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On approximation of 2w-periodic functions
in Holder spaces

L. REMPULSKA and Z. WALCZAK
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Abstract. This note is connected with results given in papers [2-5]. We give two
approximation theorems for 27-periodic functions belonging to generalized Hélder spaces.
We present also applications of these theorems.
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1. Preliminaries

1.1. Let If_, 1 < p < oo, be the space of 27-periodic real-valued functions,
Lebesgue integrable with p-th power on [—7, 7] if 1 < p < co and continuous

on R := (—00, +00) if p = 0o. Let the norm of f in I be defined by

4 1/p
(/ |f @) dm) if 1<p<oo,
1l = 1FCHllp = { N

ﬁngﬂ if p=oo.

1)

For fe Lk, we define as usual ([7]) the modulus of continuity wi (f, p; -)
and the modulus of smoothness wg(f, p; -) of the order 2 < k € N :=
{1, 2, ...} by the formula

wk(fa p;t) = |§L1|1£t HAI;Lf( ’ )”pv t>0, (2)
where
ALf(z) = f(z +h) = f(2), (3)

A f(z) = AL(AF T f(2)) i k>2

Hence, we have
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k
k i .
8@ = 3 () 1t stek n),
=0\
It is known ([7]) that for every f € L, the function wi(f, p; ) is
positive and non-decreasing and

Jm wi(f, pit) = 0. (4)
Moreover,

we(f, prt) < 2w 1 (f, ;3 8)<- -
<2kl (f, pit) < 2F||Fllps £ 20

1.2. Let k € N be a fixed number. As in [4] we denote by € the set of
all modulus - type functions i.e. ) is the set of all functions w defined on
Ry := [0, +00) such that

w(t) > 0 for ¢t € Ry,

w is increasing,

w(t) = w(0) =0 as t — 0+,

w(t)t~* is monotonically decreasing.
Similarly as in [4], for a given w € Q, k € N, and 1 < p < oo we
define the generalized Holder spaces Ha“? and HE“7P as follows: the

space HY“'P is the set of all functions f € L2 _ for which
2w 2w

« oo TARFC)
111500 = 17 CE 0,0 = 2218%— < +oo ()

o

o o
R e g g

d

and the norm is defined by
Iz o = N C)laewe = [1fllp + NFNE, w,p- (6)

It is easily verified that f € H;;W’P if and only if there exists a positive
constant M depending only on f, p and k such that

wr(f, p;t) < Mw(t) for t>0.
The space HE2“® is the set of all functions f € H&“? for which

t—0+ w(t) =0 (7)

and the norm is defined by (6).
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If w(t) =t for t > 0 and for fixed 0 < a < k, k € N, then H;C;r”’p and
Héi’r“”p are the classical Holder-Lipschitz-Zygmund spaces.
If w, p € Qp and

w(t)

At) = —=, t>0, 8
(D) ®
is a non-decreasing function, then
k,w, k, u, rrk,w, 7k, 1,
HyyP C HyptP, Hypp™P C HyPP. 9)

Moreover, for every f € Hy“'? we have

wr(f, p;t) S w @B f Iz, w,pr £20. (10)
1.3. Let I := [a, b) C Ry be a given interval. For functions f € L5, 1 <
p < 00, and for r € I we define the family of integral operators

Ar(f;z) = f)®,(t —z)dt, z€R, (11)

where ® = {®, : 7 € I} is a family of functions in L§2 satisfying

/ﬂ o (t)dt =1, rel, (12)

-7
and there exists a positive constant Mg, depending on ® and independent
of r € I such that

w
/ |®,(t)|dt < Mg for rel. (13)

—7

Then A,(f) can be written in the form

Afiz) = | fla+ddb)dt, zcR rel. (14)

2. Main results
2.1. First we shall give some auxiliary results.
Lemma 1 Let ®.(-)€®, r€I. Then for any f € L}, we have
[Ar (75 e S NFCIpl @Il < Mallfll, for 7€, (15)

where Mg is the positive constant given in (13).
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The inequality (15) shows that Ay is a bounded linear operator from L5
into L5

Proof. If p = oo, then (15) is clear. If 1 < p < oo, then (15) follows from
Fubini’s theorem and Holder’s inequality. ]

Lemma 2 Let &,.(-) € &, r € I and let w € Q. Then for every f €
Hf;rw’p, we have

AR (f5 Nz e SISl oo p |2 ()Ml
SMcp”fHHk,u,p for rel, (16)

where Mg is the positive constant as in (13). From (16) it follows that A,
is a bounded linear operator from HE“P into HE“P,

Proof. By (6) and (5) we can write

A= (f; Mmoo = 1Ar(f5 llp + 1A= (f5 Ik w, p (17)

IAE A (£5 )l

for every f € H;c;rw’p and r € I. By (3) and (14) we get

A%Ar(f;x)=/j [AF f(z +£))@,(2) dt

=A(AFf:2), z€R, heRy. (18)
Now, applying Lemma 1, we obtain
IARA(F5 e = I AARS; My < MallARF( )5, (19)
and consequently
[A-(f5 Mz, w,p < MollFlI% 0, 7 €L (20)
Using (15) and (20) to (17), we obtain (16). O

Lemma 3 Suppose that ®, and w be as in Lemma 2. Then, for every
fized r € I, A, is a bounded linear operator from HQ’ “P into H’C “P

Proof. By (19), for all f € HE“'?, we can write
0 < wi(Ar(f), pit) < Mow(f, pit), ¢2>0, rel,
which together with (7) implies A,(f; -) € Hj, HE P, O
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2.2. Now we shall prove two main theorems for the operators A,(f).

Theorem 1 Assume that s € N is a fized number and w, u € 5 are
functions for which A(t) = w(t)/u(t) is non-decreasing for t > 0. Moreover
assume that

[A-(f; ) = F()lp < Miws(f, ps(r)), rel, felj, (21)

with a given My = const. > 0 and a given positive function (), continuous
and decreasing on I = [a, b) and lim,_;— (r) = 0.

Then there exists o positive constant My depending only on ®, s and
p(p(a)) such that for every f € Hy: P,

[Ar(f5 ) = FOClEsme < Ma||F|5 0, pA(0(r)), €L (22)
Proof. Denote
Br(fiz) = A (fiz) = f(z), z€R, rel, (23)

for f € Hy*'?. By our assumptions, we have Hy“"? c Hy*? Hence by
27 2w 27
Lemma 2 and (6), we can write

| Br(f5 Masme = Br(f; o+ 1Br(f5 I, ,po (24)
for every f € Hs.*"? and r € I. Applying (21) and (10), we get
1Br(f; llp<Miws(f, pip(r)) < Ma|| fIIs5, 0, pw(e(r)) (25)

SMup(e(aD)|| fII5,w, pA(e(r))
for r € I. Moreover, we have

1ARB-(f; )l

HBT‘(fv )”:,/L,p :iliIO)T (26>
O<h<o(r) h>e(r) p(h)

By (23) and (19), it follows that

AR B-(f5 Il <IARA(f5 o+ I1AZS ()l
<(Ma + DALl
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and further we get

ARSIy
W, <(M. 1 —a = 27
=M + )o<i1512(r) p(h) 0

<(Mg + D)Mp(r))  sup H_A%l_p
0<h<p(r)

<(Mo + DA@EI I 0y T €L
Since [|A3.£(-)llp < 2°]fllp, we have by (21) and (10),

s 1B-(f5 o sws(f, By (1))
Zy < — = < M1 2P —————
R S R 1) )
SM2PN| SIS 0, pA0(7)), €L
Combining (24)-(28), we immediately obtain (22). O

Theorem 2 Let assumptions of Theorem 1 be satisfied. Then for every
f € Hy*"", we have

[Ar(f; -) = F(lleme = 0o(Mep(r))), as 7 —b—. (29)
Proof. Denoting Br(f;x) as in (23), by (9) and Lemma 3 we can write the
formula (24). Applying (21), we get

0 < ||Br(f; llp<Miws(f, p; (7))
ws(f, p; (7))

SMlﬂ(‘P(a))A(SD("")) Q}(QD(T')) y TE I7
which, by (7) and by ¢(r) — 0+ as r — b—, implies
1B-(f; )l = o(A(e(r))) as r—b—. (30)

Analogously as in the proof of Theorem 1 we can write the inequality
(26) and similarly as in (27) and (28) we get

A €S 210
0 We < (Mo +16l0) o ==
wle(r))

which, by (7) and the properties of ¢(-) and A(-), implies
Wr =o0(Me(r))), Zr=o(Me(r))) as r—b—.

0 < Z, < 2°MiA(ep(r)) rel,
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Consequently we have

1Br(f5 s, u,0 = o(Alp(r))) a8 7 —b—. (31)
Now the desired assertion (29) immediately follows from (24), (30) and (31).
O

From the above theorems we derive the following two corollaries.

Corollary 1 Let w, u € Qp with o fized k € N and let the function A
defined by (8) be increasing and limi_o4A(t) = 0. Then for every f €
Hf%w’p satisfying the condition (21), we have

NA-(f; ) = FO)lgrms =0(1) as r—b—.

Corollary 2 Let w(t) =t*, u(t) =8 fort >0 and 0 < § < o < k, where
ke N. Then for every f € H;’r‘”’p satisfying the condition (21), we have

1Ar(£; ) = FC)llmme = O((p(r))* ) as r—b—.

Moreover,

1A= (f5 ) = FC)lmme = o((0(r))*P) as 7~ b—,

k

for every f € Hy:*'? satisfying the condition (21).

3. Applications

In this section we shall consider two examples of operators of the type
A, defined by (11)-(13). Applying Theorem 1 and Theorem 2, we shall
derive certain estimations for these operators.

3.1. First we consider the de la Vallée Poussin integral V., (f) (3], [6]) of
function f € If_, 1 < p < oo,

Valfiz) == _1”%/ f(t) cos™ dt
r€R, neN, (32)

where 2n)!! =2-4..-.- (2n) and Cn - DI =1-3-5...--2n—1). Tt
is known ([3]) that V,(f; -) is a trigonomertic polynomial of the order at
most n and
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Vol f52)=50()

(2n)!! .
22“ 2n— 1) £ < ) (f) coskz + by (f)sinkz],

where ax(f) and bg(f) are coeflicients of the Fourier series of function f &
LE . Moreover, it is known ([3], [6]) that for every fixed 1 < p < oo there

exists a positive constant M, depending only on p such that for every f €
LP

21
IValfs ) = FO)p < Mpwa(f, pﬂ/ﬁ), n € N.

Since
™ — 1\
cos®" dt £2n_1) n € N,
- 2n)1t 7

we see that V,(f) is the operator of the type (11)-(13), with » = n and
I=N.

Applying Theorem 1 and Theorem 2, we can formulate for V,,(f) analo-
gies of Corollary 1 and Corollary 2. Now ¢(n) = 1/4/n forn € N. In
particular we have

Corollary 3 If w(t ) =t and p(t) =tP fort >0 and 0 < B < a < 2,
then for every f € HQ’w’p, we have

IValfs ) = F()llgzme = OmP=¥/%), neN.
If f € HZP, then
IValfs ) = F()lgzws = o(n(ﬁ—a)/2) as n — oo.

3.2. Let f € L with a fixed 1 < p < oo and let Si(f; ) be the k-th
partial sum of the Fourier series of f. In [1], we considered the following
Abel means of the order m € Ny := N U {0} of the Fourier series of f:

[e.e]
Unf mio) = (1= Y () s, (53)
k
k=0
z € R, r €[0,1). It is known ([1]) that U,(f, m) can be written in the
integral form

™

Ur(fymiz) = | flz+t)K(m;t)dt,

-7



On approzimation of 2w-periodic functions in Holder spaces 655

where

(1= S (m+5\
Koty = LSS (M) g ),
" m ;( J ) ’

1
Dy(t) = Dj(t):~2-+cost+cos2t+---+cosjt if 7>1.

2 b
Moreover it is known ([1]) that, for fixed m € Ny and 0 < r < 1, the function
K, (m; -) belongs to the space L2 and satisfies conditions of the type (12)
and (13). From the above we deduce that U,(f, m; -) is an operator of the
type (11)-(13), with I = [0, 1).

In [1] it was proved that for fixed 2 < m € N and 1 < p < o0, there
exists a positive constant M, , depending only on m and p such that

1U(f, mi ) = F()llp < Mo, pom(f, pi1 —7) (34)

for every f € L% and for all r € [0, 1). Moreover if m =0, 1 and 0 < ry <
1, then there exists a positive constant M, », such that for every f € L% |

1U-(f m; ) = FC)lp

wo(f, p;1—r) if m=1,
S Mp:TO{

wi(f, p;(1=r)|In(L—r))) if m=0, (35)

for all 7 € [rg, 1).

Applying Theorem 1, Theorem 2 and (34) we obtain

Corollary 4 Suppose that 1 < p < 00, 2 < m € N, w, u € Qp and
A(t) = w(t)/u(t) is monotonically increasing function for t > 0. Then for
the Abel means U.(f, m; -) of the Fourier series of f € Ho»“"?, we have

1Ux(fs ms =) = fFC)lgmme = OML = 7)) for r€[0,1). (36)
If fe ﬁ;’:r’w’p, then
NU-(f, ms ) = FC)llgmome =0(A(1=7)) as r—1—.  (37)

Corollary 5 Let 1<p<oo and2<me& N and let w(t) =t*, u(t) =t°
fort>0and 0 < B < a<m. Then for every f € Hyr*'?, we have

WU(F, mi ) = F( ) lmomwe = O((L—7)*7F), ref0,1). (38
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If fe flg;‘r’w’p, then
U (f, m; +) = f()llamer = o((1=7)*F) as 7—1—. (39)

Applying (35), Theorem 1 and Theorem 2, we can formulate also analo-
gies of (36)-(39) for the Abel means U,.(f, m; -) with m =0 and m = 1.
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