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Extensions of some 2-groups

Youichi Iida
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Abstract. Let H be a 2-group with faithful irreducible characters all which are alge-

braically conjugate to each other, and φ be any faithful irreducible character of H. We

are interested in 2-group G with the normal subgroup H such that induced character

φG is irreducible. For example, for 2-groups H that are the cyclic groups, the dihedral

groups Dn and the generalized quaternion groups Qn, all of such 2-groups G was de-

termined ([3]–[5]). In paticular, we showed that such a 2-group G for H = Dn or Qn

is uniquely determined. Let Gt(Dn) and Gt(Qn) be those 2-groups, respectively. The

purpose of this paper is to determine all 2-groups G for H = Gt(Dn) and Gt(Qn) and

faithful irreducible characters φ of H. In this paper we determine the character tables of

Gt(Dn) and Gt(Qn) in order to show that these groups have faithful irreducible charac-

ters all which are algebraically conjugate to each other. As result it is shown that these

2-groups have identical character tables.

Key words: 2-group, group extension, identical character.

1. Introduction

Let Dn, Qn and SDn be the dihedral group, the generalized quaternion
group and the semidihedral group, respectively, of order 2n+1:

Dn =
〈
a, b

∣∣ a2n
= 1, b2 = 1, bab−1 = a−1

〉
(n ≥ 2),

Qn =
〈
a, b

∣∣ a2n
= 1, b2 = a2n−1

, bab−1 = a−1
〉

(n ≥ 2),

SDn =
〈
a, b

∣∣ a2n
= 1, b2 = 1, bab−1 = a−1+2n−1〉

(n ≥ 3).

And we define 2-groups Gt(Dn) and Gt(Qn) of order 2n+t+1 (0 ≤ t ≤ n−2)
as follows:

Gt(Dn) =

〈
a, b, x

∣∣∣∣∣
a2n

= 1, b2 = 1, x2t
= 1,

bab−1 = a−1, xax−1 = a1+2n−t
, xbx−1 = b

〉
,

Gt(Qn) =

〈
a, b, x

∣∣∣∣∣
a2n

= 1, b2 = a2n−1
, x2t

= 1,

bab−1 = a−1, xax−1 = a1+2n−t
, xbx−1 = b

〉
.
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We note that G0(Dn) = Dn and G0(Qn) = Qn. Let Irr(G) be the set of
irreducible characters of a finite group G and FIrr(G) (⊂ Irr(G)) be the set
of faithful irreducible characters of G. We considered the following problem
(see [3]).

Problem Let H be a 2-group with faithful irreducible characters all which
are algebraically conjugate to each other. Take a φ ∈ FIrr(H).
(I) Characterize a 2-group G such that H / G and φG ∈ Irr(G).
(II) Determine all the 2-groups G such that H / G and φG ∈ Irr(G).

And for example, we showed the following in [4].

Theorem 1 ([4, Theorem 1]) Let H = Dn (n ≥ 2), Qn (n ≥ 2) or SDn

(n ≥ 3). Let G be a 2-group with G . H and |G : H| = 2t (t ≥ 1). Take
a φ ∈ FIrr(H). If φG ∈ Irr(G), then t ≤ n − 2 and one of the following
holds:
(1) G ∼= Gt(Dn) when H = Dn,
(2) G ∼= Gt(Qn) when H = Qn,
(3) G ∼= Gt(Dn) or Gt(Qn) when H = SDn.

In paticular, when H = Dn (n ≥ 3) or Qn (n ≥ 3), G is uniquely
determined, respectively, for each integer t (1 ≤ t ≤ n− 2).

Set Hn = Dn or Qn. Theorem 1 implies that there exists no 2-groups G

for H2 and two kinds of series of 2-groups for n ≥ 3:

Hn = G0(Hn) ⊂ G1(Hn) ⊂ G2(Hn) ⊂ · · · ⊂ Gn−2(Hn)

with |Gi+1(Hn) : Gi(Hn)| = 2 (0 ≤ i ≤ n− 3).
The purpose of this paper is to consider Problem (II) for H = Gt(Hn)

and show the following. 2-groups Gt+s(Hn) in the following theorem are
defined in Section 4.

Theorem A Let Hn = Dn (n ≥ 3) or Qn (n ≥ 3) and t be an integer such
that 1 ≤ t ≤ n− 2. Let G be a 2-group with G . Gt(Hn) and |G : Gt(Hn)| =
2s (s ≥ 1). Take a φ ∈ FIrr(Gt(Hn)). If φG ∈ Irr(G), then s ≤ n − t − 2
and G ∼= Gt+s(Hn) or G̃t+s(Hn).

In Section 2 we completely determine irreducible representations and
characters of Gt(Hn) (1 ≤ t ≤ n − 2) in order to show that these groups
have faithful irreducible characters all which are algebraically conjugate to
each other.
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By the way, the following definition is well-known.

Definition Let G1 and G2 be finite groups. We shall say that G1 and
G2 have identical character tables if the following three conditions are sat-
isfied:
(1) There exists a bijection α from G1 to G2.
(2) There exists a bijection β from Irr(G1) to Irr(G2).
(3) It shall be possible to choose a pair of bijections (α, β) such that
χβ(gα) = χ(g) for all g ∈ G1 and all χ ∈ Irr(G1).

Some pairs of nonisomorphic groups with identical character tables are
well-known. The most famous pair is the dihedral group and the generalized
quaternion group of order 4m (m ≥ 2). Two nonisomorphic extraspecial
p-groups of the same order have also identical character tables. And for
example Fisher in [2] and Mattarei in [8]–[10] exhibited some p-groups with
identical character tables, respectively. From the argument in Section 2 we
have

Theorem B The 2-groups Gt(Dn) and Gt(Qn) (0 ≤ t ≤ n − 2) have
identical character tables.

In fact it is easy to see that Gt(Dn) = Dno 〈x〉 and Gt(Qn) = Qno 〈x〉
have identical character tables by comparing the actions of x on Dn and Qn,
because Dn and Qn have identical character tables. As result, we exhibit
series of groups with identical character tables. The character tables of Dn

and Qn are well-known. So we have also an interest to character tables of
Gt(Dn) and Gt(Qn). In Section 3 we explicitly determine character tables
of these groups.

Notation For positive numbers n and k, 2n | k and 2n - k imply that
2n devides k and 2n doesn’t devide k, respectively. We write 2n ‖ k when
2n | k and 2n+1 - k. And a primitive n-th root of 1 is denoted by ζn.

2. Irreducible representations and characters of Gt(Dn) and
Gt(Qn)

In this section we determine all irreducible representations and chat-
acters of Gt(Dn) and Gt(Qn) (1 ≤ t ≤ n − 2). We will use the following
lemmas.
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Lemma 2 ([1, Corollary(45.5)]) Let H / G, and let T be an irreducible
representation of H. Then the induced representation TG is irreducible if
and only if, for all x /∈ H, the representations T and T (x) : h 7→ T (xhx−1)
of H are disjoint.

Lemma 3 For any integers n, t, l and k (1 ≤ t ≤ n − 2, l ≥ 0, k ≥ 1,
2 - k), there exists an odd number κ such that

(1+2n−t)2
lk ≡ 1+2n−t+lκ (mod 2n).

Proof. Clear. ¤

We set G = Gt(Dn) or Gt(Qn). Let G′ be the commutator subgroup
of G. It is easily seen that G′ ⊃ 〈bab−1a−1〉 = 〈a2〉 and G/〈a2〉 is abelian.
So we have G′ = 〈a2〉. Then G/G′ ∼= 〈a〉 × 〈b〉 × 〈x〉 and the relations
a2 = b

2 = x2t
= 1. So we have 2t+2 one-dimensional representations χµ,γ,ν

of G:

χµ,γ,ν : a 7→ (−1)µ, b 7→ (−1)γ , x 7→ ζν
2t ,

where µ = 1, 2, γ = 1, 2 and 1 ≤ ν ≤ 2t.
Next it follows from Yamada [11, Theorem 1] that the rest of irreducible

representations of G are induced from one-dimensional representation of
Hs = 〈a, x2s〉 (0 ≤ s ≤ t). We note that Hs is a normal subgroup of G.
From now we write Hs by H simply, and let H ′ be the commutator subgroup
of H. We consider into two cases for integers s (0 ≤ s ≤ t).

(Case 2-I) s = 0, i.e., H = 〈a, x〉.
It is easily seen that H ′ = 〈xax−1a−1〉 = 〈a2n−t〉, H/H ′ ∼= 〈a〉×〈x〉 and

the relations a2n−t
= x2t

= 1. So we have 2n one-dimensional representa-
tions φ0,µ,ν of H:

φ0,µ,ν : a 7→ ζµ
2n−t , x 7→ ζν

2t ,

where 1 ≤ µ ≤ 2n−t and 1 ≤ ν ≤ 2t. Set φµ,ν = φ0,µ,ν for simplicity. We
have the decomposition into disjoint right cosets: G = H ∪Hb. Using this,
we have induced representations ΦG

µ,ν of G affording the character φG
µ,ν :

a 7→
(

ζµ
2n−t 0
0 ζ−µ

2n−t

)
, b 7→

(
0 1
1 0

)
, x 7→

(
ζν
2t 0
0 ζν

2t

)
.

By Lemma 2, ΦG
µ,ν is irreducible, if and only if µ 6≡ −µ (mod 2n−t) i.e.,
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2n−t−1 - µ.
Now we have φG

µ,ν(g) = 0 for any g ∈ G − H since H / G. And
φG

µ,ν(a
kxl) = φµ,ν(akxl) + φb

µ,ν(a
kxl) = ζνl

2t (ζ
µk
2n−t + ζ−µk

2n−t). It is easy to

see that φG
µ,ν 6= φG

µ′,ν′ , if and only if ζµ
2n−t +ζ−µ

2n−t 6= ζµ′
2n−t +ζ−µ′

2n−t or ζν
2t 6= ζν′

2t .
This is clearly equivalent to the condition µ 6≡ ±µ′ (mod 2n−t) or ν 6≡ ν ′

(mod 2t). As result we have (2n−t−1 − 1) × 2t = 2n−1 − 2t irreducible
characters of G:

φG
µ,ν(a

kbmxl) =

{
0, m = 1,

ζνl
2t (ζ

µk
2n−t + ζ−µk

2n−t), m = 0,

where 1 ≤ µ < 2n−t−1 and 1 ≤ ν ≤ 2t.

(Case 2-II) 1 ≤ s ≤ t.
We note that if s = t, then H = 〈a〉. It is easily seen that H ′ =

〈x2s
ax−2s

a−1〉 = 〈a2n−t+s〉, H/H ′ ∼= 〈a〉 × 〈x2s〉 and the relations a2n−t+s
=

(x2s)2
t−s

= 1. So we have 2n one-dimensional representations φs,µ,ν of H:

φs,µ,ν : a 7→ ζµ
2n−t+s , x2s 7→ ζν

2t−s ,

where 1 ≤ µ ≤ 2n−t+s and 1 ≤ ν ≤ 2t−s. Set φµ,ν = φs,µ,ν for simplicity.
We have the decomposition into disjoint right cosets:

G =

(
2s−1⋃

i=0

Hxi

)
∪

(
2s−1⋃

i=0

Hbxi

)
.

Using this, we have induced representations ΦG
µ,ν of G affording φG

µ,ν . Indeed
we define 2s × 2s metrices as follows:

A =




ζµ
2n−t+s 0 · · · 0

0 ζ
µ(1+2n−t)1

2n−t+s

. . .
...

...
. . . . . . 0

0 · · · 0 ζ
µ(1+2n−t)2

s−1

2n−t+s




,

B1 =




1 0 · · · 0

0 1
. . . 0

...
. . . . . . 0

0 · · · 0 1




,
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B2 =




φµ,ν(b2) 0 · · · 0

0 φµ,ν(b2)
. . .

...
...

. . . . . . 0
0 · · · 0 φµ,ν(b2)




,

X =




0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 0 1

ζν
2t−s 0 · · · 0 0




,

where

φµ,ν(b2) =

{
−1 s = t and G = Gt(Qn),

1 othewise.

And we denote the 2s × 2s zero matrix by O.
Then we have an induced representation ΦG

µ,ν of G affording the char-
acter φG

µ,ν :

a 7→
(

A O

O A−1

)
, b 7→

(
O B1

B2 O

)
, x 7→

(
X O

O X

)
.

By Lemma 2, ΦG
µ,ν is irreducible, if and only if for each integer i (1 ≤ i ≤

2s−1), µ 6≡ µ(1+2n−t)i (mod 2n−t+s), µ 6≡ −µ(1+2n−t)i (mod 2n−t+s) and
µ 6≡ −µ (mod 2n−t+s). This is equivalent to the condition 2 - µ. Indeed,
because µ 6≡ ±µ(1 + 2n−t)2

s−1
(mod 2n−t+s), it follows from s ≥ 1 that

2 - µ. Clearly if 2 - µ, the above condition for φG
µ,ν ∈ Irr(G) holds.

Now we have φG
µ,ν(g) = 0 for any g ∈ G − H since H / G. And for

each integer l (0 ≤ l < s), k (1 ≤ k < 2n−l, 2 - k), α (0 ≤ α < 2l) and β

(0 ≤ β < 2s−l), it follows from Lemma 3 that

ζ
±2lµk(1+2n−t)2

s−lα+β

2n−t+s = ζ
±2lµk(1+2n−t+s−l)α(1+2n−t)β

2n−t+s

= ζ
±2lµk(1+2n−t)β

2n−t+s

Similarly, for each integer l (0 ≤ l < s), k (1 ≤ k < 2n−l, 2 - k) and β

(0 ≤ β < 2s−l−1), it follows from Lemma 3 and 2 - µ that

ζ
±2lµk(1+2n−t)2

s−l−1+β

2n−t+s = ζ
±2lµk(1+2n−t+s−l−1)(1+2n−t)β

2n−t+s
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= ζ
±2lµk(1+2n−t)β

2n−t+s ζ
±2n−t+s−1µk(1+2n−t)β

2n−t+s

= −ζ
±2lµk(1+2n−t)β

2n−t+s .

So we have φG
µ,ν(a

2lk) = 0, where 0 ≤ l < s, 1 ≤ k < 2n−l and 2 - k. And

since ζ2n−t = ζ2s

2n−t+s , we have clearly φG
µ,ν(a

2lk) = 2s
(
ζ2l−sµk
2n−t + ζ−2l−sµk

2n−t

)
,

where s ≤ l < n, 1 ≤ k < 2n−l, 2 - k. Here we have

φG
µ,ν(a

kx2sj) =
2s−1∑

i=0

φxi

µ,ν(a
kx2sj) +

2s−1∑

i=0

φbxi

µ,ν(a
kx2sj)

= φµ,ν(x2sj)

(
2s−1∑

i=0

φxi

µ,ν(a
k) +

2s−1∑

i=0

φbxi

µ,ν(a
k)

)

= ζνj
2t−sφ

G
µ,ν(a

k)

It is easy to see that φG
µ,ν 6= φG

µ′,ν′ , if and only if ζµ
2n−t + ζ−µ

2n−t 6= ζµ′
2n−t +

ζ−µ′
2n−t or ζν

2t−s 6= ζν′
2t−s . This is clearly equivalent to the condition µ 6≡ ±µ′

(mod 2n−t) or ν 6≡ ν ′ (mod 2t−s). As result we have 2n−t−2×2t−s = 2n−s−2

irreducible characters of G:

φG
µ,ν(a

kbmxl)

=

{
0, 2s - k or m = 1 or 2s - l,
2sζνl

2t (ζ
µk
2n−t+s + ζ−µk

2n−t+s), 2s | k and m = 0 and 2s | l,
where 1 ≤ µ < 2n−t−1, 2 - µ and 1 ≤ ν ≤ 2t−s.

The total number of irreducible characters of G which we have now is

2t+2+2n−1−2t+
t∑

s=1

2n−s−2 = 3·2t+2n−t−2(3·2t−1).

We know easily these irreducible characters is all ones of G = Gt(Dn) or
Gt(Qn) from orthogonality relation (for example, see [1, (31.14)]). In fact
we have

2t+2×1+(2n−1−2t)×22+
t∑

s=1

(2n−s−2×(2s+1)2) = 2n+t+1 = |G|.

Consequently we have all irreducible characters of Gt(Dn) or Gt(Qn)
as follows, the number of which is 3 · 2t + 2n−t−2(3 · 2t − 1):
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(1) 2t+2 one-dimensional characters χµ,γ,ν (µ=1, 2, γ=1, 2 and 1≤ν≤2t):

χµ,γ,ν(akbmxl) = (−1)µk(−1)γmζνl
2t .

(2) 2n−1− 2t irreducible characters φG
0,µ,ν (1 ≤ µ < 2n−t−1 and 1 ≤ ν ≤ 2t):

φG
0,µ,ν(a

kbmxl) =

{
0, m = 1,

ζνl
2t (ζ

µk
2n−t + ζ−µk

2n−t), m = 0.

(3) for each integer s (1 ≤ s ≤ t), 2n−s−2 irreducible characters φG
s,µ,ν (1 ≤

µ < 2n−t−1, 2 - µ and 1 ≤ ν ≤ 2t−s):

φG
s,µ,ν(a

kbmxl)

=

{
0, 2s - k or m = 1 or 2s - l,
2sζνl

2t (ζ
µk
2n−t+s + ζ−µk

2n−t+s), 2s | k and m = 0 and 2s | l.

3. Conjugacy classes of Gt(Dn) and Gt(Qn)

Now it is sufficient to determine the set of conjugacy classes in order to
give character tables of Gt(Dn) and Gt(Qn). Let G = Gt(Dn) or Gn(Qn).
Since 〈a〉 / G, we have the set of conjugacy classes concluded in 〈a〉 in G by
Lemma 3:

{
1
}
,

{
a2n−1}

,
{
ai(1+2n−t)µ

, a−i(1+2n−t)µ ∣∣ 1 ≤ µ ≤ 2t
}

(1 ≤ i ≤ 2n, 2 - i),
{
ai(1+2n−t)µ

, a−i(1+2n−t)µ ∣∣ 1 ≤ µ ≤ 2t−s
}

(1 ≤ i ≤ 2n, 2s ‖ i, 1 ≤ s ≤ t− 1),{
ai, a−i

}
(1 ≤ i ≤ 2n, 2t | i, 2n−1 - i).

The total number of these conjugacy classes is

1 + 1 + (2n/2)/2t+1 +
t−1∑

s=1

(2n/2s+1)/2t−s+1 + (2n/2t − 2)/2

= 2 + 2n−t−2 + (t− 1)× 2n−t−2 + 2n−t−1 − 1

= 1 + (t + 2) · 2n−t−2.

Next we consider conjugacy classes concluding elements aibxj (1 ≤ i
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≤ 2n, 1 ≤ j ≤ 2t.) Since akbxja−k = a2k{1+{(1+2n−t)j−1}/2}bxj , akabxja−k =
a1+2k{1+{(1+2n−t)j−1}/2}bxj and xb = bx, we have the following conjugacy
classes:

{a2µbxj | 1 ≤ µ ≤ 2n−1} (1 ≤ j ≤ 2t),

{a1+2µbxj | 1 ≤ µ ≤ 2n−1} (1 ≤ j ≤ 2t).

The total number of these conjugacy classes is 2× 2t = 2t+1.
Next we consider conjugacy classes concluding the elements aixj (1 ≤

i ≤ 2n, 1 ≤ j ≤ 2t). Since

(aµxν)(aixj)(aµxν)−1 = (xνaix−ν)(aµxja−µ)

= ai(1+2n−t)ν
(aµxja−µ),

and (aµbxν)(aixj)(aµbxν)−1 = (xνa−ix−ν)(aµxja−µ)

= a−i(1+2n−t)ν
(aµxja−µ),

we consider the set of conjugacy classes concluding elements aµxja−µ (1 ≤
µ ≤ 2n, 1 ≤ j ≤ 2t) in three cases.

(Case 3-I) 1 ≤ j ≤ 2t, 2 - j.
Since there exists an odd number κ1 such that aµxja−µ =

aµ{1−(1+2n−t)j}xj = a−2n−tµκ1xj by Lamma 3, we have
{
aµxja−µ

∣∣ 1 ≤ µ ≤ 2n
}

=
{
a2n−tµxj

∣∣ 1 ≤ µ ≤ 2t
}
.

And so we have for integers i (1 ≤ i ≤ 2n)
{
ai(1+2n−t)ν

(aµxja−µ), a−i(1+2n−t)ν
(aµxja−µ)

∣∣
1 ≤ µ ≤ 2n, 1 ≤ ν ≤ 2t

}

=
{
ai(1+2n−t)ν+2n−tµxj , a−i(1+2n−t)ν+2n−tµxj

∣∣
1 ≤ µ ≤ 2t, 1 ≤ ν ≤ 2t

}

=





{
a2n−tµxj

∣∣ 1 ≤ µ ≤ 2t
}

(i = 2n),{
ai+2n−tµxj , a−i+2n−tµxj

∣∣ 1 ≤ µ ≤ 2t
}

(2 - i),{
ai+2n−tµxj , a−i+2n−tµxj

∣∣ 1 ≤ µ ≤ 2t
}

(2u ‖ i, 1 ≤ u ≤ n− t− 2),{
ai+2n−tµxj

∣∣ 1 ≤ µ ≤ 2t
}

=
{
aixj

∣∣ 1 ≤ i ≤ 2n, 2n−t−1 ‖ i
}

(2n−t−1 ‖ i).
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We note that i+2n−tκ1 ≡ −i+2n−tκ2 (mod 2n) for some integers κ1 and κ2,
if and only if 2n−t−1 | i. Consequently the total number of these conjugacy
classes is

1 + (2n−1/2t+1) +
n−t−2∑

u=1

(2n−u−1/2t+1) + 1

= 2 + 2n−t−2 +
n−t−2∑

u=1

2n−t−2−u

= 2 + 2n−t−2 + 2n−t−2 − 1

= 1 + 2n−t−1.

Since the number of elements of {j | 1 ≤ j ≤ 2t, 2 - j} is 2t−1, the total
number of conjugacy classes in this case is (1+2n−t−1)×2t−1 = 2t−1+2n−2.

(Case 3-II) 1 ≤ j ≤ 2t, 2s ‖ j for each integer s (1 ≤ s ≤ t− 2).
Since there exists an odd number κ2 such that aµxja−µ =

aµ{1−(1+2n−t)j}xj = a−2n−t+sµκ2xj by Lemma 3, we have
{
aµxja−µ

∣∣ 1 ≤ µ ≤ 2n
}

=
{
a2n−t+sµxj

∣∣ 1 ≤ µ ≤ 2t−s
}
.

And so we have for integers i (1 ≤ i ≤ 2n)
{
ai(1+2n−t)ν

(aµxja−µ), a−i(1+2n−t)ν
(aµxja−µ)

∣∣
1 ≤ µ ≤ 2n, 1 ≤ ν ≤ 2t

}

=
{
ai(1+2n−t)ν+2n−t+sµxj , a−i(1+2n−t)ν+2n−t+sµxj

∣∣
1 ≤ µ ≤ 2t−s, 1 ≤ ν ≤ 2t

}

=





{
a2n−t+sµxj

∣∣ 1 ≤ µ ≤ 2t−s
}

(i = 2n),{
ai+2n−tµxj , a−i+2n−tµxj

∣∣ 1 ≤ µ ≤ 2t
}

(2 - i),{
ai+2n−t+uµxj , a−i+2n−t+uµxj

∣∣ 1 ≤ µ ≤ 2t−u
}

(2u ‖ i, 1 ≤ u ≤ s),{
ai+2n−t+sµxj , a−i+2n−t+sµxj

∣∣ 1 ≤ µ ≤ 2t−s
}

(2u ‖ i, s + 1 ≤ u ≤ n− t + s− 2),{
ai+2n−t+sµxj

∣∣ 1 ≤ µ ≤ 2t−s
}

=
{
aixj

∣∣ 1 ≤ i ≤ 2n, 2n−t+s−1 ‖ i
}

(2n−t+s−1 ‖ i).

We note that i + 2n−t+sκ1 ≡ −i + 2n−t+sκ2 (mod 2n) for some integers κ1
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and κ2, if and only if 2n−t+s−1 | i. Consequently the number of these
conjugacy classes for each integer s (1 ≤ s ≤ t− 2) is

1+(2n−1/2t+1)+
s∑

u=1

(2n−u−1/2t−u+1)+
n−t+s−2∑

u=s+1

(2n−u−1/2t−s+1)+1

=2+2n−t−2 +
s∑

u=1

2n−t−2 +
n−t+s−2∑

u=s+1

2n−t+s−2−u

=1+2n−t−1 +2n−t−2s.

Since the number of elements of {j | 1 ≤ j ≤ 2t, 2s ‖ j} is 2t−s−1, the total
number of conjugacy classes in this case is

t−2∑

s=1

(
(1 + 2n−t−1 + 2n−t−2s)× 2t−s−1

)

=
t−2∑

s=1

(2t−s−1 + 2n−s−2 + sn−s−3s)

= (2t−1 − 2) + (2n−2 − 2n−t) + 2n−3
t−2∑

s=1

2−ss

= 2t−1 − 2 + 2n−2 − 2n−t + 2n−3(2− 23−t − (t− 2)22−t)

= 2n−1 + 2t−1 − (t + 2)2n−t−1 − 2.

(Case 3-III) 1 ≤ j ≤ 2t, 2t−1 ‖ j, i.e., j = 2t−1.

Since we have aµx2t−1
a−µ = aµ{1−(1+2n−t)2

t−1}x2t−1
= a2n−1µx2t−1

by
Lemma 3, we have

{
aµx2t−1

a−µ
∣∣ 1 ≤ µ ≤ 2n

}
=

{
a2n−1µx2t−1 ∣∣ µ = 0, 1

}

=
{
x2t−1

, a2n−1
x2t−1}

.

And so we have for integers i (1 ≤ i ≤ 2n)
{
ai(1+2n−t)ν

(aµx2t−1
a−µ), a−i(1+2n−t)ν

(aµx2t−1
a−µ)

∣∣
1 ≤ µ ≤ 2n, 1 ≤ ν ≤ 2t

}

=
{
ai(1+2n−t)ν+2n−1µx2t−1

, a−i(1+2n−t)ν+2n−1µx2t−1 ∣∣
µ = 0, 1, 1 ≤ ν ≤ 2t

}
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=





{
a2n−1µx2t−1 ∣∣ µ = 0, 1

}
=

{
x2t−1

, a2n−1
x2t−1}

(i = 2n),{
ai+2n−tµx2t−1

, a−i+2n−tµx2t−1 ∣∣ 1 ≤ µ ≤ 2t
}

(2 - i),{
ai+2n−t+uµx2t−1

, a−i+2n−t+uµx2t−1 ∣∣ 1 ≤ µ ≤ 2t−u
}

(2u ‖ i, 1 ≤ u ≤ t− 1),{
ai+2n−1µx2t−1

, a−i+2n−1µx2t−1 ∣∣ µ = 0, 1
}

(2u ‖ i, t ≤ u ≤ n− 3),{
ai+2n−1µx2t−1 ∣∣ µ = 0, 1

}
=

{
a2n−2

x2t−1
, a3·2n−2

x2t−1}

(2n−2 ‖ i).

We note that i + 2n−1κ1 ≡ −i + 2n−1κ2 (mod 2n) for some integers κ1

and κ2, if and only if 2n−2 | i. And we remark t− 1 < n− 2. Consequently
the total number of conjugacy classes in this case is

1 + 2n−1/2t+1 +
t−1∑

u=1

2n−u−1/2t−u+1 +
n−3∑
u=t

2n−u−1/22 + 1

= 1 + 2n−t−2 +
t−1∑

u=1

2n−t−2 +
n−3∑
u=t

2n−3−u + 1

= 1 + 2n−t−2(t + 1).

The total number of conjugacy classes of G in this section is

(1 + 2n−t−2(t + 2)) + 2t+1 + (2t−1 + 2n−2)

+ (2n−1 + 2t−1 − (t + 2)2n−t−1 − 2) + 1 + 2n−t−2(t + 1)

= 3 · 2n−2 + 3 · 2t + 2n−t−1 − 2n−t + 2n−t−2

= 3 · 2n−2 + 3 · 2t − 2n−t−2

= 3 · 2t + 2n−t−2(3 · 2t − 1),

which is equal to the number of irreducible characters of G (see Secion 3).
So we have now the set of conjugacy classes of G.
Consequently we have the conjugacy classes of G as follows, the number

of which is 3 · 2t + 2n−t−2(3 · 2t − 1):
(1)

{
1
}
,
{
a2n−1}

,{
ai(1+2n−t)µ

, a−i(1+2n−t)µ ∣∣ 1 ≤ µ ≤ 2t
}

(2 - i),{
ai(1+2n−t)µ

, a−i(1+2n−t)µ ∣∣ 1 ≤ µ ≤ 2t−s
}

(2s ‖ i, 1 ≤ s ≤ t− 1),{
ai, a−i

}
(2t | i, 2n−1 - i),
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(2) 1 ≤ j ≤ 2t

{
a2µbxj

∣∣ 1 ≤ µ ≤ 2n−1
}
,
{
a1+2µbxj

∣∣ 1 ≤ µ ≤ 2n−1
}
,

(3) 1 ≤ j ≤ 2t, 2 - j{
a2n−tµxj

∣∣ 1 ≤ µ ≤ 2t
}
,{

ai+2n−tµxj , a−i+2n−tµxj
∣∣ 1 ≤ µ ≤ 2t

}
(2 - i),{

ai+2n−tµxj , a−i+2n−tµxj
∣∣ 1 ≤ µ ≤ 2t

}
(2u ‖ i, 1 ≤ u ≤ n− t− 2),{

aixj
∣∣ 1 ≤ i ≤ 2n, 2n−t−1 ‖ i

}
,

(4) 1 ≤ j ≤ 2t, 2s ‖ j for each integer s (1 ≤ s ≤ t− 2){
a2n−t+sµxj

∣∣ 1 ≤ µ ≤ 2t−s
}
,{

ai+2n−tµxj , a−i+2n−tµxj
∣∣ 1 ≤ µ ≤ 2t

}
(2 - i),{

ai+2n−tµxj , a−i+2n−tµxj
∣∣ 1 ≤ µ ≤ 2t−u

}
(2u ‖ i, 1 ≤ u ≤ s),{

ai+2n−t+sµxj , a−i+2n−t+sµxj
∣∣ 1 ≤ µ ≤ 2t−s

}

(2u ‖ i, s + 1 ≤ u ≤ n− t + s− 2),{
aixj

∣∣ 1 ≤ i ≤ 2n, 2n−t+s−1 ‖ i
}
,

(5)
{
x2t−1

, a2n−1
x2t−1}

,{
ai+2n−tµx2t−1

, a−i+2n−tµx2t−1 ∣∣ 1 ≤ µ ≤ 2t
}

(2 - i),{
ai+2n−t+uµx2t−1

, a−i+2n−t+uµx2t−1 ∣∣ 1 ≤ µ ≤ 2t−u
}

(2u ‖ i, 1 ≤ u ≤ t− 1),{
aix2t−1

, a−ix2t−1
, ai+2n−1

x2t−1
, a−i+2n−1

x2t−1}

(2u ‖ i, t ≤ u ≤ n− 3),{
a2n−2

x2t−1
, a3·2n−2

x2t−1}
,

where 1 ≤ i ≤ 2n.

4. Extensions of Gt(Dn) and Gt(Qn)

Let Hn = Dn or Qn (n ≥ 3). From the argument in Section 2 it follows
that Gt(Hn) (1 ≤ t ≤ n−2) has faithful irreducible characters all which are
algebraically conjugate to each other. In fact the induced character φ

Gt(Hn)
t,µ,1

from φt,µ,1 (1 ≤ µ < 2n−t−1, 2 - µ) of Ht = 〈a〉 is faithful. So we consider
Problem (II) in Section 1 for H = Gt(Hn) and φ

Gt(Hn)
t,µ,1 ∈ FIrr(H). We

difine some 2-groups:
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G̃2(Dn)=

〈
a, b, x, y

a2n
=1, b2 =1, x2 =1, y2 =1

bab−1 = a−1, xax−1 = a1+2n−1
, xbx−1 = b

yay−1 = ax, yby−1 = bx, yxy−1 =x

〉
,

G̃2(Qn)=

〈
a, b, x, y

a2n
=1, b2 = a2n−1

, x2 =1, y2 =1
bab−1 = a−1, xax−1 = a1+2n−1

, xbx−1 = b
yay−1 = ax, yby−1 = a2n−1

bx, yxy−1 =x

〉
,

Moreover we define some 2-groups for integers t (3 ≤ t ≤ n− 2):

G̃t(Dn)

=

〈
a, b, x, y

a2n
=1, b2 =1, x2t−1

=1, y2 =xet

bab−1 = a−1, xax−1 = a1+2n−t+1
, xbx−1 = b

yay−1 = a1+2n−t
x2t−2

, yby−1 = bx2t−2
, yxy−1 =x

〉
,

where et is the odd number satisfying (1+2n−t+1)et ≡ (1+2n−t)2

(mod 2n),

G̃t(Qn)

=

〈
a, b, x, y

a2n
=1, b2 = a2n−1

, x2t−1
=1, y2 =xet

bab−1 = a−1, xax−1 = a1+2n−t+1
, xbx−1 = b

yay−1 = a1+2n−t
x2t−2

, yby−1 = bx2t−2
, yxy−1 =x

〉
,

where et is the odd number satisfying (1+2n−t+1)et ≡ (1+2n−t)2

(mod 2n).
In [10] Sekiguchi showed the following theorem.

Theorem 4 Let H = Dn (n ≥ 3) or Qn (n ≥ 3). Let G be a 2-group with
G ⊃ H and |G : H| = 2t (t ≥ 1). Take a φ ∈ FIrr(H). If φG ∈ Irr(G), then
t ≤ n− 2 and one of the following holds:
(1) G ∼= G1(H) when t = 1,
(2) G ∼= G2(H) or G̃2(H) when t = 2,
(3) G ∼= Gt(H) or G̃t(H) when 3 ≤ t ≤ n− 2.

Proof of Theorem A. From the results in Section 2 we have φ = φ
Gt(Hn)
t,µ,1

for some integer µ (1 ≤ µ < 2n−t−1 and 2 - µ). It is clear that φHn
t,µ,1 ∈

FIrr(Hn) and φ
Gt(Hn)
t,µ,1 = (φHn

t,µ,1)
Gt(Hn). So it follows from Theorem 4 that

G ∼= Gt+s(Hn) or G̃t+s(Hn) for some integers s (1 ≤ s ≤ n − t − 2). It is
easily known that Gt+s(Hn) . Gt(Hn) and G̃t+s(Hn) . Gt(Hn). Theorem A
is proved. ¤
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