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Strongly almost (V, λ)(∆r)-summable sequences

defined by Orlicz functions
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Abstract. The purpose of this paper is to introduce the space of sequences that are

strongly almost (V, λ)(∆r)-summable with respect to an Orlicz function. We give some

relations related to these sequence spaces. We also show that the space [V̂ , λ, M ](∆r)∩
`∞(∆r) may be represented as a ŝλ(∆r) ∩ `∞(∆r) space.
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1. Introduction

Let w be the set of all sequences of real or complex numbers and `∞, c

and c0 be respectively the Banach spaces of bounded, convergent and null
sequences x = (xk) with the usual norm ‖x‖ = sup |xk|, where k ∈ N =
{1, 2, . . .}, the set of positive integers. The difference sequence spaces was
introduced by Kızmaz [10] and the concept was generalized by Et and Çolak
[4] as follows:

X(∆r) = {x ∈ w : ∆rx ∈ X},
for X = `∞, c and c0, where r ∈ N, ∆0x = x, ∆x = (xk − xk+1), ∆rx =
(∆r−1xk −∆r−1xk+1), and so ∆rxk =

∑r
v=0(−1)v

(
r
v

)
xk+v. These sequence

spaces are BK-spaces with the norm ‖x‖∆ =
∑r

i=1 |xi|+ ‖∆rx‖∞.
A sequence x ∈ `∞ is said to be almost convergent if all its Banach

limits coincide and the set of all almost convergent sequences is denoted by
ĉ. Lorentz [14] proved that x ∈ ĉ if and only if limn(1/n)

∑n
k=1 xk+m exists

uniformly in m.
Several authors including Duran [2], King [9], Nanda [19], Et and

Basarir [3], Malkowsky and Savas [17] and Altınok et al. [1] have stud-
ied almost convergent sequences. Maddox [15], [16] has defined x to be
strongly almost convergent to a number ` if
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lim
n

1
n

n∑

k=1

|xk+m − `| = 0, uniformly in m.

By [ĉ] we denote the space of all strongly almost convergent sequences.
It is easy to see that c ⊂ [ĉ] ⊂ ĉ ⊂ `∞.

Orlicz [22] used the idea of Orlicz function to construct the space (LM ).
Subsequently Lindenstrauss and Tzafriri [13] defined the sequence space `M

as follows:

`M =

{
x ∈ w :

∞∑

k=1

M

( |xk|
ρ

)
< ∞, for some ρ > 0

}
.

The space `M is a Banach space with the norm

‖x‖ = inf

{
ρ > 0:

∞∑

k=1

M

( |xk|
ρ

)
≤ 1

}

and this space is called an Orlicz sequence space. Lindenstrauss and Tzafriri
proved that every Orlicz sequence space `M contains a subspace isomorphic
to `p for some p ≥ 1. For M(t) = tp, 1 ≤ p < ∞, the spaces `M coincide
with the classical sequence space `p.

An Orlicz function is a function M : [0, ∞) → [0, ∞), which is contin-
uous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and
M(x) →∞ as x →∞.

An Orlicz function M is said to satisfy ∆2-condition for all values of
u, if there exists a constant K > 0 such that M(2u) ≤ KM(u), u ≥ 0 (for
further details see Krasnoselskii and Rutitsky [11], Orlicz [21]).

It is well known that if M is a convex function and M(0) = 0, then
M(λx) ≤ λM(x) for all λ with 0 < λ < 1.

Definition 1 Any two Orlicz functions M1 and M2 are said to be equiv-
alent if there are positive constants α and β, and x0 such that M1(αx) ≤
M2(x) ≤ M1(βx) for all x with 0 ≤ x ≤ x0 (see Kamthan and Gupta [8]).

Orlicz sequence spaces have been studied by Nung and Lee [20], Güngör
and Et [7], Tripathy et al. [25] and many others.

Let x ∈ w and X, Y ⊂ w. Then we shall write

E(X, Y ) =
⋂

x∈X

x−1 ∗ Y = {a ∈ w : ax ∈ Y for all x ∈ X} [26].

The set Xα = E(X, `1) is called Köthe-Toeplitz dual space or α-dual
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of X.
Let X be a sequence space. Then X is called

i) Solid (or normal), if (αkxk) ∈ X whenever (xk) ∈ X for all sequences
(αk) of scalar with |αk| ≤ 1.

ii) Monotone provided X contains the canonical preimages of all its step-
space.

iii) Perfect X = Xαα

iv) Symmetric if (xk) ∈ X implies (xπ(k)) ∈ X, where π(k) is a permuta-
tion of N.

v) A sequence algebra if (xk), (yk) ∈ X implies (xkyk) ∈ X.

Remark It is well known that ”X is perfect =⇒ X is normal =⇒ X is
monotone”.

The generalized de la Vallée-Pousin mean is defined by

tn(x) =
1
λn

∑

k∈In

xk,

where λ = (λn) is a non-decreasing sequence of positive numbers such that
λn+1 ≤ λn + 1, λ1 = 1, λn →∞ as n →∞ and In = [n− λn + 1, n].

A sequence x = (xk) is said to be (V, λ)-summable to a number ` [12]
if tn(x) → ` as n → ∞. (V, λ)-summability reduces to (C, 1) summability
when λn = n for all n.

The following inequality will be used throughout this paper. Let p =
(pk) be a sequence of positive real numbers with 0 < pk ≤ sup pk = G and
let D = max(1, 2G−1). For ak, bk ∈ C, the set of complex numbers, we have

|ak + bk|pk ≤ D{|ak|pk + |bk|pk}. (1)

2. Some new sequence spaces defined by an Orlicz function

In this section we introduce the concept of strongly almost (V, λ)(∆r)-
summable sequences with respect to an Orlicz function and examine some
properties of the space of strongly almost (V, λ)(∆r)-summable sequences
with respect to an Orlicz function.

Definition 2 Let M be an Orlicz function and p = (pk) be any sequence
of strictly positive real numbers. We define the following sets of sequences.
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[V̂ , λ, M, p](∆r)

=





x = (xk) :
lim
n

1
λn

∑

k∈In

[
M

( |∆rxk+m − `|
ρ

)]pk

= 0

uniformly in m, for some ` and ρ > 0





,

[V̂ , λ, M, p]0(∆r)

=





x = (xk) :
lim
n

1
λn

∑

k∈In

[
M

( |∆rxk+m|
ρ

)]pk

= 0

uniformly in m, for some ρ > 0





,

[V̂ , λ, M, p]∞(∆r)

=





x = (xk) :
sup
m, n

1
λn

∑

k∈In

[
M

( |∆rxk+m|
ρ

)]pk

< ∞

for some ρ > 0





.

We denote [V̂ , λ, M, p](∆r), [V̂ , λ, M, p]0(∆r) and [V̂ , λ, M, p]∞(∆r) by
[V̂ , λ, M ](∆r), [V̂ , λ, M ]0(∆r) and [V̂ , λ, M ]∞(∆r), respectively, when
pk = 1 for all k. If x ∈ [V̂ , λ, M ](∆r) then we say that x is strongly
almost (V, λ)(∆r)-summable with respect to the Orlicz function M .

Theorem 2.1 Let M be an Orlicz function. Then [V̂ , λ, M, p]0(∆r) ⊂
[V̂ , λ, M, p](∆r) ⊂ [V̂ , λ, M, p]∞(∆r) and the inclusions are strict.

Proof. The inclusion [V̂ , λ, M, p]0(∆r) ⊂ [V̂ , λ, M, p](∆r) is obvious.
Now let x ∈ [V̂ , λ, M, p](∆r). Then there exists some positive number
ρ1 such that

lim
n

1
λn

∑

k∈In

[
M

( |∆rxk+m − `|
ρ1

)]pk

→ 0, uniformly in m.

Define ρ = 2ρ1. Since M is non decreasing and convex, we have

1
λn

∑

k∈In

[
M

( |∆rxk+m|
ρ

)]pk

≤ 1
λn

∑

k∈In

1
2pk

[
M

( |∆rxk+m − `|
ρ1

)
+ M

( |`|
ρ1

)]pk

≤ D

λn

∑

k∈In

[
M

( |∆rxk+m − `|
ρ1

)]pk

+
D

λn

∑

k∈In

[
M

( |`|
ρ1

)]pk
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≤ D

λn

∑

k∈In

[
M

( |∆rxk+m − `|
ρ1

)]pk

+ D max

{
1,

[
M

( |`|
ρ1

)]G
}

,

by (1). Thus x ∈ [V̂ , λ, M, p]∞(∆r). To show the inclusions are strict
consider the following example. ¤

Example 1 Let M(x) = x, pk = 1 for all k ∈ N and λn = n for all n ∈
N. Then the sequence x = (kr) belongs to [V̂ , λ, M, p](∆r) but does not
belong to [V̂ , λ, M, p]0(∆r).

Theorem 2.2 For any Orlicz function M and a bounded sequence p =
(pk) of strictly positive real numbers, [V̂ , λ, M, p](∆r), [V̂ , λ, M, p]0(∆r)
and [V̂ , λ, M, p]∞(∆r) are linear space over the field of complex numbers.

Proof. We shall prove only for [V̂ , λ, M, p]0(∆r). The other cases can be
proved similarly. Let x, y ∈ [V̂ , λ, M, p]0(∆r) and α, β ∈ C. Then there
exist positive numbers ρ1 and ρ2 such that

1
λn

∑

k∈In

[
M

( |∆rxk+m|
ρ1

)]pk

→ 0

and

1
λn

∑

k∈In

[
M

( |∆ryk+m|
ρ2

)]pk

→ 0,uniformly in m.

Define ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M is non-decreasing and convex
and ∆r linear

1
λn

∑

k∈In

[
M

( |∆r(αxk+m + βyk+m)|
ρ3

)]pk

≤ 1
λn

∑

k∈In

[
M

( |α∆rxk+m|
ρ3

+
|β∆ryk+m|

ρ3

)]pk

≤ 1
λn

∑

k∈In

1
2pk

[
M

( |∆rxk+m|
ρ1

)
+ M

( |∆ryk+m|
ρ2

)]pk

≤ D

λn

∑

k∈In

[
M

( |∆rxk+m|
ρ1

)]pk

+
D

λn

∑

k∈In

[
M

( |∆ryk+m|
ρ2

)]pk

→ 0

as n → ∞ uniformly in m. This proves that [V̂ , λ, M, p]0(∆r) is linear
space. ¤
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Theorem 2.3 For any Orlicz function M and a bounded sequence p =
(pk) of strictly positive real numbers, [V̂ , λ, M, p]0(∆r) is paranormed space
(not necessarily total paranormed) with

g(x) = inf
ρ>0
n≥1

{
ρ

pn
H : sup

k
M

( |∆rxk+m|
ρ

)
≤ 1, uniformly in m

}

where H = max(1, supk pk).

Proof. Clearly g(x) = g(−x). Since M(0) = 0, we get inf{ρpn/H} = 0
for x = θ. Now let x, y ∈ [V̂ , λ, M, p]0(∆r) and let us choose ρ1 > 0 and
ρ2 > 0 such that

sup
k

M

( |∆rxk+m|
ρ1

)
≤ 1, uniformly in m

and

sup
k

M

( |∆ryk+m|
ρ2

)
≤ 1, uniformly in m.

Let ρ = ρ1 + ρ2. Then we get

sup
k

M

( |∆r(xk+m + yk+m)|
ρ

)

≤ sup
k

M

( |∆rxk+m|
ρ1 + ρ2

+
|∆ryk+m|
ρ1 + ρ2

)

≤
(

ρ1

ρ1 + ρ2

)
sup

k
M

( |∆rxk+m|
ρ1 + ρ2

)

+
(

ρ2

ρ1 + ρ2

)
sup

k
M

( |∆ryk+m|
ρ1 + ρ2

)
≤ 1, uniformly in m.

Therefore g(x + y) ≤ g(x) + g(y).
For the continuity of scalar multiplication let l 6= 0 be any complex

number. Then by the definition we have

g (lx)=inf
{

ρpn/H : sup
k

M

( |∆r (lxk+m)|
ρ

)
≤ 1,uniformly in m

}

=inf
{

(|l|s)pn/H : sup
k

M

( |∆rxk+m|
s

)
≤ 1,uniformly in m

}
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where s = ρ/|l|. Since |l|pn ≤ max(1, |l|H), we have

g(lx)≤max(1, |l|H)

× inf
{

spn/H : sup
k

M

( |∆rxk+m|
s

)
≤ 1, uniformly in m

}

=max(1, |l|H)g(x)

and therefore g(rx) converges to zero when g(x) converges to zero in
[V̂ , λ, M, p]0(∆r).

Now let x be a fixed element in [V̂ , λ, M, p]0(∆r). Then there exists
ρ > 0 such that

g(x) = inf
{

ρpn/H : sup
k

M

( |∆rxk+m|
ρ

)
≤ 1, uniformly in m

}
.

Now

g(lx)

= inf



ρpn/H :

sup
k

M

( |l∆rxk+m|
ρ

)
≤ 1, ρ > 0

uniformly in m



 → 0

as l → 0. This completes the proof. ¤

Theorem 2.4 Let M1, M2 be Orlicz functions Then we have
i) [V̂ , λ, M1, p]0(∆r) ∩ [V̂ , λ, M2, p]0(∆r) ⊂ [V̂ , λ, M1 + M2, p]0(∆r),
ii) [V̂ , λ, M1, p](∆r) ∩ [V̂ , λ, M2, p](∆r) ⊂ [V̂ , λ, M1 + M2, p](∆r),
iii) [V̂ , λ, M1, p]∞(∆r)∩[V̂ , λ, M2, p]∞(∆r) ⊂ [V̂ , λ, M1+M2, p]∞(∆r).

Proof. Omitted. ¤

The proof of the following result is a routine work.

Proposition 2.5 Let M be an Orlicz function. Then we have

[V̂ , λ, M, p](∆r−1) ⊂ [V̂ , λ, M, p]0(∆r).

Theorem 2.6 Let M1 and M2 be two Orlicz functions. If M1 and M2 are
equivalent then

i) [V̂ , λ, M1, p]0(∆r) = [V̂ , λ, M2, p]0(∆r),
ii) [V̂ , λ, M1, p](∆r) = [V̂ , λ, M2, p](∆r),
iii) [V̂ , λ, M1, p]∞(∆r) = [V̂ , λ, M2, p]∞(∆r).
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Proof. Proof follows from Definition 1. ¤

Theorem 2.7 Let 0 < pk ≤ tk for each k and (tk/pk) be bounded, then
i) [V̂ , λ, M, t]0(∆r) ⊂ [V̂ , λ, M, p]0(∆r),
ii) [V̂ , λ, M, t](∆r) ⊂ [V̂ , λ, M, p](∆r),
iii) [V̂ , λ, M, t]∞(∆r) ⊂ [V̂ , λ, M, p]∞(∆r).

Proof. We prove it for (i) and the other cases will follow on applying similar
technique. Let x ∈ [V̂ , λ, M, t]0(∆r). Write wk, m = [M(|∆rxk+m|/ρ)]tk
and µk = pk/tk, so that 0 < µ < µk ≤ 1 for each k.

We define the sequences (uk, m) and (vk, m) as follows:
Let uk, m = wk, m and vk, m = 0 if wk, m ≥ 1, and let uk, m = 0 and

vk, m = wk, m if wk, m < 1. Then it is clear that for all k ∈ N, we have
wk, m = uk, m + vk, m, wµk

k, m = uµk
k, m + vµk

k, m. Now it follows that uµk
k, m ≤

uk, m ≤ wk, m and vµk
k, m ≤ vµ

k, m. Therefore

λ−1
n

∑

k∈In

wµk
k, m=λ−1

n

∑

k∈In

(uµk
k, m + vµk

k, m)

≤λ−1
n

∑

k∈In

wk, m + λ−1
n

∑

k∈In

vµ
k, m.

Since µ < 1 so that 1/µ > 1, for each n

λ−1
n

∑

k∈In

vµ
k,m=

∑

k∈In

(λ−1
n vk,m)µ(λ−1

n )1−µ

≤
(∑

k∈In

[(λ−1
n vk,m)µ]1/µ

)µ(∑

k∈In

[(λ−1
n )1−µ]1/(1−µ)

)1−µ

=
(

λ−1
n

∑

k∈In

vk,m

)µ

by Hölder’s inequality, and thus

λ−1
n

∑

k∈In

wµk
k, m ≤ λ−1

n

∑

k∈In

wk, m +
(

λ−1
n

∑

k∈In

vk, m

)µ

.

Hence x ∈ [V̂ , λ, M, p]0(∆r). ¤

Theorem 2.8 Let X stands for [V̂ , λ, M, p]0 or [V̂ , λ, M, p] or
[V̂ , λ, M, p]∞. Then the inclusions X(∆r−1) ⊂ X(∆r) are strict. In gen-
eral X(∆i) ⊂ X(∆r), for i = 1, 2, . . . , r − 1.
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Proof. We give the proof for [V̂ , λ, M, p]∞ only. The other cases can be
proved in a similar way. Let x ∈ [V̂ , λ, M, p]∞, then we have

sup
m, n

1
λn

∑

k∈In

[
M

( |∆r−1xk+m|
ρ

)]pk

< ∞

for some ρ > 0. Since M is non-decreasing and convex function we have

1
λn

∑

k∈In

[
M

( |∆rxk+m|
2ρ

)]pk

=
1
λn

∑

k∈In

[
M

( |∆r−1xk+m −∆r−1xk+m+1|
2ρ

)]pk

≤ D

λn

∑

k∈In

[
1
2
M

( |∆r−1xk+m|
ρ

)]pk

+
D

λn

∑

k∈In

[
1
2
M

( |∆r−1xk+m+1|
ρ

)]pk

≤ D

λn

∑

k∈In

[
M

( |∆r−1xk+m|
ρ

)]pk

+
D

λn

∑

k∈In

[
M

( |∆r−1xk+m+1|
ρ

)]pk

.

Thus [V̂ , λ, M, p]∞(∆r−1) ⊂ [V̂ , λ, M, p]∞(∆r).
The inclusion is strict. In fact the sequence x = (kr−1), for example,

belongs to [V̂ , λ, M, p]0(∆r), but does not belong to [V̂ , λ, M, p]0(∆r−1)
for M(x) = x, λn = n for all n ∈ N and pk = 1 for all k ∈ N. (If x = (kr−1),
then ∆rxk = 0 and ∆r−1xk = (−1)r−1(r − 1)! for all k ∈ N). ¤

Theorem 2.9 (i) The sequence spaces [V̂ , λ, M, p]0 and [V̂ , λ, M, p]∞
are solid and hence are monotone.

(ii) The space [V̂ , λ, M, p] is not monotone and as such is neither
solid nor perfect.

Proof. We give the proof for [V̂ , λ, M, p]0. Let x ∈ [V̂ , λ, M, p]0 and (αk)
be sequences of scalars such that |αk| ≤ 1 for all k ∈ N. Then we have

λ−1
n

∑

k∈In

[
M

( |αk+mxk+m|
ρ

)]pk

≤ λ−1
n

∑

k∈In

[
M

( |xk+m|
ρ

)]pk

→ 0,

(n →∞), uniformly in m.
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Hence αx ∈ [V̂ , λ, M, p]0 for all sequences of scalars (αk) with |αk| ≤ 1 for
all k ∈ N, whenever x ∈ [V̂ , λ, M, p]0. The spaces are monotone follows
from the Remark. ¤

ii) The space [V̂ , λ, M, p] is not monotone follows from the following
example.

Example 2 Let pk = 1 and λk = 1, for all k ∈ N and M(x) = xp, for some
p ≥ 1. Consider the sequence (xk) defined as xk = 1 for all k ∈ N. Consider
the J th step space EJ for a sequence space E defined as, for (xk) ∈ E, (yk)
is the J th canonical preimage of (xk) i.e. (yk) ∈ EJ implies yk = xk, if k is
odd and yk = 0, otherwise. Then (yk) /∈ E. Hence the space [V̂ , λ, M, p] is
not monotone. The rest follows from the Remark.

Theorem 2.10 [V̂ , M, p]∞(∆r) = `∞(M, p)(∆r)
where `∞(M, p)(∆r) = {x : supk[M(|∆rxk|/ρ)]pk < ∞}.

Proof. Write

tnm =
1
n

n∑

k=1

[
M

( |∆rxk+m|
ρ

)]pk

=
1
n

m+n∑

k=m+1

[
M

( |∆rxk|
ρ

)]pk

.

We have,

sup
n, m

tnm = sup
m

supk

[
M

( |∆rxk|
ρ

)]pk

n

m+n∑

k=m+1

1

= sup
k

[
M

( |∆rxk|
ρ

)]pk

(4)

and

sup
n, m

tnm ≥ sup
m

t1, m = sup
m

[
M

( |∆rxm+1|
ρ

)]pm+1

(5)

The result follows from (4) and (5). ¤

In the following theorem, we consider the case when ∆rxk → ` implies
xk → `[V̂ , λ, M, p](∆r) and the uniqueness of a strongly almost difference
limit of x with respect to an Orlicz function M . To prove the next theorem
we need the following Lemma.
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Lemma Let pk > 0 and qk > 0. If lim infk(pk/qk) > 0 then c0(q)(∆r) ⊂
c0(p)(∆r) (see Et and Basarir [2]).

Theorem 2.11 If lim infk pk > 0, then ∆rxk → ` implies
xk → `[V̂ , λ, M, p](∆r) uniquely.

Proof. Let lim infk pk = s > 0 and ∆rxk → `. Then from above lemma
follows that xk → `[V̂ , λ, M, p](∆r).

Now we show that the limit is unique. Let xk → `[V̂ , λ, M, p](∆r) and
xk → `1[V̂ , λ, M, p](∆r). Then there exist ρ1 and ρ2 such that

1
λn

∑

k∈In

[
M

( |∆rxk+m − `|
ρ1

)]pk

→ 0

and

1
λn

∑

k∈In

[
M

( |∆rxk+m − `1|
ρ2

)]pk

→ 0,

as n →∞. Let ρ = max 2(ρ1, ρ2). Then we have

1
λn

∑

k∈In

[
M

( |`− `1|
ρ

)]pk

≤ D

λn

∑

k∈In

[
M

( |∆rxk+m− `|
ρ1

)]pk

+
D

λn

∑

k∈In

[
M

( |∆rxk+m− `1|
ρ2

)]pk

→ 0, as n →∞.
Hence |`− `1| = 0.
⇒ ` = `1.
Thus the limit is unique. ¤

3. ∆r
λ-Statistical convergence

The idea of statistical convergence was introduced by Fast [5] and stud-
ied by various authors ([6], [18], [23], [24]).

In this section we define almost ∆r
λ-statistically convergent sequences

and give some inclusion relations between ∆r
λ-statistically convergent se-

quences and strongly almost (V, λ)(∆r)-summable sequences with respect
to an Orlicz function.
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Definition 3 A sequence x = (xk) is said to be almost ∆r
λ-statistically

convergent to the number ` if for every ε > 0,

lim
n

1
λn
|{k ∈ In : |∆rxk+m − `| ≥ ε}| = 0, uniformly in m.

In this case we write ŝλ(∆r)− lim x = ` or xk → `(ŝλ(∆r)).
In the special case λn = n, for all n ∈ N we shall write ŝ(∆r) instead of
ŝλ(∆r).

Definition 4 A sequence x = (xk) is said to be strongly almost ∆r
λp-

convergent to the number ` if for every ε > 0,

lim
n

1
λn

∑

k∈In

|∆rxk+m − `|p = 0, uniformly in m.

In this case we write [ĉ(∆r
λp)]− lim x = ` or xk → `[ĉ(∆r

λp)] and

[ĉ(∆r
λp)] =





x = (xk) :
lim
n

1
λn

∑

k∈In

|∆rxk+m − `|p = 0,

uniformly in m





.

In the case p = 1 we shall write [ĉ(∆r
λ)] and for the case λn = n for all

n ∈ N and p = 1 we shall write [ĉ(∆r)].

Theorem 3.1 Let λ = (λn) be the same as above, then
i) xk → `[ĉ(∆r

λp)] ⇒ xk → `(ŝλ(∆r)),
ii) If x ∈ `∞(∆r) and xk → `(ŝλ(∆r)), then xk → `[ĉ(∆r

λp)],
iii) ŝλ(∆r) ∩ `∞(∆r) = [ĉ(∆r

λp)] ∩ `∞(∆r).

Proof. i) Let ε > 0 and xk → `[ĉ(∆r
λp)]. Since

∑

k∈In

|∆rxk+m − `|p≥
∑

k∈In
|∆rxk+m−`|≥ε

|∆rxk+m − `|p

≥εp|{k ∈ In : |∆rxk+m − `| ≥ ε}|.
Therefore xk → `(ŝλ(∆r)).

ii) Suppose that xk → `(ŝλ(∆r)) and x ∈ `∞(∆r), say that |∆rxk+m−
`| ≤ K. Let ε > 0 be given and Nε such that

λ−1
n

∣∣∣∣
{

k ∈ In : |∆rxk+m − `| ≥
(ε

2

)1/p
}∣∣∣∣ ≤

ε

2Kp
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for all n > Nε and set Lnm = {k ∈ In : |∆rxk+m − `| ≥ (ε/2)1/p}.
Now for all n > Nε we have

1
λn

∑

k∈In

|∆rxk+m − `|p

=
1
λn

∑

k∈Lnm

|∆rxk+m − `|p +
1
λn

∑

k/∈Lnm

|∆rxk+m − `|p

≤ 1
λn

(
λnε

2Kp

)
Kp +

1
λn

λn
ε

2
= ε.

Hence xk → `[ĉ(∆r
λp)].

iii) This immediately follows from (i) and (ii). ¤

It can be shown that ŝ(∆r) ⊂ ŝλ(∆r) if and only if lim infn λn/n > 0
and ŝλ(∆r) ⊂ ŝ(∆r) for all λ, since λn/n is bounded.

Theorem 3.2 Let M be an Orlicz function. Then [V̂ , λ, M, p](∆r) ⊂
ŝλ(∆r).

Proof. Let x ∈ [V̂ , λ, M, p](∆r). Then there exists ρ > 0 such that

1
λn

∑

k∈In

[
M

( |∆rxk+m − `|
ρ

)]pk

→ 0, as n →∞.

Then given any ε > 0 we can write

1
λn

∑

k∈In

[
M

( |∆rxk+m − `|
ρ

)]pk

=
1
λn

∑

k∈In
|∆rxk+m−`|≥ε

[
M

( |∆rxk+m − `|
ρ

)]pk

+
1
λn

∑

k∈In
|∆rxk+m−`|<ε

[
M

( |∆rxk+m − `|
ρ

)]pk

≥ 1
λn

∑

k∈In
|∆rxk+m−`|≥ε

[
M

( |∆rxk+m − `|
ρ

)]pk

≥ 1
λn

∑

k∈In

[M(ε1)]pk , where ε1 =
ε

ρ
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≥ 1
λn

∑

k∈In

min{[M(ε1)]inf pk , [M(ε1)]G}

≥ 1
λn
|{k ∈ In : |∆rxk+m − `| ≥ ε}|min{[M(ε1)]inf pk , [M(ε1)]G}.

Hence x ∈ ŝλ(∆r). ¤

Theorem 3.3 Let M be an Orlicz function. Then [V̂ , λ, M ](∆r)∩`∞(∆r)
= ŝλ(∆r) ∩ `∞(∆r).

Proof. By Theorem 3.2, we need only show that ŝλ(∆r) ∩ `∞(∆r) ⊂
[V̂ , λ, M ](∆r) ∩ `∞(∆r). Let zk+m = (∆rxk+m − `) → 0(ŝλ). Since x ∈
`∞(∆r), there exists an integer K > 0 such that M(|zk+m|/ρ) < K. Then
for a given ε > 0 and for each n, we have

1
λn

∑

k∈In

M

( |zk+m|
ρ

)

=
1
λn

∑

k∈In, |zk+m|<ε

M

( |zk+m|
ρ

)
+

1
λn

∑

k∈In, |zk+m|≥ε

M

( |zk+m|
ρ

)

≤ λn
1
λn

M

(
ε

ρ

)
+

1
λn

K|{k ∈ In : |zk+m| ≥ ερ}|.

Hence x ∈ [V̂ , λ, M ](∆r) ∩ `∞(∆r). ¤

Theorem 3.4 The spaces [V̂ , λ, M, p]0(∆r), [V̂ , λ, M, p](∆r),
[V̂ , λ, M, p]∞(∆r), ŝλ(∆r) and ŝ0λ(∆r) are not solid for r > 0.

Proof. To show that the spaces are not solid in general, consider the fol-
lowing example. ¤

Example 3 Let M(x) = x, λn = n for each n ∈ N and pk = 1 for all k ∈
N. Then x = (kr) ∈ [V̂ , λ, M, p](∆r), [V̂ , λ, M, p]∞(∆r) and ŝλ(∆r). Let
αk = (−1)k for all k ∈ N, then αx /∈ [V̂ , λ, M, p](∆r), [V̂ , λ, M, p]∞(∆r)
and ŝλ(∆r). Hence [V̂ , λ, M, p](∆r), [V̂ , λ, M, p]∞(∆r) and ŝλ(∆r) are
not solid for r > 0. To show that [V̂ , λ, M, p]0(∆r) and ŝ0λ(∆r) are not
solid, consider the sequence (xk) = (kr−1) and αk = (−1)k for all k ∈ N.

Theorem 3.5 The spaces [V̂ , λ, M, p]0(∆r), [V̂ , λ, M, p](∆r),
[V̂ , λ, M, p]∞(∆r), ŝλ(∆r) and ŝ0λ(∆r) are not symmetric for r > 0.
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Proof. To show that the spaces are not symmetric, consider the following
example. ¤

Example 4 Let M(x) = x, λn = n for each n ∈ N and pk = 1 for all
k ∈ N. Then the sequence x = (kr) ∈ [V̂ , λ, M, p](∆r), [V̂ , λ, M, p]∞(∆r)
and ŝλ(∆r). Let

(yk)={x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, . . .}.
Then y /∈ [V̂ , λ, M, p](∆r), [V̂ , λ, M, p]∞(∆r) and ŝλ(∆r).

Now let us consider the sequence x = (xk) defined by

xk =
{

1, if (2i− 1)2 ≤ k < (2i)2, i = 1, 2, . . .

4, otherwise.

and let (yk) be the same as above. Then x ∈ ŝ0λ(∆) but y /∈ ŝ0λ(∆).

Theorem 3.6 The sequence spaces [V̂ , λ, M, p]0(∆r), [V̂ , λ, M, p](∆r),
[V̂ , λ, M, p]∞(∆r), ŝλ(∆r) and ŝ0λ(∆r) are not sequence algebra for r > 0.

Proof. Under the restriction on M, λ and p as in the Example 4, consider
x = (kr−1) and y = (kr−1), then x, y ∈ [V̂ , λ, M, p]0(∆r), [V̂ , λ, M, p](∆r),
[V̂ , λ, M, p]∞(∆r), ŝλ(∆r) and ŝ0λ(∆r), but x. y /∈ [V̂ , λ, M, p]0(∆r),
[V̂ , λ, M, p](∆r), [V̂ , λ, M, p]∞(∆r), ŝλ(∆r) and ŝ0λ(∆r). ¤

From Theorem 3.5 and the Remark we may give the following corollary.

Corollary 3.7 The sequence spaces [V̂ , λ, M, p]0(∆r), [V̂ , λ, M, p](∆r),
[V̂ , λ, M, p]∞(∆r), ŝλ(∆r) and ŝ0λ(∆r) are not perfect for r > 0.

References

[ 1 ] Altınok H., Et M. and Altin, Y., Strongly almost summable difference sequences.

(to appear).

[ 2 ] Duran J.P., Infinite matrices and almost convergence, Math. Zeit. 128 (1972), 75–

83.
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