On the group-homological description of the second Johnson homomorphism

Үијі Үокоміго

(Received April 28, 2000)

Abstract. The Johnson homomorphisms τ_k $(k \ge 1)$ give abelian quotients of a series of certain subgroups of the mapping class group of a surface. Morita constructed the refinement $\tilde{\tau}_k$ of τ_k in terms of group homology. In this paper, we describe $\tilde{\tau}_2$ explicitly and show that the reduction of $\tilde{\tau}_2$ to τ_2 does not lose any informations.

Key words: mapping class group; Johnson homomorphism; group homology.

1. Introduction

Let $\mathcal{M}_{g,1}$ be the mapping class group of a compact oriented surface $\Sigma_{g,1}$ of genus $g \geq 2$ with one boundary component. To investigate the structure of the Torelli group $\mathcal{I}_{g,1}$, which is the kernel of the classical representation

 $\mathcal{M}_{g,1} \longrightarrow \operatorname{Sp}(2g;\mathbb{Z}),$

Johnson defined a surjective homomorphism

 $\tau_1: \mathcal{I}_{g,1} \longrightarrow \Lambda^3 H_1(\Sigma_{g,1}; \mathbb{Z})$

in [2]. Moreover, he generalized it to a series of homomorphisms $\{\tau_k\}$ such that τ_{k+1} is defind on the kernel of τ_k and the target of τ_k is an abelian group denoted by $\mathcal{L}_{k+1} \otimes H$ for each k (see [3]).

As a clue to determine the image of τ_k , Morita constructed a refinement $\tilde{\tau}_k$ of the Johnson homomorphism in terms of group homology. According to his work [6], the target of $\tilde{\tau}_k$ is the third homology $H_3(N_k)$ of a nilpotent group N_k and there is an exact sequence

$$H_3(N_k) \longrightarrow \mathcal{L}_{k+1} \otimes H \longrightarrow \mathcal{L}_{k+2} \longrightarrow 0,$$

where the composition of $\tilde{\tau}_k$ with the first map is equal to τ_k . This implies that $\operatorname{Im} \tau_k$ is included in the kernel of the projection $\mathcal{L}_{k+1} \otimes H \to \mathcal{L}_{k+2}$. It is a natural question to ask whether the reduction of $\tilde{\tau}_k$ to τ_k lose any

¹⁹⁹¹ Mathematics Subject Classification : Primary 57N05; Secondary 20J05, 20F34.

informations about the mapping class group or not. If k = 1, the answer is easily obtained from Johnson's fundamental work that $\text{Im }\tau_1 = \Lambda^3 H =$ $H_3(N_1)$. In this paper, describing $\tilde{\tau}_2$ explicitly, we give an answer for k = 2. Actually, we see that the reduction $\text{Im }\tilde{\tau}_2 \to \text{Im }\tau_2$ is an isomorphism.

The author would like to express his gratitude to Professor Shigeyuki Morita for his encouragement and useful suggestions.

2. Definitions

First, we define the Johnson homomorphism introduced in [2, 3]. We write Γ_0 for the fundamental group $\pi_1(\Sigma_{g,1})$ of $\Sigma_{g,1}$ and H for the integral homology group $H_1(\Sigma_{g,1};\mathbb{Z})$. Let N_k be the kth nilpotent quotient Γ_0/Γ_k where Γ_k is inductively defined by $\Gamma_k = [\Gamma_{k-1}, \Gamma_0]$, and let \mathcal{L}_k be the homogeneous part of degree k in the free Lie algebra \mathcal{L} on H over \mathbb{Z} . Recall that the isomorphism $\Gamma_k/\Gamma_{k+1} \cong \mathcal{L}_{k+1}$ gives a central extension $0 \to \mathcal{L}_{k+1} \to$ $N_{k+1} \to N_k \to 1$. If we write $\mathcal{M}(k)$ for the subgroup of $\mathcal{M}_{g,1}$ consisting of all the elements which act on N_k trivially, then we can define the kth Johnson homomorphism τ_k as follows. Take a lift $\eta \in N_{k+1}$ of $h \in H$. For each $\varphi \in \mathcal{M}(k)$, the correspondence $H \ni h \mapsto \varphi(\eta)\eta^{-1} \in \mathcal{L}_{k+1} \subset N_{k+1}$ gives a well-defined homomorphism, that is, an element of $\operatorname{Hom}(H, \mathcal{L}_{k+1})$, which is isomorphic to $\mathcal{L}_{k+1} \otimes H$ by the Poincaré duality. Then we obtain a map

$$au_k: \mathcal{M}(k) \longrightarrow \mathcal{L}_{k+1} \otimes H$$

and indeed this is a homomorphism and commutes with the action of $\mathcal{M}_{g,1}$.

Next, we summarize Morita's construction of the refinement

$$\widetilde{ au}_k:\mathcal{M}(k)\longrightarrow H_3(N_k)$$

of the Johnson homomorphism, which is reduced to the original τ_k under a natural homomorphism $H_3(N_k) \to \mathcal{L}_{k+1} \otimes H$ obtained from a spectral sequence. See [6] for details. Take 2g elements $\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g$ as in Figure 1, generating Γ_0 freely. We write a_i, b_i for the homology classes of α_i , β_i respectively. Let $\zeta \in \Gamma_0$ be the product $\prod_{i=1}^g [\alpha_i, \beta_i]$ of the commutators. Since the first homology $H_1(\Gamma_0)$ is naturally isomorphic to the abelianization of Γ_0 , the 1-cycle $-(\zeta)$ is a 1-boundary and there exists a 2-chain σ_0 such that $\partial \sigma_0 = -(\zeta)$. In [6], Morita gave an explicit formula defining such a 2-chain as

$$\sigma_0 = \sum_{i=1}^g \left\{ (\alpha_i, \beta_i) - ([\alpha_i, \beta_i]\beta_i, \alpha_i) - ([\alpha_i, \beta_i], \beta_i) \right\}$$
$$+ \sum_{i=1}^{g-1} \left(\prod_{j=1}^i [\alpha_j, \beta_j], [\alpha_{i+1}, \beta_{i+1}] \right).$$

For each $\varphi \in \mathcal{M}_{g,1}$, the difference $\sigma_0 - \varphi_* \sigma_0$ is a 2-cycle of Γ_0 , because ζ represents the homotopy class of a simple closed curve parallel to the boundary of $\Sigma_{g,1}$. As is well known, the homology of the free group is always trivial except for degree 0 and 1 and hence there exists a 3-chain c_{φ} such that $\partial c_{\varphi} = \sigma_0 - \varphi_* \sigma_0$. We write \overline{c}_{φ} for the image of c_{φ} in $C_3(N_k)$. If φ is an element of $\mathcal{M}(k)$, then \overline{c}_{φ} is a 3-cycle on N_k . Now we obtain a well-defined homomorphism $\widetilde{\tau}_k$ by the correspondence $\mathcal{M}(k) \ni \varphi \mapsto [\overline{c}_{\varphi}] \in H_3(N_k)$.

To describe the reduction of the refinement $\tilde{\tau}_k$ to the original τ_k , we consider the Hochschild-Serre spectral sequence $\{E_{p,q}^r\}$ for the homology of the central extension $0 \to \mathcal{L}_{k+1} \to N_{k+1} \to N_k \to 1$. More explicitly, $\{E_{p,q}^r\}$ is the one associated to the increasing filtration C_* defined by $C_n^j =$ (a submodule of $C_n(N_{k+1})$ generated by *n*-chains (η_1, \ldots, η_n) where at least n-j of the elements η_i belong to $\mathcal{L}_{k+1} \subset N_{k+1}$). If we define

$$C_{p,q}^{r} = \{ c \in C_{p+q}^{p} \mid \partial c \in C_{p+q-1}^{p-r} \},\$$

then

$$E_{p,q}^{r} = C_{p,q}^{r} / (C_{p-1,q+1}^{r-1} + \partial C_{p+r-1,q-r+2}^{r-1})$$

and the differential $d^r: E_{p,q}^r \to E_{p-r,q+r-1}^r$ is induced by the boundary operator ∂ of the chain complex on N_{k+1} . Furthermore, we have

$$E_{p,q}^2 = H_p(N_k) \otimes H_q(\mathcal{L}_{k+1}),$$
$$\bigoplus_{p+q=n} E_{p,q}^\infty = H_n(N_{k+1}).$$

Now we consider the differential $d^2: E_{3,0}^2 = H_3(N_k) \to E_{1,1}^2 = \mathcal{L}_{k+1} \otimes H$. According to [6], the composition $d^2 \circ \tilde{\tau}_k$ coincides with τ_k .

3. An answer to the question

Johnson proved in [4] that $\mathcal{M}(2) = \mathcal{K}_{g,1}$, where $\mathcal{K}_{g,1}$ denotes the subgroup of $\mathcal{M}_{g,1}$ which is generated by all the Dehn twists along separating simple closed curves. Now we consider the second Johnson homomorphism

$$au_2: \mathcal{K}_{g,1} \longrightarrow \mathcal{L}_3 \otimes H$$

and its refinement

$$\widetilde{\tau}_2: \mathcal{K}_{g,1} \longrightarrow H_3(N_2).$$

We naturally identify \mathcal{L}_2 with $\Lambda^2 H$ by the correspondence $[a, b] \mapsto a \wedge b$ and \mathcal{L}_3 with $\Lambda^2 H \otimes H/\Lambda^3 H$ by the surjective homomorphism $\Lambda^2 H \otimes H \to \mathcal{L}_3$ given by $(a \wedge b) \otimes c \mapsto [[a, b], c]$ with the kernel $\Lambda^3 H$. Let T be the symmetric power $S^2 \Lambda^2 H$ included in $\Lambda^2 H \otimes \Lambda^2 H \subset \Lambda^2 H \otimes H^2$ and let \overline{T} be its image under the projection $\Lambda^2 H \otimes H^2 \to \Lambda^2 H \otimes H^2/\Lambda^3 H \otimes H = \mathcal{L}_3 \otimes H$. In [5], Morita proved that $\operatorname{Im} \tau_2$ is a submodule of \overline{T} of index a power of 2. On the other hand, the target of $\tilde{\tau}_2$ is

$$H_3(N_2) = \bigoplus_{p+q=3} E_{p,q}^{\infty},$$

where $E_{p,q}^{\infty}$ is the E^{∞} -term of the Hochschild-Serre spectral sequence $\{E_{p,q}^r\}$ for the homology of the central extension $0 \to \mathcal{L}_2 \to N_2 \to H \to 1$.

Lemma 1 $E_{2,1}^{\infty}$ is isomorphic to \overline{T} .

Proof. Since the differential $d^2: E_{2,1}^2 = \Lambda^2 H \otimes \Lambda^2 H \to E_{0,2}^2 = \Lambda^2 \Lambda^2 H$ is the natural surjection with the kernel $S^2 \Lambda^2 H$, it suffices to show that

$$\operatorname{Im}(d^2: E^2_{4,0} \to E^2_{2,1}) = S^2 \Lambda^2 H \cap \Lambda^3 H \otimes H$$

as a submodule of $S^2 \Lambda^2 H \subset \Lambda^2 H \otimes H^2$.

Now we compute $d^2:E^2_{4,0}=\Lambda^4 H\to E^2_{2,1}=\Lambda^2 H\otimes\Lambda^2 H,$ which is given by

$$\Lambda^{4}H \cong H_{4}(H) \cong \{c \in C_{4}(N_{2}) \mid \partial c \in C_{3}^{2}\} / \sim$$

$$\xrightarrow{\partial} \{c \in C_{3}^{2} \mid \partial c \in C_{2}(\mathcal{L}_{2})\} / \sim \cong H_{1}(\mathcal{L}_{2}) \otimes H_{2}(H) \cong \Lambda^{2}H \otimes \Lambda^{2}H.$$

For each element $h_1 \wedge h_2 \wedge h_3 \wedge h_4 \in \Lambda^4 H$, we put

$$c = \sum_{\sigma} \operatorname{sgn} \sigma(\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}) \in C_4(N_2),$$

where $\eta_i \in N_2$ is a lift of $h_i \in H$. Although its boundary

$$\partial c = \sum_{\sigma: \text{ even}} \left\{ -(\eta_{\sigma(1)}\eta_{\sigma(2)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}) + (\eta_{\sigma(2)}\eta_{\sigma(1)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}) \right. \\ \left. + (\eta_{\sigma(1)}, \eta_{\sigma(2)}\eta_{\sigma(3)}, \eta_{\sigma(4)}) - (\eta_{\sigma(1)}, \eta_{\sigma(3)}\eta_{\sigma(2)}, \eta_{\sigma(4)}) \right. \\ \left. - (\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(3)}\eta_{\sigma(4)}) + (\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(4)}\eta_{\sigma(3)}) \right\}$$

does not belong to C_3^2 , we can modify this chain as

$$c' = c + \sum_{\sigma: \text{ even}} \left\{ -([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)}\eta_{\sigma(1)}, \eta_{\sigma(3)}, \eta_{\sigma(4)}) + ([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(1)}, \eta_{\sigma(3)}\eta_{\sigma(2)}, \eta_{\sigma(4)}) - (\eta_{\sigma(1)}, [\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)}\eta_{\sigma(2)}, \eta_{\sigma(4)}) + (\eta_{\sigma(1)}, \eta_{\sigma(2)}, \eta_{\sigma(3)}\eta_{\sigma(4)}, [\eta_{\sigma(4)}, \eta_{\sigma(3)}]) \right\}$$

so that

$$\begin{aligned} \partial c' &= \sum_{\sigma: \, \text{even}} \left\{ - \left([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)} \eta_{\sigma(1)} \eta_{\sigma(3)}, \eta_{\sigma(4)} \right) \\ &+ \left([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)} \eta_{\sigma(1)}, \eta_{\sigma(3)} \eta_{\sigma(4)} \right) \\ &- \left([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)} \eta_{\sigma(1)}, \eta_{\sigma(3)} \right) \\ &+ \left([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(1)} \eta_{\sigma(3)} \eta_{\sigma(2)}, \eta_{\sigma(4)} \right) \\ &- \left([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(1)}, \eta_{\sigma(3)} \eta_{\sigma(2)} \eta_{\sigma(4)} \right) \\ &+ \left([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)} \eta_{\sigma(2)}, \eta_{\sigma(4)} \right) \\ &+ \left(\eta_{\sigma(1)}, [\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)} \eta_{\sigma(2)} \eta_{\sigma(4)} \right) \\ &- \left(\eta_{\sigma(1)}, [\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)} \eta_{\sigma(2)} \eta_{\sigma(4)} \right) \end{aligned}$$

Y. Yokomizo

$$+ (\eta_{\sigma(2)}, \eta_{\sigma(3)}\eta_{\sigma(4)}, [\eta_{\sigma(4)}, \eta_{\sigma(3)}]) - (\eta_{\sigma(1)}\eta_{\sigma(2)}, \eta_{\sigma(3)}\eta_{\sigma(4)}, [\eta_{\sigma(4)}, \eta_{\sigma(3)}]) + (\eta_{\sigma(1)}, \eta_{\sigma(2)}\eta_{\sigma(3)}\eta_{\sigma(4)}, [\eta_{\sigma(4)}, \eta_{\sigma(3)}]) \Big\} \in C_3^2$$

and c = c' as a cycle on H. Since the isomorphism $\{c \in C_3^2 \mid \partial c \in C_2(\mathcal{L}_2)\}/\sim \cong \Lambda^2 H \otimes \Lambda^2 H \subset \Lambda^2 H \otimes H^2$ is given by the correspondence

$$C_3^2 \ni (\alpha, \beta, \gamma) \mapsto \begin{cases} \alpha \otimes [\beta] \otimes [\gamma] & \text{(if } \alpha \in \mathcal{L}_2) \\ 0 & \text{(otherwise),} \end{cases}$$

the image of $\partial c'$ in $\Lambda^2 H \otimes \Lambda^2 H$ is

$$-\sum_{\substack{\sigma: \text{ even}}} h_{\sigma(1)} \wedge h_{\sigma(2)} \otimes h_{\sigma(3)} \otimes h_{\sigma(4)}$$
$$= -\sum_{\substack{\sigma: \text{ even} \\ \sigma(1) < \sigma(2)}} h_{\sigma(1)} \wedge h_{\sigma(2)} \otimes h_{\sigma(3)} \wedge h_{\sigma(4)}$$

and therefore $\operatorname{Im}(d^2: E^2_{4,0} \to E^2_{2,1})$ is generated by elements of this form, which also generate $S^2 \Lambda^2 H \cap \Lambda^3 H \otimes H$. This completes the proof. \Box

Remark The fact that the differential $d^2 : E_{2,2}^2 \to E_{0,3}^2$ is the natural surjection implies that $E_{0,3}^{\infty} = 0$. We can see also that $E_{3,0}^{\infty} = 0$ as follows. Consider the first Johnson homomorphism

$$au_1:\mathcal{I}_{g,1}\longrightarrow \Lambda^2 H\otimes H$$

and its refinement

$$\widetilde{\tau}_1: \mathcal{I}_{g,1} \longrightarrow \Lambda^3 H.$$

Since Im $\tau_1 = \Lambda^3 H$ (see [2]), the image of the differential $d^2 : E_{3,0}^2 = \Lambda^3 H \rightarrow E_{1,1}^2 = \Lambda^2 H \otimes H$, which satisfies $d^2 \circ \tilde{\tau}_1 = \tau_1$, is $\Lambda^3 H$. So this differential is injective and hence $E_{3,0}^{\infty} = 0$. Thus we can write

$$H_3(N_2) = E_{2,1}^{\infty} \oplus E_{1,2}^{\infty}.$$

Here the latter term $E_{1,2}^{\infty}$ is not trivial. Actually, we can estimate the rank of $E_{1,2}^{\infty}$ as

$$\operatorname{rank} E^\infty_{1,2} \geq \operatorname{rank} E^2_{1,2} - \operatorname{rank} E^2_{3,1} - \operatorname{rank} E^2_{4,0}$$

$$= \operatorname{rank} \Lambda^2 \Lambda^2 H \otimes H - \operatorname{rank} \Lambda^2 H \otimes \Lambda^3 H - \operatorname{rank} \Lambda^4 H$$
$$= \frac{1}{6}g(2g-1)(4g^3 + 4g^2 - 5g - 3)$$
$$\geq 35$$

for all $g \geq 2$.

Lemma 2 Im $\tilde{\tau}_2$ is included in $E_{2,1}^{\infty}$.

Proof. $E_{2,1}^{\infty}$ is generated by homology classes of 3-cycles $\sum (\alpha_i, \beta_i, \gamma_i)$ on N_2 such that exactly one of the elements α_i, β_i and γ_i belongs to \mathcal{L}_2 for each i. We compute \overline{c}_{φ} explicitly and show that it is homologous to a cycle of above form for each $\varphi \in \mathcal{K}_{g,1}$. Johnson proved in [1] that $\mathcal{K}_{g,1}$ is generated by all the Dehn twists along separating simple closed curves of genus 1 and 2. Hence we have only to prove it for these twists. Moreover, since we can replace α_i, β_i appearing in the definition of σ_0 with $f_*\alpha_i, f_*\beta_i$ for each φ which is a twist along a separating simple closed curve γ of genus k (k = 1, 2) where f is a diffeomorphism on $\Sigma_{g,1}$ such that $f_*\gamma_k = \gamma$ if γ_1 and γ_2 are defined as in Figure 2, it suffices to check for only two elements φ_1, φ_2 which are twists along γ_1, γ_2 respectively. Indeed, we can easily see that

Fig. 2.

$$\begin{split} \bar{c}_{\varphi_1} &= -(\zeta_1, \zeta_1^{-1} \alpha_1, \beta_1) + (\zeta_1, \beta_1, \alpha_1) \\ &- (\beta_1, \zeta_1, \zeta_1^{-1} \alpha_1) + (\zeta_1^{-1} \alpha_1, \zeta_1, \beta_1) \\ &- (\zeta_1^{-1} \alpha_1, \beta_1, \zeta_1) + (\beta_1 \zeta_1, \zeta_1^{-1} \alpha_1, \zeta_1), \\ \bar{c}_{\varphi_2} &= -(\zeta_1 \zeta_2, \alpha_1, \beta_1) + (\zeta_1 \zeta_2, \beta_1, \alpha_1) - (\zeta_1 \zeta_2, \alpha_2, \beta_2) + (\zeta_1 \zeta_2, \beta_2, \alpha_2) \\ &- (\beta_1, \zeta_1 \zeta_2, \alpha_1) + (\alpha_1, \zeta_1 \zeta_2, \beta_1) - (\beta_2, \zeta_1 \zeta_2, \alpha_2) + (\alpha_2, \zeta_1 \zeta_2, \beta_2) \\ &- (\alpha_1, \beta_1, \zeta_1 \zeta_2) + (\beta_1, \alpha_1, \zeta_1 \zeta_2) - (\alpha_2, \beta_2, \zeta_1 \zeta_2) + (\beta_2, \alpha_2, \zeta_1 \zeta_2) \end{split}$$

Y. Yokomizo

$$\begin{aligned} +(\alpha_{2}\beta_{2},\zeta_{1},\beta_{1}\alpha_{1})-(\beta_{2}\alpha_{2},\zeta_{1}\zeta_{2},\beta_{1}\alpha_{1})+(\beta_{2}\alpha_{2},\zeta_{2},\alpha_{1}\beta_{1})\\ +(\alpha_{1}\beta_{1},\zeta_{2},\beta_{2}\alpha_{2})-(\beta_{1}\alpha_{1},\zeta_{1}\zeta_{2},\beta_{2}\alpha_{2})+(\beta_{1}\alpha_{1},\zeta_{1},\alpha_{2}\beta_{2})\\ -(\zeta_{1}\alpha_{1}\beta_{1},\zeta_{2},\alpha_{1}\beta_{1})+(\alpha_{1}\beta_{1},\zeta_{1}\zeta_{2},\alpha_{1}\beta_{1})-(\alpha_{1}\beta_{1},\zeta_{1},\zeta_{2}\alpha_{1}\beta_{1})\\ -(\zeta_{2}\alpha_{2}\beta_{2},\zeta_{1},\alpha_{2}\beta_{2})+(\alpha_{2}\beta_{2},\zeta_{1}\zeta_{2},\alpha_{2}\beta_{2})-(\alpha_{2}\beta_{2},\zeta_{2},\zeta_{1}\alpha_{2}\beta_{2})\\ -(\alpha_{1},\beta_{1},\zeta_{2})+(\zeta_{1}\alpha_{1},\beta_{1},\zeta_{2})+(\zeta_{1},\alpha_{1},\zeta_{2}\beta_{1})-(\zeta_{1},\alpha_{1},\beta_{1})\\ -(\beta_{1},\alpha_{1},\zeta_{1})+(\zeta_{1}\beta_{1},\alpha_{1},\zeta_{1})+(\zeta_{1},\beta_{1},\zeta_{1}\alpha_{1})-(\zeta_{1},\beta_{1},\alpha_{1})\\ -(\alpha_{2},\beta_{2},\zeta_{1})+(\zeta_{2}\alpha_{2},\beta_{2},\zeta_{1})+(\zeta_{2},\alpha_{2},\zeta_{1}\beta_{2})-(\zeta_{2},\alpha_{2},\beta_{2})\\ -(\beta_{2},\alpha_{2},\zeta_{2})+(\zeta_{2}\beta_{2},\alpha_{2},\zeta_{2})+(\zeta_{2},\beta_{2},\zeta_{2}\alpha_{2})-(\zeta_{2},\beta_{2},\alpha_{2})\\ &\mod\partial C_{4}(N_{2}) \end{aligned}$$

where $\zeta_i = [\alpha_i, \beta_i]$ and this shows that $\tilde{\tau}_2(\varphi_1), \tilde{\tau}_2(\varphi_2) \in E_{2,1}^{\infty}$. This completes the proof.

Theorem The restriction of $d^2 : H_3(N_2) \to \mathcal{L}_3 \otimes H$ to $\operatorname{Im} \widetilde{\tau}_2$ is an isomorphism onto $\operatorname{Im} \tau_2$.

Proof. According to the previous lemmas, we can regard the values $\tau_2(\varphi)$ and $\tilde{\tau}_2(\varphi)$ as elements of the quotient module of $S^2 \Lambda^2 H$. Using the cycles \bar{c}_{φ_1} and \bar{c}_{φ_2} computed in the proof of Lemma 2, we have

$$egin{aligned} \widetilde{ au}_2(arphi_1) &= -(a_1 \wedge b_1)^{\otimes 2}, \ \widetilde{ au}_2(arphi_2) &= -(a_1 \wedge b_1 + a_2 \wedge b_2)^{\otimes 2}, \end{aligned}$$

which coincide with the values $\tau_2(\varphi_1)$, $\tau_2(\varphi_2)$ in $S^2\Lambda^2 H/\sim$ computed in [5]. It follows that the homomorphisms τ_2 and $\tilde{\tau}_2$ have the same image in $S^2\Lambda^2 H/\sim$. This completes the proof.

Remark It is an open problem to determine the abelianization of $\mathcal{K}_{g,1}$. It was expected that the refinement $\tilde{\tau}_2$ would give a new abelian quotient of $\mathcal{K}_{g,1}$, but the above theorem shows that $\tilde{\tau}_2$ has no informations about $\mathcal{K}_{g,1}$ which τ_2 loses.

References

- Johnson D., Homeomorphisms of a surface which act trivially on homology. Proc. Am. Math. Soc. 75 (1979), 119-125.
- [2] Johnson D., An abelian quotient of the mapping class group \mathcal{I}_g . Math. Ann. 249 (1980), 225–242.
- [3] Johnson D., A survey of the Torelli group. Contemp. Math. 20 (1983), 165–179.

- [4] Johnson D., The structure of the Torelli group II: A characterization of the group generated by twists on bounding curves. Topology **24** (1985), 113–126.
- [5] Morita S., Casson's invariant for homology 3-spheres and characteristic classes of surface bundles I. Topology 28 (1989), 305–323.
- [6] Morita S., Abelian quotients of subgroups of the mapping class group of surfaces. Duke Math. J. 70 (1993), 699-726.

Department of Mathematical Sciences University of Tokyo Komaba, Meguro, Tokyo 153-8914 Japan E-mail: yokomizo@ms.u-tokyo.ac.jp