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A generalization of Chaitin’s halting probability
\Omega and halting self-similar sets
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Abstract. We generalize the concept of randomness in an infinite binary sequence in
order to characterize the degree of randomness by a real number D>0 . Chaitin’s
halting probability \Omega is generalized to \Omega^{D} whose degree of randomness is precisely D .
On the basis of this generalization, we consider the degree of randomness of each point
in Euclidean space through its base-two expansion. It is then shown that the maximum
value of such a degree of randomness provides the Hausdorff dimension of a self-similar set
that is computable in a certain sense. The class of such self-similar sets includes familiar
fractal sets such as the Cantor set, von Koch curve, and Sierpin’ski gasket. Knowledge of
the property of \Omega^{D} allows us to show that the self-similar subset of [0, 1] defined by the
halting set of a universal algorithm has a Hausdorff dimension of one.

Key words: algorithmic information theory, Kolmogorov complexity, randomness,
Chaitin’s \Omega , Hausdorff dimension, self-similar set.

1. Introduction

The Kolmogorov complexity H(s) of a finite binary sequence s is the
size, in bits, of the shortest program for a universal algorithm U to calcu-
late s . The concept of Kolmogorov complexity plays an important role in
characterizing the randomness of an infinite binary sequence. In [C3], the
four concepts of randomness in an infinite binary sequence (Chaitin, weak
Chaitin, Martin-L\"of, and Solovay randomness) are considered. These four
concepts are shown to be equivalent to one another. In this paper, we first
generalize these four concepts of randomness in order to deal with the degree
of randomness of an infinite binary sequence. The degree of randomness is
specified by a real number D with 0<D\leq 1 . As D becomes larger, the
degree of randomness increases. In the case when D=1 , the concept of
the degree of randomness becomes the same as that of randomness. The
relationship among the generalized concepts of randomness is investigated.
Chaitin’s halting probability \Omega is an example of a random real number. We
generalize \Omega to \Omega^{D} so that the degree of randomness of \Omega^{D} is precisely D .
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Although the first n bits of \Omega can solve the halting problem for a program
of size not greater than n , the first n bits of \Omega^{D} can solve the halting prob-
lem for a program of size not greater than Dn. Moreover, \Omega^{D} is infinitely
differentiate as a function of D , and each derivative d^{k}\Omega^{D}/dD^{k} has the
same properties as \Omega^{D}

On the basis of this generalization, we next study the relationship be-
tween the degree of randomness and Hausdorff dimension. Hausdorff di-
mension is closely related to Kolmogorov complexity, as studied by several
researchers e.g., [R1], [R2], [Stl], [CH], and [St2]. In these previous stud-
ies however, the normalized Kolmogorov complexity \lim_{narrow\infty}H(x_{n})/n of a
real number x was considered, where x_{n} is the first n bits of the base-two
expansion of x , and Hausdorff dimension was related to the normalized
Kolmogorov complexity. That is to say, in [R1], [R2], [Stl], and [St2],
the Hausdorff dimension of a subset F of \mathbb{R} was compared with the max-
imum value, or supremum, over the normalized Kolmogorov complexity
\lim_{narrow\infty}H(x_{n})/n for all points x in F (We recommend reading [Stl] as a
monograph.) On the other hand, [CH] considered the Hausdorff dimension
of the graph of the normalized Kolmogorov complexity \lim_{narrow\infty}H(x_{n})/n as
a function of x .

If an inifinite binary sequence is random, then its normalized Kol-
mogorov complexity is equal to one; however, the converse is not necessarily
true. Thus, although the concept of normalized Kolmogorov complexity is
related to randomness it alone cannot capture randomness. Corresponding
to this fact, the concept of the degree of randomness which we introduce
in this paper is more insightfull than that of the normalized Kolmogorov
complexity. Consideration of the degree of randomness allows us to classify
infinite sequences which have the same normalized Kolmogorov complex-
ity. Hence, we study the relationship between Kolmogorov complexity and
Hausdorff dimension using a more rigorous system than previous work.

We introduce six “algorithmic dimensions”, 1st, 2nd, 3rd, 4th, upper,
and lower algorithmic dimensions as fractal dimensions for a subset F of
\mathbb{R}^{N} These dimensions are defined by means of Kolmogorov complexity.
On the one hand, the 3rd, 4th, upper, and lower algorithmic dimensions
are related to the maximum value, or supremum, over the normalized Kol-
mogorov complexity for all points in F and were, in essence, researched by
[R2] and [Stl]. On the other hand, the 1st and 2nd algorithmic dimensions
are related to the maximum value over the degree of randomness for all
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points in F. Therefore, they are stronger concepts with regard to the possi-
bilities of their existence than the former four algorithmic dimensions. We
show that all six algorithmic dimensions are equal to the Hausdorff dimen-
sion for any self-similar set that is computable in a certain sense. The class
of such self-similar sets includes familiar fractal sets such as the Cantor set,
von Koch curve, and Sierpi\acute{n}ski gasket.

Based on the relationship between the definition of \Omega^{D} and the mathe-
matical theory of self-similar sets (e.g., [Hu], [Ha]), we define the self-similar
subset F_{ha1t} of [0, 1] by using the halting set of a universal algorithm U . We
may regard F_{ha1t} as the set of an endless succession of coded messages sent
through a noiseless binary communication channel. From the property of
\Omega^{D} . it is shown that F_{ha1t} has a Hausdorff dimension of one and a zer0-

Lebesgue measure.
The paper is organized as follows. In the next section, we review some

basic concepts from algorithmic information theory. We then treat the
definition of Hausdorff dimension. Section 3 is devoted to a generalization
of the concepts of randomness in an infinite binary sequence through the
introduction of a real number D . Chaitin’s halting probability \Omega is also
generalized. In Section 4, the six algorithmic dimensions for a subset of \mathbb{R}^{N}

are defined by means of Kolmogorov complexity, and their properties are
investigated. The halting self-similar set F_{ha1t} is introduced in Section 5.
The Hausdorff dimension and all six algorithmic dimensions of F_{ha1t} are
evaluated.

2. Preliminary definitions

In this section, we first recall some basic notations from algorithmic
information theory or the theory of Kolmogorov complexity. According
to [C1], we use some variant of Kolmogorov complexity, i.e., Kolmogorov
complexity based on self-delimiting programs; we recommend reading [C1].

\# S is the cardinality of S for any set S. \mathbb{N}\equiv\{0,1,2,3, .\} is the set
of natural numbers, and \mathbb{N}^{+} is the set of positive integers. \mathbb{Z} is the set of
integers, and \mathbb{Q} is the set of rational numbers. \mathbb{R}^{N} denotes iV-dimensional
Euclidean space, where \mathbb{R}^{1}=\mathbb{R} is just the set of real numbers. X\equiv

\{\Lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, . .\} is the set of finite binary sequences,
and X is ordered as indicated. For any s\in X , |s| is the length of s . X^{\infty}

is the set of infinite binary sequences. For any \alpha\in X^{\infty} , \alpha_{n} is the prefix of
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\alpha of length n , especially, \alpha_{0} is the empty word \Lambda . For any S\subset X , 3(S)
denotes the set of infinite binary sequences beginning with a finite sequence
that belongs to S , i.e.,

3(S)\equiv\{\alpha\in X^{\infty}|\exists n\in \mathbb{N}\alpha_{n}\in S\} (1)

We write ” r.e. ” instead of “recursively enumerable.”
A subset S of X is called a prefix-free set if no sequence in S is a prefix

of another sequence in S . For any partial recursive function C:X -arrow X , the
domain of C is denoted by dom C, i.e., dom C\equiv {p\in X|C(p) is defifined}.
A computer is a partial recursive function C:X - X such that dom C is a
prefix-free set. Let C be a computer. For any s\in X , H_{C}(s) is defined as

H_{C}(s) \equiv\min\{|p||p\in X \ C(p)=s \} (may be \infty ). (2)

It is shown that there exists a computer U such that for each computer C
there exists a constant sim(C) with the following property: if p\in domC ,
then there is a q for which U(q)=C(p) and |q|\leq|p|+sim(C) . We choose
any one of such a computer U and define H(s)\equiv H_{U}(s) , which is referred
to as the algorithmic information content of s , the program-size complexity
of s , or the Kolmogorov complexity of s . Thus H(s) has the following
property:

\forall C : computer H(s)\leq H_{C}(s)+sim(C) . (3)

We see that there is c\in \mathbb{N} such that for any s\neq\Lambda ,

H(s)\leq|s|+2\log_{2}|s|+c . (4)

For any n\in \mathbb{N} , H(n) is defined to be H(the n-th element of X).
Chaitin’s halting probability \Omega is defined as

\Omega\equiv\sum_{p\in domU}2^{-|p|}
. (5)

It is then shown that 0<\Omega<1 .
Normally, o(n) denotes any one function f:\mathbb{N}arrow \mathbb{R} such that

\lim_{narrow\infty}f(n)/n=0 .
Let D be a real number. D mod 1 denotes D-\lfloor D\rfloor , where \lfloor D\rfloor is the

greatest integer less than or equal to D , and D mod ’1 denotes D-\lceil D\rceil+

1 , where \lceil D\rceil is the smallest integer greater than or equal to D . Hence,
D mod 1\in[0,1) but D mod \prime 1\in(0,1] . We say that D is computable if
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the base-two expansion of D can be generated by an algorithm, i.e., if there
exists a total recursive function f:\mathbb{N}^{+}arrow\{0,1\} such that

0. f(1)f(2)f(3)f(4)\ldots .

is the base-two expansion of D mod 1. The following three conditions are
equivalent to one another.

(a) D is a computable real number.
(b) If f:\mathbb{N}^{+}arrow \mathbb{Z} with f(n)=\lfloor Dn\rfloor then f is a total recursive function.
(c) There exists a total recursive function f:\mathbb{N}^{+}arrow \mathbb{Z} such that

|D-f(n)/n|<1/n for all n\in \mathbb{N}^{+}

Let x\in \mathbb{R}^{N} and use the coordinate form x= (x^{1}, x^{2}, ., x^{N}) . For each
i=1 , ., N we denote x^{i} mod 1 in base-two notation with infinitely many
zeros:

x^{i} mod 1=0.x_{1}^{i}x_{2}^{i}x_{3}^{i}\ldots (6)

We then define code_{N} : \mathbb{R}^{N}arrow X^{\infty} as

code_{N}(x)\equiv x_{1}^{1}x_{1}^{2} . x_{1}^{N}x_{2}^{1}x_{2}^{2} . . x_{2}^{N}x_{3}^{1}x_{3}^{2}\ldots x_{3}^{N} (7)

Throughout the rest of the paper, where there is no likelihood of confusion,
code_{N}(x) may be denoted simply by x . Thus x_{n} is the first n bits of the
infinite binary sequence code_{N}(x) for any x\in \mathbb{R}^{N} We will identify any
point of \mathbb{R}^{N} with an infinite binary sequence in this manner.

Definition 2.1 (Hausdorff dimension) If U is any non-empty subset of
\mathbb{R}^{N} , the diameter of U is defined as |U| \equiv\sup\{|x-y||x, y\in U\} . Suppose
that F\subset \mathbb{R}^{N} and D\geq 0 . If \{U_{i}\} is a countable (or finite) collection of sets
of diameter at most \delta that cover F, i.e., F \subset\bigcup_{i}U_{i} with 0<|U_{i}|\leq\delta for
each i , we say that \{U_{i}\} is a \delta cover of Fr For any \delta>0 we define

H_{\delta}^{D}(F) \equiv\inf\{\sum_{i}|U_{i}|^{D}|\{U_{i}\} is a \delta cover of F\} . (8)

We then define

H^{D}(F) \equiv\lim_{\deltaarrow 0}H_{\delta}^{D}(F) . (9)

This limit exists for any subset F of \mathbb{R}^{N} , though the limiting value can be
0 or \infty . It is shown that H^{D} is an outer measure on \mathbb{R}^{N} H^{D} is called
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D-dimensional Hausdorff outer measure. Finally, the Hausdorff dimension
\dim_{H}F of F is defined as

\dim_{H}F\equiv\inf\{D\geq 0|H^{D}(F)=0\} (10)

See e.g., the book [F2] for a treatment of the mathematics of Hausdorff
dimension and self-similar sets.

3. D-Randomness

This section is, for all intents and purposes, a generalization of Chap-
ter 7 in [C3].

Definition 3.1 (weakly Chaitin D-random) Let D be a real number and
D\geq 0 , and let \alpha\in X^{\infty} . \alpha is called weakly Chaitin D-random if

\exists c\in \mathbb{R} \forall n\in \mathbb{N} Dn-c\leq H(\alpha_{n}) . (11)

If \mathcal{T} is a subset of \mathbb{N}\cross X and i\in \mathbb{N} , we write \mathcal{T}_{i}\equiv\{s|(i, s)\in \mathcal{T}\} .

Definition 3.2 (Martin-L\"of D-test) Let \mathcal{T} \subset \mathbb{N}\cross X and D\geq 0 . \mathcal{T} is
called Martin-L\"of D-test if \mathcal{T} is an r.e . set and

\forall i\in \mathbb{N}

\sum_{s\in T_{i}}2^{-D|s|}\leq 2^{-i}
. (12)

Definition 3.3 (Martin-L\"of D-random) Let D\geq 0 and \alpha\in X^{\infty} . We say
\alpha is Martin-L\"of D-random if

\forall \mathcal{T} : Martin-L\"of D-test \exists i\in \mathbb{N} \alpha\not\in 3(\mathcal{T}_{i}) . (13)

In the case where D=1 , the weak Chaitin D-randomness and Martin-
L\"of D-randomness result in weak Chaitin randomness and Martin-L\"of ran-
domness respectively, which are defined in [C3].

Remark 3.1 Suppose that D is a computable real number and D\geq 0 .
Then there exists a universal Martin-L\"of D-test \mathcal{U}^{D} , i.e.,

\exists \mathcal{U}^{D} : Martin-L\"of D-test \forall \mathcal{T} : Martin-L\"of D-test

i\in N\cap 3(\mathcal{T}_{i})\subset\cap 3(\mathcal{U}_{i}^{D})i\in \mathbb{N}
.

Thus, \alpha is not Martin-L\"of D-random if and only if \alpha\in\bigcap_{i\in N}3(\mathcal{U}_{i}^{D}) .
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Theorem 3.1 Let D be a computable real number and D\geq 0 . For any
\alpha\in X^{\infty} , \alpha is weakly Chaitin D- random\Leftrightarrow\alpha is Martin-L\"of D-random.

The proof of Theorem 3.1 is given in Appendix A. 1.

Definition 3.4 (D-compressible) Let \alpha\in X^{\infty} and D\geq 0 . We say that
\alpha is Dincompressible if

H(\alpha_{n})\leq Dn+o(n) , (14)

which is equivalent to

\varlimsup\underline{H(\alpha_{n})}\leq D . (15)
narrow\infty n

We generalize Chaitin’s halting probability \Omega as follows.

Definition 3.5 (Generalized halting probability)

\Omega^{D}\equiv\sum_{p\in domU}2^{-\frac{|p|}{D}} (D>0) . (16)

Thus, \Omega=\Omega^{1} . If 0<D\leq 1 , then \Omega^{D} converges and 0<\Omega^{D}<1 , since
\Omega^{D}\leq\Omega<1 .

Theorem 3.2 Let D be a real number.
(a) If 0<D\leq 1 and D is computable, then \Omega^{D} is weakly Chaitin D-

random and D-compressible.
(b) If 1<D , then \Omega^{D} diverges to infifinity.

Proof, (a) Suppose that 0<D\leq 1 and D is a computable real number.
We first show that \Omega^{D} is weakly Chaitin D-random. The proof is a

straightforward generalization of Chaitin’s original proof that \Omega is weakly
Chaitin random. Let p_{1},p_{2},p_{3} , be a recursive enumeration of the r.e . set
dom U . Let \alpha be the infinite binary sequence such that 0.\alpha is the base-two
expansion of \Omega^{D} with infinitely many ones. Then, since D is a computable
real number, there exists a partial recursive function \xi:X -

\mathbb{N}^{+} with the
property that

0. \alpha_{n}<\sum_{i=1}^{\xi(\alpha_{n})}2^{-\frac{|p_{i}|}{D}} (17)

It is then easy to see that Dn<|p_{i}| for all i>\xi(\alpha_{n}) (i.e., given \alpha_{n} ,
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one can calculate all programs p of size not greater than \lfloor Dn\rfloor such that
U(p) is defined). Hence, Dn<H(s) for an arbitrary s\in X such that
s\neq U(p_{i}) for all i\leq\xi(\alpha_{n}) . Therefore, given \alpha_{n} , by calculating the set
\{U(p_{i})|i\leq\xi(\alpha_{n})\} and picking any finite binary sequence that is not in
this set, one can obtain an s\in X such that Dn<H(s) .

Thus, there exists a partial recursive function \Psi:Xarrow X with the
property that

Dn<H(\Psi(\alpha_{n})) . (18)

Using (3), there is a natural number c_{\Psi} such that

H(\Psi(\alpha_{n}))<H(\alpha_{n})+c_{\Psi} . (19)

Therefore, \alpha is weakly Chaitin D-random. It follows that \alpha has infinitely
many zeros, which implies that \alpha=code_{1}(\Omega^{D}) . Thus, \Omega^{D} (i.e., code_{1}(\Omega^{D}) )
is weakly Chaitin D-random.

Next, we prove that \Omega^{D} is D-compressible. We note that there exists
a total recursive function f:\mathbb{N}^{+}\cross \mathbb{N}arrow \mathbb{N} such that

| \sum_{i=1}^{k}2^{-\frac{|p_{i}|}{D}}-2^{-n}f(k, n)|<2^{-n} . (20)

Let \beta be the infinite binary sequence such that 0.\beta is the base-two expansion
of the halting probability \Omega .

Given n and \beta_{\lceil Dn\rceil} (i.e., the first \lceil Dn\rceil bits of \beta), one can find a k_{0} with
the property that

0. \beta_{\lceil Dn\rceil}<\sum_{i=1}^{k_{0}}2^{-|p_{i}|} . (21)

It is then easy to see that

\sum_{i=k_{0}+1}^{\infty}2^{-|p_{i}|}<2^{-Dn} . (22)

Using the inequality for real numbers a^{c}+b^{c}\leq(a+b)^{c}(a, b>0, c\geq 1) , it
follows that

| \Omega^{D}-\sum_{i=1}^{k_{0}}2^{-\frac{|p_{i}|}{D}}|<2^{-n} . (23)
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Prom (20), (23), and |\Omega^{D}-0.\alpha_{n}|<2^{-n} it is shown that

|0.\alpha_{n}-2^{-n}f(k_{0}, n)|<32^{-n} . (24)

Hence

\alpha_{n}=f(k_{0}, n) , f(k_{0}, n)\pm 1 , f(k_{0}, n)\pm 2 , (25)

where \alpha_{n} is regarded as a dyadic integer. Based on this, one is left with five
possibilities of \alpha_{n} , so that one needs only 3 bits more in order to determine
\alpha_{n} .

Thus, there exists a partial recursive function \Phi:\mathbb{N}^{+}\cross X\cross Xarrow X

such that

\forall n\in \mathbb{N}^{+} \exists s\in X |s|=3 & \Phi(n, \beta_{\lceil Dn\rceil}, s)=\alpha_{n} . (26)

From (4) it follows that

H(\alpha_{n})\leq|\beta_{\lceil Dn\rceil}|+o(n)\leq Dn+o(n) , (27)

which implies that \Omega^{D} is D-compressible.
(b) Suppose that D>1 . We then choose a computable real number

d satisfying D\geq d>1 . Let us first assume that \Omega^{d} converges. Based on
an argument similar to the first half of the proof of Theorem 3.2 (a), it is
easy to show that \Omega^{d} is weakly Chaitin d-random, i.e., there exists c\in \mathbb{R}

such that dn - c\leq H((\Omega^{d})_{n}) . It follows from (4) that dn - c\leq n+o(n) .
Dividing by n and letting narrow\infty we have d\leq 1 , which contradicts the fact
d>1 . Thus, \Omega^{d} diverges to infinity. By noting \Omega^{d}\leq\Omega^{D} it is shown that
\Omega^{D} diverges to infinity. \square

Suppose that 0<D\leq 1 and D is a computable real number. From
Theorem 3.2 (a) it follows that \lim_{narrow\infty}H((\Omega^{D})_{n})/n=D . Also, (\Omega^{D})_{n}

solves the halting problem for a program of size not greater than Dn, as is
shown in the proof of Theorem 3.2 (a).

Moreover, as shown in the following theorem, \Omega^{D} is infinitely differen-
tiable as a function of D\in(0,1) , and each derived function d^{k}\Omega^{D}/dD^{k} has
the same properties as \Omega^{D} .

Theorem 3.3 Let f:(0,1) – \mathbb{R} with f(D)=\Omega^{D} For any p\in domU ,
let f_{p} : (0, 1)arrow \mathbb{R} with f_{p}(D)=2^{-|p|/D}
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(a) f is a function of class C^{\infty} , and for each k\in \mathbb{N}^{+} ,

\forall D\in(0,1)
f^{(k)}(D)= \sum_{p\in domU}f_{p}^{(k)}(D)

(28)

where f^{(k)} and f_{p}^{(k)} are the k -th derived functions of f and f_{p} respec-
tively.

(b) Let k\in \mathbb{N}^{+} and D be a computable real number in (0, 1) . Then f^{(k)}(D)

is weakly Chaitin D-random and D-compressible.

Proof. It is shown that for each k\in \mathbb{N}^{+} ,

f_{p}^{(k)}(D)= \frac{1}{D^{k}}Q_{k}(\frac{|p|\ln 2}{D})2^{-\frac{|p|}{D}} (29)

where Q_{k}(z) is the polynomial of degree k with integer coefficients such that
Q_{k}(z)=z^{k}-k(k-1)z^{k-1}+ \cdot+(-1)^{k-1}k!z .

(a) We note that for each k there exists L such that if |p|\geq L then
for any D\in(0,1) , f_{p}^{(k)}(D)>0 . We wish to show by induction on k that
the k-th derived function f^{(k)} of f exists and (28) holds. The result is
obvious for k=0 from the definition of \Omega^{D}- Suppose that the hypoth-
esis is true for k=i . We see that there is L such that if |p|\geq L then
f_{p}^{(i)}(D) , f_{p}^{(i+1)}(D) , f_{p}^{(i+2)}(D)>0 for any D\in(0,1) . Let D\in(0,1) . We
then choose D_{0} so that D<D_{0}<1 . Using the mean value theorem, it is
shown that if |p|\geq L then

f_{p}^{(i+1)}(D)< \frac{f_{p}^{(i)}(D_{0})-f_{p}^{(i)}(D)}{D_{0}-D}<\frac{f_{p}^{(i)}(D_{0})}{D_{0}-D} . (30)

Hence

\sum_{|p|\geq L}f_{p}^{(i+1)}(D)\leq\frac{1}{D_{0}-D}\sum_{|p|\geq L}f_{p}^{(i)}(D_{0}) . (31)

By the inductive hypothesis, \sum_{p}f_{p}^{(i)}(D_{0}) is convergent. Thus \sum_{p}f_{p}^{(i+1)}(D)

is convergent for any D\in(0,1) . Since f_{p}^{(i+1)} is a monotone increasing
function for any p with |p|\geq L , it is easy to see that \sum_{p}f_{p}^{(i+1)}(D) is

uniformly convergent on (0, 1) in the wider sense. Therefore, \sum_{p}f_{p}^{(i)}(D) is
termwise differentiate, which implies that the hypothesis is true for k=
i+1 as desired.
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(b) Let k\in \mathbb{N}^{+} We then note that there exists L\in \mathbb{N} such that if
|p|>L then

\forall D\in(0,1) 1 \leq\frac{1}{D^{k}}Q_{k}(\frac{|p|\ln 2}{D}) (32)

and

[ \frac{1}{D^{k}}Q_{k}(\frac{|p|\ln 2}{D})]^{D} (33)

is a monotone increasing function of D\in(0,1) . Let p_{1} , p_{2} , p_{3} , . . be a
recursive enumeration of the r.e . set {p|p\in dom U&|p|>L}. Also, let
S_{L}= {p|p\in dom U&|p|\leq L}, which is a finite set. The proof is similar
to the case of \Omega^{D}

Suppose that D is a computable real number in (0, 1) . We then note
that \sum_{p\in S_{L}}f_{p}^{(k)}(D) is also a computable real number.

We begin by showing that f^{(k)}(D) is weakly Chaitin D-random. Let \alpha

be the infinite binary sequence such that 0.\alpha is the base-two expansion of
f^{(k)}(D) mod ’1 with infinitely many ones.

Given \alpha_{n} , one can find a G\in \mathbb{N} with the property that

\lceil f^{(k)}(D)\rceil-1+0.\alpha_{n}<\sum_{p\in S_{L}}f_{p}^{(k)}(D)+\sum_{i=1}^{G}f_{pi}^{(k)}(D) . (34)

It is then easy to see that

\sum_{i=G+1}^{\infty}f_{pi}^{(k)}(D)<2^{-n} . (35)

Hence, from (32), Dn<|p_{i}| for all i>G . One can then calculate the set

\{U(p)|p\in S_{L}\}\cup\{U(p_{i})|i\leq G\} (36)

and therefore pick an s\in X that is not in this set. It follows that Dn<
H(s) .

Thus, there exists a partial recursive function \Psi:X - X such that

Dn<H(\Psi(\alpha_{n})) . (37)

Based on an argument similar to the case of \Omega^{D} , we see that \alpha is weakly
Chaitin D-random. Since f^{(k)}(D) mod 1=f^{(k)}(D) mod \prime 1=0.\alpha , it follows
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that f^{(k)}(D) is weakly Chaitin D-random.
Next, we prove that f^{(k)}(D) is D-compressible. We note that there

exists a total recursive function g:\mathbb{N}^{+}\cross \mathbb{N}arrow \mathbb{Z} such that

| \sum_{p\in S_{L}}f_{p}^{(k)}(D)-\lfloor f^{(k)}(D)\rfloor+\sum_{i=1}^{m}f_{pi}^{(k)}(D)-2^{-n}g(m, n)|<2^{-n}- (38)

Let d be any computable real number with D<d<1 , and let \beta be
the infinite binary sequence such that 0.\beta is the base-two expansion of
f^{(k)}(d) mod 1. We then note that \sum_{p\in S_{L}}f_{p}^{(k)}(d) is a computable real num-
ber.

Given n and \beta_{\lceil Dn/d\rceil} (i.e., the first \lceil Dn/d\rceil bits of \beta), one can find an
M\in \mathbb{N} with the property that

\lfloor f^{(k)}(d)\rfloor+0.\beta_{\lceil Dn/d\rceil}<\sum_{p\in S_{L}}f_{p}^{(k)}(d)+\sum_{i=1}^{M}f_{pi}^{(k)}(d) . (39)

It is then easy to see that

\sum_{i=M+1}^{\infty}f_{p_{i}}^{(k)}(d)<2^{-Dn/d} . (40)

Raising both sides of this inequality to the power d/D and noting the way
of choosing L ,

2^{-n}> \sum_{i=M+1}^{\infty}[ \frac{1}{d^{k}}Q_{k}(\frac{|p_{i}|\ln 2}{d})]^{d/D}2^{-|p_{i}|/D}>\sum_{i=M+1}^{\infty}f_{p_{i}}^{(k)}(D) . (41)

It follows that

| \sum_{p\in S_{L}}f_{p}^{(k)}(D)+\sum_{i=1}^{M}f_{pi}^{(k)}(D)-f^{(k)}(D)|<2^{-n} . (42)

Prom (38), (42), and

|\lfloor f^{(k)}(D)\rfloor+0.\alpha_{n}-f^{(k)}(D)|<2^{-n} , (43)

it is shown that

|\alpha_{n}-g(M, n)|\leq 2 , (44)



A generalization of Chaitin’s \Omega and self-similar sets 231

where \alpha_{n} is regarded as a dyadic integer.
Thus, there exists a partial recursive function \Phi:\mathbb{N}^{+}\cross X\cross Xarrow X

such that

\forall n\in \mathbb{N}^{+} \exists s\in X |s|=3 &\Phi (n, \beta_{\lceil Dn/d\rceil}, s) =\alpha_{n} . (45)

Using an argument similar to the case of \Omega^{D} , we see that \alpha is D/d-com-
pressible. Since d is any computable real number with D<d<1 , it follows
that f^{(k)}(D) is D-compressible. \square

Remark 3.2 Suppose that W is an infinite r.e . subset of X . Chaitin
proved that both

\sum 2^{-|p|} (46)
U(p)\in W

and

\sum_{s\in W}2^{-H(s)} (47)

are weakly Chaitin 1-random as \Omega . Corresponding to this fact, it is shown
that both

\sum 2^{-|p|/D} (48)
U(p)\in W

and

\sum_{s\in W}2^{-H(s)/D} (49)

have the same properties as \Omega^{D} , i.e., the following results hold: (i) If D>1
then both (48) and (49) diverge to infinity, (ii) As a function of D , each
of (48) and (49) is infinitely termwise differentiable on (0, 1) . (iii) If k\in \mathbb{N}

and D is a computable real number in (0, 1) then, for each of (48) and (49),
the value of its k-th derived function at D is weakly Chaitin D-random and
D-compressible.

Definition 3.6 (Chaitin D-random) Let D be a real number and D\geq 0 ,
and let \alpha\in X^{\infty} . \alpha is called Chaitin D-random if

\lim_{narrow\infty}H(\alpha_{n})-Dn=\infty . (50)
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Definition 3.7 (Solovay D-test) Let \mathcal{T}\subset \mathbb{N}\cross X and D\geq 0 . \mathcal{T} is called
Solovay D-test if \mathcal{T} is an r.e . set and

\sum 2^{-D|s|}<\infty , (51)
(i,s)\in T

where the sum is over all i and s such that (i, s)\in \mathcal{T}

Definition 3.8 (Solovay D-random) Let D\geq 0 and \alpha\in X^{\infty} . We say
that \alpha is Solovay D-random if

\forall \mathcal{T} : Solovay D-test \exists m\in \mathbb{N} \forall i>m \alpha\not\in 3(\mathcal{T}_{i}) . (52)

In the case where D=1 , the Chaitin D-randomness and Solovay D-
randomness result in Chaitin randomness and Solovay randomness respec-
tively, which are defined in [C3].

Theorem 3.4 Let D be a computable real number and D\geq 0 , and let
\alpha\in X^{\infty} . Then \alpha is Chaitin D- random\Leftrightarrow\alpha is Solovay D-random.

The proof of Theorem 3.4 is immediately obtained by generalizing the
proof of Theorem R3 in [C3].

Theorem 3.5 Let D\geq 0 and \alpha\in X^{\infty} . \alpha is Chaitin D- random\Rightarrow\alpha is
weakly Chaitin D-random.

Proof. This is immediately apparent from the definitions. \square

Remark 3.3 The converse of Theorem 3.5 holds for D=1 , because all
Martin-L\"of 1-random sequences are Solovay 1-random, as is shown in [C3].
However, whether the converse of Theorem 3.5 also holds for any com-
putable real number D with D<1 is an open problem.

Definition 3.9 (semi D-random) Let D\geq 0 and \alpha\in X^{\infty} . We say \alpha is
semi D-random if

D \leq\varliminf_{narrow\infty}\frac{H(\alpha_{n})}{n} . (53)

Proposition 3.6 \alpha is weakly Chaitin D- random\Rightarrow\alpha is semi D-random.

Proof. This is obvious from the definitions. \square

In general, the converse of Proposition 3.6 does not necessarily hold. For
example, although the infinite binary sequence r_{1}r_{2}r_{3} . considered in the
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proof of Theorem 5.1 is semi 1-random, it is not weakly Chaitin l-random.

Proposition 3.7 The following four conditions are equivalent to one an-
other.
(a) \alpha is semi D-random.
(b) Dn+o(n)\leq H(\alpha_{n}) .
(c) \forall d\in \mathbb{R} ( 0\leq d<D\Rightarrow\alpha is Chaitin d-random).
(d) \forall d\in \mathbb{R} ( 0\leq d<D\Rightarrow\alpha is weakly Chaitin d-random).

Proof. The above equivalences follow immediately from the definitions.
\square

4. Algorithmic Dimensions

We introduce the six fractal dimensions which are related to the degree
of randomness or the normalized Kolmogorov complexity.

Definition 4.1 (algorithmic dimensions) Let F be a subset of \mathbb{R}^{N}

(a) The 1st algorithmic dimension of F, which is denoted by \dim_{A1} F. is
defined as D\in \mathbb{R} such that

\forall x\in F x is \frac{D}{N} -compressible (54)

and

\exists x\in F x is Chaitin \frac{D}{N}random. (55)

(b) The 2nd algorithmic dimension of F, which is denoted by \dim_{A2}F , is
defined as D\in \mathbb{R} such that

\forall x\in F x is \frac{D}{N} -compressible (56)

and

\exists x\in F x is weakly Chaitin \frac{D}{N}random. (57)

(c) The 3rd algorithmic dimension of F , which is denoted by \dim_{A3}F , is
defined as D\in \mathbb{R} such that

\forall x\in F x is \frac{D}{N} -compressible (58)
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and

\exists x\in F x is semi \frac{D}{N}-random. (59)

(d) The 4th algorithmic dimension of F, which is denoted by \dim_{A4}F_{J}. is
defined as D\in \mathbb{R} such that

\forall x\in F x is \frac{D}{N}-compressible (60)

and

\forall d<\frac{D}{N} \exists x\in F x is Chaitin d-random. (61)

(e) The lower and upper algorithmic dimensions of F are respectively
defined as

\underline{\dim}_{A}F\equiv\sup\{D\geq 0|\exists x\in F x is Chaitin \frac{D}{N}- random\} (62)

= \sup\varliminf\underline{H(x_{n})} (63)
x\in Fnarrow\infty n/N

and

\overline{\dim}_{A}F\equiv\min\{D\geq 0|\forall x\in F x is \frac{D}{N}- compressib1e\} (64)

= \sup_{x\in F}\varlimsup_{narrow\infty}\frac{H(x_{n})}{n/N} . (65)

Although the upper and lower algorithmic dimensions always exist un-
less F is the empty set, the existences of the 1st, 2nd, 3rd, and 4th al-
gorithmic dimensions of F are nontrivial. However, the uniqueness of each
algorithmic dimension of F is trivial for any non-empty set Fr Note that the
condition (61) in the definition of the 4th algorithmic dimension is equiv-
alent to D \leq\sup_{x\in F}\varliminf_{narrow\infty}H(x_{n})/(n/N) . Also, from Proposition 3.7,
the condition “Chaitin d-random” in (61) can be equivalently replaced by
“weakly Chaitin d-random” or “semi d-random” Thus, we need not con-
sider the alternative definitions which are obtained by such replacements in
the definition of the 4th algorithmic dimension. The ‘dimension’ N of Eu-
clidean space \mathbb{R}^{N} appears in the definition of each algorithmic dimension. If
we identify any point in \mathbb{R}^{N} with an infinite sequence over an alphabet that
consists of 2^{N} elements instead of an infinite binary sequence, and redefine
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Kolmogorov complexity using a computer whose range is the set of finite
sequences over such an alphabet, then N vanishes from these definitions.

The properties of the 3rd, 4th, upper, and lower algorithmic dimensions
were, in essence, studied by [R1] and [Stl]. As more restrictive concepts, we
introduce the 1st and 2nd algorithmic dimensions which are related to the
degree of randomness instead of the normalized Kolmogorov complexity.

Proposition 4.1 The algorithmic dimensions satisfy the following prop-
erties.
(a) For each k=1,2,3,4 , if \dim_{Ak}F exists then 0\leq\dim_{Ak}F\leq N .
(b) If \dim_{A1}F exists then \dim_{A2}F also exists and is equal to \dim_{A1}F

Similarly, for k=2,3 , if \dim_{Ak}F exists then \dim_{A(k+1)}F also exists
and is equal to \dim_{Ak}F .

(c) There is E\subset \mathbb{R}^{N} such that \dim_{A4}E exists and \dim_{A3}E does not
exist. Also, there is F\subset \mathbb{R}^{N} such that \dim_{A3}F exists and \dim_{A2}F

does not exist.

(d) For each k=1,2,3,4 , if E\subset F and both \dim_{Ak}E and \dim_{Ak}F exist
then \dim_{Ak}E\leq\dim_{Ak}F

(e) For each k=1,2,3,4 , if both \dim_{Ak}E and \dim_{Ak}F exist then
\dim_{Ak}(E\cup F) also exists and is equal to \max\{\dim_{Ak}E, \dim_{Ak}F\} .

(f) If \dim_{A4}F_{i} exists for all i\in \mathbb{N}^{+} then \dim_{A4}(\bigcup_{i=1}^{\infty}F_{i}) also exists and
is equal to \sup_{1\leq i<\infty}\dim_{A4}F_{i} .

(g) If F is an open subset of \mathbb{R}^{N} then \dim_{Ak}F=N for k=1,2,3,4 .

(h) If 0<D\leq 1 and D is computable then \dim_{Ak}\{\Omega^{D}\}=D for k=
2,3,4 .

(i) 0\leq\underline{\dim}_{A}F\leq\overline{\dim}_{A}F\leq N .
(j) For each k=1,2,3,4, if \dim_{Ak}F exists then \underline{\dim}_{A}F=\overline{\dim}_{A}F=

\dim_{Ak}Fr

(k) If \underline{\dim}_{A}F=\overline{\dim}_{A}F then \dim_{A4}F exists and these three algorithmic
dimensions are equal to one another.

Proof. These properties are obvious consequences of the definitions. The
proof of Proposition 4.1 (c) is given as follows. Let 0<D\leq 1 and

E= { \Omega^{d}|0<d<D and d is computable}. (66)
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Then \dim_{A4}E=D but \dim_{A3}E does not exist. Also, F_{ha1t} (introduced
in the next section) is an example of a set F such that \dim_{A3}F exists but
\dim_{A2}F does not. See Theorem 5.1. Proposition 4.1 (g) follows from the
fact that for any s\in X there is a Chaitin 1-random infinite binary sequence
whose prefix is s . \square

Corresponding to Remark 3.3, it is an open problem whether or not
there is a set F such that \dim_{A2}F exists and \dim_{A1}F does not.

If \dim_{A3}F exists, which follows from the existence of either \dim_{A1}F or
\dim_{A2}F , then \dim_{A3}F=\max_{x\in F}\lim_{narrow\infty}H(x_{n})/(n/N) , where the maxi-
mum is over all x\in F such that \lim_{narrow\infty}H(x_{n})/(n/N) exists. Note that
from the definition of code_{N} , x_{n} corresponds to the first n/N digits of
the base-two expansions of all components of x\in \mathbb{R}^{N} This implies that
\dim_{A3}F is the maximum value over the program-size complexity per digit
in base-two notation for all points in F .

Let A be a non-empty closed subset of \mathbb{R}^{N} . A transformation S:Aarrow
A is called a contraction on A if there is a number c with 0<c<1 such
that |S(x)-S(y)|\leq c|x-y| for all x , y in A . Let \varphi denote the class of all
non-empty compact subsets of A . It is shown that the following theorem
holds for contractions S_{1} , ., S_{m} on A (for its proof, see e.g., [F2]).

Theorem 4.2 Let S_{1} , . . ’
S_{m} be contractions on A. Then there exists a

unique non-empty compact set F which satisfifies

F=\cup S_{i}(F)i=1m . (67)

Moreover, if we defifine a transformation S:\varphiarrow\varphi by

S(E)=\cup S_{i}(E)i=1m (68)

and wr^{*}iteS^{k} for the k -th iterate of S given by S^{0}(E)=E , S^{k}(E)=
S(S^{k-1}(E)) for k\geq 1 , then

F=\cap S^{k}(E)k=1\infty (69)

for any set E in \varphi such that S_{i}(E)\subset E for each i .



A generalization of Chaitin’s \Omega and self-similar sets 237

The unique non-empty compact set F satisfying (67) is called the in-
variant set of the contractions S_{1} , . ’

S_{m} .
A contraction S on A is called a similarity on A if there is a number

c with 0<c<1 such that |S(x)-S(y)|=c|x-y| for all x , y in A(c
is called the ratio of S). The invariant set of a collection of similarities is
called a self-similar set.

Let S_{1} , , S_{m} be similarities on A . We say that S_{1} , . ., S_{m} satisfy the
open set condition if there exists a non-empty bounded open set V\subset A

such that

V\supset\cup S_{i}(V)i=1m (70)

and S_{i}(V)\cap S_{j}(V)=\phi(i\neq j) .

Theorem 4.3 Let S_{1} , . ., S_{m} be similarities on \mathbb{R}^{N} with ratios c_{1} , . ., c_{m}

respectively. We then note that each S_{i} is an affine transformation, i.e. , for
each i there exist N\cross N matrix M_{i} and v_{i}\in \mathbb{R}^{N} such that S_{i}(x)=M_{i}x+v_{i} .
We assume that all matrix elements of M_{i} and all components of v_{i} are
computable real numbers for each i . Furthermore, suppose that the open set
condition (70) holds for S_{1} , . ., S_{m} . If F is the invariant set of S_{1} , . ., S_{m} ,
then \dim_{A1}F exists and \dim_{A1}F=\dim_{H}F=D , where D is given by

\sum_{i=1}^{m}c_{i}^{D}=1 . (71)

Therefore, all six algorithmic dimensions of F exist and are equal to
\dim_{H}Fr

The proof of Theorem 4.3 is given in Appendix A.2, and here we only
present some examples of familiar self-similar sets F which are shown to
satisfy \dim_{A1}F=\dim_{H}F as a consequence of Theorem 4.3.

Example 4.1
(a) The middle-third Cantor set is the invariant set F of the similarities

S_{1} , S_{2} on \mathbb{R} with ratios 1/3, 1/3 such that

S_{1}(x)= \frac{1}{3}x , S_{2}(x)= \frac{1}{3}x+\frac{2}{3} . (72)

The open set condition (70) holds for S_{1} , S_{2} with V as the open interval
(0, 1) . All of the real constants which appear in affine transformations
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(72) (i.e., 0, 1/3, and 2/3) are computable real numbers. Thus, by
Theorem 4.3, \dim_{A1}F=\dim_{H}F=\log_{3}2 , which is the solution of
(1/3)^{D}+(1/3)^{D}=1 .

(b) The Sierpi\acute{n}ski gasket with vertices at the points (0, 0) , (1, 0) , and
(1/2, \sqrt{3}/2) is the invariant set F of the similarities S_{1} , S_{2} , S_{3} on \mathbb{R}^{2}

with ratios 1/2, 1/2, 1/2 such that

S_{1} (\begin{array}{l}xy\end{array})=(\begin{array}{ll}\frac{1}{2} 00 \frac{1}{2}\end{array})(\begin{array}{l}xy\end{array}) ,

S_{2} (\begin{array}{l}xy\end{array})=(\begin{array}{ll}\frac{1}{2} 00 \frac{1}{2}\end{array})(\begin{array}{l}xy\end{array}) + (\begin{array}{l}\frac{1}{2}0\end{array}) , (73)

S_{3} (\begin{array}{l}xy\end{array})=(\begin{array}{ll}\frac{1}{2} 00 \frac{1}{2}\end{array})(\begin{array}{l}xy\end{array}) +(_{\frac{\frac{1}{\sqrt{3}4}}{4}})

The open set condition (70) holds for S_{1} , S_{2} , S_{3} , taking V as the
interior of the equilateral triangle with vertices at (0, 0) , (1, 0) , and
(1/2, \sqrt{3}/2) . All of the real constants which appear in affine transfor-
ratio s (73) ( i.e. , 0, 1/2, 1/4, and \sqrt{3}/4 ) are computable real numbers.
It follows from Theorem 4.3 that \dim_{A1}F=\dim_{H}F=\log_{2}3 , which
is the solution of (1/2)^{D}+(1/2)^{D}+(1/2)^{D}=1 .

(c) A modified von Koch curve F\subset \mathbb{R}^{2} is constructed as follows. Fix
a computable real number r with 0<r\leq 1/3 . Initially, consider a
line segment which has endpoints (x_{1}, y_{1}) and (x_{2}, y_{2}) such that all
of x_{1} , y_{1} , x_{2} , y_{2} are computable real numbers. Construct a curve F
by repeatedly replacing the middle proportion r of each line segment
by the other two sides of an equilateral triangle. (In the case where
r=1/3 , F results in the von Koch curve.) Then we can select the
four similarities S_{1} , S_{2} , S_{3} , S_{4} with ratios \frac{1}{2}(1-r) , r , r , \frac{1}{2}(1-r) which
have the following properties: (i) The curve F is the invariant set of
S_{1} , . ., S_{4} . (ii) The open set condition holds for S_{1} , ., S_{4} . (iii) All
of the real constants which appear in each affine transformation S_{i}

are computable real numbers. Thus, from Theorem 4.3 we see that
\dim_{A1}F=\dim_{H}F=D , where D satisfies 2r^{D}+2( \frac{1}{2}(1-r))^{D}=1 .



A generalization of Chaitin’s \Omega and self-similar sets 239

5. Halting self-similar sets

The halting self-similar set F_{ha1t} is defined as

F_{ha1t}\equiv { 0.q_{1}q_{2}q_{3} |q_{i}\in domU for each i } (74)

F_{ha1t} is a compact subset of [0, 1] . Let S_{p}(x)=2^{-|p|}x+0.p for each p\in

dom U . Then F_{ha1t} satisfies

F_{ha1t}=\cup S_{p}(F_{ha1t})p\in domU^{\cdot}
(75)

Thus, since dom U is a countably infinite set, F_{ha1t} is a self-similar set in
the sense that F_{ha1t} is a union of a countably infinite number of smaller
similar copies of itself. Also, since dom U is a prefix-free set, the func-
tion family \{S_{p}\} satisfies an open set condition in the sense that there
exists a non-empty bounded open set V (i.e., the open interval (0, 1)) such
that V \supset\bigcup_{p}S_{p}(V) and S_{p}(V)\cap S_{q}(V)=\phi(p\neq q) . Using the fact
that dom U is an r.e . set and not a recursive set, it is easy to show that
\{s\in X|I(s)\cap F_{ha1t}\neq\phi\} is also an r.e . set and not a recursive set, where
I(s)=[0.s, 0.s+2^{-|s|}) .

Remark 5.1 As considered in [C1], think of U as decoding equipment at
the receiving end of a noiseless binary communication channel. Regard its
programs (i.e., finite binary sequences in dom U) as code words and regard
the result of the computation by U as the decoded message. Since dom U is a
prefix-free set, such code words form what is called an “instantaneous code,”
so that successive messages sent through the channel can be separated.
Then F_{ha1t} is the set of x\in[0,1] such that the base-two expansion of x is
an endless succession of coded messages sent through the channel.

Theorem 5.1 \dim_{H}F_{ha1t}=1 and \mathcal{L}^{1}(F_{ha1t})=0 , where \mathcal{L}^{1} is Lebesgue
measure on \mathbb{R} . Neither \dim_{A1}F_{ha1t} nor \dim_{A2} F_{ha1t} exists, but \dim_{A3} F_{ha1t} =

\dim_{A4}F_{ha1t}=1 .

Proof. To begin with, we show that \dim_{H}F_{ha1t}=1 . Let p_{1},p_{2},p_{3} , . be
a recursive enumeration of the r.e . set dom U , and let

P_{m}= { 0.q_{1}q_{2}q_{3} |q_{i}\in\{p_{1},p_{2} , ., p_{m}\} for each i } (76)

Then P_{m} is the invariant set of S_{p1} , S_{p2} , . . , S_{p_{m}} . Since the open set condi-
tion (70) holds for S_{p_{1}} , S_{p2} , \ldots , S_{p_{m}} , from Theorem A.1O in Appendix A.2
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it is shown that \dim_{H}P_{m}=D_{m} , where D_{m} is given by

\sum_{i=1}^{m}2^{-D_{m}|p_{i}|}=1 . (77)

Now, from the definition of \Omega^{D} ,

\Omega^{\frac{1}{D}}=\sum_{i=1}^{\infty}2^{-D|p_{i}|} . (78)

From Theorem 3.2 (b), this sum diverges to infinity for each D\in(0,1) .
Hence, given \epsilon>0 , for all sufficiently large m

\sum_{i=1}^{m}2^{-(1-\epsilon)|p_{i}|}>1 (79)

and

\sum_{i=1}^{m}2^{-1\cdot|p_{i}|}<\Omega^{1}<1 , (80)

which implies that 1-\epsilon<D_{m}<1 . Thus, \lim_{marrow\infty}D_{m}=1 . Since P_{m}\subset

F_{ha1t} , it follows that \dim_{H}F_{ha1t}=1 .
Second, we prove that \mathcal{L}^{1}(F_{ha1t})=0 . We see that for each n\in \mathbb{N}^{+} ,

\mathcal{L}^{1}(F_{ha1t})\leq \mathcal{L}^{1}(\{0.q_{1} . . ^{q_{n}\alpha}|q_{1}, ., ^{q_{n}}\in domU\ \alpha\in X^{\infty}\})

= \sum_{q_{1},\ldots,q_{n}\in domU}2^{-|q_{1}\ldots q_{n}|} (81)

=(\Omega^{1})^{n} .

Since 0<\Omega^{1}<1 , letting narrow\infty gives \mathcal{L}^{1}(F_{ha1t})=0 .
Third, we prove that \dim_{A3}F_{ha1t}=\dim_{A4}F_{ha1t}=1 . Fix a weakly

Chaitin 1-random sequence \beta such as the base-two expansion of \Omega . For
each k\in \mathbb{N}^{+} , let r_{k} be any one of the shortest q such that U(q) is equal
to the k bits sequence from (k-1)k/2+1-th bit to k(k+1)/2-th bit of \beta .
Also, let y=0.r_{1}r_{2}r_{3} . It follows that y\in F_{ha1t} .

Given y_{n} , one can find r_{1} , r_{2} , r_{3} , . ., r_{m} , t such that y_{n}=r_{1}r_{2}r_{3} . . r_{m}t

and t is a proper prefix of r_{m+1} , possibly t=\Lambda . One can then calculate
\beta_{m(m+1)/2} from r_{1} , r_{2} , r_{3} , . , r_{m} . Hence, there exists a partial recursive
function \Psi:X – X such that for each n\in \mathbb{N}^{+} , \Psi(y_{n})=\beta_{m(m+1)/2} where
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m is the greatest integer with the property that |r_{1}r_{2}r_{3} . . r_{m}|\leq n . Using
(3), it is easy to show that there is d\in \mathbb{N} such that

\frac{m(m+1)}{2}-d\leq H(y_{n}) . (82)

However, using (4), |r_{k}|\leq k+2\log_{2}k+c for any k\in \mathbb{N}^{+} Thus

n<|r_{1}r_{2}r_{3}\ldots r_{m}r_{m+1}|

\leq\frac{(m+1)(m+2)}{2}+\log_{2}(m+1)!+c(m+1) .
(83)

Since letting narrow\infty implies marrow\infty , it follows that

1 \leq\varliminf\frac{m(m+1)}{\underline{)}n}.\cdot (84)
narrow\infty

Combining with (82) this implies that y is semi l-random.
Now, it follows from (4) that x is 1-compressible for all x\in \mathbb{R} . Thus,

\dim_{A3}F_{ha1t}=1 , which shows, from Proposition 4.1 (b), that \dim_{A4}F_{ha1t}=

1 .
Finally, we show that neither \dim_{A1}F_{ha1t} nor \dim_{A2}F_{ha1t} exists. If

\dim_{A2}F_{ha1t} exists then, by Proposition 4.1 (b), \dim_{A2}F_{ha1t}=\dim_{A3}F_{ha1t}=

1 , which implies that there is x\in F_{ha1t} such that x is Martin-L\"of l-random.
However, we will show that x is not Martin-L\"of 1-random for any x\in F_{ha1t} .

Choosing a\in \mathbb{Q} with \Omega^{1}<a<1 it follows that

\sum_{q_{1},\ldots,q_{n}\in domU}2^{-|q_{1}\ldots q_{n}|}<a^{n}
. (85)

Let f:\mathbb{N} – \mathbb{N} be a total recursive function such that a^{f(i)}\leq 2^{-i} for all
i\in \mathbb{N} . The r.e . set

\mathcal{T}\equiv

\{(i, q_{1}q_{2} . ^{q_{f(i)})}|i\in \mathbb{N} \ ^{q_{1}}, . ., _{q_{f(i)}}\in domU\} (86)

is then Martin-L\"of 1-test. For any x\in F_{ha1t} , \forall i\in \mathbb{N}x\in 3(\mathcal{T}_{i}) and hence x
is not Martin-L\"of l-random.

Thus, \dim_{A2}F_{ha1t} does not exist. From Proposition 4.1 (b), \dim_{A1}F_{ha1t}

also does not exist. \square

We say that f : X – X is an optimal code if for each s\in X , f(s)
is one of the shortest program for U to calculate s , i.e., U(f(s))=s and
|f(s)|=H(s) . For any optimal code f and W\subset X , F_{opt}(f, W) is defined
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as

F_{opt}(f, W)\equiv { 0.f(s_{1})f(s_{2})f(s_{3}) . .. |s_{i}\in W for each i } (87)

The following theorem, which is similar to Theorem 5.1, then holds.

Theorem 5.2 Suppose that f is an optimal code and W is an infifinite
r.e . subset of X. Then

\dim_{A3}F_{opt}(f, W)=\dim_{A4}F_{opt}(f, W)=\dim_{H}F_{opt}(f, W)=1

and \mathcal{L}^{1}(F_{opt}(f, W))=0 . However, neither \dim_{A1}F_{opt}(f, W) nor
\dim_{A2}F_{opt}(f, W) exists.

Proof. The sum

\sum_{s\in W}2^{-H(s)/D}
(88)

diverges to infinity for any D>1 , as we mentioned in Remark 3.2. Thus, us-
ing an argument similar to the case of F_{ha1t} , we see that \dim_{H}F_{opt}(f, W)=

1 .
Note that F_{opt}(f, W)\subset F_{ha1t} . Thus, \mathcal{L}^{1}(F_{opt}(f, W))\leq \mathcal{L}^{1}(F_{ha1t})=0 .
Next, we prove \dim_{A3}F_{opt}(f, W)=1 . Fix a weakly Chaitin l-random

sequence \beta . For each k\in \mathbb{N}^{+} , let r_{k} be any one of the shortest q such that
U(q) is equal to the k bits sequence from (k-1)k/2+1-th bit to k(k+1)/2-

th bit of \beta . Since W is an infinite r.e . set, there exists a one-t0-0ne total
recursive function \xi:Xarrow W . Let y=0.f(\xi(r_{1}))f(\xi(r_{2}))f(\xi(r_{3})) It
is then shown that y\in F_{opt}(f, W) and there is c_{\xi}\in \mathbb{N} such that for any
k\in \mathbb{N}^{+} , |f(\xi(r_{k}))|\leq k+2\log_{2}k+c_{\xi} . Moreover, one can calculate \beta_{m(m+1)/2}

from f(\xi(r_{1})) , f(\xi(r_{2})) , f(\xi(r_{3})) , ., f(\xi(r_{m})) . Thus, making an argument
similar to the case of F_{ha1t} it is shown that y is semi 1-random. Hence,
\dim_{A3}F_{opt}(f, W)=1 , and therefore \dim_{A4}F_{opt}(f, W)=1 .

As was shown in the proof of Theorem 5.1, there is no Martin-L\"of
1-random sequence in F_{ha1t} . Since F_{opt}(f, W)\subset F_{ha1t} , there is no Martin-
L\"of 1-random sequence in F_{opt}(f, W) . Thus, neither \dim_{A1} Fopt(f, W) nor
\dim_{A2}F_{opt}(f, W) exists. \square

For each W\subset X., we define

F_{ha1t}(W)\equiv { 0.q_{1}q_{2}q_{3} |U(q_{i})\in W for each i } ., (88)
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which is a generalization of F_{ha1t} , i.e., F_{ha1t}=F_{ha1t}(X) . Note that

F_{opt}(f, W)\subset\neq F_{ha1t}(W)\subset Fha1t (90)

for any optimal code f and any infinite r.e . set W\subset X . The following
generalization of Theorem 5.1 holds.

Theorem 5.3 Suppose that W is an infifinite r.e . subset of X Then

\dim_{A3}F_{ha1t}(W)=\dim_{A4}F_{ha1t}(W)=\dim_{H}F_{ha1t}(W)=1

and \mathcal{L}^{1}(F_{ha1t}(W))=0 . However, neither \dim_{A1}F_{ha1t}(W) nor
\dim_{A2}F_{ha1t}(W) exists.

Proo/. This follows immediately from Theorem 5.1, Theorem 5.2, and (90).
\square

Remark 5.2 [R1] showed that for any r.e . set L\subset X ,

\underline{\dim}_{A}L^{\infty}=\dim_{H}L^{\infty} (91)

where L^{\infty}= { 0.l_{1}l_{2}l_{3} |l_{i}\in L for each i } (see also [Stl]). Suppose that
f is an optimal code and W is an infinite r.e . subset of X Since \{q\in X|

U(q)\in W\} is an r.e . set, using (91) and \dim_{A3} F_{ha1t}(W)=1 we immediately
see that \dim_{H}F_{ha1t}(W)=1 . On the other hand, since \{f(s)|s\in W\} is not
an r.e . set, it would seem di fRcult to prove \dim_{H}F_{opt}(f, W)=1 directly
from (91) and \dim_{A3}F_{opt}(f, W)=1 . In Theorem 5.2, using the property
of the sum (49), we proved \dim_{H}F_{opt}(f, W)=1 .

A. Appendix

A.I. The proof of Theorem 3.1
In the case where D=1 , Theorem 3.1 results in Theorem Rl in [C3].

The proof of Theorem 3.1 is a straightforward generalization of the proof
of Theorem Rl given in [C3]. We need the following two theorems shown
in [C1].

Theorem 5.1 Let both f:\mathbb{N}arrow X and g:\mathbb{N}arrow \mathbb{N} be total recursive func-
tions. Suppose that

\sum_{n=0}^{\infty}2^{-g(n)}\leq 1 . (92)
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Then there exists a computer C such that

H_{C}(s)= \min g(n)f(n)=s . (93)

Theorem A.2 There is c\in \mathbb{N} such that for any n\in \mathbb{N} and k\in \mathbb{Z} ,

\# \{s\in X||s|=n \ _{H(s)}<k\}<2^{k-H(n)+c} . (94)

Theorem A.I and Theorem A.2 are Theorem 3.2 and Theorem 4.2 (b)
in [C1], respectively.

The proof of Theorem 3.1 is as follows.

Proof of Theorem 3.1. Suppose that D is a computable real number and
D\geq 0 . Let f:\mathbb{N}arrow \mathbb{N} with f(n)=\lfloor Dn\rfloor . Then f is a total recursive
function.
( \neg (weak Chaitin)\Rightarrow \neg Martin-L \"of)

\neg (weak Chaitin) says that for any k\in \mathbb{N} there is n\in \mathbb{N} such that
H(\alpha_{n})<f(|\alpha_{n}|)-k . Let \mathcal{T}=\{(k, s)\in \mathbb{N}\cross X|H(s)<f(|s|)-k-c\}

for the natural number c which is referred to in Theorem A.2. Then \alpha\in

3(\mathcal{T}_{k}) for any k\in \mathbb{N} .
However, it follows from Theorem A.2 that \# \{s\in \mathcal{T}_{k}||s|=n\}\leq

2^{Dn-H(n)-k} for any k , n\in \mathbb{N} . Hence, for any k\in \mathbb{N} we get

\sum_{s\in T_{k}}2^{-D|s|}=\sum_{n=0}^{\infty}\#\{s\in \mathcal{T}_{k}||s|=n\}2^{-Dn}

(95)
\leq 2^{-k}(\sum_{n=0}^{\infty}2^{-H(n)})\leq 2^{-k}\Omega<2^{-k} .

Since f is a total recursive function, \mathcal{T} is an r.e . set. Thus, \mathcal{T} is Martin-L\"of
D-test, and hence \alpha is not Martin-L\"of D-random.
( \neg Martin-L \"of\Rightarrow \neg (weak Chaitin))

Suppose that there exists a Martin-L\"of D-test \mathcal{T} such that \alpha\in 3(\mathcal{T}_{n})

for any n\in \mathbb{N} . Then

\sum_{n=2}^{\infty}\sum_{s\in T_{n^{2}}}2^{-[f(|s|)-n]}\leq\sum_{n=2}^{\infty}(2^{n+1}\sum_{s\in T_{n^{2}}}2^{-D|s|})

(96)

\leq\sum_{n=2}^{\infty}2^{-n^{2}+n+1}\leq 1 .
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Since \mathcal{T} is an r.e . set, there exists a bijective total recursive function g from
\mathbb{N} to the set \{(n, s)|n\geq 2\ s\in \mathcal{T}_{n^{2}}\} . Let n(k) and s(k) be total recursive
functions such that g(k)=(n(k), s(k)) for all k\in \mathbb{N} . Then

\sum_{k=0}^{\infty}2^{-[f(|s(k)|)-n(k)]}=\sum_{n=2s}^{\infty}\sum_{\in T_{n^{2}}}2^{-[f(|s|)-n]}\leq 1 . (97)

Since f is a total recursive function, by Theorem A. I , there is a computer
C such that

H_{C}(s)= \min\{f(|s(k)|)s(k)=s-n(k)\} (98)

Using (3), it follows that

n\geq 2 & s\in \mathcal{T}_{n^{2}}\Rightarrow H(s)\leq D|s|-n+sim(C) . (99)

Thus, since \alpha\in 3(\mathcal{T}_{n^{2}}) for all n\geq 2 , we see that for all n\geq 2 there exists
k\in \mathbb{N} such that

H(\alpha_{k})\leq D|\alpha_{k}|-n+sim(C)=Dk-n+sim(C) , (100)

which implies that \alpha is not weakly Chaitin D-random. \square

A.2. The proof of Theorem 4.3
For each D\geq 0 , we define T_{D}^{1} and T_{D}^{2} by

T_{D}^{1}\equiv\{x\in \mathbb{R}^{N}|x is not Chaitin \frac{D}{N}random\} (101)

T_{D}^{2}\equiv\{x\in \mathbb{R}^{N}|x is not weakly Chaitin \frac{D}{N}- random\} . (102)

Theorem A.3 Let D\geq 0 . If D is a computable real number, then T_{D}^{1}

and T_{D}^{2} are Borel sets and H^{D}(T_{D}^{1})=H^{D}(T_{D}^{2})=0 .

Proof. In the case that D=0, the results are obvious from the fact that
T_{0}^{1}=T_{0}^{2}=\phi . Thus we assume that D>0 .

We first show that \prime H^{D}(T_{D}^{1})=0 . Suppose that \mathcal{T} is Solovay D/N-
test. For any s\in X , we write U(s)= { x\in[0,1)^{N}|s is the prefix of x }.
It follows that \sum_{(i,s)\in T}|U(s)|^{D}<\infty . Also, we let \Gamma(\mathcal{T})=\{x\in[0,1)^{N}|

\forall m\in \mathbb{N}\exists i>mx\in 3(\mathcal{T}_{i})\} . Then, for any \delta , \epsilon>0 , it is shown that
there exists a \delta-cover \{U(s_{k})\}_{k} of \Gamma(\mathcal{T}) such that \sum_{k}|U(s_{k})|^{D}<\epsilon . Hence,
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H_{\delta}^{D}(\Gamma(\mathcal{T}))<\epsilon . It follows that H^{D}(\Gamma(\mathcal{T}))=0 .
On the other hand, Theorem 3.4 implies that T_{D}^{1}\cap[0,1)^{N}=\cup\Gamma(\mathcal{T}) ,

where the union is over all Solovay D/N-test \mathcal{T} Since there are only
countably many Solovay D/N-tests, it follows that H^{D}(T_{D}^{1}\cap[0,1)^{N})=0 .
By noting the fact that Hausdorff outer measures are translation invariant
(i.e., H^{D}(F+z)=H^{D}(F) , where F+z=\{x+z|x\in F\} ), we see that
H^{D}(T_{D}^{1})=0 .

From Theorem 3.4 it follows that

T_{D}^{1}=\cup\cap\cup\{XTn=0i=n\infty\infty\in \mathbb{R}^{N}|code_{N}(x)\in 3(\mathcal{T}_{i})\} , (103)

where the leftmost union is over all Solovay D/N-test \mathcal{T} Thus, T_{D}^{1} is a
Borel set.

Similarly, using Theorem 3.1, it is shown that H^{D}(T_{D}^{2})=0 and T_{D}^{2} is
a Borel set. \square

In the case where N=1 and D=1 , H^{D}(T_{D}^{1})=H^{D}(T_{D}^{2})=0 states
the well-known fact that the set of all non-random real numbers has a zer0-

Lebesgue measure.
For each D\geq 0 , we define T_{D}^{3} by

T_{D}^{3}\equiv\{x\in \mathbb{R}^{N}|x is not semi \frac{D}{N}- random\} (104)

Corollary A.4 (Staiger [Stl], Cai and Hartmanis [CH]) If D \geq 0 then
T_{D}^{3} is a Borel set and H^{D}(T_{D}^{3})=0 .

Proof. In the case that D=0, the results are obvious from the fact that
T_{0}^{3}=\phi . Thus we assume that D>0 . Let D_{1} , D_{2} , be a sequence of
computable real numbers such that \lim_{narrow\infty}D_{n}=D and for any n , D_{n}<

D . Using the equivalency between (a) and (c) in Proposition 3.7, we see
that T_{D}^{3}= \bigcup_{n=1}^{\infty}T_{D_{n}}^{1} . Hence, by Theorem A.3, T_{D}^{3} is a Borel set. Since \mathcal{H}^{D}

is non-increasing with D , it follows that 74^{D}(T_{D}^{3})=0 . \square

Corollary A.5 (Ryabko [R1]) \dim_{H} F \leq\underline{\dim}_{A}F , and for each k =

1,2,3,4, if \dim_{Ak} F exists then \dim_{H} F \leq\dim_{Ak}Fr

Proof. Let D=\dim_{H}F . Since the results are trivial for D=0, we assume
that D>0 . For any \epsilon>0 , we choose a computable real number d such that
D-\epsilon\leq d<D . From Theorem A.3 it follows that H^{d}(F\backslash T_{d}^{1})=H^{d}(F)>
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0. Hence, F\backslash T_{d}^{1}\neq\phi and therefore there is x\in F such that x is Chaitin
d/N-random. Thus, we see that D-\epsilon\leq\underline{\dim}_{A}F for any \epsilon>0 , from which
the results are easily produced. \square

Definition A.I (r.e . condition) Suppose that F is a subset of \mathbb{R}^{N} . We
first define

F mod 1\equiv\{ ( x^{1} mod 1, x^{2} mod 1, . ., x^{N} mod 1) |

(106)
(x^{1}, x^{2}, ., x^{N})\in F\} .

For any s\in X , we define I(s)\equiv[0.s, 0.s+2^{-|s|}) and \hat{I}(s)\equiv[0.s-2^{-|s|} ,
0.s+2^{-|s|}+2^{-|s|}) mod 1. We also generalize I(s) and \hat{I}(s) to intervals on
\mathbb{R}^{N} by the following manner.

I(s_{1}, s_{2}, . ., s_{N})\equiv I(s_{1})\cross I(s_{2})\cross \cross I(s_{N}) , (106)

\hat{I}(s_{1}, s_{2}, ., s_{N})\equiv\hat{I}(s_{1})\cross\hat{I}(s_{2})\cross \cross\hat{I}(s_{N}) . (107)

Finally, we define

\mathfrak{M}(F)\equiv\{(s_{1}, . , s_{N})||s_{1}|= =|s_{N}| &
(108)

I(s_{1}, ., s_{N})\cap (F mod 1 ) \neq\phi\}

and

\hat{\mathfrak{M}}(F)\equiv\{(s_{1}, \ldots, s_{N})||s_{1}|= . =|s_{N}| &
(108)

\hat{I}(s_{1}, ., s_{N})\cap (F mod 1 ) \neq\phi\} .

We say that F satisfies the r.e . condition if there exists an r.e . set L
such that \mathfrak{M}(F)\subset L\subset\hat{\mathfrak{M}}(F) .

The meaning of the r.e . condition is as follows. First we note that F mod
1\subset[0,1)^{N} . For all n\in \mathbb{N} , divide [0, 1)^{N} into 2^{Nn} pieces of N dimensional
subintervals in the form I(s_{1}, s_{2}, . ., s_{N}) with |s_{1}|=|s_{2}|= =|s_{N}|=

n . Then, intuitively, the r.e . condition is that all of the subintervals I ’s
intersecting F mod 1 and some of the subintervals neighboring to these I ’s
form an r.e . set.

Let F be a bounded subset of \mathbb{R}^{N} , and let N_{\delta}(F) be the smallest number
of closed balls of radius \delta that cover Fr The upper box-counting dimension
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of F is defined as

\overline{\dim}_{B}F\equiv\varlimsup\underline{\log N_{\delta}(F)} . (112)
\deltaarrow 0 - log \delta

Theorem A.6 (Kolmogorov) If F is a bounded subset of \mathbb{R}^{N} and salis-
fifies the r.e . condition, then x is (\overline{\dim}_{B}F)/N -compressible for any x\in F ,
i.e. ,

\forall x\in F \forall n\in \mathbb{N} H(x_{n}) \leq\frac{\overline{\dim}_{B}F}{N}n+o(n) . (112)

Proof. The essential part of the proof is due to Kolmogorov.
For each m\in \mathbb{N} , we consider the collection of cubes in the 2^{-m} -

coordinate mesh of \mathbb{R}_{:}^{N} i.e., the collection of sets of the form

[l_{1}2^{-m} , (l_{1}+1)2^{-m})\cross \cross[l_{N}2^{-m}, (l_{N}+1)2^{-m}) , (112)

where l_{1} , ., l_{N} are integers. Let M_{m}(F) be the number of 2^{-m} mesh cubes
that intersect F\tau It is then shown that

\overline{\dim}_{B}F\equiv\varlimsup_{marrow\infty}\frac{\log_{2}M_{m}(F)}{m} (113)

(see e.g. , [F2]).
Suppose that x= (x^{1}, . . ’ x^{N}) is any point in F . Since the r.e . condition

holds for F, there exists an r.e . set L such that \mathfrak{M}(F)\subset L\subset\hat{\mathfrak{M}}(F) . We
consider the following procedure in order to calculate x_{n} .

Given n, one enumerates all elements (s_{1}, ., s_{N}) of L such that |s_{1}|=

\lceil n/N\rceil . There then appears the element (t_{1}, \ldots, t_{N}) in the enumeration
with the property that

(x^{1} mod 1, ., x^{N} mod 1 ) \in I(t_{1}, . , t_{N}) . (114)

Assume this (t_{1}, . ., t_{N}) is the k_{n}-th element in the enumeration order. If
one knows n and k_{n} , then one can calculate the first \lceil n/N\rceil bits of the
base-two expansion of each x^{i} mod 1 with infinitely many zeros and hence
one can calculate x_{n} further.

Thus, since k_{n}\leq 3^{N}M_{\lceil n/N\rceil}(F) , we see that H(x_{n})\leq\log_{2}M_{\lceil n/N\rceil}(F)+

o(n) . Using (113), the result is produced. \square

Theorem A.6 immediately gives the following corollary.
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Corollary A.7 Suppose that F is a bounded subset of \mathbb{R}^{N} and satisfifies
the r.e . condition. Then \overline{\dim}_{A}F\leq\overline{\dim}_{B}F . Moreover, for each k=1,2,3,4 ,
if \dim_{Ak}F exists then \dim_{Ak}F\leq\overline{\dim}_{B}Ft

Theorem A.8 Let F be a bounded subset of \mathbb{R}^{N} Suppose that F satisfifies
the r.e . condition and \dim_{H}F=\overline{\dim}_{B}F . Let D=\dim_{H}F ‘

(a) \dim_{A4}F exists and \dim_{A4}F=\dim_{H}F

(b) If \gamma\{^{D}(F)>0 , then \dim_{A3}F exists and \dim_{A3}F=\dim_{H}F

(c) If \prime H^{D}(F)>0 and \dim_{H}F is a computable real number, then both
\dim_{A1}F and \dim_{A2}F exist and \dim_{A1}F=\dim_{A2}F=\dim_{H}F

Proof. It follows from Theorem A.6 that x is (\dim_{H}F)/N-compressible
for any x\in F . Using Corollary A.5, we see that \dim_{A4}F=\dim_{H}F\tau If
H^{D}(F)>0 then, from Corollary A.4, H^{D}(F\backslash T_{D}^{3})=H^{D}(F)>0 . Hence,
F\backslash T_{D}^{3}\neq\phi , therefore there is x\in F which is semi D/N-random. Thus,
we see that \dim_{A3}F=\dim_{H}F . Moreover, if \dim_{H}F is a computable real
number, then using Theorem A.3 in a similar manner we see that \dim_{A1}F=

\dim_{A2}F=\dim_{H}FI \square

Theorem A.9 Let S_{1} , ., S_{m} be contractions on \mathbb{R}^{N} Suppose that each
S_{i} is an affine transformation, i.e. , for each i , S_{i}(x)=M_{i}x+v_{i} where M_{i}

is an N\cross N matrix and v_{i} is a vector in \mathbb{R}^{N} If all matrix elements of M_{i}

and all components of v_{i} are computable real numbers for each i , then the
r.e . condition holds for the invariant set of S_{1} , ., S_{m} .

Proof. Let F be the invariant set of S_{1} , ., S_{m} . Since S_{1} , \ldots , S_{m} are
contractions on \mathbb{R}^{N} , there exists l\in \mathbb{N} such that S_{i}(E)\subset E for each i
where E=\{x\in \mathbb{R}^{N}||x|\leq l/2\} . We write S_{i_{1},\ldots,i_{k}}=S_{i_{1}}o oS_{i_{k}} . Using
Theorem 4.2, for each k it is shown that

F\subset\cup S_{i_{1}}i_{1},\ldots,i_{k} ,... , i_{k}(E) (115)

and F\cap S_{i_{1},\ldots,i_{k}}(E)\neq\phi for any i_{1} , . ., i_{k} . Let c_{1} , ., c_{m} be the ratios of
S_{1} , . ., S_{m} respectively. We choose r\in \mathbb{Q} such that c_{i}<r<1 for all i and
choose x_{0}\in E\cap \mathbb{Q}^{N} such as (0, 0, \ldots, 0) . Then |S_{i_{1},\ldots,i_{k}}(E)|\leq lr^{k} for any
k and i_{1} , \ldots , i_{k} . Since all matrix elements of M_{i} and all components of v_{i}

are computable real numbers for all i , it follows that given k , i_{1} , \ldots , i_{k} , and
n\in \mathbb{N} one can find an f(n;k;i_{1}, . ., i_{k})\in \mathbb{Q}^{N} with the property that
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|f(n;k;i_{1}, ., ik)-S_{i_{1},\ldots,i_{k}}(x_{0})| \leq\frac{1}{n} . (116)

It is then shown that \mathfrak{M}(F)\subset L\subset\hat{\mathfrak{M}}(F) holds for the set L accepted by
the following procedure, and hence F satisfies the r.e . condition.

Given (s_{1}, . ., s_{N})\in X^{N} , one checks whether or not |s_{1}|= . =|s_{N}|

holds true. If this does not hold true, then one does not accept (s_{1}, . ., s_{N}) .
Otherwise when this does hold true, one chooses k such that lr^{k}\leq\delta/4 and
chooses n such that 1/n\leq\delta/4 , where \delta=2^{-|s_{1}|} . Let

A^{j}(i_{1}, . ’ i_{k})

(116)
=[f^{j} (n;k;i_{1}, ., i_{k})-\delta/2, f^{j}(n;k;i_{1}, ., i_{k})+\delta/2]

where f^{j} (n;k;i_{1}, . ., i_{k}) is the j-th component of f(n;k;i_{1}, ., i_{k}) , and let

A(i_{1}, . ., i_{k})=A^{1}(i_{1}, ., i_{k})\cross \cross A^{N}(i_{1}, ., i_{k}) . (118)

It is easy to see that

F\subset\cup A(i_{1}i_{1},\ldots,i_{k} ’.
. ,

^{i_{k})}
(119)

and F\cap A(i_{1}, ., i_{k})\neq\phi for any i_{1} , ., i_{k} . One then accepts (s_{1}, ., s_{N}) if
and only if one can find a (i_{1}, . , i_{k}) such that I(s_{1}, . ., s_{N})\cap(A(i_{1}, \ldots, i_{k})

mod 1 ) \neq\phi . \square

We refer to the following familiar theorem on a self-similar set (e.g.,
Theorem 9.3 in [F2] ) .

Theorem A.1O Suppose that the open set condition (70) holds for sim-
ilar^{*}ities S_{1} , . ., S_{m} on \mathbb{R}^{N} with ratios c_{1} , . ., c_{m} respectively. If F is the
invariant set of S_{1} , \ldots , S_{m} , then \dim_{H}F=\overline{\dim}_{B}F=D and 0<H^{D}(F)<
\infty , where D is given by

\sum_{i=1}^{m}c_{i}^{D}=1 . (120)

The proof of Theorem 4.3 is as follows.

Proof of Theorem 4.3. Suppose that the open set condition holds for sim-
ilarities S_{1} , ., S_{m} on \mathbb{R}^{N} with ratios c_{1} , ., c_{m} respectively. Let F be the
invariant set of S_{1} , \ldots , S_{m} . From Theorem A.1O, it is shown that \dim_{H}F=
\overline{\dim}_{B}F=D and 0<H^{D}(F)<\infty , where D satisfies (71). Furthermore,
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suppose that for each i there exist N\cross N matrix M_{i} and v_{i}\in \mathbb{R}^{N} such
that all matrix elements of M_{i} and all components of v_{i} are computable
real numbers and S_{i}(x)=M_{i}x+V{. Using Theorem A.9, we see that F
satisfies the r.e . condition. Since each c_{i} is a computable real number, D
satisfying (71) is also a computable real number. It follows from Theorem
A.8 that \dim_{A1}F exists and \dim_{A1}F=\dim_{H} F. \square

Corollary A.11 Let P=\{p_{1},p_{2}, \ldots,p_{m}\} be a fifinite prefifix-free subset of
X , and let F be the set of infifinite binary sequences that consist of elements
of P, i.e. ,

F= { q_{1}q_{2}q_{3} . . \in X^{\infty}|q_{i}\in P for each i } (121)

Then

\forall\alpha\in F \forall n\in \mathbb{N} H(\alpha_{n})\leq Dn+o(n) , (122)

\exists\alpha\in F
\lim_{narrow\infty}H(\alpha_{n})-Dn=\infty , (123)

where D is given by

\sum_{i=1}^{m}2^{-D|p_{i}|}=1 . (124)

Proof. For each i , let S_{i} be the similarity on \mathbb{R} with S_{i}(x)=2^{-|p_{i}|}x+0.p_{i} .
Since P is a prefix-free set, it is shown that S_{1} , \ldots , S_{m} satisfy the open set
condition. Note that all of 2^{-|p_{i}|} and 0.p_{i} are computable real numbers.
Let R(F)=\{0.\alpha|\alpha\in F\} . Then R(F) is the invariant set of S_{1} , ., S_{m} .
From Theorem 4.3, we see that \dim_{A1}R(F)=D , and hence the results are
produced. \square

Proposition A.12 Let D be a real number with 0\leq D\leq N .
(a) \dim_{H}T_{D}^{3}=D .
(b) If D is a computable real number then \dim_{H}T_{D}^{1}=\dim_{H}T_{D}^{2}=D .

Proof. Since the results are trivial for D=0, we assume that D>0 .
(a) For any \epsilon>0 , we choose a computable real number d such

that D-\epsilon\leq d<D . Noting Theorem 4.3, we can construct similarities
S_{1} , ., S_{m} on \mathbb{R}^{N} such that \dim_{A3}F=\dim_{H}F=d holds for the invariant
set F of S_{1} , . . , S_{m} . Hence, F\subset T_{D}^{3} and therefore D-\epsilon\leq\dim_{H}T_{D}^{3} . Thus,
D\leq\dim_{H}T_{D}^{3} and using Corollary A.4 the result is produced.
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(b) From the fact that T_{D}^{3}\subset T_{D}^{2}\subset T_{D}^{1} , it follows that D\leq\dim_{H}T_{D}^{2}\leq

\dim_{H}T_{D}^{1} . Since D is a computable real number, using Theorem A.3 we see
that \dim_{H}T_{D}^{1}\leq D . Thus, the result is produced. \square

Note that Proposition A.12 (a) was derived by [R1].
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