)$ of a nilpotent group N_{k} and there is an exact sequence

$$
H_{3}\left(N_{k}\right) \longrightarrow \mathcal{L}_{k+1} \otimes H \longrightarrow \mathcal{L}_{k+2} \longrightarrow 0,
$$

where the composition of $\widetilde{\tau}_{k}$ with the first map is equal to τ_{k}. This implies that $\operatorname{Im} \tau_{k}$ is included in the kernel of the projection $\mathcal{L}_{k+1} \otimes H \rightarrow \mathcal{L}_{k+2}$. It is a natural question to ask whether the reduction of $\widetilde{\tau}_{k}$ to τ_{k} lose any
informations about the mapping class group or not. If $k=1$, the answer is easily obtained from Johnson's fundamental work that $\operatorname{Im} \tau_{1}=\Lambda^{3} H=$ $H_{3}\left(N_{1}\right)$. In this paper, describing $\widetilde{\tau}_{2}$ explicitly, we give an answer for $k=2$. Actually, we see that the reduction $\operatorname{Im} \widetilde{\tau}_{2} \rightarrow \operatorname{Im} \tau_{2}$ is an isomorphism.

The author would like to express his gratitude to Professor Shigeyuki Morita for his encouragement and useful suggestions.

2. Definitions

First, we define the Johnson homomorphism introduced in [2, 3]. We write Γ_{0} for the fundamental group $\pi_{1}\left(\Sigma_{g, 1}\right)$ of $\Sigma_{g, 1}$ and H for the integral homology group $H_{1}\left(\Sigma_{g, 1} ; \mathbb{Z}\right)$. Let N_{k} be the k th nilpotent quotient Γ_{0} / Γ_{k} where Γ_{k} is inductively defined by $\Gamma_{k}=\left[\Gamma_{k-1}, \Gamma_{0}\right]$, and let \mathcal{L}_{k} be the homogeneous part of degree k in the free Lie algebra \mathcal{L} on H over \mathbb{Z}. Recall that the isomorphism $\Gamma_{k} / \Gamma_{k+1} \cong \mathcal{L}_{k+1}$ gives a central extension $0 \rightarrow \mathcal{L}_{k+1} \rightarrow$ $N_{k+1} \rightarrow N_{k} \rightarrow 1$. If we write $\mathcal{M}(k)$ for the subgroup of $\mathcal{M}_{g, 1}$ consisting of all the elements which act on N_{k} trivially, then we can define the k th Johnson homomorphism τ_{k} as follows. Take a lift $\eta \in N_{k+1}$ of $h \in H$. For each $\varphi \in \mathcal{M}(k)$, the correspondence $H \ni h \mapsto \varphi(\eta) \eta^{-1} \in \mathcal{L}_{k+1} \subset N_{k+1}$ gives a well-defined homomorphism, that is, an element of $\operatorname{Hom}\left(H, \mathcal{L}_{k+1}\right)$, which is isomorphic to $\mathcal{L}_{k+1} \otimes H$ by the Poincaré duality. Then we obtain a map

$$
\tau_{k}: \mathcal{M}(k) \longrightarrow \mathcal{L}_{k+1} \otimes H
$$

and indeed this is a homomorphism and commutes with the action of $\mathcal{M}_{g, 1}$.
Next, we summarize Morita's construction of the refinement

$$
\widetilde{\tau}_{k}: \mathcal{M}(k) \longrightarrow H_{3}\left(N_{k}\right)
$$

Fig. 1.
of the Johnson homomorphism, which is reduced to the original τ_{k} under a natural homomorphism $H_{3}\left(N_{k}\right) \rightarrow \mathcal{L}_{k+1} \otimes H$ obtained from a spectral sequence. See [6] for details. Take $2 g$ elements $\alpha_{1}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}$ as in Figure 1, generating Γ_{0} freely. We write a_{i}, b_{i} for the homology classes of α_{i}, β_{i} respectively. Let $\zeta \in \Gamma_{0}$ be the product $\prod_{i=1}^{g}\left[\alpha_{i}, \beta_{i}\right]$ of the commutators. Since the first homology $H_{1}\left(\Gamma_{0}\right)$ is naturally isomorphic to the abelianization of Γ_{0}, the 1 -cycle $-(\zeta)$ is a 1 -boundary and there exists a 2 -chain σ_{0} such that $\partial \sigma_{0}=-(\zeta)$. In [6], Morita gave an explicit formula defining such a 2 -chain as

$$
\begin{aligned}
\sigma_{0}=\sum_{i=1}^{g} & \left\{\left(\alpha_{i}, \beta_{i}\right)-\left(\left[\alpha_{i}, \beta_{i}\right] \beta_{i}, \alpha_{i}\right)-\left(\left[\alpha_{i}, \beta_{i}\right], \beta_{i}\right)\right\} \\
& +\sum_{i=1}^{g-1}\left(\prod_{j=1}^{i}\left[\alpha_{j}, \beta_{j}\right],\left[\alpha_{i+1}, \beta_{i+1}\right]\right)
\end{aligned}
$$

For each $\varphi \in \mathcal{M}_{g, 1}$, the difference $\sigma_{0}-\varphi_{*} \sigma_{0}$ is a 2 -cycle of Γ_{0}, because ζ represents the homotopy class of a simple closed curve parallel to the boundary of $\Sigma_{g, 1}$. As is well known, the homology of the free group is always trivial except for degree 0 and 1 and hence there exists a 3 -chain c_{φ} such that $\partial c_{\varphi}=\sigma_{0}-\varphi_{*} \sigma_{0}$. We write \bar{c}_{φ} for the image of c_{φ} in $C_{3}\left(N_{k}\right)$. If φ is an element of $\mathcal{M}(k)$, then \bar{c}_{φ} is a 3 -cycle on N_{k}. Now we obtain a well-defined homomorphism $\widetilde{\tau}_{k}$ by the correspondence $\mathcal{M}(k) \ni \varphi \mapsto\left[\bar{c}_{\varphi}\right] \in$ $H_{3}\left(N_{k}\right)$.

To describe the reduction of the refinement $\widetilde{\tau}_{k}$ to the original τ_{k}, we consider the Hochschild-Serre spectral sequence $\left\{E_{p, q}^{r}\right\}$ for the homology of the central extension $0 \rightarrow \mathcal{L}_{k+1} \rightarrow N_{k+1} \rightarrow N_{k} \rightarrow 1$. More explicitly, $\left\{E_{p, q}^{r}\right\}$ is the one associated to the increasing filtration C_{*} defined by $C_{n}^{j}=$ (a submodule of $C_{n}\left(N_{k+1}\right)$ generated by n-chains ($\eta_{1}, \ldots, \eta_{n}$) where at least $n-j$ of the elements η_{i} belong to $\mathcal{L}_{k+1} \subset N_{k+1}$). If we define

$$
C_{p, q}^{r}=\left\{c \in C_{p+q}^{p} \mid \partial c \in C_{p+q-1}^{p-r}\right\},
$$

then

$$
E_{p, q}^{r}=C_{p, q}^{r} /\left(C_{p-1, q+1}^{r-1}+\partial C_{p+r-1, q-r+2}^{r-1}\right)
$$

and the differential $d^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r-1}$ induced by the boundary operator ∂ of the chain complex on N_{k+1}. Furthermore, we have

$$
\begin{aligned}
& E_{p, q}^{2}=H_{p}\left(N_{k}\right) \otimes H_{q}\left(\mathcal{L}_{k+1}\right) \\
& \bigoplus_{p+q=n} E_{p, q}^{\infty}=H_{n}\left(N_{k+1}\right)
\end{aligned}
$$

Now we consider the differential $d^{2}: E_{3,0}^{2}=H_{3}\left(N_{k}\right) \rightarrow E_{1,1}^{2}=\mathcal{L}_{k+1} \otimes H$. According to [6], the composition $d^{2} \circ \widetilde{\tau}_{k}$ coincides with τ_{k}.

3. An answer to the question

Johnson proved in [4] that $\mathcal{M}(2)=\mathcal{K}_{g, 1}$, where $\mathcal{K}_{g, 1}$ denotes the subgroup of $\mathcal{M}_{g, 1}$ which is generated by all the Dehn twists along separating simple closed curves. Now we consider the second Johnson homomorphism

$$
\tau_{2}: \mathcal{K}_{g, 1} \longrightarrow \mathcal{L}_{3} \otimes H
$$

and its refinement

$$
\widetilde{\tau}_{2}: \mathcal{K}_{g, 1} \longrightarrow H_{3}\left(N_{2}\right)
$$

We naturally identify \mathcal{L}_{2} with $\Lambda^{2} H$ by the correspondence $[a, b] \mapsto a \wedge b$ and \mathcal{L}_{3} with $\Lambda^{2} H \otimes H / \Lambda^{3} H$ by the surjective homomorphism $\Lambda^{2} H \otimes H \rightarrow$ \mathcal{L}_{3} given by $(a \wedge b) \otimes c \mapsto[[a, b], c]$ with the kernel $\Lambda^{3} H$. Let T be the symmetric power $S^{2} \Lambda^{2} H$ included in $\Lambda^{2} H \otimes \Lambda^{2} H \subset \Lambda^{2} H \otimes H^{2}$ and let \bar{T} be its image under the projection $\Lambda^{2} H \otimes H^{2} \rightarrow \Lambda^{2} H \otimes H^{2} / \Lambda^{3} H \otimes H=\mathcal{L}_{3} \otimes H$. In [5], Morita proved that $\operatorname{Im} \tau_{2}$ is a submodule of \bar{T} of index a power of 2 . On the other hand, the target of $\widetilde{\tau}_{2}$ is

$$
H_{3}\left(N_{2}\right)=\bigoplus_{p+q=3} E_{p, q}^{\infty}
$$

where $E_{p, q}^{\infty}$ is the E^{∞}-term of the Hochschild-Serre spectral sequence $\left\{E_{p, q}^{r}\right\}$ for the homology of the central extension $0 \rightarrow \mathcal{L}_{2} \rightarrow N_{2} \rightarrow H \rightarrow 1$.

Lemma $1 \quad E_{2,1}^{\infty}$ is isomorphic to \bar{T}.
Proof. Since the differential $d^{2}: E_{2,1}^{2}=\Lambda^{2} H \otimes \Lambda^{2} H \rightarrow E_{0,2}^{2}=\Lambda^{2} \Lambda^{2} H$ is the natural surjection with the kernel $S^{2} \Lambda^{2} H$, it suffices to show that

$$
\operatorname{Im}\left(d^{2}: E_{4,0}^{2} \rightarrow E_{2,1}^{2}\right)=S^{2} \Lambda^{2} H \cap \Lambda^{3} H \otimes H
$$

as a submodule of $S^{2} \Lambda^{2} H \subset \Lambda^{2} H \otimes H^{2}$.

Now we compute $d^{2}: E_{4,0}^{2}=\Lambda^{4} H \rightarrow E_{2,1}^{2}=\Lambda^{2} H \otimes \Lambda^{2} H$, which is given by

$$
\begin{aligned}
& \Lambda^{4} H \cong H_{4}(H) \cong\left\{c \in C_{4}\left(N_{2}\right) \mid \partial c \in C_{3}^{2}\right\} / \sim \\
& \xrightarrow{\partial}\left\{c \in C_{3}^{2} \mid \partial c \in C_{2}\left(\mathcal{L}_{2}\right)\right\} / \sim \cong H_{1}\left(\mathcal{L}_{2}\right) \otimes H_{2}(H) \cong \Lambda^{2} H \otimes \Lambda^{2} H .
\end{aligned}
$$

For each element $h_{1} \wedge h_{2} \wedge h_{3} \wedge h_{4} \in \Lambda^{4} H$, we put

$$
c=\sum_{\sigma} \operatorname{sgn} \sigma\left(\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}\right) \in C_{4}\left(N_{2}\right),
$$

where $\eta_{i} \in N_{2}$ is a lift of $h_{i} \in H$. Although its boundary

$$
\begin{aligned}
\partial c=\sum_{\sigma: \text { even }}\{ & -\left(\eta_{\sigma(1)} \eta_{\sigma(2)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}\right)+\left(\eta_{\sigma(2)} \eta_{\sigma(1)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}\right) \\
& +\left(\eta_{\sigma(1)}, \eta_{\sigma(2)} \eta_{\sigma(3)}, \eta_{\sigma(4)}\right)-\left(\eta_{\sigma(1)}, \eta_{\sigma(3)} \eta_{\sigma(2)}, \eta_{\sigma(4)}\right) \\
& \left.-\left(\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(3)} \eta_{\sigma(4)}\right)+\left(\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(4)} \eta_{\sigma(3)}\right)\right\}
\end{aligned}
$$

does not belong to C_{3}^{2}, we can modify this chain as

$$
\begin{aligned}
c^{\prime}=c+\sum_{\sigma: \text { even }}\{ & -\left(\left[\eta_{\sigma(1)}, \eta_{\sigma(2)}\right], \eta_{\sigma(2)} \eta_{\sigma(1)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}\right) \\
& +\left(\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(1)}, \eta_{\sigma(3)} \eta_{\sigma(2)}, \eta_{\sigma(4)}\right) \\
& -\left(\eta_{\sigma(1)},\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(3)} \eta_{\sigma(2)}, \eta_{\sigma(4)}\right) \\
& \left.+\left(\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(3)} \eta_{\sigma(4)},\left[\eta_{\sigma(4)}, \eta_{\sigma(3)}\right]\right)\right\}
\end{aligned}
$$

so that

$$
\begin{aligned}
\partial c^{\prime}=\sum_{\sigma: \text { even }}\{ & -\left(\left[\eta_{\sigma(1)}, \eta_{\sigma(2)}\right], \eta_{\sigma(2)} \eta_{\sigma(1)} \eta_{\sigma(3)}, \eta_{\sigma(4)}\right) \\
& +\left(\left[\eta_{\sigma(1)}, \eta_{\sigma(2)}\right], \eta_{\sigma(2)} \eta_{\sigma(1)}, \eta_{\sigma(3)} \eta_{\sigma(4)}\right) \\
& -\left(\left[\eta_{\sigma(1)}, \eta_{\sigma(2)}\right], \eta_{\sigma(2)} \eta_{\sigma(1)}, \eta_{\sigma(3)}\right) \\
& +\left(\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(1)} \eta_{\sigma(3)} \eta_{\sigma(2)}, \eta_{\sigma(4)}\right) \\
& -\left(\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(1)}, \eta_{\sigma(3)} \eta_{\sigma(2)} \eta_{\sigma(4)}\right) \\
& +\left(\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(1)}, \eta_{\sigma(3)} \eta_{\sigma(2)}\right) \\
& -\left(\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(3)} \eta_{\sigma(2)}, \eta_{\sigma(4)}\right) \\
& +\left(\eta_{\sigma(1)},\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(3)} \eta_{\sigma(2)} \eta_{\sigma(4)}\right) \\
& -\left(\eta_{\sigma(1)},\left[\eta_{\sigma(2)}, \eta_{\sigma(3)}\right], \eta_{\sigma(3)} \eta_{\sigma(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\eta_{\sigma(2)}, \eta_{\sigma(3)} \eta_{\sigma(4)},\left[\eta_{\sigma(4)}, \eta_{\sigma(3)}\right]\right) \\
& -\left(\eta_{\sigma(1)} \eta_{\sigma(2)}, \eta_{\sigma(3)} \eta_{\sigma(4)},\left[\eta_{\sigma(4)}, \eta_{\sigma(3)}\right]\right) \\
& \left.+\left(\eta_{\sigma(1)}, \eta_{\sigma(2)} \eta_{\sigma(3)} \eta_{\sigma(4)},\left[\eta_{\sigma(4)}, \eta_{\sigma(3)}\right]\right)\right\} \in C_{3}^{2}
\end{aligned}
$$

and $c=c^{\prime}$ as a cycle on H. Since the isomorphism $\left\{c \in C_{3}^{2} \mid \partial c \in\right.$ $\left.C_{2}\left(\mathcal{L}_{2}\right)\right\} / \sim \cong \Lambda^{2} H \otimes \Lambda^{2} H \subset \Lambda^{2} H \otimes H^{2}$ is given by the correspondence

$$
C_{3}^{2} \ni(\alpha, \beta, \gamma) \mapsto \begin{cases}\alpha \otimes[\beta] \otimes[\gamma] & \left(\text { if } \alpha \in \mathcal{L}_{2}\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

the image of ∂c^{\prime} in $\Lambda^{2} H \otimes \Lambda^{2} H$ is

$$
\begin{aligned}
& -\sum_{\sigma: \text { even }} h_{\sigma(1)} \wedge h_{\sigma(2)} \otimes h_{\sigma(3)} \otimes h_{\sigma(4)} \\
& \quad=-\sum_{\substack{\sigma: \text { even } \\
\sigma(1)<\sigma(2)}} h_{\sigma(1)} \wedge h_{\sigma(2)} \otimes h_{\sigma(3)} \wedge h_{\sigma(4)}
\end{aligned}
$$

and therefore $\operatorname{Im}\left(d^{2}: E_{4,0}^{2} \rightarrow E_{2,1}^{2}\right)$ is generated by elements of this form, which also generate $S^{2} \Lambda^{2} H \cap \Lambda^{3} H \otimes H$. This completes the proof.

Remark The fact that the differential $d^{2}: E_{2,2}^{2} \rightarrow E_{0,3}^{2}$ is the natural surjection implies that $E_{0,3}^{\infty}=0$. We can see also that $E_{3,0}^{\infty}=0$ as follows. Consider the first Johnson homomorphism

$$
\tau_{1}: \mathcal{I}_{g, 1} \longrightarrow \Lambda^{2} H \otimes H
$$

and its refinement

$$
\widetilde{\tau}_{1}: \mathcal{I}_{g, 1} \longrightarrow \Lambda^{3} H
$$

Since $\operatorname{Im} \tau_{1}=\Lambda^{3} H$ (see [2]), the image of the differential $d^{2}: E_{3,0}^{2}=\Lambda^{3} H \rightarrow$ $E_{1,1}^{2}=\Lambda^{2} H \otimes H$, which satisfies $d^{2} \circ \widetilde{\tau}_{1}=\tau_{1}$, is $\Lambda^{3} H$. So this differential is injective and hence $E_{3,0}^{\infty}=0$. Thus we can write

$$
H_{3}\left(N_{2}\right)=E_{2,1}^{\infty} \oplus E_{1,2}^{\infty} .
$$

Here the latter term $E_{1,2}^{\infty}$ is not trivial. Actually, we can estimate the rank of $E_{1,2}^{\infty}$ as
$\operatorname{rank} E_{1,2}^{\infty} \geq \operatorname{rank} E_{1,2}^{2}-\operatorname{rank} E_{3,1}^{2}-\operatorname{rank} E_{4,0}^{2}$

$$
\begin{aligned}
& =\operatorname{rank} \Lambda^{2} \Lambda^{2} H \otimes H-\operatorname{rank} \Lambda^{2} H \otimes \Lambda^{3} H-\operatorname{rank} \Lambda^{4} H \\
& =\frac{1}{6} g(2 g-1)\left(4 g^{3}+4 g^{2}-5 g-3\right) \\
& \geq 35
\end{aligned}
$$

for all $g \geq 2$.
Lemma $2 \operatorname{Im} \widetilde{\tau}_{2}$ is included in $E_{2,1}^{\infty}$.
Proof. $E_{2,1}^{\infty}$ is generated by homology classes of 3 -cycles $\sum\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)$ on N_{2} such that exactly one of the elements α_{i}, β_{i} and γ_{i} belongs to \mathcal{L}_{2} for each i. We compute \bar{c}_{φ} explicitly and show that it is homologous to a cycle of above form for each $\varphi \in \mathcal{K}_{g, 1}$. Johnson proved in [1] that $\mathcal{K}_{g, 1}$ is generated by all the Dehn twists along separating simple closed curves of genus 1 and 2. Hence we have only to prove it for these twists. Moreover, since we can replace α_{i}, β_{i} appearing in the definition of σ_{0} with $f_{*} \alpha_{i}, f_{*} \beta_{i}$ for each φ which is a twist along a separating simple closed curve γ of genus k ($k=$ $1,2)$ where f is a diffeomorphism on $\Sigma_{g, 1}$ such that $f_{*} \gamma_{k}=\gamma$ if γ_{1} and γ_{2} are defined as in Figure 2, it suffices to check for only two elements φ_{1}, φ_{2} which are twists along γ_{1}, γ_{2} respectively. Indeed, we can easily see that

Fig. 2.

$$
\begin{aligned}
\bar{c}_{\varphi_{1}}= & -\left(\zeta_{1}, \zeta_{1}^{-1} \alpha_{1}, \beta_{1}\right)+\left(\zeta_{1}, \beta_{1}, \alpha_{1}\right) \\
& -\left(\beta_{1}, \zeta_{1}, \zeta_{1}^{-1} \alpha_{1}\right)+\left(\zeta_{1}^{-1} \alpha_{1}, \zeta_{1}, \beta_{1}\right) \\
& -\left(\zeta_{1}^{-1} \alpha_{1}, \beta_{1}, \zeta_{1}\right)+\left(\beta_{1} \zeta_{1}, \zeta_{1}^{-1} \alpha_{1}, \zeta_{1}\right), \\
\bar{c}_{\varphi_{2}}= & -\left(\zeta_{1} \zeta_{2}, \alpha_{1}, \beta_{1}\right)+\left(\zeta_{1} \zeta_{2}, \beta_{1}, \alpha_{1}\right)-\left(\zeta_{1} \zeta_{2}, \alpha_{2}, \beta_{2}\right)+\left(\zeta_{1} \zeta_{2}, \beta_{2}, \alpha_{2}\right) \\
& -\left(\beta_{1}, \zeta_{1} \zeta_{2}, \alpha_{1}\right)+\left(\alpha_{1}, \zeta_{1} \zeta_{2}, \beta_{1}\right)-\left(\beta_{2}, \zeta_{1} \zeta_{2}, \alpha_{2}\right)+\left(\alpha_{2}, \zeta_{1} \zeta_{2}, \beta_{2}\right) \\
& -\left(\alpha_{1}, \beta_{1}, \zeta_{1} \zeta_{2}\right)+\left(\beta_{1}, \alpha_{1}, \zeta_{1} \zeta_{2}\right)-\left(\alpha_{2}, \beta_{2}, \zeta_{1} \zeta_{2}\right)+\left(\beta_{2}, \alpha_{2}, \zeta_{1} \zeta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\alpha_{2} \beta_{2}, \zeta_{1}, \beta_{1} \alpha_{1}\right)-\left(\beta_{2} \alpha_{2}, \zeta_{1} \zeta_{2}, \beta_{1} \alpha_{1}\right)+\left(\beta_{2} \alpha_{2}, \zeta_{2}, \alpha_{1} \beta_{1}\right) \\
& +\left(\alpha_{1} \beta_{1}, \zeta_{2}, \beta_{2} \alpha_{2}\right)-\left(\beta_{1} \alpha_{1}, \zeta_{1} \zeta_{2}, \beta_{2} \alpha_{2}\right)+\left(\beta_{1} \alpha_{1}, \zeta_{1}, \alpha_{2} \beta_{2}\right) \\
& -\left(\zeta_{1} \alpha_{1} \beta_{1}, \zeta_{2}, \alpha_{1} \beta_{1}\right)+\left(\alpha_{1} \beta_{1}, \zeta_{1} \zeta_{2}, \alpha_{1} \beta_{1}\right)-\left(\alpha_{1} \beta_{1}, \zeta_{1}, \zeta_{2} \alpha_{1} 1_{1}\right. \\
& -\left(\zeta_{2} \alpha_{2} \beta_{2}, \zeta_{1}, \alpha_{2} \beta_{2}\right)+\left(\alpha_{2} \beta_{2}, \zeta_{1} \zeta_{2}, \alpha_{2} \beta_{2}\right)-\left(\alpha_{2} \beta_{2}, \zeta_{2}, \zeta_{1} \alpha_{2} \beta_{2}\right) \\
& -\left(\alpha_{1}, \beta_{1}, \zeta_{2}\right)+\left(\zeta_{1} \alpha_{1}, \beta_{1}, \zeta_{2}\right)+\left(\zeta_{1}, \alpha_{1}, \zeta_{2} \beta_{1}\right)-\left(\zeta_{1}, \alpha_{1}, \beta_{1}\right) \\
& -\left(\beta_{1}, \alpha_{1}, \zeta_{1}\right)+\left(\zeta_{1} \beta_{1}, \alpha_{1}, \zeta_{1}\right)+\left(\zeta_{1}, \beta_{1}, \zeta_{1} \alpha_{1}\right)-\left(\zeta_{1}, \beta_{1}, \alpha_{1}\right) \\
& -\left(\alpha_{2}, \beta_{2}, \zeta_{1}\right)+\left(\zeta_{2} \alpha_{2}, \beta_{2}, \zeta_{1}\right)+\left(\zeta_{2}, \alpha_{2}, \zeta_{1} \beta_{2}\right)-\left(\zeta_{2}, \alpha_{2}, \beta_{2}\right) \\
& -\left(\beta_{2}, \alpha_{2}, \zeta_{2}\right)+\left(\zeta_{2} \beta_{2}, \alpha_{2}, \zeta_{2}\right)+\left(\zeta_{2}, \beta_{2}, \zeta_{2} \alpha_{2}\right)-\left(\zeta_{2}, \beta_{2}, \alpha_{2}\right) \\
& \bmod \partial C_{4}\left(N_{2}\right)
\end{aligned}
$$

where $\zeta_{i}=\left[\alpha_{i}, \beta_{i}\right]$ and this shows that $\widetilde{\tau}_{2}\left(\varphi_{1}\right), \widetilde{\tau}_{2}\left(\varphi_{2}\right) \in E_{2,1}^{\infty}$. This completes the proof.

Theorem The restriction of $d^{2}: H_{3}\left(N_{2}\right) \rightarrow \mathcal{L}_{3} \otimes H$ to $\operatorname{Im} \widetilde{\tau}_{2}$ is an isomorphism onto $\operatorname{Im} \tau_{2}$.

Proof. According to the previous lemmas, we can regard the values $\tau_{2}(\varphi)$ and $\widetilde{\tau}_{2}(\varphi)$ as elements of the quotient module of $S^{2} \Lambda^{2} H$. Using the cycles $\bar{c}_{\varphi_{1}}$ and $\bar{c}_{\varphi_{2}}$ computed in the proof of Lemma 2, we have

$$
\begin{aligned}
& \widetilde{\tau}_{2}\left(\varphi_{1}\right)=-\left(a_{1} \wedge b_{1}\right)^{\otimes 2} \\
& \widetilde{\tau}_{2}\left(\varphi_{2}\right)=-\left(a_{1} \wedge b_{1}+a_{2} \wedge b_{2}\right)^{\otimes 2}
\end{aligned}
$$

which coincide with the values $\tau_{2}\left(\varphi_{1}\right), \tau_{2}\left(\varphi_{2}\right)$ in $S^{2} \Lambda^{2} H / \sim$ computed in [5]. It follows that the homomorphisms τ_{2} and $\widetilde{\tau}_{2}$ have the same image in $S^{2} \Lambda^{2} H / \sim$. This completes the proof.

Remark It is an open problem to determine the abelianization of $\mathcal{K}_{g, 1}$. It was expected that the refinement $\widetilde{\tau}_{2}$ would give a new abelian quotient of $\mathcal{K}_{g, 1}$, but the above theorem shows that $\widetilde{\tau}_{2}$ has no informations about $\mathcal{K}_{g, 1}$ which τ_{2} loses.

References

[1] Johnson D., Homeomorphisms of a surface which act trivially on homology. Proc. Am. Math. Soc. 75 (1979), 119-125.
[2] Johnson D., An abelian quotient of the mapping class group \mathcal{I}_{g}. Math. Ann. 249 (1980), 225-242.
[3] Johnson D., A survey of the Torelli group. Contemp. Math. 20 (1983), 165-179.
[4] Johnson D., The structure of the Torelli group II: A characterization of the group generated by twists on bounding curves. Topology 24 (1985), 113-126.
[5] Morita S., Casson's invariant for homology 3-spheres and characteristic classes of surface bundles I. Topology 28 (1989), 305-323.
[6] Morita S., Abelian quotients of subgroups of the mapping class group of surfaces. Duke Math. J. 70 (1993), 699-726.

Department of Mathematical Sciences University of Tokyo
Komaba, Meguro, Tokyo 153-8914
Japan
E-mail: yokomizo@ms.u-tokyo.ac.jp

