On approximation of 2π -periodic functions in Hölder spaces

L. REMPULSKA and Z. WALCZAK

(Received October 29, 2002; Revised February 24, 2003)

Abstract. This note is connected with results given in papers [2-5]. We give two approximation theorems for 2π -periodic functions belonging to generalized Hölder spaces. We present also applications of these theorems.

 $Key\ words$: Hölder space, approximation theorem, de la Vallée Poussin integral, Abel means.

1. Preliminaries

1.1. Let $L_{2\pi}^p$, $1 \le p \le \infty$, be the space of 2π -periodic real-valued functions, Lebesgue integrable with p-th power on $[-\pi, \pi]$ if $1 \le p < \infty$ and continuous on $R := (-\infty, +\infty)$ if $p = \infty$. Let the norm of f in $L_{2\pi}^p$ be defined by

$$||f||_{p} \equiv ||f(\cdot)||_{p} := \begin{cases} \left(\int_{-\pi}^{\pi} |f(x)|^{p} dx \right)^{1/p} & \text{if } 1 \leq p < \infty, \\ \max_{|x| \leq \pi} |f(x)| & \text{if } p = \infty. \end{cases}$$
(1)

For $f \in L^p_{2\pi}$, we define as usual ([7]) the modulus of continuity $\omega_1(f, p; \cdot)$ and the modulus of smoothness $\omega_k(f, p; \cdot)$ of the order $2 \leq k \in N := \{1, 2, \ldots\}$ by the formula

$$\omega_k(f, p; t) := \sup_{|h| \le t} \|\Delta_h^k f(\cdot)\|_p, \quad t \ge 0,$$
 (2)

where

$$\Delta_h^1 f(x) := f(x+h) - f(x),$$

$$\Delta_h^k f(x) := \Delta_h^1 \left(\Delta_h^{k-1} f(x) \right) \quad \text{if} \quad k \ge 2.$$
(3)

Hence, we have

²⁰⁰⁰ Mathematics Subject Classification: 41A25.

$$\Delta_h^k f(x) = \sum_{j=0}^k \binom{k}{j} (-1)^{k-j} f(x+jh).$$

It is known ([7]) that for every $f \in L^p_{2\pi}$, the function $\omega_k(f, p; \cdot)$ is positive and non-decreasing and

$$\lim_{t \to 0+} \omega_k(f, p; t) = 0. \tag{4}$$

Moreover,

$$\omega_k(f, p; t) \le 2\omega_{k-1}(f, p; t) \le \cdots$$

$$\le 2^{k-1}\omega_1(f, p; t) \le 2^k ||f||_p, \quad t \ge 0.$$

- **1.2.** Let $k \in N$ be a fixed number. As in [4] we denote by Ω_k the set of all modulus type functions i.e. Ω_k is the set of all functions ω defined on $R_0 := [0, +\infty)$ such that
- a) $\omega(t) \geq 0$ for $t \in R_0$,
- b) ω is increasing,
- c) $\omega(t) \to \omega(0) = 0$ as $t \to 0+$,
- d) $\omega(t)t^{-k}$ is monotonically decreasing.

Similarly as in [4], for a given $\omega \in \Omega_k$, $k \in N$, and $1 \leq p \leq \infty$ we define the generalized Hölder spaces $H_{2\pi}^{k,\omega,p}$ and $\widetilde{H}_{2\pi}^{k,\omega,p}$ as follows: the space $H_{2\pi}^{k,\omega,p}$ is the set of all functions $f \in L_{2\pi}^p$ for which

$$||f||_{k,\omega,p}^* \equiv ||f(\cdot)||_{k,\omega,p}^* := \sup_{h>0} \frac{||\Delta_h^k f(\cdot)||_p}{\omega(h)} < +\infty$$
 (5)

and the norm is defined by

$$||f||_{H^{k,\omega,p}} \equiv ||f(\cdot)||_{H^{k,\omega,p}} := ||f||_p + ||f||_{k,\omega,p}^*.$$
(6)

It is easily verified that $f \in H^{k,\,\omega,\,p}_{2\pi}$ if and only if there exists a positive constant M depending only on $f,\,p$ and k such that

$$\omega_k(f, p; t) \le M\omega(t)$$
 for $t \ge 0$.

The space $\widetilde{H}_{2\pi}^{k,\omega,p}$ is the set of all functions $f\in H_{2\pi}^{k,\omega,p}$ for which

$$\lim_{t \to 0+} \frac{\omega_k(f, p; t)}{\omega(t)} = 0 \tag{7}$$

and the norm is defined by (6).

If $\omega(t) = t^{\alpha}$ for $t \geq 0$ and for fixed $0 < \alpha \leq k$, $k \in N$, then $H_{2\pi}^{k,\omega,p}$ and $\widetilde{H}_{2\pi}^{k,\omega,p}$ are the classical Hölder-Lipschitz-Zygmund spaces.

If ω , $\mu \in \Omega_k$ and

$$\lambda(t) := \frac{\omega(t)}{\mu(t)}, \quad t > 0, \tag{8}$$

is a non-decreasing function, then

$$H_{2\pi}^{k,\,\omega,\,p} \subset H_{2\pi}^{k,\,\mu,\,p}, \quad \widetilde{H}_{2\pi}^{k,\,\omega,\,p} \subset \widetilde{H}_{2\pi}^{k,\,\mu,\,p}.$$
 (9)

Moreover, for every $f \in H_{2\pi}^{k,\omega,p}$ we have

$$\omega_k(f, p; t) \le \omega(t) \|f\|_{k, \omega, p}^*, \quad t \ge 0.$$
 (10)

1.3. Let $I := [a, b) \subseteq R_0$ be a given interval. For functions $f \in L^p_{2\pi}$, $1 \le p \le \infty$, and for $r \in I$ we define the family of integral operators

$$A_r(f;x) := \int_{-\pi}^{\pi} f(t)\Phi_r(t-x) \, dt, \quad x \in R,$$
 (11)

where $\Phi = \{\Phi_r : r \in I\}$ is a family of functions in $L^\infty_{2\pi}$ satisfying

$$\int_{-\pi}^{\pi} \Phi_r(t) dt = 1, \quad r \in I, \tag{12}$$

and there exists a positive constant M_{Φ} , depending on Φ and independent of $r \in I$ such that

$$\int_{-\pi}^{\pi} |\Phi_r(t)| dt \le M_{\Phi} \quad \text{for} \quad r \in I.$$
 (13)

Then $A_r(f)$ can be written in the form

$$A_r(f;x) := \int_{-\pi}^{\pi} f(x+t)\Phi_r(t) \, dt, \quad x \in R, \quad r \in I.$$
 (14)

2. Main results

2.1. First we shall give some auxiliary results.

Lemma 1 Let $\Phi_r(\cdot) \in \Phi$, $r \in I$. Then for any $f \in L^p_{2\pi}$, we have

$$||A_r(f;\cdot)||_p \le ||f(\cdot)||_p ||\Phi_r(\cdot)||_1 \le M_\Phi ||f||_p \quad for \quad r \in I,$$
 (15)

where M_{Φ} is the positive constant given in (13).

The inequality (15) shows that A_r is a bounded linear operator from $L^p_{2\pi}$ into $L^p_{2\pi}$.

Proof. If $p = \infty$, then (15) is clear. If $1 \le p < \infty$, then (15) follows from Fubini's theorem and Hölder's inequality.

Lemma 2 Let $\Phi_r(\cdot) \in \Phi$, $r \in I$ and let $\omega \in \Omega_k$. Then for every $f \in H_{2\pi}^{k,\omega,p}$, we have

$$||A_{r}(f; \cdot)||_{H^{k, \omega, p}} \le ||f||_{H^{k, \omega, p}} ||\Phi_{r}(\cdot)||_{1}$$

$$\le M_{\Phi} ||f||_{H^{k, \omega, p}} \quad for \quad r \in I,$$
(16)

where M_{Φ} is the positive constant as in (13). From (16) it follows that A_r is a bounded linear operator from $H_{2\pi}^{k,\omega,p}$ into $H_{2\pi}^{k,\omega,p}$.

Proof. By (6) and (5) we can write

$$||A_r(f;\,\cdot\,)||_{H^{k,\,\omega,\,p}} = ||A_r(f;\,\cdot\,)||_p + ||A_r(f;\,\cdot\,)||_{k,\,\omega,\,p}^*,$$

$$||A_r(f;\,\cdot\,)||_{k,\,\omega,\,p}^* = \sup_{h>0} \frac{||\Delta_h^k A_r(f;\,\cdot\,)||_p}{\omega(h)},$$
(17)

for every $f \in H_{2\pi}^{k,\,\omega,\,p}$ and $r \in I$. By (3) and (14) we get

$$\Delta_h^k A_r(f;x) = \int_{-\pi}^{\pi} [\Delta_h^k f(x+t)] \Phi_r(t) dt$$

$$= A_r(\Delta_h^k f;x), \quad x \in R, \quad h \in R_0.$$
(18)

Now, applying Lemma 1, we obtain

$$\|\Delta_{h}^{k} A_{r}(f; \cdot)\|_{p} = \|A_{r}(\Delta_{h}^{k} f; \cdot)\|_{p} \le M_{\Phi} \|\Delta_{h}^{k} f(\cdot)\|_{p}, \tag{19}$$

and consequently

$$||A_r(f; \cdot)||_{k,\omega,p}^* \le M_{\Phi} ||f||_{k,\omega,p}^*, \quad r \in I.$$
 (20)

Using
$$(15)$$
 and (20) to (17) , we obtain (16) .

Lemma 3 Suppose that Φ_r and ω be as in Lemma 2. Then, for every fixed $r \in I$, A_r is a bounded linear operator from $\widetilde{H}_{2\pi}^{k,\omega,p}$ into $\widetilde{H}_{2\pi}^{k,\omega,p}$.

Proof. By (19), for all $f \in \widetilde{H}_{2\pi}^{k,\omega,p}$, we can write

$$0 \le \omega_k(A_r(f), p; t) \le M_{\Phi}\omega_k(f, p; t), \quad t \ge 0, \quad r \in I,$$

which together with (7) implies $A_r(f; \cdot) \in \widetilde{H}^{k, \omega, p}_{2\pi}$.

2.2. Now we shall prove two main theorems for the operators $A_r(f)$.

Theorem 1 Assume that $s \in N$ is a fixed number and ω , $\mu \in \Omega_s$ are functions for which $\lambda(t) = \omega(t)/\mu(t)$ is non-decreasing for t > 0. Moreover assume that

$$||A_r(f;\cdot) - f(\cdot)||_p \le M_1 \omega_s(f, p; \varphi(r)), \quad r \in I, \quad f \in L^p_{2\pi}, \quad (21)$$

with a given $M_1 = const. > 0$ and a given positive function $\varphi(\cdot)$, continuous and decreasing on I = [a, b) and $\lim_{r \to b^-} \varphi(r) = 0$.

Then there exists a positive constant M_2 depending only on Φ , s and $\mu(\varphi(a))$ such that for every $f \in H^{s, \omega, p}_{2\pi}$,

$$||A_r(f;\cdot) - f(\cdot)||_{H^{s,\mu,p}} \le M_2 ||f||_{s,\omega,p}^* \lambda(\varphi(r)), \quad r \in I.$$
 (22)

Proof. Denote

$$B_r(f;x) := A_r(f;x) - f(x), \quad x \in R, \quad r \in I,$$
 (23)

for $f \in H_{2\pi}^{s,\omega,p}$. By our assumptions, we have $H_{2\pi}^{s,\omega,p} \subset H_{2\pi}^{s,\mu,p}$. Hence by Lemma 2 and (6), we can write

$$||B_r(f;\,\cdot\,)||_{H^{s,\,\mu,\,p}} = ||B_r(f;\,\cdot\,)||_p + ||B_r(f;\,\cdot\,)||_{s,\,\mu,\,p}^*,\tag{24}$$

for every $f \in H_{2\pi}^{s,\omega,p}$ and $r \in I$. Applying (21) and (10), we get

$$||B_r(f;\,\cdot\,)||_p \le M_1 \omega_s(f,\,p;\varphi(r)) \le M_1 ||f||_{s,\,\omega,\,p}^* \omega(\varphi(r))$$

$$\le M_1 \mu(\varphi(a)) ||f||_{s,\,\omega,\,p}^* \lambda(\varphi(r))$$
(25)

for $r \in I$. Moreover, we have

$$||B_{r}(f;\cdot)||_{s,\mu,p}^{*} = \sup_{h>0} \frac{||\Delta_{h}^{s}B_{r}(f;\cdot)||_{p}}{\mu(h)}$$

$$\leq \left\{ \sup_{0< h \leq \varphi(r)} + \sup_{h>\varphi(r)} \right\} \frac{||\Delta_{h}^{s}B_{r}(f;\cdot)||_{p}}{\mu(h)} := W_{r} + Z_{r}.$$
(26)

By (23) and (19), it follows that

$$\|\Delta_{h}^{s} B_{r}(f; \cdot)\|_{p} \leq \|\Delta_{h}^{s} A_{r}(f; \cdot)\|_{p} + \|\Delta_{h}^{s} f(\cdot)\|_{p}$$
$$\leq (M_{\Phi} + 1) \|\Delta_{h}^{s} f(\cdot)\|_{p}$$

and further we get

$$W_{r} \leq (M_{\Phi} + 1) \sup_{0 < h \leq \varphi(r)} \frac{\|\Delta_{h}^{s} f(\cdot)\|_{p}}{\mu(h)}$$

$$\leq (M_{\Phi} + 1)\lambda(\varphi(r)) \sup_{0 \leq h \leq \varphi(r)} \frac{\|\Delta_{h}^{s} f(\cdot)\|_{p}}{\omega(h)}$$

$$\leq (M_{\Phi} + 1)\lambda(\varphi(r))\|f\|_{s,\omega,p}^{*}, \quad r \in I.$$

$$(27)$$

Since $\|\Delta_h^s f(\cdot)\|_p \le 2^s \|f\|_p$, we have by (21) and (10),

$$Z_r \leq 2^s \sup_{h>\varphi(r)} \frac{\|B_r(f;\cdot)\|_p}{\mu(h)} \leq M_1 2^s \frac{\omega_s(f, p; \varphi(r))}{\mu(\varphi(r))}$$

$$\leq M_1 2^s \|f\|_{s,\omega,p}^* \lambda(\varphi(r)), \quad r \in I.$$
(28)

Combining (24)-(28), we immediately obtain (22).

Theorem 2 Let assumptions of Theorem 1 be satisfied. Then for every $f \in \widetilde{H}^{s,\omega,p}_{2\pi}$, we have

$$||A_r(f;\cdot) - f(\cdot)||_{H^{s,\mu,p}} = o(\lambda(\varphi(r))), \quad as \quad r \to b - . \tag{29}$$

Proof. Denoting $B_r(f;x)$ as in (23), by (9) and Lemma 3 we can write the formula (24). Applying (21), we get

$$0 \leq \|B_r(f; \cdot)\|_p \leq M_1 \omega_s(f, p; \varphi(r))$$
$$\leq M_1 \mu(\varphi(a)) \lambda(\varphi(r)) \frac{\omega_s(f, p; \varphi(r))}{\omega(\varphi(r))}, \quad r \in I,$$

which, by (7) and by $\varphi(r) \to 0+$ as $r \to b-$, implies

$$||B_r(f;\cdot)||_p = o(\lambda(\varphi(r)))$$
 as $r \to b - .$ (30)

Analogously as in the proof of Theorem 1 we can write the inequality (26) and similarly as in (27) and (28) we get

$$0 \le W_r \le (M_{\Phi} + 1)\lambda(\varphi(r)) \sup_{0 < h \le \varphi(r)} \frac{\omega_s(f, p; h)}{\omega(h)},$$

$$0 \le Z_r \le 2^s M_1 \lambda(\varphi(r)) \frac{\omega_s(f, p; \varphi(r))}{\omega(\varphi(r))}, \quad r \in I,$$

which, by (7) and the properties of $\varphi(\cdot)$ and $\lambda(\cdot)$, implies

$$W_r = o(\lambda(\varphi(r))), \quad Z_r = o(\lambda(\varphi(r))) \quad \text{as} \quad r \to b - .$$

Consequently we have

$$||B_r(f;\cdot)||_{s,\mu,\nu}^* = o(\lambda(\varphi(r))) \quad \text{as} \quad r \to b - . \tag{31}$$

Now the desired assertion (29) immediately follows from (24), (30) and (31).

From the above theorems we derive the following two corollaries.

Corollary 1 Let ω , $\mu \in \Omega_k$ with a fixed $k \in N$ and let the function λ defined by (8) be increasing and $\lim_{t\to 0+}\lambda(t)=0$. Then for every $f\in$ $H_{2\pi}^{k,\omega,p}$ satisfying the condition (21), we have

$$||A_r(f;\cdot) - f(\cdot)||_{H^{k,\mu,p}} = o(1)$$
 as $r \to b - ...$

Corollary 2 Let $\omega(t) = t^{\alpha}$, $\mu(t) = t^{\beta}$ for $t \ge 0$ and $0 < \beta < \alpha \le k$, where $k \in N$. Then for every $f \in H_{2\pi}^{k,\omega,p}$ satisfying the condition (21), we have

$$||A_r(f;\cdot) - f(\cdot)||_{H^{k,\mu,p}} = O((\varphi(r))^{\alpha-\beta})$$
 as $r \to b-1$

Moreover,

$$||A_r(f;\cdot) - f(\cdot)||_{H^{k,\mu,p}} = o((\varphi(r))^{\alpha-\beta})$$
 as $r \to b-$,

for every $f \in \widetilde{H}_{2\pi}^{k,\omega,p}$ satisfying the condition (21).

3. Applications

In this section we shall consider two examples of operators of the type A_r defined by (11)-(13). Applying Theorem 1 and Theorem 2, we shall derive certain estimations for these operators.

3.1. First we consider the de la Vallée Poussin integral $V_n(f)$ ([3], [6]) of function $f \in L^p_{2\pi}$, $1 \le p \le \infty$,

$$V_n(f;x) := \frac{(2n)!!}{(2n-1)!!} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \cos^{2n} \frac{t-x}{2} dt,$$

$$x \in R, \quad n \in N, \quad (32)$$

where $(2n)!! = 2 \cdot 4 \cdot \cdots \cdot (2n)$ and $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)$. It is known ([3]) that $V_n(f;\cdot)$ is a trigonomertic polynomial of the order at most n and

$$V_n(f;x) = \frac{1}{2}a_0(f) + \frac{(2n)!!}{2^{2n}(2n-1)!!} \sum_{k=1}^n {2n \choose n-k} \left[a_k(f)\cos kx + b_k(f)\sin kx\right],$$

where $a_k(f)$ and $b_k(f)$ are coefficients of the Fourier series of function $f \in L^p_{2\pi}$. Moreover, it is known ([3], [6]) that for every fixed $1 \leq p \leq \infty$ there exists a positive constant M_p depending only on p such that for every $f \in L^p_{2\pi}$,

$$||V_n(f; \cdot) - f(\cdot)||_p \le M_p \omega_2(f, p; 1/\sqrt{n}), \quad n \in N.$$

Since

$$\int_{-\pi}^{\pi} \cos^{2n} \frac{t}{2} dt = 2\pi \frac{(2n-1)!!}{(2n)!!}, \quad n \in \mathbb{N},$$

we see that $V_n(f)$ is the operator of the type (11)-(13), with r = n and $I \equiv N$.

Applying Theorem 1 and Theorem 2, we can formulate for $V_n(f)$ analogies of Corollary 1 and Corollary 2. Now $\varphi(n)=1/\sqrt{n}$ for $n\in N$. In particular we have

Corollary 3 If $\omega(t) = t^{\alpha}$ and $\mu(t) = t^{\beta}$ for $t \geq 0$ and $0 < \beta < \alpha \leq 2$, then for every $f \in H_{2\pi}^{2,\omega,p}$, we have

$$||V_n(f;\cdot) - f(\cdot)||_{H^{2,\mu,p}} = O(n^{(\beta-\alpha)/2}), \quad n \in \mathbb{N}.$$

If $f \in \widetilde{H}^{2,\omega,p}_{2\pi}$, then

$$||V_n(f;\cdot)-f(\cdot)||_{H^{2,\omega,p}}=o(n^{(\beta-\alpha)/2})$$
 as $n\to\infty$.

3.2. Let $f \in L^p_{2\pi}$ with a fixed $1 \leq p \leq \infty$ and let $S_k(f; \cdot)$ be the k-th partial sum of the Fourier series of f. In [1], we considered the following Abel means of the order $m \in N_0 := N \cup \{0\}$ of the Fourier series of f:

$$U_r(f, m; x) = (1 - r)^{m+1} \sum_{k=0}^{\infty} {m+k \choose k} r^k S_k(f; x),$$
 (33)

 $x \in R$, $r \in [0, 1)$. It is known ([1]) that $U_r(f, m)$ can be written in the integral form

$$U_r(f, m; x) = \int_{-\pi}^{\pi} f(x+t) K_r(m; t) dt,$$

where

$$K_r(m;t) = \frac{(1-r)^{m+1}}{\pi} \sum_{j=0}^{\infty} {m+j \choose j} r^j D_j(t),$$

$$D_0(t) = \frac{1}{2}, \quad D_j(t) = \frac{1}{2} + \cos t + \cos 2t + \dots + \cos jt \quad \text{if} \quad j \ge 1.$$

Moreover it is known ([1]) that, for fixed $m \in N_0$ and $0 \le r < 1$, the function $K_r(m; \cdot)$ belongs to the space $L^{\infty}_{2\pi}$ and satisfies conditions of the type (12) and (13). From the above we deduce that $U_r(f, m; \cdot)$ is an operator of the type (11)-(13), with I = [0, 1).

In [1] it was proved that for fixed $2 \le m \in N$ and $1 \le p \le \infty$, there exists a positive constant $M_{m,p}$ depending only on m and p such that

$$||U_r(f, m; \cdot) - f(\cdot)||_p \le M_{m,p} \omega_m(f, p; 1 - r)$$
(34)

for every $f \in L^p_{2\pi}$ and for all $r \in [0, 1)$. Moreover if m = 0, 1 and $0 < r_0 < 1$, then there exists a positive constant M_{p,r_0} such that for every $f \in L^p_{2\pi}$,

$$||U_{r}(f, m; \cdot) - f(\cdot)||_{p}$$

$$\leq M_{p, r_{0}} \begin{cases} \omega_{2}(f, p; 1 - r) & \text{if } m = 1, \\ \omega_{1}(f, p; (1 - r)|\ln(1 - r)|) & \text{if } m = 0, \end{cases}$$
(35)

for all $r \in [r_0, 1)$.

Applying Theorem 1, Theorem 2 and (34) we obtain

Corollary 4 Suppose that $1 \leq p \leq \infty$, $2 \leq m \in N$, ω , $\mu \in \Omega_m$ and $\lambda(t) = \omega(t)/\mu(t)$ is monotonically increasing function for t > 0. Then for the Abel means $U_r(f, m; \cdot)$ of the Fourier series of $f \in H_{2\pi}^{m,\omega,p}$, we have

$$||U_r(f, m; \cdot) - f(\cdot)||_{H^{m, \mu, p}} = O(\lambda(1-r)) \quad for \quad r \in [0, 1).$$
 (36)

If $f \in \widetilde{H}_{2\pi}^{m,\omega,p}$, then

$$||U_r(f, m; \cdot) - f(\cdot)||_{H^{m, \mu, p}} = o(\lambda(1-r)) \quad as \quad r \to 1-.$$
 (37)

Corollary 5 Let $1 \le p \le \infty$ and $2 \le m \in N$ and let $\omega(t) = t^{\alpha}$, $\mu(t) = t^{\beta}$ for $t \ge 0$ and $0 < \beta < \alpha \le m$. Then for every $f \in H_{2\pi}^{m,\omega,p}$, we have

$$||U_r(f, m; \cdot) - f(\cdot)||_{H^{m, \mu, p}} = O((1 - r)^{\alpha - \beta}), \quad r \in [0, 1).$$
 (38)

If $f \in \widetilde{H}^{m,\omega,p}_{2\pi}$, then

$$||U_r(f, m; \cdot) - f(\cdot)||_{H^{m, \omega, p}} = o((1 - r)^{\alpha - \beta}) \quad as \quad r \to 1 - . \quad (39)$$

Applying (35), Theorem 1 and Theorem 2, we can formulate also analogies of (36)-(39) for the Abel means $U_r(f, m; \cdot)$ with m = 0 and m = 1.

References

- [1] Dopierala Z. and Rempulska L., On the summability of series by harmonic methods, Commentationes Math. 2 (1983), 199–213.
- [2] Górzeńska M., Leśniewicz M. and Rempulska L., Strong approximation of functions in Hölder spaces, Acta Sci. Math. (Szeged), 58 (1993), 233–241.
- [3] Natanson I.P., Constructive Theory of Functions, Moscow 1949 (in Russian).
- [4] Prestin J. and Prössdorf S., Error estimates in generalized trigonometric Hölder norms, Z. Anal. Anwendungen 9 (1990), 343-349.
- [5] Prössdorf S., Zur konvergenz der Fourierreihen hölderstetiger funktionen, Math. Nachr. 69 (1975), 7–14.
- [6] Taberski R., On singular integrals, Annales Polon. Math. (1958), 248–268.
- [7] Timann M.F., Theory of Approximation of Real Functions, Moscow 1960 (in Russian).

L. Rempulska Institute of Mathematics Poznań University of Technology Piotrowo 3A 60-965 Poznań, Poland

Z. WalczakInstitute of MathematicsPoznań University of TechnologyPiotrowo 3A60-965 Poznań, Poland