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Approximations of hypersingular integral equations

by the quadrature method
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Abstract. A numerical method is proposed and investigated for the hypersingular in-

tegral equations defined in Banach spaces. The hypersingular integral equations belong

to a wider class of singular integral equations having much more stronger singularities.

The proposed approximation method is an extension beyond the quadrature method.

Moreover an error estimates theory is introduced for the hypersingular integral equations

by proving the proper theorem. Finally, the inequalities valid between the exact solutions

of the hypersingular integral equations and the corresponding approximate solutions, are

proposed and proved.
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1. Introduction

The hypersingular integral equations consist to a wider class of singu-
lar integral equations. In particular the kernel of such integral equations
has a stronger singularity as compared to the finite-part singular integral
equations. Hence, there is a big interest for the numerical evaluation of the
hypersingular integral equations, as closed form solutions are not possible
to be determined.

J. Hadamard [1], [2] was the first scientist who introduced the concept
of finite - part integrals, and L. Schwartz [3] studied very basic properties
of them. Several years later, H.R. Kutt [4] proposed some algorithms for
the numerical solution of the finite-part singular integrals and studied the
difference between a finite - part integral and a ”generalized principal value
integral”.

On the other hand, M.A. Golberg [5] investigated the convergence of
several numerical methods for the solution of finite-part integrals. He pro-
posed a method, which was an extension beyond the Galerkin and colloca-
tion methods [6]. Also, A.C. Kaya and F. Erdogan [7], [8] introduced and
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investigated several problems of elasticity and fracture mechanics, which
are reduced to the solution of finite-part singular integral equations.

Moreover, by E.G. Ladopoulos [9]–[15] were proposed several numerical
methods for the solution of the finite-part singular integral equations of the
first and the second kind. He also applied this type of singular integral
equations to the solution of very important problems of elasticity, fracture
mechanics and aerodynamics. Beyond the above, E.G. Ladopoulos, V.A.
Zisis and D. Kravvaritis [16], [17] used functional analysis for the solution
of finite-part singular integral equations. Hence, they studied such type of
singular integral equations defined in general Hilbert spaces and Lp spaces
and applied them to several crack problems.

In the present research are introduced and investigated the hypersin-
gular integral equations, which have stronger singularity in comparison to
the finite-part singular integral equations. Thus, the hypersingular integral
equations belong to a wider class of integral equations with kernels of very
strong singularities.

A numerical method is proposed for the solution of the hypersingular
integral equations, defined in Banach spaces. The proposed approximation
method is an extension beyond the quadrature method.

Furthermore, an error estimates theory is proposed for the hypersin-
gular integral equations, by proving the corresponding theorem. Thus the
inequalities which are valid between the exact solutions of the hypersin-
gular integral equations and the corresponding approximate solutions, are
investigated and proved.

The hypersingular integral equations are used for the solution of several
important problems of engineering mechanics, and especially in the theories
of elasticity, fracture mechanics, fluid mechanics and aerodynamics.

2. Numerical evaluation methods for hypersingular integral e-
quations

Definition 2.1 An equation of the following form is called hypersingular
integral equation:

∫ b

a

u(x)dx

|x− t|λ = f(t), 1 < λ < 3 (2.1)
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where u(x) is the unknown function and f(t) is a known function such as
f(t) ∈ C∞[α, b].

Theorem 2.1 Let the hypersingular integral equation (2.1) and suppose
that following conditions are satisfied:

u(x) =





k1(x− a)(λ−1)/2 + k2(x− a)(λ+1)/2 + ω1(x),
for x = a

k′1(b− x)(λ−1)/2 + k′2(b− x)(λ+1)/2 + ω2(x),
for x = b

(2.2)

where the functions ω′′1(x), ω′′2(x) are Hölder-continuous with exponent
ε > 0.

Then the hypersingular integral equation (2.1) is approximated by the
quadrature formula:

R(tj) =
n−1∑

i=0

∫ xi+1

xi

u(ti)
|x− tj |λ dx (2.3)

and its error function ∆(tj) satisfies the estimate:

|∆(tj)| ≤





D

(
h3−λ

δ
(5−λ)/2
j

+
h

δ
(λ+1)/2
j

)
, for λ 6= 2

Dh
| lnh|
δ
3/2
j

, for λ = 2





(2.4)

where h = (b− a)/n, D a constant and δj the distance of the point tj from
the boundary of the segment [α, b].

Proof. The hypersingular integral in the left hand side of (2.1) is under-
stood in its principal value sense: [5], [15]

I(t) =
∫ b

a

u(x)
|x− t|λ dx

= lim
ε→0

[∫ t−ε

a

u(x)− u(t)
|x− t|λ dx +

∫ b

t+ε

u(x)− u(t)
|x− t|λ dx

+ u(t)
∫ t−ε

a

dx

|x− t|λ + u(t)
∫ b

t+ε

dx

|x− t|λ + 2u(t)
ε−λ+1

1− λ

]
(2.5)
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For the numerical evaluation of the integral I(t), then the following
points are used:

xi = a + ih, i = 0, 1, . . . , n and

tj = a +
(
j +

1
2

)
h, j = 0, 1, . . . , n − 1

where h = (b− a)/n and the quadrature formula (2.3) is applied.
Furthermore consider the point tj be at the distance δj from the bound-

ary of the segment [a, b], where δj ≥ 5h.
If ∆(tj) is the error function, then it is valid:

|∆(tj)|= |I(tj)−R(tj)| −
∣∣∣∣
n−1∑

i=0

∫ xi+1

xi

u(x)− u(ti)
|x− tj |λ dx

∣∣∣∣

≤
∣∣∣∣

∑

si∈[a,b]

∫

si

u(x)− u(ti)
|x− tj |λ dx

∣∣∣∣ +
∣∣∣∣

∑

si∈Nh

∫

si

u(x)− u(ti)
|x− tj |λ dx

∣∣∣∣

= ∆1 + ∆2 (2.6)

where the set Nh consists of segments si = [xi, xi+1].
Beyond the above, consider the following equality to be valid:

∑

si∈Nh

∫

si

u′(tj)(x− ti)
|x− tj |λ dx

=
∑

si∈Nh

∫

si

u′(tj)(x− tj)
|x− tj |λ dx +

∑

si∈Nh

∫

si

u′(tj)(tj − ti)
|x− tj |λ dx

= Γ1 + Γ2 (2.7)

Since the set Nh is symmetric with respect to tj , then follows: Γ1 = Γ2 = 0.
The following formulae hold:

u(x)− u(ti)− u′(tj)(x− ti) = u′′(zij)(zi − tj)(x− ti) = aij (2.8)

where x ∈ [xi, xi+1], ti ∈ [xi, xi+1] and zij ∈ [zi, tj ].
On the other hand, since u(x) satisfies condition (2.2), then the follow-

ing inequality is valid:

|u′′(zij)| ≤ Dδ
(λ−5)/2
j (2.9)
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from which follows:

∆2 =
∣∣∣∣

∑

si∈Nh

∫

si

u′(tj)(x− ti)
|x− tj |λ dx +

∑

si∈Nh, i 6=j

∫

si

aij(x)
|x− tj |λ dx

+
∫ xj+1

si

ajj(x)
|x− tj |λ dx

∣∣∣∣

≤D

[
h

δ
(5−λ)/2
j

∫ tj+δj/2−h

tj+h/2

dx

|x− tj |λ−1

+
1

δ
(5−λ)/2
j

∫ tj+h/2

tj−h/2

dx

|x− tj |λ−2

]
(2.10)

and thus:

∆2 ≤





D

(
h3−λ

δ
(5−λ)/2
j

+
h

δ
(λ+1)/2
j

)
, for λ 6= 2

Dh
|`nh|
d

3/2
j

, for λ = 2
(2.11)

By the same way by applying (2.2), then follows inequality:

∆1≤max
s





∣∣∣∣∣∣
∑

si∈[a, b]

∫

si

gs(x)− gs(ti)
|x− tj |λ dx

∣∣∣∣∣∣

+

∣∣∣∣∣∣
∑

si∈[a, b]

∫

si

ds(x)− ds(ti)
|x− tj |λ dx

∣∣∣∣∣∣





= ∆1
′ + ∆1

′′, s = 1, 2 (2.12)

where:

g1(x) = k1(x− a)(λ−1)/2

g2(x) = k′1(b− x)(λ−1)/2

d1(x) = k2(x− a)(λ+1)/2 + ω1(x)
d2(x) = k′2(b− x)(λ+1)/2 + ω2(x)

(2.13)

Moreover, following inequality holds for the functions gs(x):

|gs(x)− gs(ti)| ≤ Dh, for x ∈ si (2.14)
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and thus:

∆′′
1 ≤

D1h

δ
(λ+1)/2
j

(2.15)

By denoting further by Ω1 the set of segments si ∈ [a, b] which are on
the left from point tj and by Ω2 the set of such segments which are on the
right from tj , then follows:

∆1
′≤

∣∣∣∣∣∣
∑

si∈Ω1

∫

si

gs(x)− gs(ti)
|x− tj |λ dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

si∈Ω2

∫

si

gs(x)− gs(ti)
|x− tj |λ dx

∣∣∣∣∣∣
= Z1 + Z2 (2.16)

On the other hand, by applying the generalized mean-value theorem we
have:

Z1 = h(λ−1)/2

∣∣∣∣
∑

si∈Ω1

[
(i + ξi)(λ−1)/2 −

(
i +

1
2

)(λ−1)/2
]∫

si

dx

|x− tj |λ
∣∣∣∣

≤ Dh(λ−1)/2

m

m∑

i=0

1
(i + 1)(3−λ)/2

∫ tj−δj/2+h

α

dx

|x− tj |λ (2.17)

where m is the number of segments that belong to Ω1, mh > δj/2− h and
0 < ξi < 1.

Thus inequality (2.17) reduces to:

Z1 ≤ D1h

δ
(λ+1)/2
j

(2.18)

By the same way can be proved a similar inequality for Z2. Hence, from
inequalities (2.15) and (2.18) follows:

∆1 ≤ D1h

δ
(λ−1)/2
j

(2.19)

and the estimate (2.4) is proved. ¤

3. Error estimates for hypersingular integral equations

Theorem 3.1 Consider the hypersingular integral equation (2.1) where
f(t) ∈ C∞[a, b], with an approximate solution uh(ti) given from the system:
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n−1∑

i=0

uh(ti)
∫ xi+1

xi

dx

|x− tj |λ = f(tj), j = 0, 1, . . . , n− 1 (3.1)

Then the values u(tk) of an exact solution to (2.1) and the values uh(tk) of
the approximate solution obtained from (3.1) satisfy the following inequali-
ties:

|u(tk)− uh(tk)| ≤ Dh(λ−1)/2, 1 < λ < 2

|u(tk)− uh(tk)| ≤ Dh| lnh|2, λ = 2 (3.2)

|u(tk)− uh(tk)| ≤ Dh(3−λ)/2, 2 < λ < 3

for k = 0, 1, . . . , n− 1, where h = (b− a)/n and D a constant.

Proof. Let the system of equations:

n−1∑

i=0

uh(ti)cij = f(tj)

n−1∑

i=0

u(ti)cij = f(tj) + ∆f, j = 0, 1, . . . , n− 1 (3.3)

where ∆f is the error of the quadrature formula.
From (3.3) one obtains:

n−1∑

i=0

[u(ti)− uh(ti)]dij = ∆f(tj) (3.4)

and thus:

∆u(tk) = u(tk)− uh(tk) =
n−1∑

`=0

xk`∆f(t`) (3.5)

The general Fourier operator will be further used:

1
2π

∫ 2π

0
H(ϕ)x(ϕ)Mn(y − ϕ)dϕ = F (y) (3.6)

where:

H(ϕ) =
∞∑

`=−∞
d`0e

i`ϕ
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x(ϕ) =
n−1∑

`=0

uh(t`)ei`ϕ

F (y) =
n−1∑

`=0

f(t`)ei`ϕ (3.7)

Mn(y) =
n−1∑

`

ei`y

dij =
∫ xi+1

xi

dx

|x− tj |λ .

Furthermore eqn (3.6) reduces to the following equation:

1
2π

∫ 2π

0
Hn(ϕ)x(ϕ)Mn(y − ϕ)dϕ = F (y) (3.8)

in which:

Hn(ϕ) =
n∑

`=−n

d`0e
i`ϕ (3.9)

Also in order to be obtained estimates for the inverse matrix, an approx-
imation formula is necessary for the Fourier coefficients x

(n)
k` of the function

x
(ϕ)
k =

∑n−1
`=0 xk`(n)ei`ϕ, where xk denotes a solution of the following equa-

tion:

1
2π

∫ 2π

0
Hn(ϕ)xk(ϕ)Mn(y − ϕ)dϕ = eiky,

k = 0, 1, . . . , n − 1 (3.10)

Let us consider the equation:

1
2π

∫ 2π

0
Hn(ϕ)gk(ϕ)Mn(y − ϕ)dϕ = eiky (3.11)

where:

Hn(ϕ) =
n∑

`=−n

a`e
i`ϕ

a` = −c`0h
λ−1 (3.12)
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and the solutions xk(ϕ) and gk(ϕ) are related by the following formula:

xk(ϕ) = −gk(ϕ)hλ−1 (3.13)

Moreover in order to study the properties of the function Hn(ϕ) consider
the set of segments [π/(16n), π/(8n)], n = 1, 2, . . .. which forms a covering
of the half - open interval (0, π/8]. By choosing an arbitrary x ∈ (0, π/8],
then there exists a minimal number N so that x ∈ [π/(16N), π/(8N)].

For π/(16N) ≤ ϕ ≤ π/(8N) and N ≤ ` ≤ 2N the inequality sin2(`ϕ/2)
> δ > 0 is obtained, from which follows:

H(N, ϕ) = −2
2N∑

`=N

a` sin2
(`ϕ

2

)
≥ 2δ

2N∑

`=N

|ae| ≥ Dϕλ−1 (3.14)

By choosing D > 0 not depending on N , then from (3.14) follows that
inequality:

H(ϕ) > D(ϕ)λ−1 (3.15)

holds for 0 ≤ ϕ ≤ π/8.
Similarly following inequality:

H(ϕ) > D(2π − ϕ)λ−1 (3.16)

holds for 15π/8 ≤ ϕ ≤ 2π.
Beyond the above consider Hn(ϕ) = a0 +

∑n
`=1 a` cos(`ϕ). Because of

(3.16), inequality Hn(ϕ)−Hn(0) > Dϕλ−1 holds for π/(16n) ≤ ϕ ≤ π/8.
From the inequality

Hn(0) ≥ D1

∞∑

`=n+1

`−λ ≥ D2(n + 1)1−λ

follows that there exists a constant B0 > 0 not depending on n and for
which the inequality Hn(0) ≥ B0ϕ

λ−1 holds for 0 ≤ ϕ ≤ π/(16n).
Thus by setting B0

∗ = min(B0/2, D) one has:

Hn(ϕ) ≥ 1
2
Hn(0) + B0

∗ϕλ−1 (3.17)

for 0 ≤ ϕ ≤ π/8.
Consider further the linear space E spanned by the functions ei`ϕ , ` =
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0, 1, . . . , n− 1 and having the following norms:

‖x‖1 =
(∫ 2π

0
Hn(ϕ)|x(ϕ)|2dϕ

)1/2

‖x‖2 = max
‖y(ϕ)‖=1

∣∣∣∣
∫ 2π

0
x(ϕ)y(ϕ)dϕ

∣∣∣∣

(3.18)

By E(‖ · ‖1) and E(‖ · ‖2) we denote the linear spaces E having the norms
‖ · ‖1 and ‖ · ‖2, respectively.

Furthermore the operator Ψ(x) = (2π)−1
∫ 2π
0 Hn(ϕ)x(ϕ)Bn(Ψ − ϕ)dϕ

maps isometrically the space E(‖ · ‖1) into E(‖ · ‖2).
Thus following inequality holds:

‖eikϕ‖2 ≤ D

(∫ 2π

0

dϕ

Hn(ϕ)

)1/2

(3.19)

From (3.17) and (3.19) follows:

‖gk(ϕ)‖1 = ‖eikϕ‖2 ≤





D, for 1 < λ < 2
D

√
|`nh|, for λ = 2

D/h(λ−2)/2 for 2 < λ < 3
(3.20)

In order to calculate the Fourier cofficients x(ϕ) of the functions x(ϕ),
‖x(ϕ)‖1 = 1, one has:

|x`|= 1
2π

∣∣∣∣
∫ 2π

0
x(ϕ)e−i`ϕdϕ

∣∣∣∣

≤ 1
2π

∫ 2π

0

b(ϕ)√
Hn(ϕ)

dϕ ≤ D

(∫ 2π

0

dϕ

Hn(ϕ)

)1/2

(3.21)

and thus |x`| satisfy estimates which are similar to (3.20).
Hence, the Fourier coefficients xk` of the functions xχ(ϕ) which are

solutions of the problem (3.10), xk(ϕ) = gk(ϕ)hλ−1 satisfy following in-
equalities:

|xk`| ≤ Dhλ−1, 1 < λ < 2

|xk`| ≤ Dh|`nh|, λ = 2 (3.22)

|xk`| ≤ Dh, 2 < λ < 3

As xk` belong to the kth row of the inverse matrix, then equations
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(3.22) denote estimates for the elements of the inverse matrix for (3.1).
Finally from eqs (2.4) and (3.22) we obtain:

|∆u(tk)| ≤
n−1∑

j=0

Dhλ−1

[
h3−λ

δ
(5−λ)/2
j

+
h

δ
(λ+1)/2
j

]

≤ D1




n/2∑

j=0

h2

h(5−λ)/2(j + 1)(5−λ)/2
+

n/2∑

j=0

hλ

h(1+λ)/2(j + 1)(λ+1)/2




≤ D2h
(λ−1)/2 (3.23)

Also, the proof for λ = 2 and 2 < λ < 3 is done by the same way and
thus the Theorem is proved. ¤

4. Conclusions

An approximation method has been proposed for the numerical evalua-
tion of the hypersingular integral equations defined in Banach spaces. The
hypersingular integral equations are a very special class of singular integral
equations having kernels with very strong singularities, as compared to the
known finite-part singular integral equations.

The numerical method which was used is an extension beyond the
quadrature method. It was therefore proved that the quadrature method
is a suitable approximation method for the numerical solution of the hy-
persingular integral equations. Same method has been successfully used
in the past for the numerical evaluation of the non-linear singular integral
equations [18]–[28].

Also, an error estimates theory was proposed for the hypersingular in-
tegral equations, by proving the suitable theorems. Thus it was shown that
same inequalities are valid between the exact solutions of the hypersingular
integral equations and the corresponding numerical solutions.

Finally, the hypersingular integral equations are very important for
the solution of basic problems of engineering mechanics and mathematical
physics, like for example problems of elasticity, fracture mechanics, fluid
mechanics and aerodynamics. Hence, there is a big interest for further
research on the numerical evaluation of the hypersingular integral equations.
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