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A characterization of dense vector fields
in \mathcal{G}^{1}(M) on 3-manifolds
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Abstract. Recently Morales-PacficO-Pujals introduced the new concept of singular hy-
perbolicity and showed that C^{1} robust transitive sets of 3-flows are singular hyperbolic
sets ([8], [9]). Based on their papers, we shall characterize a dense subset of \mathcal{G}^{1}(M) with
dim M=3.
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1. Introduction

The purpose of this paper is to study the space of vector fields known
as \mathcal{G}^{1}(M) . Let M be a compact smooth manifold without boundary. We
denote by \chi^{1}(M) the set of C^{1} vector fields on M, endowed with the C^{1}

topology and by X_{t} (t \in \mathbb{R}) the C^{1} flow on M generated by X\in\chi^{1}(M) .
\Omega(X) , per(X), Sing(X) are the sets of nonwandering, periodic and singular
points of X respectively. Recall that a set \Lambda\subset M is called a hyperbolic set
of X if compact, invariant and there exists a continuous splitting TM/\Lambda=
E^{s}\oplus E^{X}\oplus E^{u} , invariant under the derivative of flow X_{t} , DX_{t} , where E^{s}

and E^{u} are exponentially contracted and expanded respectively by DX_{t}

and E^{X} is tangent to X . We say that X\in\chi^{1}(M) satisfies Axiom A if
\Omega(X) is a hyperbolic \grave{o}^{\gamma}et of X and \Omega(X)=\overline{Sing(X)\cup per(X)} (We denote
by \overline{A} the closure of A in M). Let \mathcal{G}^{1}(M) be the interior of the set of vector
fields in \chi^{1}(M) whose critical elements (singularities and periodic orbits)
are hyperbolic.

In [3], Hayashi showed that diffeomorphisms in \mathcal{F}^{1}(M) satisfy Axiom A
where \mathcal{F}^{1}(M) is the diffeomorphism version of \mathcal{G}^{1}(M) and this naturally give
rise to the following question: Do vector fields in \mathcal{G}^{1}(M) satisfy Axiom A?
Unfortunately this does not hold generally and the geometric Lorenz at-
tractor in [2] is well-known as one of the counter examples. Vector field
generating this attractor is an element of \mathcal{G}^{1}(M) but has singularities accu-
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mulated by the periodic orbits, hence its nonwandering set cannot be the
hyperbolic set. So we hope for the other characterization of \mathcal{G}^{1}(M) , or at
least dense subset of \mathcal{G}^{1}(M) , replacing Axiom A but until now no such a
characterization exists for any dimension \geq 3 .

Recently Morales-PacificO-Pujals introduced the notion of singular hy-
perbolic set by generalizing both the geometric Lorenz attactor and the
concept of hyperbolic set, and showed that C^{1} robust transitive sets of 3-
fiows are singular hyperbolic sets ([8], [9]). Based on their papers, we shall
characterize a dense subset of \mathcal{G}^{1}(M) on 3-manifold in this paper. Through-
out the rest of this paper, we assume dim M=3.

Before stating our theorem, we need the following definiton.

Definition 1.1 ([8], Definition 1) A compact invariant set \Lambda is a singular
hyperbolic set of X\in\chi^{1}(M) if it has singularities, all of them hyperbolic
and there is a continuous splitting TM/A=E^{s}\oplus E^{m} invariant under DX_{t}

such that E^{m} contains the direction of the flow X_{t} , E^{s} is one-dimensional
and there exist two numbers \lambda>0 and C>0 satisfying

||DX_{t}/E_{x}^{s}|| ||DX_{-t}/E_{X_{t}(x)}^{cu}||\leq Ce^{-\lambda t}

||DX_{t}/E_{x}^{s}||\leq Ce^{-\lambda t}

|\det(DX_{t}/E_{x}^{cu})|\geq Ce^{\lambda t}

for all t\geq 0 and x\in\Lambda . Here \det(A) means the determinant of A .

Singular hyperbolic set is as sort of “partially” hyperbolic set which
has volume expanding central direction. Here partially hyperbolicity im-
plies that TM/\Lambda can be decomposed into E^{s}\oplus E^{cu} , E^{s} being a uniformly
contracting one-dimensional bundle that dominates E^{cu} . Definiton 1.1 re-
quires the additional condition that E^{cu} is volume expanding. It is easy to
see that if singular hyperbolic set \Lambda has a compact invariant subset which
is isolated from singularities in \Lambda , then this subset is hyperbolic. Hence we
see that singular hyperbolicity is a generalized concept of hyperbolicity for
3-flows which can handle the invariant sets with singularities.

Now we state our result.

Theorem There exists a dense subset \mathcal{U}\subset \mathcal{G}^{1}(M) such that for any X\in

\mathcal{U} , replacing X by -X if necessary, X satisfies Axiom A or exhibits a

singular hyperbolic set.
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By above Theorem, any vector field in \mathcal{G}^{1}(M) can be approximated
by the vector fields which satisfy Axiom A or have the structure like the
geometric Lorenz attractor.

2. Some Preliminaries

In this section we will state several results needed for the proof of The-
orem. Let S be any vector field in \mathcal{G}^{1}(M) and \sigma be any singularity of S .
Since \sigma is hyperbolic, there exist neighborhoods N(S)\subset \mathcal{G}^{1}(M) , U_{\sigma}\subset M

of S and \sigma respectively and a continuous function \rho : N(S) -arrow U_{\sigma} which to
each vector field X\in N(S) associates the unique singularity of X in U_{\sigma} .
We call \rho(X) the continuaton of \sigma for Xt By \rho and compactness of M, S
has finite number of singularities, denoted by \sigma_{1}(S) , \ldots , \sigma_{l}(S) respectively,
and next lemma is immediate.

Lemma 2.1 For any S\in \mathcal{G}^{1}(M) , there exists a neighborhood \mathcal{U}_{0}=\mathcal{U}_{0}(S)

of S in \mathcal{G}^{1}(M) such that singularities of each X\in \mathcal{U}_{0} are only \sigma_{1}(X) , . .,
\sigma_{l}(X) , which are the continuations of \sigma_{1}(S) , ., \sigma_{l}(S) for X respectively.

It is well-known that each element of \mathcal{G}^{1}(M) has finitely many attracting
and repelling periodic orbits ([10]). Denote the number of these periodic
orbits of S\in \mathcal{G}^{1}(M) by a(S) and r(S) respectively.

Lemma 2.2 Any S\in \mathcal{G}^{1}(M) can be approximated by neighborhood \mathcal{U}_{1}=

\mathcal{U}_{1}(S) in \mathcal{G}^{1}(M) such that a(X)=a(Y) , r(X)=r(Y) for all X, Y\in \mathcal{U}_{1} .

Proof. By contradiction, suppose that there exists a vector field S_{0} and
its neighborhood B_{0}\subset \mathcal{G}^{1}(M) such that each X\in B_{0} is approximated by
Y satisfying a(X)+r(X)<a(Y)+r(Y) . Let B_{n}=\{X\in B_{0} : a(X)+
r(X)\geq n\}(n\geq 1) and then B_{n} is open and dense in B_{0} . Since B_{0} is a Baire
space, we can take X_{0} \in\bigcap_{n}B_{n}(\subset B_{0}) . But clearly a(X_{0})+r(X_{0})=\infty ,
i.e., X_{0} has infinite number of attracting or repelling periodic orbits. This
is a contradiction to [10]. \square

We take \mathcal{U}_{1}\subset \mathcal{U}_{0} in the following. Next we will characterize singularities
of vector fields in \mathcal{U}_{1} accumulated by the periodic orbits. To do this, we
need the following definition.

Definition 2.3 ([8], Definition 3) Let X\in\chi^{1}(M) . We say that \sigma\in

Sing(X) is Lorenz-like if the eigenvalues \{\lambda_{1}, \lambda_{2}, \lambda_{3}\} of the derivative D_{\sigma}X

are real and satisfy
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\lambda_{2}<\lambda_{3}<0<-\lambda_{3}<\lambda_{1} .

In the following we denote by per_{1}(X) and \overline{per_{1}}(X) the sets of saddle peri-
odic points of X and its closure respectively. We also denote by ind \sigma the
index of \sigma , i.e., the dimension of stable subspace of D_{\sigma}X\tau

Proposition 2.4 Let X\in \mathcal{U}_{1} and \sigma_{X}\in Sing(X)\cap\overline{per_{1}}(X) be given.
Assume that ind \sigma x=2 . Then \sigma x is Lorenz-like and satisfies

W^{ss}(\sigma x)\cap\overline{per_{1}}(X)=\{\sigma x\} ,

where W^{ss}(\sigma x) is the stable manifold associated to the strong contracting
eigenvalue \lambda_{2} .

Proof. Proposition 2.4 is obtained by using the methods in the proof of [9,
Lemmas 4.1 and 4.2] and the following lemma.

Lemma 2.5 ([4], the C^{1} Connecting Lemma) Let X\in\chi^{1}(M) and p , q

be two points which are not periodic. Assume that for all neighborhood U
and V of p and q respectively, there is x\in U such that X_{t}(x)\in V for some
t\geq 0 . Then \forall\epsilon>0 , \exists L>0 such that for any \delta>0 , there is YC^{1}\epsilon close
to X satisfying

Y=X on M-B_{\delta}(X_{[0,L]}(p)\cup X_{[-L,0]}(q))

q is on the forward Y-Orbit of p .

Here X_{[a,b]}(x) denotes the segment of orbit \{X_{t}(x)|a\leq t\leq b\} and B_{\delta}(A)

is \delta neighborhood of A in Mc

By Lemma 2.5, we can perturb X to Y so that Y\in \mathcal{U}_{1} and Y exhibits
a homoclinic loop associated to \sigma_{Y} (continuation of \sigma_{X} for Y). We can
further perturb Y to obtain C^{\infty} vector field Z\in \mathcal{U}_{1} such that Z still has a
homoclinic loop associated to \sigma_{Z} .

Assume that there exists X\in \mathcal{U}_{1} with \sigma x\in Sing(X)\cap\overline{per_{1}}(X) having
a complex eigenvalue. Then \sigma_{Z} also has a complex eigenvalue. The argu-
ment of [14, p.247] shows that we can perturb Z to Z_{1} , arbitrarily C^{1} close
to Z , to generate a new attracting periodic orbit. This contradicts Z\in \mathcal{U}_{1} ,
proving that the eigenvalues of \sigma_{X} are real.

We can arrange the eigenvalues \lambda_{1} , \lambda_{2} , \lambda_{3} of D_{\sigma}X such that

\lambda_{2}\leq\lambda_{3}\leq\lambda_{1} .

Then X\in \mathcal{U}_{1} implies that \lambda_{3}<0 and \lambda_{1}>0 . So if \sigma x is not Lorenz-like, we
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have that |\lambda_{2}| , |\lambda_{3}|>\lambda_{1} . Since the eigenvalues of \sigma_{Z} satisfy this inequality,
[14, Theorem 3.2.12] enable us to perturb Z to generate a new attracting
periodic orbit. This contradicts Z\in \mathcal{U}_{1} , proving \sigma x is Lorenz-like. For the
rest of Propotition, we can perturb X as in the proof of [9, Lemma 4.2]
to generate an attracting periodic orbit again, which contradicts X\in \mathcal{U}_{1} .

\square

3. Proof of Theorem

In this section we complete the proof of Theorem. For this let us state
two key results. In [6], it was shown that on 2-manifolds compact invariant
sets of diffeomorphisms in \mathcal{F}^{1}(M) which have dense periodic orbits are
hyperbolic. By applying the same method, we can immediately obtain the
corresponding result for 3-flows as in the following (see also [12]).

Proposition 3.1 Let X\in \mathcal{G}^{1}(M) and \Lambda is a compact invariant set of X
which has dense periodic orbits. Then if \Lambda\cap Sing(X)=\phi , \Lambda is a hyperbolic
set of X

If \Lambda\cap Sing(X)\neq\phi , \Lambda cannot be a hyperbolic set of X However the
following result holds in parallel with above Proposition.

Proposition 3.2 Let X\in \mathcal{G}^{1}(M) and \Lambda is a compact invariant set of X
which has dense periodic orbits. Suppose that X has a neighborhood \mathcal{U}_{X}

such that a(Y_{1})=a(Y_{2}) and r(Y_{1})=r(Y_{2}) for all Y_{1} , Y_{2}\in \mathcal{U}_{X} . Then if
\Lambda\cap Sing(X)\neq\phi and every singularity in \Lambda is Lorenz-like, \Lambda is a singular
hyperbolic set of X

Proposition 3.2 is obtained from the methods in the proof of [9, TheO-
rem C]. Let P_{\Lambda} be the set of periodic orbits contained in \Lambda . Then we have
the hyperbolic splitting TM/P_{\Lambda}=E^{s}\oplus E^{X}\oplus E^{u} , where E^{s} is the stable
bundle, E^{u} is the unstable bundle and E^{X} is tangent to the flow direction.
We set E^{cu}=E^{X}\oplus E^{u} and define over P_{\Lambda} the splitting

TM/P_{\Lambda}=E^{s}\oplus E^{cu} . (1)

Suppose that we can extend this splitting continuously to the closure \overline{P_{\Lambda}}=

\Lambda , denoted by TM/\Lambda=\tilde{E}^{s}\oplus\tilde{E}^{cu} , and \tilde{E}^{s} dominates \tilde{E}^{m} . Then we can show
that \tilde{E}^{s} and \tilde{E}^{m} is actually uniformly contracting and volume expanding
bundle respectively. In fact if \tilde{E}^{s} (resp. \tilde{E}^{cu} ) is not contracting (resp. volume
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expanding), we can perturb X to generate a new repelling (resp. attracting)
periodic orbit by [9, \S 5.3 and 5.4], the argument similar to [6, pp.521-524].
But this contradicts X\in \mathcal{U}_{1} . Thus we see that \Lambda is a singular hyperbolic
set of X .

The proof of the continuous extension of (1) to \Lambda and the domination
property of (\tilde{E}^{s},\tilde{E}^{cu}) is rather technical, but the basic idea follow from [6]
substantially. In fact it is primarily proved that (E^{s}, E^{cu}) has the domi-
nation property, then by this property and [7, Proposition 1.3], (1) can be
extended continuously to \Lambda . To prove the domination property of (E^{s}, E^{cu}) ,
roughly speaking, it is enough to show that the angle between E^{s} and E^{m}

is uniformly bounded away from 0 over P_{\Lambda} , which corresponds to the result
of [6, Lemma II.9].

The hypothesis of robust transitivity is necessary to prove these facts
for two reasons: to utilize the property of the periodic orbits of [9, TheO-
rem 3.11] and prohibit the generation of new attracting or repelling periodic
orbit by small C^{1} perturbation. But our situation that X\in \mathcal{U}_{1} satisfies these
properties, hence we can directly use the proof of [9, Theorem C] to show
Proposition 3.2.

To complete the proof of Theorem, we shall show that there exists a
vector field in \mathcal{U}_{1} of Lemma 2.2 which satisfies Axiom A or has a compact
invariant subset satisfying the condition of Proposition 3.2. At first we state
a well-known generic property without proof.

Lemma 3.3 There exists a residual subset \mathcal{R} of \chi^{1}(M) such that, for any
X\in \mathcal{R} , if K is a compact subset in M satisfying \overline{per_{1}}(X)\cap K=\phi , then
\overline{per_{1}}(Y)\cap K=\phi for all Y sufficiently C^{1} close to X .

Since we now take \mathcal{U}_{1} \subset \mathcal{U}_{0} , each X \in \mathcal{U}_{1} has l singularities,
\sigma_{1}(X) , ., \sigma_{l}(X) . By using Lemma 3.3 and arranging the subscript of these
singularities appropriately, we obtain the following lemma.

Lemma 3.4 There exist a neighborhood \mathcal{U}_{2}\subset \mathcal{U}_{1} and number k with 0\leq

k\leq l such that
1) X\in \mathcal{U}_{2}\Rightarrow\sigma_{1}(X) , ., \sigma_{k}(X) are not accumulated by the periodic orbits

of X
2) X\in \mathcal{U}_{2}\cap \mathcal{R}\Rightarrow\sigma_{k+1}(X) , \ldots , \sigma_{l}(X) are accumulated by the periodic

orbits of X



A charactenzation of dense vector fields in \mathcal{G}^{1} (M) on 3-manif0lds 103

Proof. First assume that there exist X_{1}\in \mathcal{U}_{1}\cap \mathcal{R} and \sigma_{1}(X_{1})\in Sing(X_{1})

such that \overline{per_{1}}(X_{1})\cap\{\sigma_{1}(X_{1})\}=\phi , otherwise the lemma is proved by setting
\mathcal{U}_{2}=\mathcal{U}_{1} and k=0 . Then by Lemma 3.3, there exists a neighborhood \mathcal{V}_{1}

of X_{1} in \mathcal{U}_{1} such that \overline{per_{1}}(Y)\cap\{\sigma_{1}(Y)\}=\phi for any Y\in \mathcal{V}_{1} . Next assume
that there exist X_{2}\in \mathcal{V}_{1}\cap \mathcal{R} and \sigma_{2}(X_{2})\in Sing(X_{2}) such that \overline{per_{1}}(X_{2})\cap

\{\sigma_{2}(X_{2})\}=\phi , otherwise the lemma is proved by setting \mathcal{U}_{2}=\mathcal{V}_{1} and k=1 .
Again by Lemma 3.3, there exists a neighborhood \mathcal{V}_{2} of X_{2} in \mathcal{V}_{1} such that
\overline{per_{1}}(Y)\cap\{\sigma_{2}(Y)\}=\phi for any Y\in \mathcal{V}_{2} . Since the number of singularities of
vector fields in \mathcal{U}_{1} is l , we can prove the lemma by continuing this process
at most l times. \square

Remark After continuing this process, suppose that we have reached the
situation such that Sing(X_{0})\cap\overline{per_{1}}(X_{0})=\phi for some X_{0}\in \mathcal{U}_{1}\cap \mathcal{R} . Then by
Proposition 3.1, we have that \overline{per_{1}}(X_{0}) (and therefore \overline{Sing(X_{0})\cup per(X_{0})})
is a hyperbolic set of X_{0} . Moreover by the general density theorem ([11]),
we may assume that \Omega(X_{0})=\overline{Sing(X_{0})\cup per(X_{0})} . This implies X_{0} satisfies
Axiom A, proving our Theorem. So we will assume k_{1}<l in the following.

Lemma 3.5 Let X\in \mathcal{U}_{2}\cap \mathcal{R} . Then for any \sigma_{X}\in Sing(X)\cap\overline{per_{1}}(X)

and any \delta>0 , there exists a neighborhood \mathcal{W} of X in \mathcal{U}_{2} such that each
Y\in \mathcal{W} satisfies

W^{u}(\sigma Y)\subset B_{\delta}(\overline{per_{1}}(X)) or W^{s}(\sigma_{Y})\subset B_{\delta}(\overline{per_{1}}(X))

according to ind \sigma_{X}=2 or 1 respectively. Here \sigma_{Y} is the continuation of
\sigma_{X} for Y

Proof. This Lemma corresponds to [9, Corollary 3.5], for which the prop-
erty of robust transitivity is essential. The proof here is, however, the
conseqence from Lemma 3.3.

Suppose that on the contrary, there exist \sigma_{X}\in Sing(X)\cap\overline{per_{1}}(X) , \delta_{0}>

0 and Y_{0} arbitrarily C^{1} close to X such that the lemma is false. Replacing
X by -X if necessary, we may assume ind \sigma x=2 , i.e., ax is Lorenz-like. So
we assume that

W^{u}(\sigma_{Y_{0}})\not\subset B_{\delta_{0}}(\overline{per_{1}}(X)) .

Then there exists a neighborhood \mathcal{V}(Y_{0}) of Y_{0} in \mathcal{U}_{2} such that for each Z\in

\mathcal{V}(Y_{0}) , \sigma_{Z} is Lorenz-like and

W^{u}(\sigma_{Z})\not\subset B_{\delta_{0}}(\overline{per_{1}}(X)) . (2)
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Shrinking \mathcal{V}(Y_{0}) if necessary, we may also assume that

\overline{per_{1}}(Z)\subset B_{\delta_{0}}(\overline{per_{1}}(X)) (3)

from Lemma 3.3. Now we carry out the following sequence of pertubations
of Y_{0} .

1. By Lemma 3.4 and (2), we can perturb Y_{0} to Y_{1} , arbitrarily C^{1} close to
Y_{0} , so that \sigma_{Y_{1}}\in Sing(Y_{1})\cap\overline{per_{1}}(Y_{1}) and W^{u}(\sigma_{Y_{1}})\not\subset B_{\delta_{0}}(\overline{per_{1}}(X)) .

2. Then by using Lemma 2.5, we can perturb Y_{1} to Y_{2} , arbitrarily C^{1}

close to Y_{1} , so that Y_{2} exhibits a homoclinic loop \Gamma associated to \sigma_{Y_{2}}

and still W^{u}(\sigma_{Y_{2}})\not\subset B_{\delta_{0}}(\overline{per_{1}}(X)) .
3. Since W^{u}(\sigma_{Y_{2}})\not\subset B_{\delta_{0}}(\overline{per_{1}}(X)) , there are orbits which are through

points arbitrarily near \Gamma and leave B_{\delta_{0}}(\overline{per_{1}}(X)) along one branch of
W^{u}(\sigma_{Y_{2}}) . So we can perturb Y_{2} to Y_{3} , arbitrarily C^{1} close to Y_{2} , so
that both branches of W^{u}(\sigma_{Y_{3}}) leave B_{\delta_{0}}(\overline{per_{1}}(X)) .

4. Again by Lemma 3.4 we can perturb Y3 to Y_{4} , arbitrarily C^{1} close to
Y3, so that \sigma_{Y_{4}}\in Sing(Y_{4})\cap\overline{per_{1}}(Y_{4}) and both branches of W^{u}(\sigma_{Y_{4}})

still leave B_{\delta_{0}}(\overline{per_{1}}(X)) . Clearly we have \overline{per_{1}}(Y_{4})-B_{\delta_{0}}(\overline{per_{1}}(X))\neq

\phi .

As we can perturb Y_{0} to Y_{4} arbitrarily C^{1} close to Y_{0} , this is a contradiction
to (3). Thus we have completed the proof of Lemma 3.5. \square

Lemma 3.6 Let X\in \mathcal{U}_{2}\cap \mathcal{R} . Then we have the following:
Let \sigma_{1} , \sigma_{2} be any two singularities of X. If there are poinls p_{n}\in

per_{1}(X) and numbers t_{n}>0 such that \lim_{narrow\infty}p_{n}=\sigma_{1} and \lim_{narrow\infty}X_{t_{n}}(p_{n})=

\sigma_{2} , then ind \sigma_{1}=ind\sigma_{2} .

Proof Suppose that X has two singularities \sigma_{1}(X) , \sigma_{2}(X) such that the
lemma is false. Let ind \sigma_{1}(X)=1 and ind \sigma_{2}(X)=2 respectively. By
Proposition 2.4, we have W^{uu}(\sigma_{1}(X))\not\subset V for a small neighborhood V of
\overline{per_{1}}(X) . Then using the argument in the proof of [9, Lemma 4.3], we can
perturb X to Y_{:} arbitrarily C^{1} close to X so that W^{u}(\sigma_{2}(Y))\not\subset V This
contradicts Lemma 3.5. \square

Now we conclude the proof of Theorem. Let S be any vector field in
\mathcal{G}^{1}(M) . Then S can be C^{1} approximated by X\in \mathcal{U}_{2}\cap \mathcal{R} . By Lemma 3.4
and Remark after it, X has singularities accumulated by the periodic orbits,
so we can take a sequence of saddle periodic orbits of X , \{\gamma_{n}\}_{n\geq 1} , such that
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\overline{\bigcup_{n=1}^{\infty}\gamma_{n}}\cap Sing(X)\neq\phi . Set K=\overline{\bigcup_{n=1}^{\infty}\gamma_{n}} . Since all the singularities in
K have the same index by Lemma 3.6, replacing X by -X if necessary,
we may assume that those index is two. So given \sigma\in K\cap Sing(X) , \sigma is
Lorenz-like by Proposition 2.4. Then Propositon 3.2 implies that K is a
singular hyperbolic set of X . We have completed the proof of Theorem.

Acknowledgement The author would like to appreciate R. Ito for his
useful comments.

References

[1] Doering C, Persistently transitive vectorfields on three-dimensional manifolds. Dy-
namical Systems and Bifurcation Theory (M.I. Camacho, M.J. Pacifico and F. Tak-
ens, eds.), Pitman Res. Notes Math. 160, Longman, 1987, 59-89.

[2] Guckenheimer J., A strange, strange attractor. The Hopf bifurcation and its appli-
cation, Applied Mathmatical Series 19, Springer-Verleg, 1976, 368-381.

[3] Hayashi S., Diffeomorphisms in F^{1} (M) satisfy Axiom A. Erg. Th. & Dyn. Sys. 12
(1992), 233-253.

[4] Hayashi S., Connecting invanant manifolds and the solution of the C^{1} stability and
\Omega -stability Conjecture for flows. Ann. of Math. 145 (1997), 81-137.

[5] Liao S.T., On the stability conjecture. Chinese Ann. of Math. 1 (1980), 9-30.
[6] Ma\~n\’e R., An ergodic closing lemma. Ann. of Math. 116 (1982), 503-540.
[7] Ma\~n\’e R., Persistent manifolds are normally hyperbolic. Trans. Amer. Math. Soc.

246 (1978), 261-283.
[8] Morales C.A., Pacifico M.J. and Pujals E.R., On C^{1} robust singular transitive sets

for three-dimensional flows. C. R. Acad. Sci. Paris Ser. I Math. 326 (1998), 81-86.
[9] Morales C.A., Pacifico M.J. and Pujals E.R., Robust transitive singular sets for

3-flows are partially hyperbolic attractors or repellers. Preprint.
[10] Pliss V.A., On a conjecture due to Smale. Diff. Uravenyia 8 (1972), 268-282.
[11] Pugh C, An improved closing lemma and a general density theorem. Amer. J. Math.

89 (1967), 1010-1021.
[12] Toyoshiba H., Nonsingular vector fields in \mathcal{G}^{1}(M^{3}) satisfy Axiom A and no cycle:

a new proof of Liao ’s theorem. Hokkaido Math. J. 29 (2000), 45-58.
[13] Wen L., On the C^{1} stability conjecture for flows. J. Diff. Eq. 129 (1996), 334-357.
[14] Wiggins S., Grobal bifurcations and chaos: analytical methods. Applied Math. Sci.

73, Springer-Verlag, New York-Berlin, 1988.

Department of Medical Informatics
Kyushu University
Maidashi, Higashi-ku, Fukuoka 812-8582
Japan
E-mail: takeharu@info.med.kyushu-u.ac.jp


	1. Introduction
	Theorem There ...

	2. Some Preliminaries
	3. Proof of Theorem
	References

