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On the group-homological description of the
second Johnson homomorphism

Yuji YOKOMIZO

(Received April 28, 2000)

Abstract. The Johnson homomorphisms \tau_{k}(k\geq 1) give abelian quotients of a series
of certain subgroups of the mapping class group of a surface. Morita constructed the
refinement \overline{\tau}_{k} of \tau_{k} in terms of group homology. In this paper, we describe \tilde{\tau}_{2} explicitly
and show that the reduction of \overline{\tau}_{2} to \tau_{2} does not lose any informations.
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1. Introduction

Let \mathcal{M}_{g,1} be the mapping class group of a compact oriented surface \Sigma_{g,1}

of genus g\geq 2 with one boundary component. To investigate the structure
of the Torelli group I_{g,1} , which is the kernel of the classical representation

\mathcal{M}_{g,1}arrow Sp(2g; \mathbb{Z} ),

Johnson defined a surjective homomorphism

\tau_{1} : I_{g,1}arrow\Lambda^{3}H_{1}(\Sigma_{g,1} ; \mathbb{Z})

in [2]. Moreover, he generalized it to a series of homomorphisms \{\tau_{k}\} such
that \tau_{k+1} is defind on the kernel of \tau_{k} and the target of \tau_{k} is an abelian
group denoted by \mathcal{L}_{k+1}\otimes H for each k (see [3]).

As a clue to determine the image of \tau_{k} , Morita constructed a refinement
\overline{\tau_{k}} of the Johnson homomorphism in terms of group homology. According
to his work [6], the target of \overline{\tau_{k}} is the third homology H_{3}(N_{k}) of a nilpotent
group N_{k} and there is an exact sequence

H_{3}(N_{k})arrow \mathcal{L}_{k+1}\otimes Harrow \mathcal{L}_{k+2}arrow 0 ,

where the composition of \overline{\tau}_{k} with the first map is equal to \tau_{k} . This implies
that Im \tau_{k} is included in the kernel of the projection \mathcal{L}_{k+1}\otimes Harrow \mathcal{L}_{k+2} .
It is a natural question to ask whether the reduction of \overline{\tau}_{k} to \tau_{k} lose any
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informations about the mapping class group or not. If k=1 , the answer
is easily obtained from Johnson’s fundamental work that Im \tau_{1}=\Lambda^{3}H=

H_{3}(N_{1}) . In this paper, describing \overline{\tau}_{2} explicitly, we give an answer for k=2.
Actually, we see that the reduction Im \overline{\tau}_{2}arrow Im \tau_{2} is an isomorphism.

The author would like to express his gratitude to Professor Shigeyuki
Morita for his encouragement and useful suggestions.

2. Definitions

First, we define the Johnson homomorphism introduced in [2, 3] . We
write \Gamma_{0} for the fundamental group \pi_{1}(\Sigma_{g,1}) of \Sigma_{g,1} and H for the integral
homology group H_{1} (\Sigma_{g,1} ; \mathbb{Z}) . Let N_{k} be the kth nilpotent quotient \Gamma_{0}/\Gamma_{k}

where \Gamma_{k} is inductively defined by \Gamma_{k}=[\Gamma_{k-1}, \Gamma_{0}] , and let \mathcal{L}_{k} be the hom0-
geneous part of degree k in the free Lie algebra \mathcal{L} on H over \mathbb{Z} . Recall that
the isomorphism \Gamma_{k}/\Gamma_{k+1}\cong \mathcal{L}_{k+1} gives a central extension 0 - \mathcal{L}_{k+1}arrow

N_{k+1}arrow N_{k}arrow 1 . If we write \mathcal{M}(k) for the subgroup of \mathcal{M}_{g,1} consisting
of all the elements which act on N_{k} trivially, then we can define the kth
Johnson homomorphism \tau_{k} as follows. Take a lift \eta\in N_{k+1} of h\in H . For
each \varphi\in \mathcal{M}(k) , the correspondence H\ni h – \varphi(\eta)\eta^{-1}\in \mathcal{L}_{k+1}\subset N_{k+1}

gives a well-defined homomorphism, that is, an element of Hom(H, \mathcal{L}_{k+1}) ,
which is isomorphic to \mathcal{L}_{k+1}\otimes H by the Poincar\’e duality. Then we obtain
a map

\tau_{k} : \mathcal{M}(k)arrow \mathcal{L}_{k+1}\otimes H

and indeed this is a homomorphism and commutes with the action of \mathcal{M}_{g,1} .
Next, we summarize Morita’s construction of the refinement

\overline{\tau}_{k} : \mathcal{M}(k)arrow H_{3}(N_{k})

Fig. 1.
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of the Johnson homomorphism, which is reduced to the original \tau_{k} under
a natural homomorphism H_{3}(N_{k})arrow \mathcal{L}_{k+1}\otimes H obtained from a spectral
sequence. See [6] for details. Take 2g elements \alpha_{1} , . , \alpha_{g} , \beta_{1} , . , \beta_{g} as in
Figure 1, generating \Gamma_{0} freely. We write a_{i} , b_{i} for the homology classes of \alpha_{i} ,
\beta_{i} respectively. Let ( \in\Gamma_{0} be the product \prod_{i=1}^{g}[\alpha_{i}, \beta_{i}] of the commutators.
Since the first homology H_{1}(\Gamma_{0}) is naturally isomorphic to the abelianization
of \Gamma_{0} , the 1-cycle -(\zeta) is a 1-boundary and there exists a 2-chain \sigma_{0} such
that \partial\sigma_{0}=-(\zeta) . In [6], Morita gave an explicit formula defining such a
2-chain as

\sigma_{0}=\sum_{i=1}^{g}\{(\alpha_{i}, \beta_{i})-([\alpha_{i}, \beta_{i}]\beta_{i}, \alpha_{i})-([\alpha_{i}, \beta_{i}], \beta_{i})\}

+ \sum_{i=1}^{g-1} ( \prod_{j=1}^{i}[\alpha_{j}, \beta_{j}] , [\alpha_{i+1}, \beta_{i+1}] ).
For each \varphi\in \mathcal{M}_{g,1} , the difference \sigma 0-\varphi_{*}\sigma_{0} is a 2-cycle of \Gamma_{0} , because
(represents the homotopy class of a simple closed curve parallel to the
boundary of \Sigma_{g,1} . As is well known, the homology of the free group is
always trivial except for degree 0 and 1 and hence there exists a 3-chain c_{\varphi}

such that \partial c_{\varphi}=\sigma 0-\varphi_{*}\sigma 0 . We write \overline{c}_{\varphi} for the image of c_{\varphi} in C_{3}(N_{k}) .
If \varphi is an element of \mathcal{M}(k) , then \overline{c}_{\varphi} is a 3-cycle on N_{k} . Now we obtain a
well-defined homomorphism \overline{\tau}_{k} by the correspondence \mathcal{M}(k)\ni\varphi\mapsto[\overline{c}_{\varphi}]\in

H_{3}(N_{k}) .
To describe the reduction of the refinement \overline{\tau}_{k} to the original \tau_{k} , we

consider the Hochschild-Serre spectral sequence \{E_{p,q}^{r}\} for the homology
of the central extension 0arrow \mathcal{L}_{k+1} – N_{k+1} - N_{k} –1. More explicitly,
\{E_{p,q}^{r}\} is the one associated to the increasing filtration C_{*} defined by C_{n}^{j}=

(a submodule of C_{n}(N_{k+1}) generated by n-chains (\eta_{1}, . , \eta_{n}) where at least
n-j of the elements \eta_{i} belong to \mathcal{L}_{k+1}\subset N_{k+1} ). If we define

C_{p,q}^{r}=\{c\in C_{p+q}^{p}|\partial c\in C_{p+q-1}^{p-r}\} ,

then

E_{p,q}^{r}=C_{p,q}^{r}/(C_{p-1,q+1}^{r-1}+\partial C_{p+r-1,q-r+2}^{r-1})

and the differential d^{r} : E_{p,q}^{r}arrow E_{p-r,q+r-1}^{r} is induced by the boundary
operator \partial of the chain complex on N_{k+1} . Furthermore, we have
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E_{p,q}^{2}=H_{p}(N_{k})\otimes H_{q}(\mathcal{L}_{k+1}) ,

p+q=n\oplus E_{p,q}^{\infty}=H_{n}(N_{k+1})
.

Now we consider the differential d^{2} : E_{3,0}^{2}-=H_{3}(N_{k})arrow E_{1,1}^{2}=\mathcal{L}_{k+1}\otimes H .
According to [6], the composition d^{2}o\tau_{k} coincides with \tau_{k} .

3. An answer to the question

Johnson proved in [4] that \mathcal{M}(2)=\mathcal{K}_{g,1} , where \mathcal{K}_{g,1} denotes the sub-
group of \mathcal{M}_{g,1} which is generated by all the Dehn twists along separating
simple closed curves. Now we consider the second Johnson homomorphism

\tau_{2} : \mathcal{K}_{g,1}arrow \mathcal{L}_{3}\otimes H

and its refinement

\overline{\tau}_{2} : \mathcal{K}_{g,1}arrow H_{3}(N_{2}) .

We naturally identify \mathcal{L}_{2} with \Lambda^{2}H by the correspondence [a, b]\mapsto a\wedge b

and \mathcal{L}_{3} with \Lambda^{2}H\otimes H/\Lambda^{3}H by the surjective homomorphism \Lambda^{2}H\otimes H -arrow

\mathcal{L}_{3} given by (a\wedge b)\otimes c\mapsto[[a, b], c] with the kernel \Lambda^{3}H . Let T be the
symmetric power S^{2}\Lambda^{2}H included in \Lambda^{2}H\otimes\Lambda^{2}H\subset\Lambda^{2}H\otimes H^{2} and let \overline{T} be
its image under the projection \Lambda^{2}H\otimes H^{2}arrow\Lambda^{2}H\otimes H^{2}/\Lambda^{3}H\otimes H=\mathcal{L}_{3}\otimes H .
In [5], Morita proved that Im \tau_{2} is a submodule of \overline{T} of index a power of 2.
On the other hand, the target of \overline{\tau}_{2} is

H_{3}(N_{2})=\oplus E_{p,q}^{\infty}p+q=3
,

where E_{p,q}^{\infty} is the E^{\infty}-term of the Hochschild-Serre spectral sequence \{E_{p,q}^{r}\}

for the homology of the central extension 0arrow \mathcal{L}_{2}arrow N_{2}arrow Harrow 1 .

Lemma 1 E_{2,1}^{\infty} is isomorphic to \overline{T}

Proof. Since the differential d^{2} : E_{2,1}^{2}=\Lambda^{2}H\otimes\Lambda^{2}H -arrow E_{0,2}^{2}=\Lambda^{2}\Lambda^{2}H is
the natural surjection with the kernel S^{2}\Lambda^{2}H , it suffices to show that

{\rm Im}(d^{2} : E_{4,0}^{2} - E_{2,1}^{2})=S^{2}\Lambda^{2}H\cap\Lambda^{3}H\otimes H

as a submodule of S^{2}\Lambda^{2}H\subset\Lambda^{2}H\otimes H^{2} .
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Now we compute d^{2} : E_{4,0}^{2}=\Lambda^{4}H - E_{2,1}^{2}=\Lambda^{2}H\otimes\Lambda^{2}H , which is given
by

\Lambda^{4}H\cong H_{4}(H)\cong\{c\in C_{4}(N_{2})|\partial c\in C_{3}^{2}\}/\sim

arrow\partial\{c\in C_{3}^{2}|\partial c\in C_{2}(\mathcal{L}_{2})\}/\sim\cong H_{1}(\mathcal{L}_{2})\otimes H_{2}(H)\cong\Lambda^{2}H\otimes\Lambda^{2}H .

For each element h_{1}\wedge h_{2}\wedge h_{3}\wedge h_{4}\in\Lambda^{4}H , we put

c= \sum_{\sigma} sgn \sigma(\eta\sigma(1), \eta\sigma(2), \eta\sigma(3), \eta_{\sigma(4)})\in C_{4}(N_{2}) ,

where \eta_{i}\in N_{2} is a lift of h_{i}\in H . Although its boundary

\partial c = \sum \{-(\eta_{\sigma(1)}\eta_{\sigma(2)} , \eta_{\sigma(3)} , \eta_{\sigma(4)} ) +(\eta_{\sigma(2)}\eta_{\sigma(1)},
\eta_{\sigma(3)} , \eta_{\sigma(4)})

\sigma : even
+(\eta_{\sigma(1)\eta_{\sigma(2)}\eta\sigma(3),\eta_{\sigma(4)})-(\eta\sigma(1),\eta_{\sigma(3)}\eta\sigma(2),\eta_{\sigma(4)})},

-(\eta_{\sigma(1),\eta\sigma(2),\eta_{\sigma(3)}\eta_{\sigma(4)})+(\eta\sigma(1),\eta\sigma(2),\eta_{\sigma(4)}\eta_{\sigma(3)})\}}

does not belong to C_{3}^{2} , we can modify this chain as

c’=c+ \sum\{-([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)}\eta_{\sigma(1)}, \eta_{\sigma(3)}, \eta_{\sigma(4)})

\sigma : even
+([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(1)}, \eta_{\sigma(3)}\eta_{\sigma(2)}, \eta_{\sigma(4)})

-(\eta_{\sigma(1)}, [\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)}\eta_{\sigma(2)}, \eta_{\sigma(4)})

+(\eta_{\sigma(1),\eta\sigma(2),\eta_{\sigma(3)}\eta_{\sigma(4)},[\eta\sigma(4),\eta_{\sigma(3)}])}\}

so that

\partial c’=.\sum_{\sigma\cdot even}\{-([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)}\eta_{\sigma(1)}\eta_{\sigma(3)}, \eta_{\sigma(4)})

+([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)}\eta_{\sigma(1)}, \eta_{\sigma(3)}\eta_{\sigma(4)})

-([\eta_{\sigma(1)}, \eta_{\sigma(2)}], \eta_{\sigma(2)}\eta_{\sigma(1)}, \eta_{\sigma(3)})

+([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(1)}\eta_{\sigma(3)}\eta_{\sigma(2)}, \eta_{\sigma(4)})

-([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(1)}, \eta_{\sigma(3)}\eta_{\sigma(2)}\eta_{\sigma(4)})

+([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(1)}, \eta_{\sigma(3)}\eta_{\sigma(2)})

-([\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)}\eta_{\sigma(2)}, \eta_{\sigma(4)})

+(\eta_{\sigma(1)}, [\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)}\eta_{\sigma(2)}\eta_{\sigma(4)})

-(\eta_{\sigma(1)}, [\eta_{\sigma(2)}, \eta_{\sigma(3)}], \eta_{\sigma(3)}\eta_{\sigma(2)})
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+(\eta_{\sigma(2)}, \eta_{\sigma(3)}\eta_{\sigma(4)}, [\eta_{\sigma(4)}, \eta_{\sigma(3)}])

-(\eta_{\sigma(1)\eta\sigma(2),\eta_{\sigma(3)}\eta_{\sigma(4)},[\eta\sigma(4),\eta_{\sigma(3)}])}

+(\eta_{\sigma(1)}, \eta_{\sigma(2)}\eta_{\sigma(3)}\eta_{\sigma(4)}, [\eta_{\sigma(4)}, \eta_{\sigma(3)}])\}\in C_{3}^{2}

and c=c’ as a cycle on H . Since the isomorphism \{c\in C_{3}^{2}|\partial c\in

C_{2}(\mathcal{L}_{2})\}/\sim\cong\Lambda^{2}H\otimes\Lambda^{2}H\subset\Lambda^{2}H\otimes H^{2} is given by the correspondence

C_{3}^{2}\ni(\alpha, \beta, \gamma)\mapsto\{

\alpha\otimes[\beta]\otimes[\gamma] (if \alpha\in \mathcal{L}_{2} )

0 (otherwise),

the image of \partial c’ in \Lambda^{2}H\otimes\Lambda^{2}H is

. \sum_{\sigma\cdot even}h_{\sigma(1)}\wedge h_{\sigma(2)}\otimes h_{\sigma(3)}\otimes h_{\sigma(4)}

=- . \sum_{\sigma\cdot even}
h_{\sigma(1)}\wedge h_{\sigma(2)}\otimes h_{\sigma(3)}\wedge h_{\sigma(4)}

\sigma(1)<\sigma(2)

and therefore {\rm Im}(d^{2} : ^{E_{4,0}^{2}} - E_{2,1}^{2}) is generated by elements of this form,
which also generate S^{2}\Lambda^{2}H\cap\Lambda^{3}H\otimes H . This completes the proof. \square

Remark The fact that the differential d^{2} : E_{2,2}^{2} – E_{0,3}^{2} is the natural
surjection implies that E_{0,3}^{\infty}=0 . We can see also that E_{3,0}^{\infty}=0 as follows.
Consider the first Johnson homomorphism

\tau_{1} : I_{g,1}arrow\Lambda^{2}H\otimes H

and its refinement

\overline{\tau}_{1} : I_{g,1}arrow\Lambda^{3}H .

Since Im \tau_{1}=\Lambda^{3}H (see [2]), the image of the differential d^{2} : E_{3,0}^{2}=\Lambda^{3}H -

E_{1,1}^{2}=\Lambda^{2}H\otimes H , which satisfies d^{2}\circ\overline{\tau}_{1}=\tau_{1} , is \Lambda^{3}H . So this differential is
injective and hence E_{3,0}^{\infty}=0 . Thus we can write

H_{3}(N_{2})=E_{2,1}^{\infty}\oplus E_{1,2}^{\infty} .

Here the latter term E_{1,2}^{\infty} is not trivial. Actually, we can estimate the rank
of E_{1,2}^{\infty} as

rank E_{1,2}^{\infty}\geq rankE_{1,2}^{2}- rank E_{3,1}^{2}- rank E_{4,0}^{2}
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=rank\Lambda^{2}\Lambda^{2}H\otimes H- rank \Lambda^{2}H\otimes\Lambda^{3}H- rank \Lambda^{4}H

= \frac{1}{6}g(2g-1)(4g+43g-25g-3)

\geq 35

for all g\geq 2 .

Lemma 2 Im \overline{\tau}_{2} is included in E_{2,1}^{\infty} .

Proof. E_{2,1}^{\infty} is generated by homology classes of 3-cycles \sum(\alpha_{i}, \beta_{i}, \gamma_{i}) on
N_{2} such that exactly one of the elements \alpha_{i} , \beta_{i} and \gamma_{i} belongs to \mathcal{L}_{2} for each
i . We compute \overline{c}_{\varphi} explicitly and show that it is homologous to a cycle of
above form for each \varphi\in \mathcal{K}_{g,1} . Johnson proved in [1] that \mathcal{K}_{g,1} is generated
by all the Dehn twists along separating simple closed curves of genus 1 and
2. Hence we have only to prove it for these twists. Moreover, since we can
replace \alpha_{i} , \beta_{i} appearing in the definition of \sigma_{0} with f_{*}\alpha_{i} , f_{*}\beta_{i} for each \varphi

which is a twist along a separating simple closed curve \gamma of genus k(k=
1,2) where f is a diffeomorphism on \Sigma_{g,1} such that f_{*}\gamma_{k}=\gamma if \gamma_{1} and \gamma_{2}

are defined as in Figure 2, it suffices to check for only two elements \varphi_{1} , \varphi_{2}

which are twists along \gamma_{1} , \gamma_{2} respectively. Indeed, we can easily see that

Fig. 2.

\overline{c}_{\varphi_{1}}=-(\zeta_{1}, \zeta_{1}^{-1}\alpha_{1}, \beta_{1})+(\zeta_{1}, \beta_{1}, \alpha_{1})

-(\beta_{1}, \zeta_{1} , (_{1}^{-1}\alpha_{1})+((_{1}^{-1}\alpha_{1}, \zeta_{1}, \beta_{1})

-(\zeta_{1}^{-1}\alpha_{1}, \beta_{1} , (_{1})+(\beta_{1}\zeta_{1}, (_{1}^{-1}\alpha_{1}, \zeta_{1}) ,
\overline{c}_{\varphi_{2}}=-(\zeta_{1}\zeta_{2}, \alpha_{1}, \beta_{1})+(\zeta_{1}\zeta_{2}, \beta_{1}, \alpha_{1})-((_{1}(_{2}, \alpha_{2}, \beta_{2})+(\zeta_{1}\zeta_{2}, \beta_{2}, \alpha_{2})

-(\beta_{1}, \zeta_{1}\zeta_{2}, \alpha_{1})+(\alpha_{1}, \zeta_{1}\zeta_{2}, \beta_{1})-(\beta_{2}, \zeta_{1}\zeta_{2}, \alpha_{2})+(\alpha_{2}, \zeta_{1}\zeta_{2}, \beta_{2})

-(\alpha_{1}, \beta_{1}, \zeta_{1}\zeta_{2})+(\beta_{1}, \alpha_{1} , (_{1}\zeta_{2})-(\alpha_{2}, \beta_{2}, \zeta_{1}\zeta_{2})+(\beta_{2}, \alpha_{2} , (_{1}\zeta_{2})
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+(\alpha_{2}\beta_{2} , \zeta_{1} , \beta_{1}\alpha_{1} ) -(\beta_{2}\alpha_{2}, \zeta_{1}\zeta_{2} , \beta_{1}\alpha_{1})+(\beta_{2}\alpha_{2} , \zeta_{2} , \alpha_{1}\beta_{1})

+(\alpha_{1}\beta_{1}, \zeta_{2}, \beta_{2}\alpha_{2})-(\beta_{1}\alpha_{1}, \zeta_{1}\zeta_{2}, \beta_{2}\alpha_{2})+(\beta_{1}\alpha_{1}, \zeta_{1}, \alpha_{2}\beta_{2})

-( \zeta_{1}\alpha_{1}\beta_{1} , \zeta_{2} , \alpha_{1}\beta_{1} ) +(\alpha_{1}\beta_{1}, \zeta_{1}\zeta_{2} , \alpha_{1}\beta_{1})-(\alpha_{1}\beta_{1} , \zeta_{1} , \zeta_{2}\alpha_{1}\beta_{1})

-(\zeta_{2}\alpha_{2}\beta_{2}, \zeta_{1}, \alpha_{2}\beta_{2})+(\alpha_{2}\beta_{2}, \zeta_{1}(_{2}, \alpha_{2}\beta_{2})-(\alpha_{2}\beta_{2}, \zeta_{2}, \zeta_{1}\alpha_{2}\beta_{2})

-(\alpha_{1}, \beta_{1}, \zeta_{2})+(\zeta_{1}\alpha_{1}, \beta_{1}, \zeta_{2})+(\zeta_{1}, \alpha_{1}, \zeta_{2}\beta_{1})-(\zeta_{1}, \alpha_{1}, \beta_{1})

-(\beta_{1}, \alpha_{1}, \zeta_{1})+(\zeta_{1}\beta_{1}, \alpha_{1}, \zeta_{1})+(\zeta_{1}, \beta_{1} , (_{1}\alpha_{1})-(\zeta_{1}, \beta_{1}, \alpha_{1})

-(\alpha_{2}, \beta_{2} , (_{1})+(\zeta_{2}\alpha_{2}, \beta_{2}, \zeta_{1})+(\zeta_{2}, \alpha_{2}, \zeta_{1}\beta_{2})-(\zeta_{2}, \alpha_{2}, \beta_{2})

-(\beta_{2}, \alpha_{2} , (_{2})+(\zeta_{2}\beta_{2}, \alpha_{2}, \zeta_{2})+(\zeta_{2}, \beta_{2}, \zeta_{2}\alpha_{2})-(\zeta_{2}, \beta_{2}, \alpha_{2})

mod \partial C_{4}(N_{2})

where \zeta_{i}=[\alpha_{i}, \beta_{i}] and this shows that \overline{\tau}_{2}(\varphi_{1}),\overline{\tau}_{2}(\varphi_{2})\in E_{2,1}^{\infty} . This completes
the proof. \square

Theorem The restriction of d^{2} : H_{3}(N_{2}) - \mathcal{L}_{3}\otimes H to Im \overline{\tau}_{2} is an is0-
morphism onto Im \tau_{2} .

Proo/. According to the previous lemmas, we can regard the values \tau_{2}(\varphi)

and \overline{\tau}_{2}(\varphi) as elements of the quotient module of S^{2}\Lambda^{2}H . Using the cycles
\overline{c}_{\varphi_{1}} and \overline{c}_{\varphi_{2}} computed in the proof of Lemma 2, we have

\overline{\tau}_{2}(\varphi_{1})=-(a_{1}\wedge b_{1})^{\otimes 2} .

\overline{\tau}_{2}(\varphi_{2})=-(a_{1}\wedge b_{1}+a_{2}\wedge b_{2})^{\otimes 2} ,

which coincide with the values \tau_{2}(\varphi_{1}) , \tau_{2}(\varphi_{2}) in S^{2}\Lambda^{2}H/\sim computed in
[5]. It follows that the homomorphisms \tau_{2} and \overline{\tau}_{2} have the same image in
S^{2}\Lambda^{2}H/\sim This completes the proof. \square

Remark It is an open problem to determine the abelianization of \mathcal{K}_{g,1} .
It was expected that the refinement \overline{\tau}_{2} would give a new abelian quotient of
\mathcal{K}_{g,1} , but the above theorem shows that \overline{\tau}_{2} has no informations about \mathcal{K}_{g,1}

which \tau_{2} loses.
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