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Scattering theory and large time asymptotics of
solutions to the Hartree type equations with
a long range potential
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Abstract. We study the scattering problem and asymptotics for large time of solutions
to the Hartree type equations

1
iup = —EAu—l— f(u®u, (t,z) € R xR™, u(0,z) =uo(z), =€ R™, n>1,

where the nonlinear interaction term is f(|ul?) = V * |[u|?, V(z) = Az|~%, A € R,
0 < 8 < 1. We suppose that in the case n > 2 the initial data ug € H**+2:01 H%"+2 and
the value € = ||ug|| gn+2,0 + ||uol| go,n+2 is sufficiently small and in one-dimensional case
(n = 1) we assume that ef%lug € L?, 8 > 0 and the value € = ||e®|?lug|| 2 is sufficiently
small. Then we prove that there exists a unique final state 44 € H"1t20 such that the
asymptotics

2 itl—ts

1 T 1T
u(t,z) = (zt)% Ut (;) exp (Et— 13

is true as t — oo uniformly with respect to £ € R" with the following decay estimate
lu(t)||Lr < Cet? 2, for all t > 1 and for every 2 < p < co. Furthermore we show that
for % < 6 < 1 there exists a unique final state 4+ € H**t29 such that

Far?) (2) + 001+ 872 ) + 0e/278)

,itl—é
1-46

) = exp (- T 0242) (5) ) U 52 = 022)

for all t > 1, and the asymptotic formula

2 it1—5

u(t,z) = ln iy (E) exp (i _

(it)2 t 26 1-96

is valid as t — oo uniformly with respect to x € R"™, where ¢3 denotes the Fourier
transform of the function ¢, H™* = {¢ € &';||$|lm,s = [[(1 + 2)%/2(1 — A)™/29| 1.2
< oo}, m, s € R. Analogous results are obtained for the following NLS equation

H(ar ) (2)) + oz,

1
ug = —EAu + A" ul?u
with cubic nonlinearity and growing with time coefficient, where 0 < § < 1, n > 1.
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1. Introduction

This paper is devoted to the study of the asymptotic behavior for large
time of small solutions to the Cauchy problem for the Hartree type equation

R 2 n
i0u = —gAu+f (jul*)u, (tz) e R xR, (1.1)

u(0,z) = up(x), z€R",

where
£ (uf2) =V % Jul? = / V(e - y)lul(y)dy,

Viz)=MNz|™®, AeR, 0<é<n and n>1.

We first survey the previous results without “size restriction” on the data.
The Cauchy problem (1.1) was studied in [7], for 0 < 0 < n and the
global existence, uniqueness and smoothing effect of solutions of (1.1) for
0 < § < min(2,n) were shown in by using the space time estimates of
the free Schrodinger evolution group and L? conservation law. In [14],
the time decay of global solutions to (1.1) was obtained when 0 < § < n
and A > 0. More precisely, the following time decay estimates

lu(t)l| pavasrm < C(L+|t))~0* (1.2)
for the case 0 < § < 3/2, n > 2 and |ju(t)||r < C(1 + |t|)%_%, where
2<p< 23—271 for the case % < d < mn, n > 2 were proved by using the

pseudo-conformal conservation law and LP—L? time decay estimates of the
free Schrodinger evolution group if the initial data ug € H"% N H%?, where
v > n/2. If the initial data ug € H"°N H%7, where v > n/2 are sufficiently
small the optimal time decay estimate ||u(t)||zr < C(1 + |t|)%_% with any
2 < p < 0o was proved for the supercritical values 1 < § < n, for any A € R.
The scattering problem for the Hatree type equation (1.1) with supercritical
powers 1 < § < n was developed in [7], [13], [17]. Equation (1.1) with critical
value § = 1 is known as Hartree equation. For this equation in the three
dimensional case the following L™ time decay estimate of solutions

lu(t)l|ze < C(L+Jt)) 7Y/ (1.3)

was obtained in [9] for large initial data up € H>° N H%2. This result
is an improvement of . The estimates and are not sufficient
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for the study of the scattering problem. Recently in [10, 12] we obtained
the asymptotic behavior for large time of small solutions for (1.1) with
critical power 6 = 1 and we showed the existence of the modified scattering
states. To explain these results more precisely we introduce the following
notations and functional spaces. We let 9; = 8/0z;, 0% = O --- 9%,
o = (an,az,...,0n) € (NU{0})", |a] = >%_; ;. And let F¢ or ¢ be
the Fourier transform of ¢ defined by F¢(£) = W [e~=%¢(z)dr and

F~1¢(z) or ¢(z) be the inverse Fourier transform of ¢, i.e. Flg(z) =
a7z J e o(€)de.

We introduce some function spaces. As usually we denote the Lebesgue
space as LP=LP(R™) = {¢ € &' |¢llp < oo}, where [[g]lp= ([ |o(2)[Pdz)"?
if 1 <p < oo and ||¢]|co = ess. sup{|é(z)|;x € R"} if p = oco. the weighted
Sobolev space is defined by

H™S — H™S (Rn)
s/2 m
= {6 € S'5l16llms = || (1+2%) 72 (1 - 2)"/2|| < oo},
m, s € R and the homogeneous Sobolev space is given by

e = B (RY) = {g € 85 ||l (-2)™%g < oo}

with seminorm ||@|| gym,s = || |z|$(—=A)™ 2(25”2. Also we consider the analytic
function space

H; = Hy(R™) = {9 € L2(R");

(14022 Mg(p) | < oo},

s € R, 0 > 0 with a norm ||¢|lys = H(l +p2)s/26(’|p|q§(p)H2, which can

be expressed in the x-representation in terms of the analyticity in the strip
—0 <Imz; <o,1<j < nviathe following norm ), ||¢(- +ivo)|s,0, where
the sum is over the all possible values of the vector v = (v1,va,...,Vy),
where v; =1 or v; = —1, 1 < j < n. Indeed we have the inequality

16l < D 1IS(- +ivo)llso < 2*dllrus

We let (v, ) = [9(z z)dz. By C(I; E) we denote the space of contin-
uous functions from an 1nterva1 I to a Banach space F.
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The free Schrédinger evolution group U(t) = e**2/2 gives us the solution

of the linear Cauchy problem (1.1) (with f = 0). It can be represented
explicitly in the following manner

1

Ul = (2mit)™/2

Note that U(t) = M (t)D(t)FM(t), where M = M(t) = exp (7""—) and D(t
is the dilation operator defined by (D(t)y)(z) = Ok /2¢ (2). Then since
D(t)~! =4"D (1) we have

U(-t)=MFDt)"'M = Mi"F~'D G) M,

R )
where M = M(—t) = exp (—%)
Different positive constants might be denoted by the same letter C. In

what follows we consider the positive time ¢ only since for the negative one
the results are analogous.

In paper we proved that for any initial data ug € HY°NH?", where
v > %, n > 1, such that the norm ||uo||y,0 + |[uo|lo,y = € is sufficiently small
there exists a unique global solution u € C (R; HYYNH 0”7) of the Cauchy
problem (1.1) with § = 1 such that ||u(t)|lcc < Ce(1 + |t|)~™/2. Moreover
we proved that there exist unique functions ® € L*® and 4, € L® N L?
such that

lFwonmes (i [ 1(anP) L) - o <oat
for all t2>1,
where k = 2 or oo, and
t dr _
[ 100 F = £ (2P rogt 0| <ca
for all t>1,

where 0 < < 2/n, v > 2 and 0 < £ < min (1,3 (v — 2)). Furthermore
2 2 2

we have the asymptotic formula for large time ¢ uniformly with respect to
zeR"
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u(t,r) = W?Lr (%) exp (z—z—j —if (Ja+]?) (%) log t)
+ O(et=3)

and the estimate ||F(U(—t)u)(t) — iy exp(—if (|iis|)?logt)|l, < Cet™4m,
where k = 2 or co. From the above asymptotics we got the estimate

Hu(t) — exp (—if (|ﬁ+|2) (Z> log t) U(t)u+Hoo < Cet™ 27,

In paper [12] we improved the regularity condition on the initial data
up € H™ N H%Y as follows. If the norm of the initial data ||ug|ly,0 +
|luollo;, = € is sufficiently small, where 3 < v < %, n > 2 then there
exists a unique global solution u € C (R; H"® N H*Y) of the Hartree equa-
tion (1.1) with 6 = 1 such that |lu(t)|, < Ce(1 + |t|)%~%, where 2% <
p < n?-gv' Moreover we showed that for any small initial data up €
HY0 N HYY there exists a unique function u, € H%? N H%’ such that
||u(t) — exp (—if (|6+]?) (;) logt) U(t)ui||, < Cet™*, where I<o<y<
7, 4 = min (1, %)

We also note that the Hartree type equation (1.1) with 2/3 < 4 <1
if n > 4 and (\/1_7—1)/4 < § < 1if n = 3 was treated in and
the existence of weak modified scattering states was shown without the
uniqueness. This result does not say that the modified scattering state is
not equal to zero identically and therefore is not sufficient for the scattering
theory.

Our purpose in the present paper is to study the scattering problem for
the Hartree type equation (1.1) in a more difficult subcritical case 0 < ¢ < 1.
We propose here a new method which differs from the previous approach of
[10, 12] in the point that we introduce another phase function. This method
also gives us a simple proof of existence of modified scattering states for the
Hartree equation (1.1) with § = 1 and can be easily applied to the nonlinear
Schrodinger equations with critical and supercritical power nonlinearities.

We now state our results in this paper.

Theorem 1.1 Let 0 < § < 1. Let in the case n > 2 the initial data
ug € HORM) N HY(RM), [ = n+ 2 and the value € = |juol| gr.o + ||uol| o
be sufficiently small. In the one-dimensional case n = 1 we assume that
efllug € L2 (R), B > 0 and the value € = ||eP®lug||a is sufficiently small.
Then there exists a unique global solution of the Hartree type equation (1.1)
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such that u € C (R; HYO(R™) N HY(R™)) for n > 1. Moreover the follow-
ing decay estimate

n

lu(®)]lp < Cetr ™2

3

s valid for all t > 1, where 2 < p < 0.

Remark 1.1 The decay rate in [[’heorem 1.1 is the same as that of the
solutions to the linear Schrodinger equation. While the global existence
of solutions was known (as mentioned before), however the optimal decay

estimate of [I’heorem 1.1 is a new result.

Theorem 1.2 Let u be the solution of (1.1) obtained in Theorem 1.1.
Then for any uo satisfying the condition of Theorem 1.1, there exists a
unique final state 4y € HY such that the following asymptotics for t — oo

1 - 2 Z‘tl—6 X B
u(t,z) = (it)%u+ (—CE) exp(% — 1o 5f (Ja+]%) (f—) +0(1 +t 25))
+0(t™27%)

s valid uniformly with respect to x € R™.

For the values § € (%, 1) we obtain the existence of the modified scat-
tering states.

Theorem 1.3 Let u be the solution of (1.1) obtained in Theorem 1.1 and
% < § < 1. Then there exists a unique final state G, € H'O such that the
following asymptotics

1 ) T i132 itl_é ~ z
B (7) e (5? — 15/ (1) (?))
n O(t—g+1—26)

s valid for t — oo uniformly with respect to x € R™ and the estimate

ut) —exp (151 (1042) () ) Uty

s true for all t > 1.

2

Remark 1.2 Note that in the region 0 < § < % the value of the phase
in the large time asymptotic formula of the solution is determined in Theo-
rem 1.2 with accuracy of the summand growing as t'~2° and for the region
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) € (%, 1) the phase is evaluated up to a constant summand. In the case

% < § < 1 [Theorem 1.3 makes the value of the phase in the asymptotic

formula precisely.

For the convenience of the reader we explain our strategy of the proof
of Theorems [.1-1.3 in the case of n > 2. We can easily prove (see pa-
per ) the local in time existence of solutions to the Cauchy problem
(1.1) by virtue of the contraction mapping principle in the closed ball
Xr2e (with a center at the origin and a radius 2¢) of the following func-
tional space Xr = {p € C ([0,T};L?);|l¢lla, < oo}, where ||Ju|lx, =
supocscr (1u(t) lmo + [U(~t)u(t)llo,) with any m. j € N:

Proposition 1.1 Let the initial data ug € H™° N H% m,j € N and let
the norm € = ||uo|lm,o0 + lluollo; be sufficiently small. Then there exists a
time T > 1 and a unique solution of the Cauchy problem (1.1) with 0 <
6 < 1 such that u(t) € C ([0,T); H™®), U(-t) u(t) € C ([0,T); H*?) and
Jullag < 2

ix2
Via Proposition 1.1 we can define a new function v = Fe 2t U(—t)u(t),
which satisfies the following equation

: 1 ~6 ¢ (112
vt + @Av =t7°f (|v]*) v. (1.4)
To treat the nonlinear term we introduce a phase function g such that
1z “Sg (112) L L 2
- —Ag=t — t>1
gt 2t2 g f (l’U‘ ) + 212 (Vg) ) > 1, (15)
g9(1) =0,

where 1 > 0 is an arbitrary constant. The function g is real valued and
well defined by v since the equation (1.5) is a nonlinear parabolic equation
(when g > 0). We put w = ve', then w is also well defined for 1 <t < T.
Furthermore if we multiply by €% and use (1.5) we easily see that w
satisfies the Cauchy problem

1 ; 143
w; = > VuVg+ LA

572 572 wAg, t>1,

(1.6)
w(l) =v(l) = Fe'z U (—1)u(1).

To obtain the desired result we need to show the global in time existence
of solutions to the system of equations (1.5)—(1.6) under the condition that
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lwDllo+w(@llog = IU (1) u(L)llog+|lu(1)lli0 < 2¢. We use the identity
f(jv?) = f (jw|?) = C(—A)=™=9/2||2, (see [22]), whence we see that the
nonlinearity f (|vlz) possesses a regularizing property (which is sufficient for
our purposes in the case n > 2). For the one-dimensional case (n = 1) we
have analogous results, however we need to assume stronger conditions on
the regularity properties of the initial data w(1) since the system (1.5)—(1.6)
has the derivative loss. For details, see Section 3.

In the case of the Hartree equation (1.1) (with § = 1) in paper we
also have introduced a phase function g in order to eliminate a divergent
term in the equation. The phase function g previously used in [10] is deter-
mined by the equation g; = it™! f (|0|%) , where o = FU(—t)u(t). Thus our
phase function g here is slightly different from that used in and only
the leading terms of the large time asymptotics of these phase functions
coincide.

The situation for the Hartree type equation (1.1) is similar to that for
the nonlinear Schrédinger equation with the power nonlinearity f (|ul?) =
Alu|?~!. Roughly speaking, a potential V = A|z|~% in (1.1) corresponds to
the power p = 1+ 2§/n, so that the NLS equation with the critical power
p = 1+2/n is the analogue of the Hartree equation (1.1) with § = 1. Thus
from the point of view of large time behavior of solutions the Hartree type
equation (1.1) corresponds to the following nonlinear Schrodinger equation

1
i0iu = —§Au + Nul?/™. (1.7)

The Cauchy problem for the nonlinear Schrodinger equation was stud-
ied in [1], and the scattering theory for the supercritical power 6 > 1
was developed in [5], [16], [23]. For the critical case § = 1 it was shown in
for n =1 and in for n = 2,3 that the modified scattering states
exist. The existence of the modified wave operator was proved in for
n =1 and in [4] for n = 2,3. In the present paper we restrict our attention
to the more difficult subcritical case 0 < § < 1 in the equation (1.1) which
corresponds to with 0 < 6 < 1. We hope that our method can be
applied also to the case of the equation [1.7). (However in the case of the
NLS equation we have a difficulty that when estimating the derivatives
and the analytical properties of the solution, the nonlinearity |u|25/ " gives
us a singularity at the origin and so we need some estimates of the solution
u from the below in order to use our approach).
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On the other hand similar results can be easily obtained for the following
NLS equation with cubic nonlinearity with growing in time coefficient

1
i0u = —§Au + A" u|?u, (1.8)

where 0 < § < 1, n > 1. We have the following Theorems which are
analogous to Theorems [.1-1.3 concerning the one dimensional case.

Theorem 1.1’ Let 0 < § < 1, n > 1 and the initial data e®*lug(z) €
L%(R™), B8 > 0 be such that the norm € = Heﬁ|x|u0H2 be sufficiently small.
Then there exists a unique global solution of the Cauchy problem for equation
(1.8) such that v € C (R; HY°(R™)) | = n+2. Moreover the following decay

estimate ||u(t)||p, < Cetr™ 2 is valid for all t > 1, where 2 < p < 00.
Theorem 1.2' Let u be the solution of the Cauchy problem for equation
(1.8) obtained in Theorem 1.1'. Then for any initial data ug satisfying the

conditions of Theorem 1.1', there exists a unique final state iy € H"O such
that the following asymptotics for t — oo

1 T iz? Lo R T _
u(t,x) = (it)%u+ (?) exp(a 1T (5f (Ji4]%) (?) + 01+t 25))

+0(t727%)

s valid uniformly with respect to x € R"™.

Finally if § € (%, 1) we are able to obtain the existence of the modified
scattering states.

Theorem 1.3’ Let u be the solution of the Cauchy problem for equation
(1.8) obtained in Theorem 1.1' and § < § < 1. Then there exists a unique
final state 4y € H'O such that the following asymptotics

1 ) -t1—5 X
ue) = g (F)ow (55 - 1557 () (7))
+O(t—%+1—26)

s valid for t — oo uniformly with respect to x € R™ and the estimate

,L'tl-(s

utt) - exp (-7 (2:) () ) vonus

is true for all t > 1.

<Cctt
2
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We believe that our method is interesting from the mathematical point
of view since it suggests a possibility to study the large time asymptotic
behavior of small solutions to many important subcritical nonlinear evolu-
tion equations, such as the Korteweg-de Vries and Benjamin-Ono equations.
From the physical point of view the Hartree type equation (1.1) helps us to
explain the scattering theory with long range potentials. We have a conjec-
ture that the Korteweg-de Vries and Benjamin-Ono equations correspond
to the subcritical value § = % in the Hartree type equation (1.1). Note that
in paper we constructed the modified scattering states for the modified
Benjamin-Ono equation which are similar to the case of the Hartree equa-
tion (1.1) with the critical value § = 1. We also have a hypothesis that if the
initial data have a zero mean value [ ug(z)dz = 0 then the solutions of the
modified Korteweg-de Vries equation have the same scattering properties.

We organize our paper as follows. In Section 2 we prepare some pre-
liminary estimates. is the usual Sobolev inequality. We need
to treat the nonlinear term. Section 3 is devoted to the proof of
Theorems [.1-1.3. In the case n > 2 using the local existence [Theorem 3.1
we prove a-priory estimates of the solutions to the system (1.5)—(1.6) in
Lemma 3.1. For the one-dimensional case we apply the local existence The-
orem 3.2 in the analytic functional space to get the estimates of the solutions
to the system (1.5)—(1.6) in Lemma 3.2. The rest of Section 3 is devoted
to the proof of Theorems [.1-1.3. The proof of Theorems [.1'-1.3’ is the
same as that of Theorems [.1-1.3 in one-dimensional case by use of the
analytic functional spaces, so we omit it. (However we give some necessary
alterations concerning NLS equation while proving Theorems [.1-1.3.)

2. Preliminaries

We first state the well-known Sobolev embedding inequality (for the
proof, see, e.g., [3]).

Lemma 2.1 Let q, r be any numbers satisfying 1 < q, r < 0o, and let j, m
be any real numbers satisfying 0 < j < m. Then the following inequality is
valid

|-ayu) <cf a2 uly

if the right-hand side is bounded, where C is a constant depending only on

m, n, j, ¢, 7, a, here % = %-i—a (1-2)+(1-a) % and a is any real number
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from the interval % <a< 1, with the following exception: if m —j — 2 is
nonnegative and integer, then a = ;%

The following lemma is used for obtaining estimates of the nonlinear
term.

Lemma 2.2 We have the following estimates

lovllio < Clldllio (||¢Hoo + |'¢“Ht,0) ;

Zj?l e (96,05 (Vv - V9))| < ClIgli (4o + ] 00)
and

(050,05 (V)?)| < C (IWlloo + 1l o) 105001y, 5= 1,...,m

if the right-hand sides are bounded, where 1) is a real valued function, ¢ is
a complex valued function, l=n+2, k=142, n > 2.

Proof. By the Leibnitz rule we have

Yo lo* @)l < D lledvla+ Y vds|:

la|=l la|=l |a|=

oY ¥ > |

m=l|a|=l-m|B8|=m

< llglloo D 10°%ll2 + ¥lloo > 10°2

|lor|=t la]=l

+C Y llo*wlisllvlie Y 18%slbleie,

lal=! la|=!

=

where we have applied the Holder’s inequality with 1 + =3 L and Lemma 2.1
with 1 ==m 4o (3= L) e [0, and b =m 45 (10 1) 4 1zt ¢ [0,1]

n ’ 210

b=1-a+ S, herea=a(m)issuchthat 0 <a<lforl1<m<I[-1.
(It is easy to see that such values of a exist, they are from a nonempty

interval (max (O, 2’5?%) , min (1, 251 2’”)) .) Therefore we get

S 10°wella < Clllls (41 + 3 0%

|a|=l la|=l
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This implies the first estimate of the lemma. Since % is a real valued function
we have by integrating by parts and Holder’s inequality

Re (0}, Vo - VOi9) | < CllaYIlwld}sl3.
Taking the inequality into account and using the Leibnitz we obtain
'Re (agqs, 8 (V- v¢))‘

-1
<clogl, > ¥ 3 |

m=0 |a|=l-m+1 |f|=m+1

42,

andasabovetaking%:-k-}lm—}—a(%—%) € [0,%] and%:%—{—b(%—%)-&
IT‘bE [0,%],whereb=%—i—%‘-—-al—k,a:a(m) is such that 0 < a < 1 and

0<b<1lforl<m<Il-—1(We can take such values of a from the interval

2k—21 2k—2m— - 2k—2
(ma,x (0, T o "), min (1, 2k_;”))) we get

-1

Y Xy e,

m=0 |a|=l—-m+1 |8]=m+1

-1
<Al Y 10%0l+C Y S S 0w’
|| =l m=1 |a|=k—m |B|=m
< 189l 3 0%z + c||¢ul,o(nwuoo Y uaawuz)
|ee|=l la|=k

< Cligllo (I¥lloo + 191l grro)

whence the second estimate of the lemma follows. And finally by virtue of
the Holder inequality with % + % = % and with % = k+2-m

n

a(-%) €[04 and L = Z+b(i-5) ¢ [0.3], where a = a(m)

and b = 1-a+ ﬁ satisfy the inequalities 0 < a < 1,0 < b < 1
for all 3 < m < k — 1 (we can choose a from the nonempty interval

2k—2m+d-n _4 : 2k—2m+4 2k—ntd
(max (0’ Py n’2k—n>’mln (1’ Toon 0 Zhem )))We get
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(oto.25997)

<C i ‘ (6}%, Vo - a;f"w) }
m=0

k
<ClovldIavle +Clofl, Y Y Y o o),

m=2 |a|=k+2—m |B|=m

< Cl85lly > 10°% 2l Al

la|=k

+cna;wuz§ > w0ty

m=3 |a|=k+2—m |B|=m

< clfulls 3 10wl (1wl + 3 10°01e)

ot o=k
reltul, o lomlglvlse 3 lorwlblvli?
o=k la|=k
2

< c(nwnoo s naawuz) 1053

|a|=k
is proved. O

3. Proof of Theorems

We have
D(t)_lﬁ (f (|u|2) u)
et [RGOR
= D(t) M/ 7 ep deut )
1 [ [Mu(t,§)?
|z — |9

Mu(t, €)|? :
:in/2tn/2 ‘|t5(_,§|)5| d§e“”2t/2u(t,tw)

=t°f (|ID(t)"*Mu|?) D(t)"*Mu = t0f (|vf*) v,

= D(t) déMul(t, z)
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where
v(t) = D(t)"*Mu = FM(t)U(~t)u(t).

Using the identity U(—t) = MF'D(t)"*M for the free Schrédinger evolu-
tion group we translate the Hartree equation (1.1)

1
g = —§Au +f([u®) u
to the following equation

W(U(=t)u)y = U(-t)f (|u]2) u=MFID@t)"'Mf (|ul2) u
= MF 14 °f (|v12) v

whence we get

72
i (MU (=t)u), = ﬁMU( thu+t 0 F1f (v} v

and finally as in paper we obtain
72

vy =t f (Jv]*) v + .’F(%Q

MU(=tu) = £75f (o) v - 530

(3.1)

Note that for the case of the NLS equation we get easily
D(t)"*M|u|*u = t~™|v|?v and therefore from the NLS equation we
obtain the equation vy = t~%|v|%v — 2 Av, which is similar to (3.1). Then
changing the dependent variable v = we™ we get

iwy = w (t"‘;f (jlwe ")) — gt) — ﬁe“’A( )
= w (7% (lwe™P) - g
1

— 53 (Bw = 2iVeVg — w(Vg)® — iwAg).

We now choose the function ¢ in such a way that it satisfies the equation

g =t°f (jwe™%) + (Vg)2 + 573 £ Ag

212

with the initial condition g (1,z) = 0, u > 0 is arbitrary (below we choose
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p=1in and p = 0 in Lemma 3.2). Then we obtain
1
iwy = — (—Aw + 2iVwVyg + (i — p) wAg)

2t
and w(1) = v(1). Note that the function g remains to be real for all t > 1
and so |v| = |w|. Thus from (3.1) we get the following system

(1 i 1+ iu
wy = t—2Vng + 572 Aw + 572 wAg,
_ 1
Y 9 =t7°f (Jwl?) + 55(Vg)* + %Ag, (32)
2t 2t
iz?
Lg(1) =0, w(l) =v(1) = Fe 2z U(-1)u(l).

Note that f (Jw|?) = C(~=A)~("=9/2)y|? (see [22]).

By virtue of Proposition 1.1 we may assume that

lw (1)l + llw (1) llog = llw (1) flr0 + 1T (1) w (1) [log < 2.

In order to obtain the desired result we need to prove the global existence in
time of solutions to (3.2). To clarify the idea of the proof of the Theorems
we use the following local existence theorem which can be shown by the
contraction mapping principle.

Theorem 3.1 Suppose that w(l) € H® N H®. Then there exists a
ttme T > 1 and a unique solution to the Cauchy problem for the sys-
tem of equations (3.2) with p = 1 such that w € C ([1,T], H*° n H%Y),
g€ C([1, T, H*ONL>®), where l=n+2, k=142, n>2.

We now prove
Lemma 3.1 Suppose that the initial data v(1) are such that the value
e = [lv(D)lls0 + [lv(1)loy

is sufficiently small. Then the following estimates are valid

— S _
lwllio + [wllog + 7" (lglleo + lgll 4e0) + 27 ligll o < Be,  (3.3)
foranyt>1, wherel=n+2,k=101+2,n>2.

Proof. By the contrary we suppose that estimate (3.3) is violated for some
time. By [Theorem 3.1 and continuity of the left hand side of (3.3) we can
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find a maximal time 7" > 1 such that nonstrict inequality (3.3) is valid for
all t € [1,T]. We estimate the following norms J = |jw||;o and

_ Q s _ (84
1=07 (gl + 3 107gla) + 50 X %l
|a|_—_l |a|=k

of the functions w and g on [1,T]. Differentiating (3.2) (with p = 1) with
respect to x; and integrating by parts we get

% (8;-10,8;10) = Re% (Bl-w 31' (Vg - Vw))
1 + 1

+Re (yu;y(wAgD

whence by the first two estimates of we obtain

diﬂ < Ot 17921 2 < OB 179/2
t

and integration with respect to t over [1,], 1 < t < T gives J < 2e.
Analogously by virtue of the third estimate of we find

gt |98l < 27 |(ok. 245 ()
+ | (250,05 997)| - 2 [v9t
< ov* [c-al et -a s )
+Ct=rj2 1 - t—gllver%,

where r; = 8’“9 and k = n + 4. From Lemma 2.1 we have the estimate
(- 5/27‘J||2 < C’||r]||§ %||Vr;||$ since § € (0,1). Then using the Young’s
inequality ab < ‘f + ?, where we take a = C||r;||3 5||6;“( A)~%/2f||, and
b=t0||Vr|l$, p = -2-%3, q= %, so that %+ ;11- = 1, we get

Ct=8 |[(-2)%2r; | |0k (-2)52f (wP?) |

< 222 (jnylyo ok -2y 272 )7 + Lol
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Hence

d _ _ 725 _
Slirsl3 < € (Irs 132105 (=2) " 1lly) = + €t~ o1
2 26

< CJ2 ) HTJH LR Ct—csllrj”?p < C€4t1—5

since for all n > 2 we have

it ), < ol
< C A%l < Clwliio.

Integration with respect to t yields ||rj||> < Ce*t*=°. Thus [|g]|gxo <
Ce2t19/2 < ¢t1-8/2_ For the norm H'C directly integrating equation (3.2)
we get

9l g0 =

t t
gt < [0 () s
1 HU0 1

1 [t d
4+ 5/ (H(Vg)2HHz,o +11Ag|l g0) _72-
. T

t
C/ (T_5J2 +T_2“g||Hk»0> dr
1

< C2t170 < !9,

IN

In the same way we estimate the L* norm to get

ol = | [ octe]_< [+ 7 Qi)

+5 [ (1992 + 1agle) 5

t
4
<C (62 + 61+;‘—+—7) / T70dr < et
1

SincebyWithj:2,m=k—%:’I’I,+%,’[‘:2’q:oo,p:oo,
azni”weget

_4 n+43
n n 1 L —
1Aglloo < Cligl i llgllas™ < Celtrimt!=0/2,
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Therefore we see that

5 o
I- t5-1(||gnoo £y ||aag||z) P51 Y 0%l < 3e

|al=l |a|=k

Similarly, multiplying (3.2) by x?lu‘J and integrating by parts, we easily
obtain the estimate ||w|lo; < €. Hence we get (3.3) for all t € [1,T]. The
contradiction obtained yields the result of Lemma 3.1. O

Let us consider the one-dimensional case n = 1. Note that from our sup-
position on the initial data ||e®1®lug(z)||s < € we have v(1) = Fei® /2uy(z) €
'Hg, and ”U(l)”H%, < 2¢, where 0 < ' < 3. Below we will omit the prime.
As in the case n > 2 we assume that the following local existence theorem
holds. Denote o = o(t) = 5t™7, where 8 >0, 0 < v < g.

Theorem 3.2 Suppose that v(1) € H%. Then there exists a time T > 1
and a unique solution to the Cauchy problem for the system of equations

(3.2) with p = 0 such that w € C([1,T),H3), g € C([1,T],L>®), g» €
¢ (1,7), H3).

Now let us prove the following estimates.

Lemma 3.2 Suppose that the initial data v(1) are such that the value
€= ||U(1)”Hg is sufficiently small. Then the following estimate is valid

lwllzg + 7 (lglloo + llgll gs0) + 7 llgallsa < 5e (3.4)
forany t > 1.

Proof. Denote h = t°=1=7g, where v € (0, %] Then from the system
(3.2) (with u = 0) we get

( Lo 4y-s : 147-6
wt = ﬁ (2t K hwg + twg, + 77 "Uhm),
1 -0
< ht = t_l—’ya:l:f (|w|2) + tﬂy—l_ahhx - _+_’ty__h, (35)

LA(1) =0, w(1)=w(1).

We consider a symbol E(p) = (1 + |p|)* e??l, where o = o(t) = Bt~ decays
with time. Note that Fi(p) = o'(t)|p|E(p). Taking Fourier transform of

(3.5), multiplying the result by E2(p)1b(t,p), integrating with respect to
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p € R and taking the real part of the result we obtain

VIp|Ew

~nll2 An A A
\/|p|Eh“2 — 2Re(Eh, EG,) — 2

2 ~ ~
_ = 2Re(B, EGy),

d

E”“’H%g — 20’
1+vy—9¢ (3:6)
f“’l”%g,

where G = 7179 (hwx + %whx) , Gy =t71770, f (|w|2) + 7" 1-9hh,. By
the Schwarz and Sobolev inequalities we get

d
Rl — 20

1Re (m,m)1
< Nwllyzr2llGallysr2
< O wllga (IR -+ iowa(t, -+ i0)llsj20
+ |h(t, - — io)ws(t, - —io)|l5/2,0 + Az (t, - + id)w(t, - +i0)|l5/2,0
+lhat,- = i) (t, - = i0)lls 20)
< GO0 wll, 12 (1hllags el e + Il vz lwllag ),
where we have used the fact that
|A(t, - +i0)wz(t, - +i0)|l5/2,0
< C(JIhtt, - + i) [ ollw(t, - +io)l7/20
+11h(t, - + i0) s 2llw(t,  + i0)l20)

< C (Il Iwlzra + Ilgerzllolhg )

and since |w|? = ww has an analytic continuation as w(t, z)w (¢, Z) for the
complex values of the independent variable z in a strip —0 < Imz < o we
obtain

’Re (Eh, EGQ)‘
< (Al 2l Galaro
< Cllhllygra (777 (It - + i0)wlt,- = 0)llsas/20
+lw(t, - = io)wlt,+i)lls45/20)

O (2 i0)no + B2~ i0)l2g) )



156 N. Hayashi and P.I. Naumkin

< Cllhllyzra (£l g + 67, ol ) -

Now as in the proof of we argue by contradiction. We use the
nonstrict estimate on some maximal interval [1,7T]. Via system (3.6)
we get for the norm J? = |Jw||3,; + [|h[|3

d - _1-
2T < O = 2Byt (w2 g + (2. 0)

+ O+ 07T (Jull e + B2, 2
< Cet™177J2,

whence by the Gronwall’s inequality we obtain J(t) < J(1)e®® < 2e.
In the same way as in we estimate the value
t°71 (llglloo + llgll grs.0)- is proved. 0

We are now in a position to prove Theorems I.1-1.3.

Proof of Theorem 1.1. From for n > 2 and from
for n = 1 we find that there exists a unique global solution u of (1.1) such
that u € C (R*; H"29 N H%"*2). Using the identity FMU (—t)u(t) =
w(t) exp (—ig(t)) and our trivial representation of the solution

u(t) = M(t)D(t)w(t) exp(—ig)
1 x . T
= Gyl Ov (# ?) exp (g (1 ?))

we easily get

oy < e 1) < (fo e 2)f o)

1/p
= o ([lupay) = cole i,

< Ctn/p_n/2nw|ln/2—n/p,0 < Cetn/p—n/2

1/p

for all p > 2. This completes the proof of Theorem 1.1.. l
Proof of [Theorem 1.2. 'We have viaLemma 2.2, [Lemma 3.1 and Lemma 3.2

leo(t) - w(s)no < / 7 (7) mod
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t dr
< C [ (IVTulho+ 8wl + wAglno) 75
t dT -5

for all 1 < s < t. Therefore there exists a unique limit W, € H™? such
that lim;_o w(t) = W, in H™? and thus we get

u(t,2) = —— M (B (1, 2) e79(7)

(it)3 t
1 T\ —ig(t,2 .
= (it)%M(t)WJr (;) e=9(t3) 4 O(et™579)

uniformly with respect to z € R™ since for all 2 < p < oo we have the
estimate

u(t) — (Z,t)%/?M(t)m (t) e—19(t:3) ,,
<o (i) -we ()],

< GO u(t) = Wil < OO w(®) = Wikllnja-njpo
< Cetn/p—n/2—5_

Note that analogously to [3.7) we see that |w(t) — w(s)|lio < Ces™0/2
therefore W, € H'0. For the phase g we write the identity

g(t) = /1 f(IwIQ)Cf_—;ﬂL/1 ((Vg)2+uAg)é%

t1—5
1-6

= f(|W+|2) +(I)(t)a

(-1

8(t) = (W) + 9(t) + (f () = £ (W) “5—5

dr

+ /1 (V)" + nlg) 55,

v(0) = [ (f (wtn)P) = £ (o)) G-

76
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Since
If (le@)*) = £ ([w(7)F*) oo < Cellw(t) = w(r)[lno < Ce¥r7°
we get
tl—&
9= T—f (IW,?) +0(1 + %)
uniformly in £ € R™. From these estimates the result of Theorem 1.2 follows
with 44 = W,. O
Proof of Theorem 1.3. 'We have
t d
®(t) = 9(s) = [ ((w(P) - 1 () 5
1-6 _
(7 (o)) — £ (o) 2))
2 oy 80— 1
+ (f (w®F) = f (W4 ) 57—
1—
(7 (Rl)P) = £ () S
t dr
+ [ (Vo) +nag() 55, (39

where 1 < s <t. We apply Lemma 3.1-3.2 and [3.7) to [3.8) to get
12() — @)l o + 1B (t) — B(5)loo < Ces' ™%

for 1 < s < t. This implies that there exists a unique limit ®, =
limy—, 0o ®(t) € HY(R™) N L such that

12(t) = @+l o + 1B(8) = D4 flo < Cet' ™ (3.9)
since we now consider the case % < 6 < 1. By virtue of we have
-9

o0 - 5 (Wi - | <o (3.10)

o0
We now put 44 = W, exp(—i®, ). Therefore we obtain the asymptotics
2 ,itl—-(s

u(t,z) = (_ztl_)?%“ (7) exe (% — 1/ (1) (3)
+ Ot /A2y
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for t — oo uniformly with respect to z € R™. Via (3.10), for
n > 2 and for the one-dimensional case we have

HfMU(—t)u(t) ~ Gy exp (-i 1tl__55f (1’1+|2)> ,
_ “w(t) exp (—ig(t)) — Wy eXp<_i1tl:55f (|W+|2> _ 71<1>+) ,
< o)~ Wl + [l - 7 (W) £ - 2. |

S C€t1_26,

whence we get

1-6

) - exp(—is—5/ (242) (5) ) U@y

— llu(®) - M®)D() exp(—i L

A AT
< |a@De (FMEU0u0 - s exp( i =57 (a,) )
2
tl-—-5 5
MO DO exp( i (10.2) ) 7 () - Dy
2
< OB 4 ||F (M(t) — Dugle < O + Ot |Jouy |,
since ||z?ui||, = [|[Ad4ll, = ||A (Wye®+)||, < Ce. This completes the
proof of [Theorem 1.3 O
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