Hokkaido Mathematical Journal Vol. 88 (2004) p. 511-523

Germs of Engel structures along 3-manifolds
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Abstract. Engel structures along an embedded 3-manifold in a 4-manifold are studied
in this article. It is shown that, among the Engel structures having the same oriented
even-contact structure around the given embedded closed oriented 3-manifold as derived
distributions with the induced orientations, the germ of Engel structure along the 3-
manifold is determined by the singular line field on the 3-manifold traced by the Engel
structure.

Key words: Engel structures, even-contact structures.

1. Introduction

A tangent distribution of rank 2, maximally non-integrable, on a 4-
dimensional manifold is called an Engel structure. Engel structures have a
special property: all Engel structures are locally equivalent (see [BCG3]).
Such a phenomenon occurs only for line fields, contact structures, even-
contact structures, and Engel structures among generic regular distributions
(see [VG], [Monl]). Therefore studying global properties of Engel structures
is important. We study Engel structures along an embedded 3-manifold,
and investigate the conditions under which germs of Engel structures are
determined up to isotopy.

Although an Engel structure has similar properties to a contact struc-
ture, they have some differences. A comtact structure is also defined as
a maximally non-integrable hyperplane field on an odd-dimensional man-
ifold. Contact structures on a closed manifold have global stability for
deformations: any two contact structures on a closed manifold which are
homotopic among contact structures are isotopic (Gray’s stability Theorem
[Gr]). However, it is known that the corresponding statement for Engel
structures does not hold (see [Gel]). A homotopy of Engel structures is
not always represented by an isotopy. An obstruction for the isotopy is
considered as follows. An Engel structure D defines a line field L(D?) C
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D, which is called an Engel line field (see Section 2 for the definition).
If an Engel structure is deformed, the Engel line field for the structure is
also deformed in general. However, line fields on a closed manifold have
continuous moduli. Therefore, the deformed Engel line field is not always
diffeomorphic to the original one. As for the global stability of Engel struc-
tures, A. Golubev showed a stability of Engel structures in the case when
an Engel line field is fixed (see [Go]). E. Giroux showed in [Gi] that the
germs of contact structures along an embedded closed orientable surface
in a 3-manifold are determined by the characteristic foliations, constructed
from the restrictions of the contact structures, on the surfaces. However,
in order to determine the germ of an Engel structure along a hypersurface,
we need more conditions other than the restriction of the Engel structure
on the hypersurface.

We study a sufficient condition to determine the germ of an Engel struc-
ture along a hypersurface. In order to state the result of this paper, we
need the following two notions. Let M be an embedded closed orientable
3-manifold in an orientable 4-manifold W, and D an Engel structure defined
in a neighborhood of M C W. Then the Engel structure D traces on the 3-
manifold M a singular line field F(M, D). It is defined as a subsheaf of the
sheaf lev.f of germs of C'*®° differential 1-forms on M generated by restriction
to M of annihilators of D. (see Section 2 for details). We call it a restricted
line field of D on M. We set D? := D +[D, D]. This distribution D? is an
even-contact structure by the definition of an Engel structure. It is called
the derived even-contact structure from D. Moreover, this distribution D?
has an orientation induced from the Engel structure D (see Section 2 for
details). We assume, from now on, that the derived even-contact structure
D? is thus oriented. We say two derived even-contact structures coincide
if they coincide as oriented even-contact structures. (See Section 2 for the
precise definitions of the italic terms above.) Now, the main result of this
article is the following.

Theorem Let Dy and Dy be Engel structures defined in a neighborhood of
an embedded closed orientable 3-manifold M in a orientable 4-dimensional
manifold W. We suppose that (i) Do and D; trace the same line field on M
in a strict sense, and that (i) Do and D1 have the same derived even-contact
structure: namely,

(i) F(M, Do) = F(M, Dy),
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(i) Do?= D%
Then there exists an isotopy @s of local diffeomorphisms defined in a
neighborhood of M which satisfies the following properties for any s € [0, 1]:
o wo=1id, ¢1.(Do) = D,
Ps (M) =M,
F(M, ps(Do)) = F(M, D),
SDS*(DOQ) = DOQ-

When the Engel line field L is transverse to the 3-manifold M, the
derived even-contact structure D? induces on M a contact structure as
D?NTM. In such a case, R. Montgomery [Mon2| showed a similar result.
In this article, since we do not assume the transversality of an Engel line
field L and a 3-manifold M, the derived even-contact structure D? does not
necessarily induce a contact structure on M. If the non-contact locus is not
of measure zero, for example, it is difficult to deduce something about Engel
structures around the locus only from the conditions on the 3-manifold M.
Condition (ii) of Theorem guarantees the rigidity of Engel structures.

The author would like to thank the referees for the careful readings and
some useful suggestions.

2. Preliminaries

We begin with the definition of an Engel structure. Let W be a 4-
dimensional manifold. A tangent distribution D is a subbundle of the tan-
gent bundle TW, and is also regarded as a locally smooth sheaf D of vector
fields. Let [D, D] denote the sheaf generated by all Lie brackets [X, Y] of
vector fields X, Y € D. We define derived sheaves as D? := D + [D, D]
and D2 := D? + [D, D?]. Then the derived distributions of D are defined
pointwise as the linear subspace of T,W, p € W, as follows:

D={X, e T,W|XeD2}, Di={X,eT,W|XeD3},

where D;, are the stalks at p € W. Now, the notion of Engel structure is
defined as follows.

Definition An FEngel structure on a 4-dimensional manifold W is a dis-
tribution D of rank 2 which satisfies

. 2 __ : 3 _
dim Dy =3, dimD, =4,
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at any point p € W.

We next see that for an Engel structure D there is an unique line
field L(D?) associated with D. Let D be an Engel structure on W. The
distribution D? of rank 3 turns out to be an even-contact structure, that
is, a distribution of corank 1 on the 4-manifold W defined locally by a
1-form @ with the property that 8 A df vanishes nowhere. For an even-
contact structure E on W, there is a unique subdistribution L(E) of E of
rank 1 determined by the relation [L(E), £] C &, where L(E) and &£ are
corresponding sheaves. It turns out to be the Cauchy characteristic space,
in terms of differential systems (see [BCG3]). Hence, for an even-contact
structure E = D2, there is an unique line field L(D?). The line field L(D?)
is called the Engel line field of D (see [KMS], [Gel]). The Engel line field
is explained in terms of framings of Engel structures as follows. Now that
D is an Engel structure on W, we have (D?/D), & R, (D3/D?), =R, at
each p € W. We define a mapping ¢: D ® (D?/D) — (D3/D?) by X ®
Y — [X, Y]. This ¢ induces a mapping ¥: D — Hom(D?/D, D3/D?) as
X — (X, ). The Engel line filed L(D) is nothing but the kernel of V.
An Engel line field L(D?) has a remarkable property that any embedded
3-manifold transverse to L(D?) has a contact structure (see [Gel], [Mon2]).

Let us observe an orientation of D? induced from D itself, and an
orientation of “twisting” of an Engel structure. It is a key point of the
proof of Theorem. We observe them by reviewing typical examples of Engel
structures. It is sufficient to observe local models since all Engel structures
are equivalent locally.

The first example is the standard Engel structure Dy on R? given by
the following pair of 1-forms as the kernel,

Go=dy—z-dz, op=dz—w-dz. (1)

In fact, this is nothing but the space of 2-jets of function y(x) of one variable
with z = dy/dz and w = d%y/dz* By easy calculations, we obtain that
the derived even-contact structure Dg;? and the Engel line filed L(Dy;?) are
given as Dg;2 = ker fo, L(D«?) = ker(Bo A df) respectively.

We now observe a description of an Fngel structure by a pair of 1-
forms. It is known that an ordered pair (c, ) of differential 1-forms defines
an Engel structure D = {a = 0, B = 0} as the kernel, if the pair satisfies
the following conditions (see [Gel]):
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(1) B A aAdo vanishes nowhere,

(2) aNnBAdB=0,

(3) B AdBis a 3-form vanishing nowhere.

Such an ordered pair (e, 8) is called an Engel pair of 1-forms. For an
Engel pair («, ) of 1-forms, it turns out that 8 determines the derived
even-contact structure D? = {8 = 0}, and that the 3-form 8 A d3 defines
the Engel line field L(D?) as its kernel: L(D?) = ker(8A df). For an Engel
structure D = {a = 0, § = 0}, choices of the 1-forms «, § of Engel pairs
are flexible. If (o, B) is an Engel pair of 1-forms for an Engel structure D,
then (g-a+h-8, f-F) is also an Engel pair for D, for any smooth functions
f#0, g5# 0, and h. We note here that an Engel structure D determines
the orientation of its derived even-contact structure D? = {8 = 0} by a A
da.. Note that it is independent of the choice of a. We assume, from now
on, that the derived even-contact structure is thus oriented. We say that
two derived even-contact structure D2, D;2 coincide if they coincide as
even-contact structures oriented as above.

The second example is constructed from a given contact structure ac-
cording to the prolongation procedure as follows (see [Mon2]). Let & be a
contact structure on a 3-manifold M. First we construct a 4-dimensional
manifold P(¢) from £ by fibrewise projectivizations,

P(E) = [ P&,

peEM

where P(£,) & RP? is the projectivization of the contact plane &p- A point of
P(&,) can be regarded as a line [ in the contact plane &, through the origin.
Let 7: P(§) — M be its projection. The 4-manifold P(¢) is endowed with a
2-plane field D(¢) induced naturally as follows. A point ¢ = (p, ) € P(¢) is
regarded as a pair of a point p € M and a tangent line | C &, C T, M. Then,
set D(£)q := (dw)71l. Thus we obtain a 2-plane field D(¢) on P(¢). We call
this (P(§), D(&)) the prolongation of a contact structure £. It is known that
the prolongation (P(¢), D(€)) is an Engel manifold (see [Mon2]). We can
see this construction locally as follows. Let § be a contact 1-form defining
a contact structure £&. The contact form S is locally isomorphic to the
standard 1-form dy — zdx according to the Darboux theorem. With respect
to the coordinates (z, ¥, 2), a line on a contact plane &, is represented by
the slope w = dz/dz of the projection to (z, z)-plane, except for the vertical.
We note here that the sign of the slope depends on the orientation of the
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contact plane & = {8, = 0} defined by dB,. In other words, w is the local
coordinate of P(§,) = RP!. Thus, the coordinates (z, y, z, w) give a local
coordinate system of P(¢). From the construction, the distribution D(€) is
defined locally by the pair of 1-forms dy — z - dz and dz — w - dx. The pair
represents the standard Engel structure (see equations (1)).

There is another prolonged distribution D(¢) on P(€). It is defined as
D(€), = (dr)~*(~1), where —I corresponds to a line on &, symmetric to /
for an axis of local coordinates of &,. The distribution D(€) is defined locally
by 8 =dy— 2z -dr and & = dz+ w - dz with respect to the local coordinates
(z, y, z, w) of P(€) as above. Two Engel structures D(£) and D(€) have
the same derived even-contact structure D? := D(£)? = D(€)? defined by
{B = 0} if we ignore the orientations. However, D(£) and D(¢) give different
orientations on the even-contact structure D? since a A dolfs=y = =& A
dé|gp—o}-

A geometric meaning of this orientation on D? is explained as fol-
lows. We observe behaviors of D(€) and D(¢) when we move along L :=
L(D(£)?) = L(D(£)?). Let @;: P(€) — P(€) be the isotopy generated by
(0/0w) € L. The isotopy ¢; preserves the even-contact structure D~2 =
{8 = 0}, since Lgjgu(dy — z-dz) = 0. Let l; := dn(D(§)ey(q))s It =
dw(D(f)%(q)) be lines on &, where m: P(§) — M is a projection along L,
g = (p, 1) € P(£). Then, I; (resp., l;) continues twisting positively (resp.,
negatively) as ¢ increases with respect to the orientation on &, given by dg,
since D(€) (resp., D(€)) is defined as (dm)~ (resp., (dr)~1(=1)). In other
words, Engel structures with the same derived even-contact structure is
considered locally as horizontal line fields to the contact structures induced
from the even-contact structure, which continue twisting in one direction.
The orientation of the even-contact structure implies the direction of the
twisting.

Before we go to the proof, we need one more definition. We define a
line filed with singularities on an embedded 3-manifold M C W traced by
an Engel structure D on W. We define it in terms of sheaves of annihila-
tors. Let 2}, be the sheaf of germs of C*° differential 1-forms on M. It is
considered as an £y/-module, where £y is a sheaf of germs of C*° functions
on M. We define a singular foliation F(M, D) on M as a submodule of 3,
generated by pull-backs by the inclusion mapping ¢: M — W of generator
w of a sheaf D+ of annihilating bundle D+ of D:
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F(M,D) = (*w | w € Dh)g,,.
We call it the restricted line field of D on M.

3. Proof of Theorem

In this section, we prove Theorem in two steps. First, we construct a
path Dg, s € [0, 1], among Engel structures between the given two Engel
structures Dg, D1. We can construct the path D, so that it has a constant
derived even-contact structure D,?> = E, and a constant Engel line field
L = L(FE) consequently. Next, we construct an isotopy realizing the path
D; above along the constant FEngel line field L. We finally check that the
isotopy thus obtained actually preserves the embedded 3-manifold M.

3.1. Deformation of Engel pairs

In order to prove Theorem, we may consider only a small neighborhood
of M x {0} in M xR. There exists a diffeomorphism &: M xR — W onto a
neighborhood of M C W which maps M x {0} to M identically and realize
a tubular neighborhood of M C W, since M and W are orientable. Then
we may regard germs of Engel structures along M C W as those on M x R
defined along M x {0} =: My. Let (ag, Bo), (a1, £1) be Engel pairs of 1-
forms defined on a neighborhood of a point £ € My in M x R, which define
locally Dg, D; respectively. These 1-forms can be written in the following
split forms,

=0t +ul-dt, Bi=wi+ol-dt, (i=0,1), (2)

where 0%, w! are 1-forms, uf, v} are functions defined on an open subset of

M = M x {t}, and t is a coordinate on R.

With these split forms, the conditions of Theorem mean the following.
Let us recall that the derived even-contact structures depend only on the
second 1-forms of Engel pairs. It follows from condition (ii) of Theorem
that Gy = f - f1 for some function f vanishing nowhere. We may assume
Bo = PB1 =: (8, that is, w8 = w) =: w¥ and v] = vY =: ¥0, by replacing
with f - (1, on account of the argument about choices of 1-forms of Engel
pairs in Section 2. Note that both 4-forms 3; A a; A deoy, © = 0, 1, induce
the same orientation because of the orientation of Dy? = D;2. In addition,
we may assume 6§ = 69 =: §°, by condition (i) of Theorem. It is explained
as follows. First, we show that there exists a matrix G = (guw), u, v =1, 2,
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where g, are functions on a neighborhood U C My of a point zg € My,
which satisfies

o G(z) = (guw(z)) € GL(2, R), for any z € U,

o g1 =0,022=1,

0\ _ 09\ (9116 + g1z - w0
)t

We show this in a similar way as in [Ma]. Note that 6] = t*ag, 8] = ¥,
and w® = *B, where .: M — M x R is an inclusion mapping. Since
F(M, D;) is generated by t*a; = 69 and *8 = w¥, there exist (2, 2)-
matrices A = (Gyy)y B = (buw), Guw, buy € &y, u, v = 1, 2, which satisfies
as) = bgl = 0, ag9 = bzg - l, and

(3)=4(3) (3)-2(5) ®

For each z € M, A(z) = (ay(z)) and B(z) = (buy(z)) are (2, 2)-matrices
with elements ay, (), buy(x) € R. Then, there exists a (2, 2)-matrix C(z) =
(cun(z)), cuw(z) € R, which satisfies that C(z)(I — A(z)B(z)) + B(z) is
regular. In fact, we can take C'(z) as follows. At z € U where det B(z) # 0,
we take C(z) = (0). It is trivial that C(z)(I — A(z)B(z)) + B(z) = B(z) is
regular. At € U where det B(z) = by1 = 0, we take C(z) = (ci;), where
c11 = ¢ # 0 is constant and other entries are zeros. Then we have

C(a)(I - Alz)B()) + B(c) = (; bia = classbua + au>> |

It is regular. Then we obtain a matrix C = (cyy), where ¢y, are constant
mappings defined on a neighborhood of x € M which values are cy, ().
Set G := C(I — AB) + B. Tt is regular from the observation above. From
equations (3), it follows that

69 69 69
() =4(&)=22(3)

Therefore, we obtain

G (Z%) — {C(I - AB) + B} (i%) _B (i%) _ (3%) .

Thus, we conclude that G is the required matrix. Note that gi11 # 0 because
det G # 0. Namely, we have 83 = f - 69 + g - O for some functions f # 0,
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and g. According to the argument in Section 2 about choices of Engel pairs
of 1-forms, we may take f- a1+ g0 =: &1 instead of a1 from the beginning,
where f, § are some extension of f, g to U x R. Note that t*&; = 69.
Therefore, we may assume 6] = 69. Even after this replacement of Engel
pairs, the 4-forms §; A a; A dey, i = 0, 1, have the same sign.

We then construct a homotopy of Engel pairs of 1-forms (as, 0s), s €
[0, 1], between (ap, Bo) and (a1, B1). We set two families of 1-forms as
follows,

as:=(1—8) - ap+s-
={(1-5) 6h+s-0}+{(1—s) uh+s-ul} dt
= 0 +uf - dt,

Bs =0 =: wt + ' dt.

We show that (as, Bs) is an Engel pair for each s € [0, 1] sufficiently near
My. We check conditions (1)—(3) of the definition of Engel pairs for the
family (as, Bs) in a small neighborhood of My. We remark that both pairs
(cu, Bi), © = 0, 1, satisfy conditions (1)—(3), and both of the 4-forms §; A
a; A day in condition (1) are positive for the underlying manifold.

Condition (1) We calculate the family 8, A a5 A das of 4-forms along a
neighborhood U C Mp. First, we obtain by a simple calculation,

(Bs s Adas)| = (w0410 dt) A (80 + 8- dt) Ad(8L +ut - dt) |
¢
:{wo/\90+(ugwo—vo-ﬁo)/\dt}/\{d@o—}- <dug— 95

d ) /\dt}
=0

ot

= WOAGOA duo—a—gg
s ot

) +ul -wo/\dﬁo—vo-ﬁo/\dﬁo} Adt.
=0

The first two terms depend on the parameter s € [0, 1] linearly, and the last
term is independent of s. Therefore we have,

(Bs Nas ANdas)|y
t

:[(1—3)-{0()0/\90/\<alug—%ig >+(u8-w0—vo-90)/\d90}
=0

t
+s-{w°/\9°/\ (du(l)— % >+(u(1)-w0—'u0-90)/\d00}] Adt
t=0

=(1—5)- (BoAaoANdag)|y+s- (ﬁlAalAdal)\U
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Due to the assumption on Engel pairs of 1-forms, both (8; A ci; A devs)ly,
i =0, 1, are positive for the orientation of the underlying manifold. Then
we deduce that (o A Bs A das)|y are positive for any s € [0, 1]. Thus §s A
as A da is positive sufficiently near My for any s € [0, 1].

Condition (2) As fy = /1 = S near My, we have as A Bs AdBs = (1 —
s)-agANBAdB+s- a1 ABAIB=0.

Condition (3) Similarly, 8 A dBs = Bo A dfo = B1 AdBy # 0.

Thus, (as, Bs) is a family of Engel pairs of 1-forms defined on a neigh-
borhood V' C M x R of a point zg € My. Let D, denote the family of
Engel structures realized by (as, 0s). Then Dy is a path of Engel structures
between Dy and D;.

3.2. Construction of isotopies

In this subsection we show the existence of families ¢ of local diffeo-
morphisms along M C W representing the family Ds, s € [0, 1], of Engel
structures obtained above. According to the argument in Section 2 about a
geometric meaning of Engel structures, each Ds corresponds to horizontal
line field twisting in one direction when we go along the Engel line field L =
L(Ds?). Since all D; twist in the same direction, we have only to adjust the
speed. Therefore, we construct the family ¢, as a flow along the Engel line
field L. In the proof, we first construct families of local diffeomorphisms
ws. In fact, we construct locally families of vector fields X which define
s by using pairs of 1-forms as, Os which determine locally a family Dy of
Engel structures. And then, we obtain a family of global diffeomorphisms
by constructing a family of global vector fields from families of local ones
using a partition of unity method.

First, we determine the equations which we solve. Let agz, G be 1-
forms which determine the distributions Dy locally as above. A family ¢,
of local diffeomorphisms satisfies the condition (¢s)«Dp = Ds if it satisfies
the following equations:

{ 0s*(fs - B) = B,

4
(Ps*(gs'as+hs‘ﬂ)=a0; ( )

for some families fs, gs of functions vanishing nowhere, and family Ay of
functions. In order to show the existence of a family ¢, of local diffeomor-
phisms which satisfies equations (4), it is sufficient to show the solvability



Germs of Engel structures along 3-manifolds 521

of the following equations

Lx.B+as8=0, (5)
das
Lx, o+ —dO;— 4 byt + csff = 0, (6)

with respect to families X, of vector fields, and as, by, ¢s of functions.
These are the equations we solve. It is explained as follows. Suppose that
equations (5), (6) have a solution (X, as, bs, ¢s). Let @5 be a family of
diffeomorphisms generated from X, as.follows: (dys/ds)(p) = Xs(@s(p)),
wo(p) = p, where p is a point in a neighborhood of M C W. It is clear
that equation (5) implies the first equation of equations (4). Therefore, it
remains to prove that ; satisfies the second equation of equations (4). In
order to show this, it suffices to show

(Qs(ps*as) — ) AB =0, forany sel0,1], (7)

holds for some family Qs of functions vanishing nowhere which satisfies
Qo = 1. We put ws := Qs(ps*as) — ap. In order to show equation (7), it is
sufficient to show (dws/ds) A f = 0 since wg = Qo(wo*ag) —ap = 0. By a
simple calculation, we obtain

dw d . do
—==Qs {_(]_S(SDS*O‘S) + ©s (LXsa.S + —S‘> }

ds ds ds
| (d _ do
:Qs(Ps { <Eg8£ © Ps 1) Qs + LXSOls + %‘i} )
where ¢s is a family of functions which satisfies Qs = exp(gs). Then
(dws/ds) A B =0 is rewritten as
- d
(qsozs-i-LXsts—l- ;:) AB =0, (8)

where §s = (dgs/ds) o ps™1. Since X; is a solution to equation (6), equa-
tion (8) holds with §s = bs. Thus we have proved that equation (5) and (6)
imply equations (4).

Now it remains to show the solvability of equations (5) and (6). As
we remarked at the beginning of this subsection, we suppose X is tangent
to the Engel line field L = L(D¢*) C D;. It is clear that if X, is tangent
to L = ker 8 A df3, it satisfies equation (5) for some family as of functions
vanishing nowhere. We show the solvability of equation (6). Let Z be a
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nowhere vanishing vector field which is tangent to L, v a 1-form which
satisfles v(Z) = 1, and &5 a family of 1-forms which satisfies as A B Ay A
ds # 0. Restricting equation (6) to D,, we obtain

dog
ds D.

Xsudas|p, + =0. (9)
Evaluating equation (9) with Z, we obtain (das/ds)(Z) = 0. Then we
obtain X das|p, + Fsds|p, = 0 for some family Fs of functions. According
to the condition (i) 8 A as A das # 0 of Engel pairs of 1-forms, we have
das|p, = Hsy A ds|p, for some family H, of functions. Then we obtain
a solution X; = (—Fs/Hs)Z to equation (6) for some families bs, ¢, of
functions.

Next, we make the local solutions global. Since M is closed, there exists
a locally finite open covering {Uj}xea of a neighborhood of M C W, each
of that open set U) intersects M and has an Engel pair (aﬁ‘, B*) of 1-forms
determining Ds. On each Uy, we have a solution X7 to equations (5), (6).
To make them global on a neighborhood of M C W, we need a partition
of unity {fx}rea subordinate to {Ux}xea. Then we obtain a family X, :=
D oreh X2 of vector fields defined on a neighborhood of M C W. X,
satisfies equations (5), (6) at any z € M locally in W. Since M is closed,
X defines a family 5 of global diffeomorphisms.

Last of all, we show that the family ¢, of diffeomorphisms thus obtained
preserves M and F(M, Dg). The isotopy s, generated by X, preserves
the Engel line field L and the derived even-contact structure Dg?, since it
preserves, up to multiplication by functions vanishing nowhere, the second
1-form £ of Engel pair. Furthermore, since t*as = t*ag = 6%, where 1: M —
M xR is an inclusion, we have (Oa;/8s)(n) = 0 for any vector field n on M.
On account of equation (9), we have das(Xs, &) = 0 for any vector field £ on
M tangent to D;. Since doy is non-degenerate on Dy, we conclude that X
is tangent to M. Therefore o, preserves M. Recall that F(M, ps(Dg)) =
F(M, D;) is a subsheaf of the sheaf Q}, of germs of C* differential 1-forms
on M generated by t*o, = 6° and *f = wC. Therefore it coincides with
F(M, D), which is generated by t*ap = 9 and +*8 = w®. This completes
the proof of Theorem. O

We remark that ¢s|ps is not necessarily an identity. If the Engel line
field L is transverse to M, then we can take ¢;|ps to be an identity.
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