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Hilbert schemes and cyclic quotient surface singularities
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Abstract. Let G be a finite cyclic subgroup of GL(2, C) of order n which contains
no reflections. Let A^{2} be the complex affine plane. We consider a certain subscheme
Hi1b^{G}(A^{2}) of Hi1b^{n}(A^{2}) consisting of G-invariant zer0-dimensional subschemes of length
n . We describe the structure of Hi1b^{G}(A^{2}) and prove this is the minimal resolution of
the quotient surface singularity A^{2}/G .
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Introduction

Let A^{2} be the complex affine plane. Let S^{n}(A^{2}) be the nth symmetric
product of A^{2} , and Hi1b^{n}(A^{2}) the Hilbert scheme parametrizing all zer0-

dimensional subschemes of A^{2} of length n . By the natural morphism \pi :
Hi1b^{n}(A^{2}) – S^{n}(A^{2}) called Hilbert-Chow morphism Hi1b^{n}(A^{2}) is a crepant
resolution of S^{n}(A^{2}) .

Let G be a small finite subgroup of GL(2, C) , that is, G is a finite
subgroup of GL(2, C) which contains no reflections. Then G acts on A^{2} ,
hence it acts both Hi1b^{n}(A^{2}) and S^{n}(A^{2}) so that the Hilbert-Chow mor-
phism is G-equivariant. Assume that n equals the order of G . Then the
G-fixed point set of S^{n}(A^{2}) is isomorphic to the quotient space A^{2}/G .
Hence we see readily that there is a unique irreducible component of
G-fixed point set in Hi1b^{n}(A^{2}) dominating A^{2}/G , which we denote by
Hi1b^{G}(A^{2}) . For finite subgroups G of SL(2, C) , Ito and Nakamura proved
in [IN96] [IN98] that Hi1b^{G}(A^{2}) is the minimal resolution of the simple sin-
gularity A^{2}/G . Using this realization of the minimal resolution of A^{2}/G ,
they also gave an explanation to the s0-called McKay observation, though
in part. Nakamura conjectured that Hi1b^{G}(A^{3}) is a crepant resolution of
A^{3}/G for any finite subgroup G of SL(3, C) and proved it for an Abelian
group in [N]. Recentry the conjecture proved by Bridgeland, King and Reid
in [BKR].

When G is a small finite cyclic subgroup of GL(2, C) we call the germ
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of the quotient singularity A^{2}/G at the origin a cyclic quotient surface
singularity. In the present article we prove that Hi1b^{G}(A^{2}) is the minimal
resolution of the cyclic quotient surface singularity A^{2}/G and describe the
structure of Hi1b^{G}(A^{2}) in detail.

In Section 1 we give some preparatory lemmas on continued fractions.
In Section 2 we recall toric resolutions of cyclic quotient surface singularities.
We recall some basic facts on Hi1b^{G}(A^{2}) in Section 3. We present our main
theorem in Section 4 and 5.

1. Continued Fractions

Let n and \ell are positive integers such that 1\leq\ell<n and gcd(n, \ell)=1 .
In this section we consider the modified continued fractions of \frac{n}{\ell} and \frac{n}{n-\ell} .
Let

\frac{n}{\ell}=[[b_{1}, b_{2}, b_{3} , . ,^{b_{r}]]}:=b_{1}- \frac{1|}{|b_{2}}-\frac{1|}{|b_{3}}- - \frac{1|}{|b_{r}} (b_{\mu}\geq 2)

\frac{n}{n-\ell}= [ [a_{1}, a_{2} , a3, . . . ’
a_{e}] ] (a_{\nu}\geq 2) (1.1)

be the Hirzebruch-Jung continued fractions. Then we define triples
(i_{\mu}, j_{\mu}, k_{\mu})(\mu=0,1, . , r+1) and (\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu})(\nu=0,1, \ldots, e+1) of
nonnegative integers as follows:

\{

(i_{0},j_{0}, k_{0}):=(n, 0, 1) , (i_{1},j_{1}, k_{1}):=(\ell, 1, 1) ,

(i_{\mu+1},j_{\mu+1}, k_{\mu+1}):=b_{\mu}(i_{\mu}, j_{\mu}, k_{\mu})-(i_{\mu-1},j_{\mu-1}, k_{\mu-1}) ,
(1.1)

\{

(\alpha_{0}, \beta_{0}, \gamma 0):=(n, 0, 1) , (\alpha_{1}, \beta_{1}, \gamma_{1}):=(n-\ell, 1, 1) ,
(\alpha_{\nu+1,\beta\nu+1,\gamma_{\nu+1}):=a_{\nu}(\alpha_{\nu},\beta_{\nu},\gamma_{\nu})-(\alpha_{\nu-1},\beta\nu-1,\gamma_{\nu-1})} .

Then it is easy to see by a_{\nu} , b_{\mu}\geq 2 that

\{j_{0}<j_{1}<\cdot<j_{r+1}=ni_{0}>i_{1}>\cdot\cdot>i_{r+1}=0k_{0}\leq k_{1}\leq\cdot\cdot\leq k_{r+1}=’ n’-\ell

,

\{\begin{array}{l}\alpha_{0}>\alpha_{1}>\cdot\cdot >\alpha_{e+1}=0,\beta_{0}<\beta_{1}<\cdot<\beta_{e+1}=n,\gamma_{0}\leq\gamma_{1}\leq \leq\gamma_{e+1}=\ell.\end{array}
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By induction on \mu and lJ we get

\{i_{\mu}+(n-\ell)j_{\mu}=nk_{\mu}i_{\mu-1}j_{\mu}-i_{\mu}j_{\mu-1}=nk_{\mu-1}j_{\mu}-k_{\mu}j_{\mu-1}=1’,

’

\{\begin{array}{l}\alpha_{\nu}+\ell\beta_{\nu}=n\gamma_{\nu},\alpha_{\nu-1}\beta_{\nu}-\alpha_{\nu}\beta_{\nu-1}=n,\gamma_{\nu-1}\beta_{\nu}-\gamma_{\nu}\beta_{\nu-1}=1.\end{array} (1.3)

Next we investigate the relations between (i_{\mu}, j_{\mu}, k_{\mu}) and (\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu}) .
First we review a lemma from Riemenschneider [R74, Lemma 3].

Lemma 1.1 Let \frac{n}{\ell}=[[b_{1}, b_{2}, \ldots, b_{r}]] and \frac{n_{1}}{\ell_{1}}:=[[b_{2}, b_{3}, \ldots, b_{r}]] . Suppose
\frac{n_{1}}{n_{1}-\ell_{1}}= [ [a_{2} , a3, . . . ’

a_{e}] ]. Then we have

\frac{n}{n-\ell}= +1 , a3, . . . ’ a_{e} ]].

Proof. We prove this by induction on the first term b_{1} of n/\ell . Assume
b_{1}=2 . Then we have \frac{n}{\ell}=2-\frac{\ell_{1}}{n_{1}}=\frac{2n_{1}-\ell_{1}}{n_{1}} . On the other hand, \frac{n}{n-\ell}-1=

\frac{n_{1}}{n_{1}-\ell_{1}} . It follows that \frac{n}{n-\ell}= [ [a_{2}+1 , a3, . . . ’
a_{e}] ]. This prove the lemma in

this case.
Next we consider the case b_{1}\geq 3 . Let \frac{n}{\ell}=[[b_{1}, b_{2}, \ldots, b_{r}]] and n_{1}/\ell_{1}=

[[b_{2}, b_{3}, \ldots, b_{r}]] . Let \frac{n’}{\ell},:=\frac{n-\ell}{\ell} . Then we have \frac{n’}{\ell},=[[b_{1}-1, b_{2}, \ldots, b_{r}]] . We

put \neg n_{\underline{1}}’\ell_{1}:=[[b_{2}, b_{3}, \ldots, b_{r}]] and suppose \frac{n_{1}’}{n_{1}-\ell_{1}},= [ [a_{2} , a3, . . . ’
a_{e}] ]. Then by

the induction hypothesis we have

\frac{n’}{n’-\ell’}= +1 , a_{3} , . . . ’ a_{e} ]].

It follows from \frac{n}{n-\ell}=\frac{n’+\ell’}{n},=2-\frac{n’-\ell’}{n}, that

\frac{n}{n-\ell}= +1 , a3, . , a_{e} ]]

where a_{i} ’s are the terms of ,\frac{n_{1}’}{n_{1}-\ell_{1}}, . Since n’ \overline{\ell}_{1}^{\perp},=\frac{n}{\ell} and ,\frac{n_{1}’}{n_{1}-\ell_{1}},=\frac{n_{1}}{n_{1}-\ell_{1}} , the
lemma holds for \frac{n}{\ell} and \frac{n_{1}}{n_{1}-\ell_{1}} . \square

Proposition 1.2 There is a duality between the continued fraction expan-
sions of \frac{n}{\ell} and \frac{n}{n-\ell} . To be more precise there are positive integers c_{i} and
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d_{i} such that

\frac{n}{\ell}=[[d_{1}+],2,\ldots,2\tilde{c_{1}-1},
d_{2}+2 , \ldots ,

d_{m-1}+2,2\check{c_{m}}
,

-\cdots 1-,12

, d_{m}

+2,2,\ldots,2\check{d_{2}-1}

, c_{2}+2 , ’
c_{m-1}+2,2,,2\check{d_{m}-1}

, c_{m}+1 ]].

Proof. We prove the lem ma by induction on the length of the continued
fraction \frac{n}{\ell} . If the 1,
c_{1}=1 and \frac{n}{\ell}=d_{1}

Now we consi

\frac{n_{1}}{\ell_{1}}:= +2 , . , d_{m-1}+2,2,\vee’2, d_{m}+

c_{m-1}-1

By the induction hypothesis, we have

\frac{n_{1}}{n_{1}-\ell_{1}}=[[c_{1}+1,2,\ldots,2, c_{2}+2, \ldots, c_{m-1}+2,2,\ldots,2, c_{m}+1]]\tilde{d_{2}-1}\check{d_{m}-1}
.

Then by Lemma 1.1

\frac{n}{n-\ell}

+2,2,,2\check{d_{2}-1}
, c_{2}+2 , \ldots ,

c_{m-1}+2,2,\ldots,2\tilde{d_{m}-1}
, c_{m}+1]] .

\square

Notation Let the modified continued fraction of \frac{n}{\ell} be

\frac{n}{\ell}=[[d_{1}+1,2,,2\tilde{c_{1}-1},
d_{2}+2 , \ldots ,

d_{m-1}+2,2\check{c_{m}}
,

-\cdots 1-,12

, d_{m}

We define

\mu(\lambda):=1+\sum_{j=0}^{\lambda}c_{j} , lJ( \lambda):=\sum_{j=0}^{\lambda}d_{j} , (\lambda=0,1 , . ,^{m)} ,

where c_{0}:=0 , d_{0}:=0 . And we define positive integers by

i(\mu):=i_{\mu-1}-i_{\mu} , j(\mu):=j_{\mu}-j_{\mu-1} , (1\leq\mu\leq\mu(m)) ,
(1.4)

\alpha(\nu):=\alpha_{\nu-1}-\alpha_{\nu} , \beta(\nu):=\beta_{\nu}-\beta_{\nu-1} , (1\leq\nu\leq\nu(m)+1) .
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Proposition 1.3
(i) i(1)=\alpha_{1} , j(1)=\beta_{1} ,
(ii) i(\mu)=\alpha_{\nu(\lambda+1)} , j_{(}\mu)=\beta_{\nu(\lambda+1)} for 0\leq\lambda\leq m-1 and \mu(\lambda)+1\leq\mu\leq

\mu(\lambda+1) ,
(iii) \alpha(\nu(m)+1)=i_{\mu(m)-1} , \beta(\nu(m)+1)=j_{\mu(m)-1} ,
(iv) \alpha(\nu)=i_{\mu(\lambda)} , \beta(\nu)=j_{\mu(\lambda)} for 0\leq\lambda\leq m-1 and \nu(\lambda)+1\leq\nu\leq

\nu(\lambda+1) .

Proo/. We put r:=\mu(m) , e:=\nu(m)+1 . We write \frac{n}{\ell}=[[b_{1}, b_{2}, \ldots, b_{r}]]

and \frac{n}{n-\ell}=[[a_{1}, a_{2}, . . ’ a_{e}]] for simplicity. Then we have

i(1)=i_{0}-i_{1}=n-\ell=\alpha_{1} ,
i(\mu+1)=i_{\mu}-(b_{\mu}i_{\mu}-i_{\mu-1})

=i_{\mu-1}-i_{\mu}-(b_{\mu}-2)i_{\mu}

=i(\mu)-(b_{\mu}-2)i_{\mu} for \mu\geq 1 .

In the same way we see \alpha(1)=i_{1} and \alpha(\nu+1)=\alpha(\nu)-(a_{\nu}-2)\alpha_{\nu}(\nu\geq 1) .
Similarly we have j(1)=1=\beta_{1} , j(\mu+1)=j(\mu)+(b_{\mu}-2)j_{\mu} , \beta(1)=j_{1}

and \beta(\nu+1)=\beta(\nu)+(a_{\nu}-2)\beta_{\nu} . Therefore by Proposition 1.2

i(\mu)=i(\mu(\lambda)+1) , j(\ell\iota)=j(\mu(\lambda)+1)

for \mu(\lambda)+1\leq\mu\leq\mu(\lambda+1) ,
\alpha(\nu)=\alpha(\nu(\lambda)+1) , \beta(\nu)=\beta(\nu(\lambda)+1)

for \nu(\lambda)+1\leq\nu\leq\nu(\lambda+1) .

By definition \alpha(\nu(0)+1)=\alpha(1)=i_{1} , \beta(\nu(0)+1)=\beta(1)=j_{1} . Then

i(\mu(0)+1)=i(2)=i(1)-(d_{1}-1)i_{1}

=\alpha_{1}-\{\alpha(2)+\alpha(3)+\cdot +\alpha(\nu(1))\}=\alpha_{\nu(1)} ,

j’(\mu(0)+1)=j(2)=j(1)+(d_{1}-1)j_{1}

=\beta_{1}+\{\beta(2)+\beta(3)+ +\beta(\nu(1))\}=\beta_{\nu(1)} .

We suppose that (i)-(iv) hold for \mu\leq\mu(\lambda) and \nu \leq\nu(\lambda) . Assume first
\lambda<m . Then we have

\alpha(\nu(\lambda)+1)=\alpha(\nu(\lambda))-c_{\lambda}\alpha_{\nu(\lambda)}

=i_{\mu(\lambda-1)}-\{i(\mu(\lambda-1)+1)+ \cdot +i(\mu(\lambda)-1)+i(\mu(\lambda))\}

=i_{\mu(\lambda)} .
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Assume next \lambda=m . Then we have

\alpha(\nu(m)+1)=\alpha(\nu(m))-(c_{m}-1)\alpha_{\nu(m)}

=i_{\mu(m-1)}-\{i(\mu(m-1)+1)+ +i(\mu(m)-1)\}

=i_{\mu(m)-1} .

Similarly we see

i(\mu(\lambda)+1)=i(\mu(\lambda))-d_{\lambda+1}i_{\mu(\lambda)}

=\alpha_{\nu(\lambda)}-\{\alpha(\nu(\lambda)+1)+\alpha(\nu(\lambda)+2)+ \cdot +\alpha(\nu(\lambda+1))\}

=\alpha_{\nu(\lambda+1)} .

Similarly we can also prove the assertions for \beta(\nu) and j(\mu) . \square

2. Cyclic Quotient Singularities

The isomorphism classes of cyclic quotient surface singularities are in
one-t0-0ne correspondence to the conjugacy classes of small finite cyclic
subgroups of GL(2, C) . Up to conjugacy we may assume that any small

abelian subgroup of GL(2, C) is generated by \sigma:=(\begin{array}{ll}\zeta 00 \zeta^{\ell}\end{array}) where \zeta is a
primitive n-th root of unity and \ell is a positive integer such that 1\leq\ell<n

and gcd(n, \ell)=1 . We denote the group by C_{n,\ell} . Let (x, y) be a coordinate
system of the complex affine space A^{2} . Then C_{n,\ell} operates upon A^{2} from
the right by (x, y) - (x, y)g(g\in C_{n,\ell}) . We denote the quotient space
A^{2}/C_{n,\ell} by A_{n,\ell} . We remark that two germs (A_{n,\ell}, 0) and (A_{n’,\ell’}, 0) are
equivalent if and only if n=n’ and \ell=\ell’ or \ell\ell’\equiv 1 (mod n) ([B]) , if and
only if A_{n,\ell}\simeq A_{n’,\ell’} .

In what follows we put G:=C_{n,\ell} for simplicity. The quotient space A_{n,\ell}

and its minimal resolution are in fact torus embeddings as we see below.

Proposition 2.1 Let N\simeq Z^{2} be a free abelian group of rank 2 with a basis
e_{1} and e_{2} and M:=Homz(iV, Z) . Let \tau:=\langle ne_{1}+(n-\ell)e_{2}, e_{2}\rangle\subset N\otimes_{Z}R

be the cone in N\otimes R generated by ne_{1}+(n-\ell)e_{2} and e_{2} . Then

A_{n,\ell}\simeq X_{\tau}:=SpecC[\check{\tau}\cap M]=SpecC[x, y]^{c_{\wedge}}

Proof. Let \{f_{1}, f_{2}\} be the dual basis of M such that \langle e_{i}, f_{j}\rangle=\delta_{ij} . We
put N^{*}:=(nZ)e_{1}\oplus Ze_{2} , M^{*}:=( \frac{1}{n}Z)f_{1}\oplus Zf_{2}=Hom_{Z}(N^{*}, Z) . Since
\check{\tau}=\langle f_{1}, f_{2}-\frac{n-\ell}{n}f_{1}\rangle , Spec C[\check{\tau}\cap M^{*}]=SpecC[x, y]\simeq A^{2} where x:= e(\frac{1}{n}f_{1})
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y:= e(f_{2}-\frac{n-\ell}{n}f_{1}) and e(*):=\exp(2\pi\sqrt{-1}*) . We define a symmetric
pairing f : M^{*}/M\cross N/N^{*}arrow\mu_{n} by f(\overline{a}, \overline{b}) :=\zeta^{n\langle a,b\rangle} where \mu_{n} is a cyclic
group generated by \zeta and \overline{a} (resp. \overline{b} ) is represented by a\in M^{*} (resp. b\in N).
The action of N/N^{*}\simeq\mu_{n} on Spec C[\check{\tau}\cap M^{*}] is defined by \overline{b} e(a):=
f(\overline{a}, \overline{b})e(a)(a\in\check{\tau}\cap M^{*}, b\in N) . Then e_{1}^{-}\cdot x=\zeta x and e_{1}^{-}\cdot y=\zeta^{\ell}y . Because
f is non-singular we see Spec

C[\check{\tau}\cap M]\simeq SpecC[x, y]^{N/N^{*}}\simeq A^{2}/C_{n},\ell_{\square }
.

The minimal resolution S of X_{\tau} is constructed by using the continued
fraction \frac{n}{\ell}=[[b_{1}, b_{2}, . , b_{r}]] as follows.

Let v_{\mu}:=j_{\mu}e_{1}+k_{\mu}e_{2} and we subdivide \tau into \tau_{\mu}:=\langle v_{\mu-1}, v_{\mu}\rangle(\mu=

1 , \ldots , r+1). Let \triangle be the fan consisting of all of \tau_{\mu} and its faces. (1.3)
shows that affine charts U_{\mu}:=SpecC[\check{\tau}_{\mu}\cup M] (\mu=1,2, \ldots, r+1) are
smooth. Since v_{\mu+1}+v_{\mu-1}=b_{\mu}v_{\mu} and b_{\mu}\geq 2,\tilde{S}:=T_{N}emb(\triangle) is the
minimal resolution of X_{\tau} . And the dual graph of the exceptional set of this
minimal resolution is:

b_{1} b_{2} b_{3} b_{r-1} b_{r}

\circ-\circ-\circ o–o

By the proof of Proposition 2.1 we see A^{2}\simeq SpecC[x, y] and A^{2}/G\simeq

X_{\tau} where x= e(\frac{1}{n}f_{1}) , y= e(f_{2}-\frac{n-\ell}{n}f_{1}) . By definition

U_{\mu}=SpecC[e(k_{\mu-1}f_{1}-j_{\mu-1}f_{2}), e(-k_{\mu}f_{1}+j_{\mu}f_{2})] .

Hence by (1.3) we see

-k_{\mu}f_{1}+j_{\mu}f_{2}=-i_{\mu}( \frac{1}{n}f_{1})+j_{\mu}(f_{2}-\frac{n-\ell}{n}f_{1}) ,

U_{\mu}=SpecC[s_{\mu}, t_{\mu}] , s_{\mu}=x^{i_{\mu-1}}/y^{j_{\mu-1}} , t_{\mu}=y^{j_{\mu}}/x^{i_{\mu}} . (2.1)

3. Hilbert Schemes and Symmetric Products

Let S^{n}(A^{2}) be the nth symmetric product of A^{2} . This is by definition
the quotient of the product of n copies of A^{2} by the natural permutation
action of the symmetry group of n letters.

Lemma 3.1 Let S^{n}(A^{2})^{G} be the subset of S^{n}(A^{2}) consisting of all the
points of S^{n}(A^{2}) fixed by any element of G. Then S^{n}(A^{2})^{G} has a unique
natural normal surface structure isomorphic to A^{2}/G .

Proof Let q(\neq 0)\in A^{2} . The point q is fixed by no element of G except



98 R. Kidoh

the identity. Therefore the set G q:=\{g(q);g\in G\} determines a point
in S^{n}(A^{2})^{G} . Conversely any point of S^{n}(A^{2})^{G} is an unordered set \Sigma of n
points in A^{2} . If \Sigma contains a point q different from the origin, the above
argument shows that \Sigma contains the set G q . Since |\Sigma|=|n|=|G| , we
have \Sigma=G\cdot q .

We see that G q=G q’ for a pair of points q(\neq 0) and q’(\neq 0) if
and only if q’\in G\cdot q . Therefore we have the isomorphism S^{n}(A^{2}\backslash \{0\})^{G}\simeq

(A^{2}\backslash \{O\})/G , which extends to a natural bijection j between S^{n}(A^{2})^{G}

and A^{2}/G . Since A^{2}/G is normal, S^{n}(A^{2})^{G} has a unique structure of
normal complex space via the bijection j . Hence j gives the isomorphism
S^{n}(A^{2})^{G}\simeq A^{2}/G . \square

Definition 3.2 Let Hi1b^{n}(A^{2}) be the Hilbert scheme of n points on A^{2} .
By definition any Z\in Hi1b^{n}(A^{2}) is a zero dimensional subscheme with
h^{0}(Z, \mathcal{O}_{Z})=\dim(\mathcal{O}_{Z})=n .

Remark We identify a subscheme Z and the defining ideal I_{Z} of Z, so
that we consider I_{Z}\in Hi1b^{n}(A^{2}) since no confusion is possible.

The group G acts on A^{2} so that it acts on Hi1b^{n}(A^{2}) canonically. Let
Hi1b^{n}(A^{2})^{G} be the subset of Hi1b^{n}(A^{2}) consisting of all the points fixed
by any element of G . The Hilbert scheme Hi1b^{n}(A^{2}) is nonsingular ([F])
and the action of G on Hi1b^{n}(A^{2}) at any point of Hi1b^{n}(A^{2})^{G} is linearlized,
therefore Hi1b^{n}(A^{2})^{G} is also nonsingular ([IN98, Lemma 9.1]).

Definition 3.3 Let Hi1b^{G}(A^{2}) be a unique irreducible component of
Hi1b^{n}(A^{2}) dominating S^{n}(A^{2})^{G} .

We have a natural morphism \pi : Hi1b^{G}(A^{2}) - S^{n}(A^{2})^{G} defined by
\pi(Z)=\sum_{p\in A^{2}} (dim \mathcal{O}_{Z,p} )p for Z\in Hi1b^{G}(A^{2}) . Any point of S^{n}(A^{2})^{G}\backslash \{0\}

is a G-0rbit of a point q(\neq(0,0))\in A^{2} . It determines a G-invariant reduced
zero dimensional subscheme. This gives the inverse map of \pi over (A^{2}\backslash

\{O\})/G . It follows that Hi1b^{G}(A^{2}) is birationally equivalent to S^{n}(A^{2})^{G} . In
fact, we prove that Hi1b^{G}(A^{2}) is the minimal resolution of A^{2}/G in Section
5.

Lemma 3.4 Let I_{Z} be the defining ideal of Z\in Hi1b^{G}(A^{2}) . Any G-
invariant function vanishing on supp(Z) is contained in I_{Z} .

Especially if supp(Z)=\{0\} then I_{Z} contains all of x^{\alpha_{\nu}}y^{\beta_{\nu}} and
x^{i(\mu)}y^{j(\mu)} .
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Proof. First we check \mathcal{O}_{A^{2}}/I_{Z}\simeq C[G] as G- modules. Let H:=Hi1b^{G}(A^{2})

and G:=\{g_{1}=id, g_{2}, , g_{n}\} . If Z is a G-0rbit of a point p\neq(0,0)

then \mathcal{O}_{A^{2}}/I_{Z}=\oplus_{i=1}^{n}C\delta_{g_{i}} where \delta_{9i}(g_{j}p) :=\delta_{ij} . G acts on \oplus C\delta_{gi} by
(g_{j}o\delta_{9i})(p) :=\delta_{g_{i}}(g_{j}^{-1}p)=\delta_{g_{j}gi}(p) and it gives C[G]\simeq\oplus C\delta_{gi}(g_{i}\mapsto\delta_{gi}) as
G-modules.

Because dim \mathcal{O}_{A^{2}}/I_{Z}=n for any Z\in H , \mathcal{O}_{A^{2}xH} is a locally free \mathcal{O}-

module of rank n . G operates upon the vector space \mathcal{O}_{A^{2}\cross\{Z\}}/I_{Z} and the
coefficients of the action of g_{i} are regular functions on H . By g_{i}^{n}=1(\forall i)

we see that all the eigenvalues are roots of unity. In particular its trace is
independent of Z\in H . Since any representation of a finite group is uniquely
determined by its character, the representation of G in \mathcal{O}_{A^{2}\cross\{Z\}}/I_{Z} is in-
dependent of Z\in H . Therefore \mathcal{O}_{A^{2}}/I_{Z}\simeq C[G] for any Z\in H .

C[G] has a unique trivial G-submodule C(\sum_{g\in G}g) by the complete
reducibility of G-module. Therefore a G-submodule spanned by G-illvariant
functions in \mathcal{O}_{A^{2}}/I_{Z} is isomorphic to C as G-modules. It follows that any
G-invariant function vanishing on Z is contained in I_{Z} .

By (1.4) x^{\alpha_{\nu}}y^{\beta_{\nu}} are G-invariant functions. Combining with Proposi-
tion 1.3 if supp(Z)=\{0\} then x^{\alpha_{\nu}}y^{\beta_{\nu}} , x^{i(\mu)}y^{j(\mu)}\in I_{Z} . \square

4. Hi1b^{G}(A^{2})

Theorem 4.1 Let G=C_{n,\ell} . Then Hi1b^{G}(A^{2}) set-theoretically consists
of the following G-invariant ideals of colength n=|G| :

I_{\mu}(p_{\mu}, q_{\mu}):=(x^{i_{\mu-1}}-p_{\mu}y^{j_{\mu-1}}, y^{j_{\mu}}-q_{\mu}x^{i_{\mu}}, x^{i(\mu)}y^{j(\mu)}-p_{\mu}q_{\mu})

where 1\leq\mu\leq r+1 and (p_{\mu}, q_{\mu})\in A^{2} .

Remark
(i) r , i_{\mu} , j_{\mu} , i(\mu) and j(\mu) are nonnegative integers defined in (1.1), (1.2)

and (1.4).
(ii) I_{r+1}(p_{r+1}, O)=(x, y^{n}) because i_{r}=1 , i_{r+1}=0 .
(iii) \{x^{i_{\mu}} ; 1\leq\mu\leq r\} is a set of special representations which are associated

to the irreducible components of the exceptional set in the minimal
resolution of A^{2}/G by the work of Riemenschneider [R98] and Wunram
[W].

Proof. Let \mathfrak{m}_{\mathfrak{p}} (resp. \mathfrak{m}_{A_{n,\ell}} ) be the maximal ideal of \mathfrak{p}\in A^{2} (resp. of the
origin of A_{n,\ell} ) and \mathfrak{n}=\mathfrak{m}_{A_{n,\ell}}\mathcal{O}_{A^{2}} . We put \mathfrak{m}:=\mathfrak{m}_{(0,0)} .
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We note I_{\mu}(p_{\mu}, q_{\mu}) is a G-invariant ideal. In fact, i_{\mu}\equiv\ell j_{\mu} (mod n) by
(1.3) and x^{i(\mu)}y^{j(\mu)} is a G-invariant function by Proposition 1.3 and (1.3).

First we consider the case where supp(Z)\neq\{0\} . We recall that the
subset \{Z\in Hi1b^{G}(A^{2});supp(Z)\neq\{0\}\} is bijective to (A^{2}\backslash \{O\})/G . Hence
for any Z\in Hi1b^{G}(A^{2}) with supp(Z)\neq\{0\} , there exists a point \mathfrak{p} \in

supp(Z) such that I_{Z}= \prod_{q\in G\mathfrak{p}}\mathfrak{m}_{q} . Next we prove that I_{Z} coincides with
one of the I_{\mu} for a suitable pair (p_{\mu}, q_{\mu}) . If \mathfrak{p}=(u, v)\in A^{2} with uv\neq 0 ,
we put p_{\mu}:=u^{i_{\mu-1}}/v^{j_{\mu-1}} and q_{\mu}:=v^{j_{\mu}}/u^{i_{\mu}} for any 1\leq\mu\leq r . Then
I_{\mu}(p_{\mu}, q_{\mu})\subset \mathfrak{m}_{\mathfrak{p}} . If v=0 and u\neq 0 (resp. if u=0 and v\neq 0), then we see
I_{1}(u^{n}, 0)\subset \mathfrak{m}_{\mathfrak{p}} (resp. I_{r+1} (0, v^{n})\subset \mathfrak{m}_{\mathfrak{p}} ).

Since I_{\mu}(p_{\mu}, q_{\mu}) is G-invariant, we infer I_{\mu}(p_{\mu}, q_{\mu}) \subset\prod_{q\in G\mathfrak{p}}\mathfrak{m}_{q} . On the
other hand dim \mathcal{O}_{A^{2}}/I_{\mu}(p_{\mu}, q_{\mu})\leq n . In fact \mathcal{O}_{A^{2}}/I_{\mu}(p_{\mu}, q_{\mu}) is spanned by
monomials x^{\lambda_{1}}y^{\lambda_{2}} where

(\lambda_{1}, \lambda_{2})\in\Lambda:=\{(\lambda_{1}, \lambda_{2});0\leq\lambda_{1}<i_{\mu-1} and 0\leq\lambda_{2}<j_{\mu}-j_{\mu-1} ,

or 0\leq\lambda_{1}<i_{\mu-1}-i_{\mu} and j_{\mu}-j_{\mu-1}\leq\lambda_{2}<j_{\mu} }.

And by (1.3) i_{\mu-1}(j_{\mu}-j_{\mu-1})+\{j_{\mu}-(j_{\mu}-j_{\mu-1})\}(i_{\mu-1}-i_{\mu})=n . It follows
that I_{\mu}(p_{\mu}, q_{\mu})= \prod_{q\in G\mathfrak{p}}\mathfrak{m}_{q} .

As we remarked after Definition 3.3, \pi : Hi1b^{G}(A^{2}) – S^{n}(A^{2})^{G}\simeq

A^{2}/G is a resolution, which is an isomorphism over (A^{2}\backslash \{O\})/G . Now
we study the exceptional set \pi^{-1}(0)=\{Z\in Hi1b^{G}(A^{2});supp(Z)=\{0\}\} .
We prove that it is the union of I_{\mu}(p_{\mu}, q_{\mu}) with p_{\mu}q_{\mu}=0(1\leq\mu\leq r-1)

and I_{1}(0, q_{1}) , I_{r+1}(p_{r+1},0) . In fact, since A^{2}/G is a normal surface, it
follows from Zariski’s connectedness theorem ([EGA], III 4.3) that \pi^{-1}(0)

is connected. Hence we can determine \pi^{-1}(0) by using deformations.
We remark first that by definition of I_{\mu} , I_{\mu}(p_{\mu}, q_{\mu})\subset \mathfrak{m} if and only

if p_{\mu}q_{\mu}=0 for 2\leq\mu\leq r or p_{1}=0 or q_{r+1}=0 . Moreover we check
that these ideals belong to Hi1b^{G}(A^{2}) . In fact, if p_{\mu}q_{\mu}=0 the monomials
\{x^{\lambda_{1}}y^{\lambda_{2}} ; (\lambda_{1}, \lambda_{2})\in\Lambda\} is a basis of \mathcal{O}_{A^{2}}/I_{\mu}(p_{\mu}, q_{\mu}) . Therefore I_{\mu}(p_{\mu}, q_{\mu})\in

Hi1b^{G}(A^{2}) .
Now let Z be the subscheme defined by one of the ideals I_{\mu}(p_{\mu}, q_{\mu}) .

We consider G-equivariant versal deformations of Z . The tangent space of
Hi1b^{G}(A^{2}) at a point I_{Z} is isomorphic to Hom_{\mathcal{O}_{A^{2}}}(I_{Z}, \mathcal{O}_{A^{2}}/I_{Z})^{G} . Now we
prove a lemma to determine deformations of Z inside \pi^{-1}(0) .

Lemma 4.2 There is a basis \{\phi_{-}, \phi_{+}\} of T:=Hom_{\mathcal{O}_{A^{2}}}(I_{\mu}(0,0), \mathcal{O}_{A^{2}}/
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I_{\mu}(0,0))^{G} defined by

\phi_{-}(x^{i_{\mu-1}})=y^{j_{\mu-1}} , \phi_{-}(y^{j_{\mu}})=0 ,
\phi_{+}(x^{i_{\mu-1}})=0 , \phi_{+}(y^{j_{\mu}})=x^{i_{\mu}} .

Proo/. We put I:=I_{\mu}(0,0)=(x^{i_{\mu-1}}, y^{j_{\mu}} , x^{i(\mu)}y^{j(\mu)}) . It follows from
\mathcal{O}_{A^{2}}/I\simeq C[G] that G-invariant \mathcal{O}_{A^{2}} isomorphism \phi\in T does not change
the characters of elements of I . Since \mathcal{O}_{A^{2}}/I has a basis { x^{\lambda_{1}}y^{\lambda_{2}} ; (\lambda_{1}, \lambda_{2})\in

\Lambda\} and i_{\mu}\equiv\ell j_{\mu} (mod n), \phi is defined by

\phi(x^{i_{\mu-1}})=c_{1}y^{j_{\mu-1}} , \phi(y^{j_{\mu}})=c_{2}x^{i_{\mu}} , \phi(x^{i(\mu)}y^{j(\mu)})=c_{3}(c_{i}\in C) .

Applying \phi to x^{i_{\mu-1}}y^{j(\mu)}\in I , we see

\phi(x^{i_{\mu-1}}y^{j(\mu)})=y^{j(\mu)}\phi(x^{i_{\mu-1}})=c_{1}y^{j_{\mu}}=0 in \mathcal{O}_{A^{2}}/I .

Since \phi(x^{i_{\mu-1}}y^{j(\mu)})=\phi(x^{i_{\mu}}x^{i(\mu)}y^{j(\mu)})=c_{3}x^{i_{\mu}} and x^{i_{\mu}}\neq 0 in \mathcal{O}_{A^{2}} , we infer
c_{3}=0 . Thus the lemma follows from dim T=\dim Hi1b^{G}(A^{2})=2 . \square

By Lemma 4.2 \{I_{\mu}(p_{\mu}, q_{\mu});(p_{\mu}, q_{\mu})\in A^{2}\} is a G-equivariant versal de-
formation of I_{\mu}(0,0) . On the other hand, we have

x^{i_{\mu-1}}y^{j_{\mu}}=x^{i_{\mu}}y^{j_{\mu-1}}x^{i(\mu)}y^{j(\mu)} ,
y^{j_{\mu+1}}=(y^{j_{\mu}}-q_{\mu}x^{i_{\mu}})y^{j(\mu+1)}+q_{\mu}x^{i_{\mu+1}}x^{i(\mu+1)}y^{j(\mu+1)}\in I_{\mu}(0, q_{\mu}) .

because x^{i(\mu+1)}y^{j(\mu+1)}\in I_{\mu}(0, q_{\mu}) by Lemma 3.4. We see I_{\mu}(0, q_{\mu})=

I_{\mu+1}(q_{\mu}^{-1},0) for q_{\mu}\neq 0 . Hence \lim_{q_{\mu}arrow\infty}I_{\mu}(0, q_{\mu})=I_{\mu+1}(0,0) for \mu\leq r . To
be more precise in Grass(\mathfrak{m}/\mathfrak{n}+\mathfrak{m}^{n}, n-1) we get \lim_{q_{\mu}arrow\infty}I_{\mu}(0, q_{\mu})/\mathfrak{n}+\mathfrak{m}^{n}=

I_{\mu+1}(0,0)/\mathfrak{n}+\mathfrak{m}^{n} . Similarly we infer \lim_{p_{\mu}arrow\infty}I_{\mu}(p_{\mu}, 0)=I_{\mu-1}(0,0) for
\mu\geq 2 .

Since \pi^{-1}(0) is connected. We have

\pi^{-1}(0)=\{I_{1}(0, q_{1})\}\cup\{I_{r+1}(p_{r+1},0)\}

\cup\{I_{\mu}(p_{\mu}, q_{\mu});p_{\mu}q_{\mu}=0,2\leq\mu\leq r\} .

Thus Theorem 4.1 is proved. \square

5. The isomorphism Hi1b^{G}(A^{2})\simeq S

Theorem 5.1 Let S be the toric minimal resolution of the cyclic singu-
larity A_{n,\ell}=A^{2}/G . Then S\simeq Hi1b^{G}(A^{2}) . In fact, let U_{\mu}=SpecC[s_{\mu}, t_{\mu}]
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the affine charts of S(1\leq\mu\leq r+1) given in Section 2. Then the is0-
morphism of S with Hi1b^{G}(A^{2}) is given by the morphism defined by the
universal property of Hi1b^{n}(A^{2}) from the S-flat family of zero dimensional
subschemes defined by the G-invarianl ideals of \mathcal{O}_{A^{2}} ;

I_{\mu}(s_{\mu}, t_{\mu}):=(x^{i_{\mu-1}}-s_{\mu}y^{j_{\mu-1}}, y^{j_{\mu}}-t_{\mu}x^{i_{\mu}}, x^{i_{(}\mu)}y^{j(\mu)}-s_{\mu}t_{\mu}) .

Proof First we check that I_{\mu}(s_{\mu}, t_{\mu})=I_{\mu+1}(s_{\mu+1}, t_{\mu+1}) if two points
(s_{\mu}, f_{\mu})\in U_{\mu} and (s_{\mu+1}, t_{\mu+1})\in U_{\mu+1} are coincident in S . In fact, if both
the points represent the same point in S , then it follows from (2.1) that
s_{\mu+1}t_{\mu}=1 and t_{\mu+1}=t_{\mu}^{b_{\mu}}s_{\mu} . Then x^{i_{\mu}}-s_{\mu+1}y^{j_{\mu}}=s_{\mu+1}(t_{\mu}x^{i_{\mu}}-y^{j_{\mu}})\in

I_{\mu}(s_{\mu}, t_{\mu}) . We check

h(b_{\mu}):=x^{i(\mu+1)}y^{j(\mu+1)}-s_{\mu+1}t_{\mu+1}

=x^{i(\mu)-(b_{\mu}-2)i_{\mu}}y^{j(\mu)+(b_{\mu}-2)j_{\mu}}-t_{\mu}^{b_{\mu}-1}s_{\mu}

is contained in I_{\mu}(s_{\mu}, t_{\mu}) by induction on b_{\mu} . If b_{\mu}=2 then h(b_{\mu})=

x^{i(\mu)}y^{j(\mu)}-s_{\mu}t_{\mu}\in I_{\mu}(s_{\mu}, t_{\mu}) . If b_{\mu}>2 then j(\mu+1)>j_{\mu} and

h(b_{\mu})=x^{i(\mu+1)}y^{j(\mu+1)-j_{\mu}}(y^{j_{\mu}}-t_{\mu}x^{i_{\mu}})+t_{\mu}h(b_{\mu}-1) .

By the induction hypothesis h(b_{\mu} –1) \in I_{\mu}(s_{\mu}, t_{\mu}) and we get h(b_{\mu})\in

I_{\mu}(s_{\mu}, t_{\mu}) . Since y^{j_{\mu+1}}-t_{\mu+1}x^{i_{\mu+1}}=y^{j(\mu+1)}(y^{j_{\mu}}-t_{\mu}x^{i_{\mu}})+t_{\mu}x^{i_{\mu+1}}h(b_{\mu})\in

I_{\mu}(s_{\mu}, t_{\mu}) we see I_{\mu+1}(s_{\mu+1}, t_{\mu+1})\subset I_{\mu}(s_{\mu}, t_{\mu}) . Both the ideals have the
same colength n . Hence I_{\mu+1}(s_{\mu+1}, t_{\mu+1})=I_{\mu}(s_{\mu}, t_{\mu}) .

Therefore the family of the zero dimensional subschemes defined by
I_{/l} is well-defined on S. Since dim \mathcal{O}_{A^{2}}/I_{\mu}(s_{\mu}, t_{\mu}) is constant, this family
is S-flat. By the universality of Hi1b^{n}(A^{2}) we have a natural morphism

f : Sarrow Hi1b^{n}(A^{2}) , which factors through Hi1b^{G}(A^{2}) by the G-invariance
of the ideals I_{\mu} . By the proof of Theorem 4.1, in fact because no irreducible
component of \pi^{-1}(0) is contracted by f by Lemma 4.2, we have a finite
birational morphism of S onto Hi1b^{G}(A^{2}) . Since Hi1b^{G}(A^{2}) is nonsingular
and S is minimal we infer S\simeq Hi1b^{G}(A^{2}) . \square
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