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A characterization of dense vector fields
in G'(M) on 3-manifolds
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Abstract. Recently Morales-Pacfico-Pujals introduced the new concept of singular hy-
perbolicity and showed that C! robust transitive sets of 3-flows are singular hyperbolic
sets ([8], [9]). Based on their papers, we shall characterize a dense subset of Gl (M) with
dim M = 3.
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1. Introduction

The purpose of this paper is to study the space of vector fields known
as G'(M). Let M be a compact smooth manifold without boundary. We
denote by x'(M) the set of C! vector fields on M, endowed with the C1
topology and by X; (t € R) the C' flow on M generated by X € x!(M).
Q(X), per(X), Sing(X) are the sets of nonwandering, periodic and singular
points of X respectively. Recall that a set A C M is called a hyperbolic set
of X if compact, invariant and there exists a continuous splitting TM/A =
E® ® EX @ E*, invariant under the derivative of flow Xi, DX;, where E*®
and E™ are exponentially contracted and expanded respectively by DX;
and EX is tangent to X. We say that X ¢ x! (M) satisfies Axiom A if
Q(X) is a hyperbolic set of X and Q(X) = Sing(X) U per(X) (We denote
by A the closure of A in M). Let G1(M) be the interior of the set of vector
fields in x!'(M) whose critical elements (singularities and periodic orbits)
are hyperbolic.

In [3], Hayashi showed that diffeomorphisms in F!(M) satisfy Axiom A
where 7!(M) is the diffeomorphism version of G!(M) and this naturally give
rise to the following question: Do vector fields in G 1(M ) satisfy Axiom A?
Unfortunately this does not hold generally and the geometric Lorenz at-
tractor in is well-known as one of the counter examples. Vector field
generating this attractor is an element of G}(M) but has singularities accu-
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mulated by the periodic orbits, hence its nonwandering set cannot be the
hyperbolic set. So we hope for the other characterization of G!(M), or at
least dense subset of G!(M), replacing Axiom A but until now no such a
characterization exists for any dimension > 3.

Recently Morales-Pacifico-Pujals introduced the notion of singular hy-
perbolic set by generalizing both the geometric Lorenz attactor and the
concept of hyperbolic set, and showed that C! robust transitive sets of 3-
flows are singular hyperbolic sets ([8], [9]). Based on their papers, we shall
characterize a dense subset of G} (M) on 3-manifold in this paper. Through-
out the rest of this paper, we assume dim M = 3.

Before stating our theorem, we need the following definiton.

Definition 1.1 ([8], Definition 1) A compact invariant set A is a singular
hyperbolic set of X € x!(M) if it has singularities, all of them hyperbolic
and there is a continuous splitting TM/A = E* @ E® invariant under DX,
such that E* contains the direction of the flow X;, F° is one-dimensional
and there exist two numbers A > 0 and C' > 0 satisfying

IDXe/ES| - |DX -t/ B, || < Ce
IDX:/E3|| < Ce™*
. |det(DX;/ES)| > CeM
for all £ > 0 and x € A. Here det(A) means the determinant of A.

Singular hyperbolic set is as sort of “partially” hyperbolic set which
has volume expanding central direction. Here partially hyperbolicity im-
plies that TM/A can be decomposed into E* @ E, E* being a uniformly
contracting one-dimensional bundle that dominates E“. Definiton 1.1 re-
quires the additional condition that E* is volume expanding. It is easy to
see that if singular hyperbolic set A has a compact invariant subset which
is isolated from singularities in A, then this subset is hyperbolic. Hence we
see that singular hyperbolicity is a generalized concept of hyperbolicity for
3-flows which can handle the invariant sets with singularities.

Now we state our result.

Theorem There exists a dense subset U C G1(M) such that for any X €
U, replacing X by —X if necessary, X satisfies Aziom A or ezhibits a
singular hyperbolic set.
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By above [Theoreml, any vector field in G!(M) can be approximated
by the vector fields which satisfy Axiom A or have the structure like the
geometric Lorenz attractor.

2. Some Preliminaries

In this section we will state several results needed for the proof of The-
orem. Let S be any vector field in G!(M) and ¢ be any singularity of S.
Since o is hyperbolic, there exist neighborhoods N (S) c G}(M), U, c M
of S and o respectively and a continuous function p : N'(S) — U, which to
each vector field X € N(S) associates the unique singularity of X in U,.
We call p(X) the continuaton of ¢ for X. By p and compactness of M, S
has finite number of singularities, denoted by o1(S), ..., 5;(S) respectively,
and next lemma is immediate.

Lemma 2.1 For any S € G' (M), there ezists a neighborhood Uy = Uy (S)
of S in GY(M) such that singularities of each X € Uy are only o1(X),...,
01(X), which are the continuations of 01(S),...,01(S) for X respectively.

It is well-known that each element of G!(M) has finitely many attracting
and repelling periodic orbits ([10}). Denote the number of these periodic
orbits of S € G}(M) by a(S) and r(S) respectively.

Lemma 2.2 Any S € GY(M) can be approzimated by neighborhood U; =
U1(S) in GL(M) such that a(X) = a(Y), r(X) =r(Y) for all X,Y € U;.

Proof. By contradiction, suppose that there exists a vector field Sy and
its neighborhood By C G!(M) such that each X € By is approximated by
Y satisfying a(X) + r(X) < a(Y) + r(Y). Let B, = {X € By : a(X) +
7(X)>n} (n > 1) and then B, is open and dense in By. Since By is a Baire
space, we can take Xg € (), Bn(C Bp). But clearly a(Xp) + r(Xo) = oo,
i.e., X¢ has infinite number of attracting or repelling periodic orbits. This
is a contradiction to [10]. O

We take Uy C Up in the following. Next we will characterize singularities
of vector fields in U; accumulated by the periodic orbits. To do this, we
need the following definition.

Definition 2.3 ([8], Definition 3) Let X € x!(M). We say that ¢ €
Sing(X) is Lorenz-like if the eigenvalues {\1, A2, A3} of the derivative D, X
are real and satisfy
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Ay < A3 <0< —=)A3 < Ay

In the following we denote by per;(X) and per7(X) the sets of saddle peri-
odic points of X and its closure respectively. We also denote by ind o the
index of o, i.e., the dimension of stable subspace of D,X.

Proposition 2.4 Let X € U; and ox € Sing(X) N per{(X) be given.
Assume that indox = 2. Then ox is Lorenz-like and satisfies

W*(ox) Npery(X) = {ox},

where W (ax) is the stable manifold associated to the strong contracting
eigenvalue Ao.

Proof. [Proposition 2.4 is obtained by using the methods in the proof of [9,
Lemmas 4.1 and 4.2] and the following lemma.

Lemma 2.5 ([4], the C! Connecting Lemma) Let X € x'(M) and p, ¢
be two points which are not periodic. Assume that for all neighborhood U
and V' of p and q respectively, there is x € U such that Xi(z) € V for some
t > 0. Then Ve > 0, 3L > 0 such that for any 6 > 0, there is Y Cle-close
to X satisfying

Y =X on M- Bs(Xjrp)UX-10(q)
q is on the forward Y -orbit of p.

Here X[, p)(x) denotes the segment of orbit {Xi(x) | a <t < b} and Bs(A)
is 0-neighborhood of A in M.

By [Lemma 2.5, we can perturb X to Y so that Y € U; and Y exhibits
a homoclinic loop associated to oy (continuation of ox for Y). We can
further perturb Y to obtain C*° vector field Z € U; such that Z still has a
homoclinic loop associated to .

Assume that there exists X € U; with ox € Sing(X) N per;(X) having
a complex eigenvalue. Then oz also has a complex eigenvalue. The argu-
ment of [14, p.247] shows that we can perturb Z to Z;, arbitrarily C! close
to Z, to generate a new attracting periodic orbit. This contradicts Z € U,
proving that the eigenvalues of ox are real.

We can arrange the eigenvalues A1, Ao, A3 of D, X such that

A2 <Az < Ay

Then X € Y; implies that A3 < 0 and A\; > 0. So if ox is not Lorenz-like, we
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have that |Aaf, |A3| > A;1. Since the eigenvalues of o satisfy this inequality,
[14, Theorem 3.2.12] enable us to perturb Z to generate a new attracting
periodic orbit. This contradicts Z € U;, proving ox is Lorenz-like. For the
rest of Propotition, we can perturb X as in the proof of [9, Lemma 4.2]
to generate an attracting periodic orbit again, which contradicts X € U;.

O

3. Proof of Theorem

In this section we complete the proof of [Theoreml For this let us state
two key results. In [6], it was shown that on 2-manifolds compact invariant
sets of diffeomorphisms in F!(M) which have dense periodic orbits are
hyperbolic. By applying the same method, we can immediately obtain the
corresponding result for 3-flows as in the following (see also [12]).

Proposition 3.1 Let X € GY(M) and A is a compact invariant set of X
which has dense periodic orbits. Then if ANSing(X) = ¢, A is a hyperbolic
set of X.

If AN Sing(X) # ¢, A cannot be a hyperbolic set of X. However the
following result holds in parallel with above Proposition.

Proposition 3.2 Let X € G1(M) and A is a compact invariant set of X
which has dense periodic orbits. Suppose that X has a neighborhood Uy
such that a(Y1) = a(Y2) and r(Y1) = r(Ya) for all Y1,Ys € Ux. Then if
AN Sing(X) # ¢ and every singularity in A is Lorenz-like, A is a singular
hyperbolic set of X .

[Proposition 3.2 is obtained from the methods in the proof of [9, Theo-
rem C]. Let Py be the set of periodic orbits contained in A. Then we have
the hyperbolic splitting TM/Py = E° @ EX @ E*, where E° is the stable
bundle, E* is the unstable bundle and EX is tangent to the flow direction.
We set E* = EX @ E* and define over P, the splitting

TM/Py = E°® E*. (1)

Suppose that we can extend this splitting continuously to the closure Py =
A, denoted by TM/A = Es®E, and F* dominates E. Then we can show
that E* and E is actually uniformly contracting and volume expanding
bundle respectively. In fact if E* (resp. E°*) is not contracting (resp. volume
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expanding), we can perturb X to generate a new repelling (resp. attracting)
periodic orbit by [9, §5.3 and 5.4], the argument similar to [6, pp.521-524].
But this contradicts X € U;. Thus we see that A is a singular hyperbolic
set of X.

The proof of the continuous extension of (1) to A and the domination
property of (ES, E’w) is rather technical, but the basic idea follow from [6]
substantially. In fact it is primarily proved that (E°, E°*) has the domi-
nation property, then by this property and [7, Proposition 1.3}, (1) can be
extended continuously to A. To prove the domination property of (E*, E*),
roughly speaking, it is enough to show that the angle between E* and E*
is uniformly bounded away from 0 over P,, which corresponds to the result
of [6, Lemma II.9].

The hypothesis of robust transitivity is necessary to prove these facts
for two reasons: to utilize the property of the periodic orbits of [9, Theo-
rem 3.11] and prohibit the generation of new attracting or repelling periodic
orbit by small C! perturbation. But our situation that X € U satisfies these
properties, hence we can directly use the proof of [9, Theorem C] to show
[Proposition 3.2

To complete the proof of [Theorem| we shall show that there exists a
vector field in U of which satisfies Axiom A or has a compact
invariant subset satisfying the condition of Proposition 3.2. At first we state
a well-known generic property without proof.

Lemma 3.3 There exists a residual subset R of x* (M) such that, for any
X € R, if K is a compact subset in M satisfying per{(X) N K = ¢, then
per(Y)N K = ¢ for all Y sufficiently C* close to X.

Since we now take U; C Uy, each X € U; has | singularities,
01(X),...,01(X). By using and arranging the subscript of these
singularities appropriately, we obtain the following lemma.

Lemma 3.4 There exist a neighborhood Us C Uy and number k with 0 <
k <1 such that

1) X €Uy = 01(X),...,0k(X) are not accumulated by the periodic orbits
of X.

2) X e b NR = ok41(X),...,01(X) are accumulated by the periodic
orbits of X.
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Proof. First assume that there exist X; € Uy N R and 01(X1) € Sing(X3)
such that per;(X1)N{o1(X1)} = ¢, otherwise the lemma is proved by setting
U, = U; and k = 0. Then by Lemma 3.3, there exists a neighborhood V;
of X1 in U; such that per;(Y)N{o1(Y)} = ¢ for any Y € V;. Next assume
that there exist Xo € V1 N'R and 02(X2) € Sing(X2) such that per;(Xs) N
{o2(X2)} = ¢, otherwise the lemma is proved by setting Uy = V; and k = 1.
Again by Lemma 3.3, there exists a neighborhood V, of X5 in V; such that
per1(Y)N{o2(Y)} = ¢ for any Y € V,. Since the number of singularities of
vector fields in U is [, we can prove the lemma by continuing this process
at most [ times. O

Remark After continuing this process, suppose that we have reached the
situation such that Sing(Xo)N per;(Xo) = ¢ for some X € U;NR. Then by
[Proposition 3.1, we have that per;(Xo) (and therefore Sing(Xy) U per(Xp))
is a hyperbolic set of Xo. Moreover by the general density theorem ([11]),
we may assume that Q(Xo) = Sing(Xo) U per(Xp). This implies X satisfies
Axiom A, proving our [Theoreml So we will assume k < [ in the following.

Lemma 3.5 Let X € Uy NR. Then for any ox € Sing(X) N pery(X)
and any 0 > 0, there exists a neighborhood W of X in Uy such that each
Y € W satisfies

W*(oy) C Bs(peri(X)) or W*(oy) C Bs(peri(X))

according to indox = 2 or 1 respectively. Here oy is the continuation of
ox forY.

Proof. 'This Lemma corresponds to [9, Corollary 3.5], for which the prop-
erty of robust transitivity is essential. The proof here is, however, the
consegence from Lemma 3.3.

Suppose that on the contrary, there exist ox € Sing(X )N per;(X), do >
0 and Yj arbitrarily C* close to X such that the lemma is false. Replacing
X by —X if necessary, we may assume ind o x=2, i.e., ox is Lorenz-like. So
we assume that

W*(oy,) ¢ Bs, (Peri(X)).

Then there exists a neighborhood V(Yy) of Yy in Uy such that for each Z €
V(Yy), oz is Lorenz-like and

W*(oz) ¢ Bs, (Peri(X)). (2)
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Shrinking V(Yp) if necessary, we may also assume that
per1(Z) C Bs, (per{(X)) (3)

from [Lemma 3.3. Now we carry out the following sequence of pertubations
of Yp.

1. By and (2), we can perturb Yy to Y7, arbitrarily C? close to
Yy, so that oy, € Sing(Y1) Nper;(Y1) and W*(oy;) € Bs, (peri(X)).
2. Then by using Lemma 2.5, we can perturb Y; to Y, arbitrarily C*

close to Y;, so that Y2 exhibits a homoclinic loop I' associated to oy,
and still W¥(oy,) ¢ Bs,(per;(X)).

3. Since W¥(oy,) ¢ Bs,(per1(X)), there are orbits which are through
points arbitrarily near T and leave B, (per; (X )) along one branch of

W*(oy,). So we can perturb Y2 to Y3, arbitrarily C! close to Yz, so
that both branches of W¥(oy,) leave Bj, (per;(X)).

4. Again by we can perturb Y3 to Yy, arbitrarily C* close to
Y3, so that oy, € Sing(Ys) N per;(Ys) and both branches of W*(oy,)
still leave Bs,(pery(X)). Clearly we have per;(Yy) — B, (Per (X)) #
o.

As we can perturb Yy to Y; arbitrarily C! close to Yp, this is a contradiction
to (3). Thus we have completed the proof of Lemma 3.5 O

Lemma 3.6 Let X € UyNR. Then we have the following:
Let 01, o9 be any two singularities of X. If there are points p, €
per1(X) and numbers t, > 0 such that lim p, = o1 and lim X, (pn) =
n—o0

. n—oo
o9, then ind o1 = ind o9.

Proof. Suppose that X has two singularities o1(X), 02(X) such that the
lemma is false. Let indo(X) = 1 and indo2(X) = 2 respectively. By
Proposition 2.4, we have W**(0,(X)) ¢ V for a small neighborhood V' of
per7(X). Then using the argument in the proof of [9, Lemma 4.3], we can
perturb X to Y, arbitrarily C! close to X so that W* (JQ(Y)) ¢ V. This
contradicts Lemma 3.5/ O

Now we conclude the proof of Theoreml Let S be any vector field in
GY(M). Then S can be C! approximated by X € Up NR. By
and Remark after it, X has singularities accumulated by the periodic orbits,
so we can take a sequence of saddle periodic orbits of X, {yn}n>1, such that
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U2, Yo N Sing(X) # ¢. Set K = [Jp—q ¥n- Since all the singularities in
K have the same index by [Lemma 3.6, replacing X by —X if necessary,
we may assume that those index is two. So given o € K N Sing(X), o is

Lorenz-like by [Proposition 2.4. Then Propositon 3.2 implies that K is a
singular hyperbolic set of X. We have completed the proof of [Theorem.
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