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Abstract. We shall consider the Cauchy problem for weakly hyperbolic equations of
4th order with coefficients depending on time. Using the suitable energy of 4th order
equations, we derive the energy inequality which shows exactly the derivative loss of the
solution.
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1. Introduction

F. Colombini, E. De Giorgi, E. Jannelli and S. Spagnolo showed the
Gevrey wellposedness for the hyperbolic equations of second order with
coefficients depending only on time and Hélder continuous (see [1], [2] and
see also [3], for the hyperbolic equations of third order). Later on their
results were generalized by T. Nishitani and P. D’Ancona [6] for the
second order equations whose coefficients depend also on space variables,
and by Y. Ohya and S. Tarama for the hyperbolic equations of higher
order. In this paper we restrict to hyperbolic equations of 4th order with
less smooth coefficients in time, and show the Gevrey wellposedness, using
the suitable energy for the equation of 4th order.

We shall consider the Cauchy problem in [0, 7] x R?

Ofu— Y a,()00u+ Y b,(t)d2u =0,
=2 Jwl= (1)

OPu(0,z) = up(z) (h=0,1,2,3),

where a,,(t) and b,(t) (w € N™) are real coefficients satisfying, for some
a € (0,1],
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2
{ 5 awe} e oo,
|w|=2
> bu(t)e” € C*([0,T)) for £ € RE. (2)
|w|=4

We remark that the condition (2) is more relaxed condition than
Y au(t)e” € C*((0,TY),
lw|=2

D b)Y € C*([0,T]) for £ € RE. (3)
|w|=4

Obviously if a,(t) and b, (t) satisfy (3), they also satisfy (2). Conversely,
supposing n = 1, we define

1
2 —
as(t) = 2t sin ; for t e (0,T]
0 for t =0,
t2 sin41 for ¢t € (0,7
ba(t) = t ’
0 for t=0.

1
jm?

The condition (3) with @ = 1 excludes az(t). In fact, if we put ¢; =

_ 4 1
t = +J7r (j € N) then we ﬁnd that “|t; —t;| = (157 and |az(t;) —
/ / — 1 ;
az(t})] = |2¢;sin® + — 2t; sin® +| = | — ti| = sl Hence noting that
1 1 4__ 1
) = (Fhim? 2 5jw(%+jw)’ we get
2

4

This means that the condition (3) with & < § holds for as(t). In the same
way the condition (2) with a = 1 holds for ag(t) and b4(t).

L
[t; = t512 > lax(t;) — aa(tj)] 2

Remark 1 More generally, if Z|w|:2 a,(t)€¥ > 0, then (2) implies
D jwl=2 @ ()€Y € Cz([0,T)); on the other hand, if 2 jwl=2 G (t)€Y 2 5|€|2
(36 > 0), then (2) implies (3), that is D lwl=2 4w ()€ € C*([0,T1).

Now we shall assume three types of weakly hyperbolic conditions for
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the 4th order equation (1)

M Y a0, Y b()E >0,

|w|=2 |w|=4
{ Z ay, ()€ “’} —4 Z b, (t)E¥ >0,
|w|=2 jw|=4
Im Y e 20, Y b()E >0,
|w|=2 |w|=4
{ > au(t) W} —4) " by(t)E” > dolél,
|w|=2 |w|=4
(I ) e, >0, Y bu(t)EY > bolél,
lw|=2 jw|=4
2
{ 3 aw<t>5w} 4 Y bt >0,
lw|=2 jw|=4

for t € [0,T], € € Rg with some Jy > 0. We find that under these con-
ditions there always exist two non-negative characteristic roots and two
non-positive ones. Particularly under the condition (I) the multiplicity of
the characteristic roots is four. While under the conditions (II) or the
multiplicity is at most two.

Remark 2 In the case (II) we have really >, ,_,au(t)§” > Vool€)?,
while in the case D=2 G ()€Y > 2v/30|€ 2.

Then we can prove the following theorems.

Theorem 1 (multiplicity 4) Let T > 0, po > 0. The coefficients satisfy
(2) and (I). Then for any up € v*(RY) (h=0,1,2,3), the Cauchy problem
(1) has a unique (global) solution u € C*([0,T),y*(RZ)), provided

1§s<1+%, (4)

and moreover when up € Y§(RZ) (s > 1), there exists a positive function
p(t) satisfying p(0) = po, such that for £ € Rg
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@ =

eP(D(©) {<§>4—ifa|a|+<g)4+%|ata|+< )% |6+ (€) T4 |04 +(€) ‘f;;‘“w;lm}

<3 Z ePolE)% (£)3=h ). (5)1

Remark 3 The critical assumption (4) coincides with the result of Y.
Ohya and S. Tarama, under the condition (3) instead of the condition
(2). Under the condition (2) (see Remark 1), it follows by the well-
posedness in y® for 1 <s <1+ %.

Theorem 2 (multiplicity 2) Let T > 0, pg > 0. The coefficients satisfy
(2) and (II) (resp. (III)). Then for any up € ¥*(R?) (h = 0,1,2,3), the
Cauchy problem (1) has a unique (global) solution u € C*([0,T], v*(RZ)),
provided

1§3<1+%, (6)

and moreover when up € Y§(RY) (s > 1), there exists a positive function
p(t) satisfying p(0) = po, such that for £ € Ry

1 6120 A ) X =2-2a 4
() {(6) 5o |G| + (€)2|0sa] + (£)|02a] + |834| + (€) 27= |3fu|}

HCZ ePolé) 3 h|uh| (D1

4
543 A
(resp. E:ep(tx&) (€ )"t—2+a h|8h |<3C§ :epo €)% )3—h|uh|)_ (8)1mr
h=0 h=0

Remark 4 The condition (2) is equivalent to the condition (3) under
the condition (II) or (see Remark 1 and Remark 2). Therefore the
wellposedness result of follows by [16]. So we shall particularly
show how to obtain the estimates (7)1 and (8)1;; which will be useful when
one considers nonlinear equations of 4th order (see [7], [9] and [17]).

Remark 5 It is interesting to notice that, in [Theorem 2, we obtain in the
case (II) a better estimate than in the case [III). This is related to the fol-
lowing fact (see [4] where the general case of operators of order m is treated).
When the characteristic roots degenerate of finite order and the coefficients
a, and b, are sufficiently regular (say C®), under the condition (II) the
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operator L given in (1) is strongly hyperbolic (the Cauchy problem (1) is

C°-wellposed), while under the condition [IIT), if really {3, -, awg‘*’}2 -

4 le|:4 b.&* = 0 for some { € Ry, surely L is not strongly hyperbolic.
The vibrating beam is described by the equation

(6t2 o A(ta ax)) (8t2 - B(t, 8z))u =0, (9)

where A(t7 ‘S) = Z|w|:2pw(t)§w 2 5|§|21 B(ta f) = le[=2 qw(t)éw 2 5'612
for t € [0,T], £ € R with some § > 0 and A(t,¢), B(t,¢) € C2%([0,T)) for
£ € R I Y, 000(t)0 = A(t,0:) + B(t,0;) and )., _4 b, ()05 =
A(t,8;)B(t,8;), the equation (1) with lower term —2{8,B(t,d;)}0,a —
{02B(t,8;) }u can be written by the equation (9). By Fourier transform
we change the equation (9) into (87 + A(t, €)) (87 + B(t,£)) 4 = 0 which can
be regarded as the following equation whose solution is (87 + B(t,¢)) .

a7 { (07 + B(t,€))a} + A(t,€) {(67 + B(t,€))a} = 0.

Then we define the energy for the second order equation
EN(t,€)* =[,(8} + B(t, ©)a|* + A(t,€)] (87 + B(t,€))a
(=1(82 + B(t,€) 01 + {2 B(t, ) Ya|” + A(,€)| (37 + B(t,0))

2

’)
Here we remark that the term {8tB(t, 5)}'& appears in the energy due to
the lower terms. According to the method of the second order equations, we

obtain the energy inequality E(V(¢t, €)% < EM(0,¢)? for t € [0,T]. Hence
we find that

(82 — B(t,8;))u = f(t,z) € C*([0, T}, C*(RY)). (10)

Furthermore solving [10), we obtain that u(t, z) € C%([0, T}, C*®(RZ)).
While the equation (1) with lower terms —2{8:A(t,0;)}8u —
{02A(t,d;) }u can be also written by

(82 — B(t,0:)) (67 — A(t, 9:))u = 0.
Similarly defining the energy for the second order equation
E@(t,6)2 =|8,(87 + A(t, €))a|” + B(t,€)| (97 + A(t, €))
(:| (82 + A(t,0)au + {8, A, €)}af* + B(t, €)| (87 + A(t, g))a|2),
we obtain u(t, z) € C*([0, T], C*(RY)).

2
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Remark 6 1If A(t,£) > 0, B(t,§) > 0fort € [0,7T], £ € Ry and A(t,§),
B(t,£) € C*([0,T]) for £ € R}, applying the result of [2], we obtain the
solution of the equation (9) or , in v*(R}), provided 1 < s <1+ %.
Since our equation (1) does not include the lower terms, we shall com-
bine EM(t,£)? and E@(t,£)? and exclude the terms {0:B(t,¢)}& and
{0, A(t, €) }4 to define the energy for (1) with suitably modified coefficients
(see the definition of the partial energy [23)). However it seems very difficult
to treat the order 2m similarly as the order 4, unless under more restricted

assumptions (see [5]). In [5] we consider the equations of higher order (not
only 2m order).

Notations
€)= (P +v)2 (v>1), (€)= (+1)2 (= (E)),
fe)= [ e s@ye

C*([0,T]) (0 < a < 1) is the space of Holder continuous functions with
exponent « on [0, T.

v*(RZ) (s > 1) is the space of Gevrey functions f(z) satisfying for any
compact set K C R", sup,cg [09f(z)] < CKpII?||a|!S for € N™.

75(R%) (s > 1) is the space of Gevrey functions f(z) of the order s
having compact support.

2. Proof of the Theorems

When s = 1, the problem (1) is well-posed in y! which is the topological
vector space of analytic functions on R™ (see [8] and [10]). Therefore we may
suppose s > 1 for the proof. Our main task is to investigate the regularity
of the solution, namely, to derive the energy inequality (5)1, (7)1 and (8)11.

By Fourier transform the Cauchy problem (1) is changed into

{ viree + {A(t,€) + B(t,€) bou + A(t, ) B(t, §)v =0, (11)

fv(0,8) =wr(§) (h=0,1,2,3),
where v = 4, and vy, = 4y (h = 0,1,2,3) and A(t,§), B(t,€) (A(t, &) >
B(t,€)) are two roots of the algebraic equation A% — D lwj=2 G (t)EYA +
D jwj=a bw(t)€” = 0.
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Using A(t,€) and B(t, ), we also change the weakly hyperbolic condi-
tions (I), (II) and into

“A(t, &) and B(t, &) are real valued” &

A(t,€) >0, B(t,€) >0, A(t¢)— B(t,€) > &
(and so A(t, &) > 51|£|2), (13)11

A(t, &) >0, B(t,€) > 6&l¢> (andso A(t,€) > &%), (14)m

for t € [0,T], £ € Ry with some 6; > 0.
Now we must separate the proof of Theorems into three parts according
to the weakly hyperbolic conditions (12), (13)11 and (14);.

2.1. Case of (12); (Theorem 1)

We first treat the case of (12); which implies that the multiplicity of
the characteristic roots is four. In order to define the energy based on the
distinct and smooth characteristic roots, we regularize the coefficient as
follows.

H.(t,€) = %/m (A(r,€) + B(r, g))%(%)dr +5eleld, (15)

—00

6.1, =2 [ A OB (T )ar + el (16)

—00

(0 < e < 1), where ¢(t) € C°(R}) satisfies (t) > 0 and [7 o(t)dt = 1.
Using H.(t,&) and G.(t,&), we define that A.(t,&) and B (t §) (Ae(t,€) >
B.(t,£)) are two roots of the algebraic equation A2—/H_(t,)A+G.(t, &) =

Then since A(t,€) + B(t,§) = ZM 5 a,(t)€¥ and A(t, €)B(t,£) =
lel _4 bu(t)€¥, by (2) there exists M > 0 such that for £ € RS

(Ac(t,€) + Bo(1,6))° - (A1) + Bt,©)*| < Melel',  (17)
[Ac(t, ) Be(t,€) — A(t,©)B(t,6)| < Me[e[*, (18)

0.
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e(t,€) + B:(t,€))°| < Me>1¢)4,
i | N

‘8t (8, &) Be(t, 5))’ < Meo gt

For a proof refer to [1] and [18]. We remark that by (15) and
Ac(t,8), Be(t,€) have not been defined yet.

Lemma 1 Define that C.(t,€) = A:(t,€) — B:(t,£). Then it holds that
for € € R?
(Ae(t, €) + Be(t, 5))2 2 55a|£|4, Ac(t, g)Be(t, £) > 5a|€|4

20
Ce(t, 6)2 > €a|€|4’ ( )

and

It (OB
A.(,6)B (5) g =0l 2

Proof. From (15), [16) and (12); we can easily see that
(Ac(t, &) + Be(t, 6))" 2 5e%el’, Aot €)B(t,€) > &g,

and

Ce(t,€)% = (Ac(t,€) + Be(t,€))” — 4Ac(t, €)B.(t, €)
/{ (1,€) + B(r,€))” — 4A(r, £)B Tf}(p( ")

+ (56> — 4¢%) |¢|*
-/ (Ar. )~ B(r€)) (< )dr + ¢l
> evlg|*.

Hence we also get

(( (8,6) + Be(t,€))° _ Ce(t,8) +4A:(t,€)Be(t,€)
Ae(t, &) Be(t, §)Ce(t, 5) Ae(t, €) Be(t,£) Ce(t, §)?
+

4 1 4

s<,5> 68 T Cer S wfen t zagep
= e~ )¢
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With the modified coefficients Ac(t,€), B:(t, &) we shall define the en-
ergy

Ec(t,&)* = e2P(t)8) {|Uttt + Bowg|? + |vgge + Acvg|? + Aclvg + Bevl?
+ Be|vy + Aevl }
Eer(t)<£>5{|k1|2+|l1|2+A€|k2\2+B€|l2|2}
= 2P F (¢, €)?, (22)
where k1 = vy + Bevt, 11 = vir + Aeve, ko = v + Bev, log = vy + Acv and
Fe(t,€)° = [kal® + [l + Aclkal* + Bellaf* (23)

and p(t) is positive and determined later.
Paying attention to F;(t, £)? only, we can find from the following lemma
that F(t,£)? is bounded from below by |v|2, |v¢]?, |v]? and |vge|?.

Lemma 2 It holds that

Ac + B: 2
SEw-ve L o
Ac + B A2+ B? (24)
jo:]* < oz FZ, |uwl® < —ég——Ff
£ £

Moreover there exist 6 > 0 and L > 0 such that
3a
0 max {57|§|6|U|2a €a|§|4|vt|2a 5a|§|2lvtt|2, Ealvttt|2}
< F.(t,€)? < L(JEI5Jvl® + 1€ vel® + 1€ [ose)® + fveel?). (25)

Proof. Since Fi(t, €)% > |k1|? + |11]2, by (20) we get

2 2

Fe(t,€)* > |vese + Bevy|” + |vg + Acvy|
= 2|Uttt|2 + Q(AE + Be)%(vtth ’Ut) + (Ag + Bf)l'vt|2

(A — B,)? 9 A; + B 5 5
——A2+B2 |vgee|” + ,___A2 vt + A2 + B2 v,

(A B

A B
\/i’l)ttt—i- et Evt 5

\ V2

v
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——Cg |Uttt|2 5 a| |2
2 2 E7 |Vttt
Ce |’U |2 58a|§| |vt|

Hence we also get the second and fourth inequalities in (24).
Similarly since F;(t,£)% > Ac|k2|? + Be|l2|?, by (20) we get

Fg(t,f 2 > A "Utt +B&"U‘2 +B ‘Utt+A5’0|2
= (Ae + B:)|vg|* + 4A. B-R(vgt, v) + Ac B (Ae + Be)|v)?

4A. B,
(A +B |Utt|2 I\/ A+B " + v/ A:Be(Ac + Br)
- 24.B. |* A.B.(A. — B.)?
A B ee 3 2
| [VAH Bt A E Y YT A
( CZ
|’Utt| S 2 2
A, + B. &1 |vet]
>{ At > \ (*6 > 0),
AcBCE 2 | ST gl
(| A:+ B:
here we used by (20) and [21)

AEBECEQ (Ag + B€)2 _1 3_(1 6
_— = A —_— > .
Ac + B ( “LBE){ A.B.C? } =

Hence we also get the first and third inequalities in (24).
While we can easily get the right side of (25) as follows.
Fo(t,€)" = [kal” + L) + Aclhaf* + Belaf?
< 20vgge]® + 2B vy + 2|vgee| + 242 0, )?
+24c |vy|* + 24 BZ|v]* + 2B: |vy|? + 2A2B: |v|?
L(J€°|ol* + €[ oel® + 1€ vel® + Jvsee]?) -

Secondly differentiating F.(t,£)? in ¢, by (11) we have

(Fe(t,6)%)
= 2R(verer + Bevy + Bé’Ut, k1) + 2R(vieer + Acvy + Ale’Ut, L)



On weakly hyperbolic equations of 4th order 49

+ Al|ko|* + Bl|lo|* + 2A:R (v + Bevy + Blo, ky)
+ 2B R(vyt + Acvy + Alv, 1s)
= 2§R(—(A + B)vy — ABv + Bovy + BLvy, kl)
+ 23?(—(A + B)vy — ABv + Ay + ALy, ll)
+ Allk2|* + BL|lo)* + 2AR(K1, ko) + 24.R(Blv, ko)
+2BR(ly, l3) + 2B.R(ALv, 1)
= 2R(—(A+ B)vy — ABv + Bevy + Acvy + AcBev, ki) + 2R(Blu, ki)
+ 2%(——(14 + B)vy — ABv + A.vy + Bevy + A Bev, l1)
+2R(Alvy, 1) + ALlka|* + Blilo|* + 24 R(BLv, ko) + 2B.R(Alv, 1)
=2{(A: + B:) — (A+ B)}R(vy, k1 + 1) +2(A:B: — AB)R(v, k1 + 1))
+2{BR(vy, k1) + ALR(ve, 11)} + {AL|ko|* + BL|l2|?}
+2{A.BiR(v, kg) + ALB.R(v, l2)}
=L+ 1+ I3+ I+ Is,
here we used 2A.R(k1, k2) = 2AR(k2, k1) = 2R(Acvy + AcBev, k1) and
2B:R(l1, l2) =2BR(lg, 11) = 2R(Bevy + A Bev, ky).

We shall pick up each term I (k = 0,1,...,5) in order to estimate

(Fe(t,€)%)'.
In the following C' and C’ will denote the constants not depending ¢,
possibly having different values in different lines.

(i) Estimate for I

L = 2{(145 + B;) - (A + B)}%(S"’Uu, e (k1 + ll))
< |(As +B:) - (A+ B)‘52n|vtt|2
+ ‘(Ae +B:) - (A+ B)’E—%lkl +0/?
A. + B.)+ (A+ B)

< |(Ae + B:) — (A+ B)]sQ”( o F?
—on(Ace+Be) +(A+ B) _,
+2 A€+B€ - A+B 277 o FE

(4e+ B~ (4 + B Vaedgp?

g2n
= (A + B.)* — (A+ B)2|C—€2F§

2 o
+ —_|(Ac + B.)* — (A+ B)2|e~ "5 |¢|2F2,
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here we used by (24)

Ac + B:
C?2

3

|k1 + l1|2 < 2|k1|2 + 2|l1|2 < 2F€2 <2

A.+ B.) + (A+ B)
C?

@s( F?,

(Ac+ B) + (A+B) 1
Ve €2 j

|'Utt|2 <

Taking n = —3, by and (20) we get
2 a o
I < Me*"F2? ¢ E1\455'2’71§|2F3 = Ce 'F? + C'e2 T ¢)2F2.
(26)
(ii) Estimate for I,
Taking ( = ¢ — 3, by and the left side of (25) we get
I = 2(AsBs - AB)%(F:C‘&’U) 5_C|€|-1(k1 + ll))
< |AcB: — AB|e*|€|*|v|* + |AcB: — AB|e %€ |ky + 11|
< |AcB. — AB|§ 1%~ |¢|*F? + 2|A.B. — AB|e~%|¢|2F?
< M LeX2F2 4 oM X |¢|2F2
= Ce LR 4+ C'e2 g2 F2. (27)

(iii) Estimate for I3
13 = 2{B::§R(’Ut, UVttt + B&—’Ut) + A;%(Ut, Vtt + AE’U)}
= 2(A: + B:)'R(vt, viee) + {(A2) + (B2) }Husl?

=240+ BR( () (B

2 \i(AZ+B2\-i
()" (Bze) o)
+ (A2 + 24 B + B)|vg|* — 2(AcBe) oy
j( 2\ A2+ B}
<.+ BY|() (F)

x {(C%)_lmp + (Aggng )—1lvttt|2}

4 1§+ B ol + 2] (AcBuY | ul?




On weakly hyperbolic equations of 4th order

Noting that

|(Ae + B.)'|(A2 + B%)? < |(A: + B:

1

by (19), (20) and (24) we get

2v2(A2 + BY)? _,
C2

+[{(4e+ B | P2

cz e
f+2

I3§|(A€+B)‘

< |{(a+ B Y2

F?

F? +2|(A.B.)|

)'|(Ac + Be)

Y,

€

2 2
+M&&y@F
2

CQFQ

S(V§+2MWé4Ff+4mk‘Uf

= Ce'F2

(iv) Estimate for I,

I4 = A::|’Utt + BE'U|2 -+ Bé|’l)tt + A5U12
= (Ae + Be)l|vtt|2 + (AIEBS + AgBé)MZ

+ Q(A;Bg + AEB;)%(’U, 'Utt)

A.B.

ALB
< (e + BeYloul? + |5 + 5
€

+2kA4%ym<(AE+l%)_

€A B |v|?

(Asgng)iv’

51

(28)

A.B.C?
(

1

<|{(4

Ac

A€+B€>i(As+B€

A.B.C? 2

s vl
2(Ac + Be)
Al Bl
+ ‘(_E + E:l)(Ae + Be) - (Ae + Be),

€ 6|'U|2

+2(4B)\ (35

o (As + B.
A.B.C?

As+l%)%(Aa

géEk>%

)+ (e

)

) ol .
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Noting that —i <+ %‘* = (ﬁil;i)l, by (19)-{21) and (24) we get
(Ae + Be)?
Is<|{(A:+ B ——FF
4——|{( et AeBECE €

/ 1 ((4e+B.)2\?
+ [{(A4: + B:)?} |20§ : +4|(AeBe)’\a{m‘} Fe

202 +‘AB l

M M

< 75—111? +5Me 1 F2 4+ ?s—ng +2vVEMe 1 F?

=Ce'F2. (29)
(v) Estimate for I5
By (19)—21) and (24) we get

Is = 2{A€B;3?(v, vy + Bev) + ALB:R(v, vy + Agv)}
= 2(A.B.)R(v, vy) + 2A.B:(A: + B.)'|v)?
A5+B€ _% A5+Be i
=2 ) -
(4:Bc) gce((,4(_:1947&.2) ( C2 ) v
(Az-: + Bs) i <As + BE)_%’U
A.B.C? C? *

+ 2A.B:|(Ac + B.)'||v|?

<081 () (M)
A

e+ Be\ 1 2 A; + B\ 1 2
X {(AEBscg) o + ( c? ) ol }
;A + Be\ (Ac + B. )
+2](4e + B)'| C? )(ABC2> vl
i f (Ac + B:)? l H e+ B:) }’ 2
s e
< 2VEMe 'F? 4+ Me'F? = Ce L F2. (30)

Thus, summing up the right sides of (26)—{30), consequently we have
(Fo(t,6)?) < Ce™ EF2 + C'eaTHEPR? (< Ce F2 + Cle2 ()2 F2).

1
Tl

1
Moreover choosing £ = (£), 74, we can get (Fe(t, 5)2)’ < ClE), T FL(t,6)2.
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Hence we can also get

(Ee(t,€)?) = 20/ ()P C(6)RF (8, £)? + 22T (F (8, 5))
< 20/ ()P Q) F (1, €)% + Ce2PWEN <£>$Tﬁ" F.(t, &)

From the assumption (4) we find that : j}g < % < 1. Therefore putting
4
oy g5, 1 1
k = 1 and noting that €),"% =, 1 ° & <v 1+7f (5}5, we obtain
1 1
(B(t,€)?) < ( (t) + Cv™E )OS F(LE)2 (31)

At last, taking large enough v = v(T') > 0 to a given positive T such
11
that pg — %—CI/ET% * > 0, we define the positive function p(t) = pg —

11
£Cv'*% *. Then by we have (E.(t, 5)2)/ < 0 which gives the energy
inequality

E.(t,€)? < E(0,6)? for te[0,T]. (32)

By (25) and (32) we also have the following energy inequality based on
v, Vg, Vgt and vy,

1
§e2r&) max{537|§|6|v|2, €a|§|4|’Ut|2, 5a|§|2|vtt|2, 5a|vttt,2}
1
< L7 1800 + €] o1 |2 + €2 val® + [vs]?).  (33)
Furthermore there exist C, > 0 and 4, > 0 such that
L 3 20 1) 4 (2 %= 2 1)V 4 (21 1
el8)® < 80 — AP+ +(2-1)} 25 < lBF+D) 28 +(2-1)25 C,elé)®

and
iy P R s B
<= 07T =0T = ()
> 6,(€) 7F.
Hence we can change (33) into

3 3
S 20007 ()2 ghy[2 < 0 20O F (£)23-W)y, 2, (34)
h=0 h=0
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_ 12 _ 8 _ 4-o _ 20 _ —4-4 :
where o = 735, 01 = 15 ©@ = 450> B = Trar U = “4yq - Finally we

remark that the information for 84 in (5); follows immediately from the
equation (11) and obtain (5);. If we integrate both sides of over R,

we also get
4 1 3 1
Z“ep(t)(g)s <€>qhagtv“ < CZHePO(s)s <€>3"hvh”, (35)
h—0 h=0

where || - || denotes L2-norm.

To prove the existence and uniqueness, the energy inequality plays an
important role. Following the argument in L? of , we shall give a rapid
sketch of the proof. For the simple notation we suppose that the spatial
dimension n = 1, and put U = ep(t)(D)% - Y(u, Byu, O%u, B3u) and Uy =
epo(D )s - t(ug, u1, ug, ug). Then the Cauchy problem (1) can be written in
the following form in [0, 7] x R.}:

8,U = P(t, D)U,
U(0,z) = Up(x),

® =

p'(t){D)
where P(t,D;) = 3 (36)

0 0
1 0
1

p'(t)(D)+ 1
—b4(t)D4 0 —ag(t)Dz p'(t) <D>§
Now we approximate the differential operator P(t, D) by a sequence of
operators Py (t, D) = P(t,(x(D)), where (x(§) = ksin(%) (k > 1) satisfies
1Ce(€)] < €| and (x(§) — € (K — oo) uniformly on any compact set. We
shall find the solution U(t) of (36) as the weak limit of the solutions Ug(t)

(= ep(t)@k(D))% -t(u, Byu, B}u, 9}u)) of the Cauchy problem

{ OuUx = Py(t, D)Uy,

1 (k>1)
Uk(o) $) = ePO((k(D» ° t(UO’ Uy, U2, ’U,3).

Since Py(t, D) is a bounded operator for any fixed k > 1, Uk(t) is uniquely
determined by successive approximations as the solution of the integral
equation

U(t) = Up + /0 P\ U(7)dr. (37)
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We can replace £ by (x(£) in with C > 0 independent of k. There-
fore there exist C' > 0 and C’ > 0 independent of k such that

1A1(C(€)TUk(®)]| < C|lAo(C(£))Tk(0)]| < CllAo(€)To)| (38)

182(Ge(©)Ti(t) — A2(GH(ENTH(E)
<] [ o {atcue)tuin}ar| < &'t - ¢lAolcu(e) O]
< C'ft =] 80(€) ol (39)

where Ag(¢) = diag{(£)°, (£)*, (€), 1}, A1 (&) = diag{(€)®, ()%, (€)%, (€)%},
Ao(§) = diag{(£)®, (€)%, (€)®B, (€)%}. Then, using the Ascoli-Arzela the-
orem, by [(38) and (39) we find that the sequence {Al(Ck(f))Uk(t)}zozl is

bounded in Ly and has the weak limit A;(£)U(¢) which also satisfies
1A2(6)U (8) — A2(OT(E)]| < Clt — ¢'[[|Ao(€) T |

Considering [ [ Uk(t, 2)9(t, 2)dtdz for ¢(t,z) = ¥1(t)da(z) €
C§°((0,T) x R), we see that the limit of isU(t) =Uo+ fo (M)U(r)dr
and U(t) € C*([0,T], L*(R)). This means that u € C*([0, T], v*(R)).

2.2. Case of (13)51 (Theorem 2)

We next treat the case of (13);; which implies that the multiplicity of
the characteristic roots is at most two. In this case the definitions of the
regularized coefficients A, and B, are quite same as the previous case.

But paying attention to (13)y1, we find that (20) in becomes
(Ac(t.€) + Be(t,9))" 2 81, Ac(t,€)B(t,€) 2 eJ¢]*
Ce(t,€)* > 87 1¢[*,
and (25) in becomes
8 max{e®[€[°(v]?, |€]*|vsl?, 1€[%|0stl?, |veeel®)
< Fe(t, 5)2 < L(JE°lvf* + |§14lvt|2 + 1€ vl + vwe®). (40)

Hence takingn = -5 — 3 Land ¢ = —1, we get the followings instead of

(26) and [27).




56 F. Colombini and T. Kinoshita

2 2
I < Me*tp2 4 —ﬁMs““Q”Iﬁ ?F? = Me™'F2 + M 2t ¢ |PF?

< Ce'F? 4 C'e* M ¢)?F?
Ip < M6 e F? 4 2Me* % |¢|°F2 = Ce 7 E2 + C'e* M ¢)PF2. (41)

Consequently we have (F.(t,€)?)" < Ce™1F.(t,€)?+C"e* 1 (€)2F.(t, €)>.
1

Similarly choosing € = (£) , % and using the assumption (6), we also have
the energy inequality E.(t,£)? < E.(0,&)? for t € [0, T]. Finally by (40) we
have the following energy inequality based on 0v (h =0, 1,2, 3, 4).
1
Ze2p(t) 2qh|8hvl2 < CZ 62p0 )s 6)2(3—h)|vh|2,
h=0

where gy = 2 +a 1 =2,qg=1¢g3=0, qs = =2 +2°‘ This is equivalent to

(7)1

2.3. Case of (14)111 (Theorem 2)

We next treat the case of (14)y1 which also implies that the multiplic-
ity of the characteristic roots is at most two. But in this case the defini-
tions of the regularized coefficients A. and B, are replaced by A.(t,€) =
max{A1e(t,£), A2e(t,€)} and Be(t,€) = min{A1(2,€), A2(t,§)}, where
A1e(t, €), Age(t, €) are two roots of the algebraic equation A%2 — H(¢,£)A +
Ge(t, &) = 0 with

He(t,€) (= Ae(t,€) + Be(t,))
=2 [ (4o + B ) )ar (42)

S €

Ge(t,€) (= Ac(t,€)Be(t,€))

1 | A o8 e()ar - kel
0<e<l, K>0). (43)

We can use the condition (3) instead of the condition (2) (see Remark 4).
Then by (3) there exists M > 0 such that for { € Ry

(4c(t,€) + Be(,€) - (A(,©) + B(t,6))| < Me(gP?, (44)
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Ac(t,€)Be(t,€) — A, O B(t,€)| < Me2g, (45)
9 (Ac(t,€) + Be(t,6))| < Me gl
; (46)

= (At ) Be(t, )| < Mg,

and we get the following lemma.

1
Lemma 3 Let €= (£), % Then there ezist v > 0 and K > 0 such that
for £ € R¢

A6+ Bolt§) 2 2061, At OB(t€) > gl
Ce(t,€)* > e*|¢|*, (47)
where 81 > 0 is given by (14)111.
Proof. Noting and that
|(A(t) + B(t))* =1 [ (A(r) + B(T))Zgo(t_TT)dT] < Ce*|¢|*, we find that

Ce(ta 5)2 = (AE + B€)2 - 4AeBe
= (Ae + B.)> = (A. + B.)(A+ B) + (Ac + B:)(A+ B)

—(A+B)*+(A+B)? - 1/00 (A(r) +B(r) o (=" )dr

€ J oo €

L1 /oo (A7) + B(T))Q(p(t - T)dT — 4A.B.

E—OO

= (Ae + B.){(A: + B.) - (A+ B)}
+(A+ B){(4: + B:) - (A+ B)}

+ {(A+B)2 - 1/00 (A(r) + B(T))2(p(t — T)dT}

3 £
+ {1 /oo (A(T) + B(T))2(,0<t —s T)d'r

1 / ” 4A(T)B(T)(p(t—_é—7-)d’r} + 4Ke¢[!

E’.'—OO
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> —Ce?f¢]" - Cele|* — Ce”lg[*
+2 [T (A9 - Blr o (“T )ar + axet

—00

> (4L — 3C)e*|¢|*.

Therefore if we take K > 0 large enough, we can obtain C,(t,&)? > *|£|4.
Paying attention to (14), from and (43) we also find that

A(t,€) + Be(t, &) > 261[¢/?

—2a 2
and taking v > 0 such that 5% — Kvza > %1,

—2a

Ac(t,€)Be(t,€) > {67 - Keo}le|* = {o7 - K(©)F™ }|eI*

—2a 62
> {67 — KvFea el > Lielt

Moreover we remark that (25) in becomes
s max{e®|¢|°(v[?, e*[€*|vel*, e¥I€[* veel®, € [venel*}
< Fo(t,€)? < L€ + 1€ vel® + 112 vee|* + |vesel?). (48)
Hence taking n = —1, by we get the following instead of (26).

Il = 2{(145 + Bs) — (A + B)}?R(e"vtt, E_n(kl + ll))
< |(Ae + Bo) — (A + B)|e2]uaf?
+ [(Ae + Be) — (A+ B)|e™ k1 + 1y |?
< Ce™F2 + C'e® ™¢PF2 = Ce ' F2 + C'e* Mg L.
Concerned with Iz, we also get (41) instead of [27).
Consequently we have (F,(t, 5)2), < Ce L F.(t, )2 4+C' e H{E)2F (¢, £)2.
1

I
Similarly choosing € = (£), "2 and using the assumption (6), we also have

the energy inequality F.(t,£)? < E.(0,£)? for t € [0, T)]. Finally by (48) we
have the following energy inequality based on 8fv (h =0, 1,2, 3, 4).

4 3
Ze2p(t)(§)% <£>1—g"+§—°‘—2h|athv12 < CZ e2p0(§>% <§)2(3_h)|vh|2-

This is equivalent to (8)yrr.
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