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Extensions of some 2-groups

Youichi IibA
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Abstract. Let H be a 2-group with faithful irreducible characters all which are alge-
braically conjugate to each other, and ¢ be any faithful irreducible character of H. We
are interested in 2-group G with the normal subgroup H such that induced character
¢C is irreducible. For example, for 2-groups H that are the cyclic groups, the dihedral
groups D, and the generalized quaternion groups Q, all of such 2-groups G was de-
termined ([3]-[5]). In paticular, we showed that such a 2-group G for H = D, or Qn
is uniquely determined. Let G¢(D») and G¢(Qn) be those 2-groups, respectively. The
purpose of this paper is to determine all 2-groups G for H = G¢(Dy) and G¢(Qrn) and
faithful irreducible characters ¢ of H. In this paper we determine the character tables of
G¢(Dp) and G¢(Qn) in order to show that these groups have faithful irreducible charac-
ters all which are algebraically conjugate to each other. As result it is shown that these
2-groups have identical character tables.
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1. Introduction

Let D,, @, and SD,, be the dihedral group, the generalized quaternion
group and the semidihedral group, respectively, of order 2"+1:

D, = <a, b ‘ ¥ =1, 02=1, bab”! = a_1> (n>2),
Qn = <a, b ‘ ¥ =1, ¥ = a2n_1, bab~! = a71> (n>2),
SD, = <a, b ‘ ¥ =1, =1, bab” ! = a_1+2n71> (n > 3).

And we define 2-groups G¢(D,,) and G¢(Q,,) of order 2"+1 (0 <t < n—2)
as follows:

n t
a¥ =1, =1, 2¥ =1,

-1 142n—t -1 _ )
)

G Dn = ,b,
t(Dn) @O bab™ ' = a7, zaz ! =a

—1 t
a®' =1, ¥ =ad>", 2% =1,
— — — n—t —
bab~! = a1, zax™t =a'*?" zbzT =b

Gt(Qn) = a, b7 X
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We note that Go(D,,) = D, and Go(Qr) = @n. Let Irr(G) be the set of
irreducible characters of a finite group G and FIrr(G) (C Irr(G)) be the set
of faithful irreducible characters of G. We considered the following problem
(see [3]).

Problem Let H be a 2-group with faithful irreducible characters all which
are algebraically conjugate to each other. Take a ¢ € Flrr(H).

(I) Characterize a 2-group G such that H <G and ¢© € Irr(G).

(IT) Determine all the 2-groups G such that H <G and ¢% € Irr(G).

And for example, we showed the following in [4].

Theorem 1 ([4, Theorem 1]) Let H =D, (n>2), Q, (n >2) or SD,,
(n > 3). Let G be a 2-group with G> H and |G : H| = 2' (t > 1). Take
a ¢ € Flrr(H). If ¢ € Irr(G), then t < n — 2 and one of the following
holds:
(1) G = G¢(Dy,) when H = D,
(2) G= Gt(Qn) when H = Q,
(3) G = Gi(Dy,) or G¢(Qr) when H = SD,,.

In paticular, when H = D,, (n > 3) or Q, (n > 3), G is uniquely
determined, respectively, for each integert (1 <t <n —2).

Set H, = D, or Q). Theorem 1 implies that there exists no 2-groups G
for Hy and two kinds of series of 2-groups for n > 3:

H, = Go(Hn) C Gl(Hn) C GQ(Hn) c---C Gn_z(Hn)

with |Giy1(Hyp) : Gi(Hp)| =2 (0<i<n-—3).

The purpose of this paper is to consider Problem (II) for H = G(H,,)
and show the following. 2-groups Gy4s(Hy) in the following theorem are
defined in Section 4.

Theorem A Let H, = D,, (n > 3) or Q, (n > 3) andt be an integer such
that 1 <t <n—2. Let G be a 2-group with G>G(Hy,) and |G : G¢(H,)| =
2% (s > 1). Take a ¢ € Flrr(Gy(H,)). If ¢© € Irr(G), then s <n —t —2
and G = Gy45(H,) or CNJHS(HH).

In Section 2 we completely determine irreducible representations and
characters of Gy(H,,) (1 <t < n —2) in order to show that these groups
have faithful irreducible characters all which are algebraically conjugate to
each other.
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By the way, the following definition is well-known.

Definition Let G; and G2 be finite groups. We shall say that G; and
G2 have identical character tables if the following three conditions are sat-
isfied:

(1) There exists a bijection « from G; to Ga.

(2) There exists a bijection 8 from Irr(Gy) to Irr(Ga).

(3) It shall be possible to choose a pair of bijections (¢, (3) such that
x?(g%) = x(g) for all g € G1 and all y € Irr(G1).

Some pairs of nonisomorphic groups with identical character tables are
well-known. The most famous pair is the dihedral group and the generalized
quaternion group of order 4m (m > 2). Two nonisomorphic extraspecial
p-groups of the same order have also identical character tables. And for
example Fisher in [2] and Mattarei in [8]-[10] exhibited some p-groups with
identical character tables, respectively. From the argument in Section 2 we
have

Theorem B The 2-groups G¢(Dy) and G¢(Qn) (0 < t < n — 2) have
identical character tables.

In fact it is easy to see that G¢(D,) = D, x (z) and G¢(Q,) = Qpn % (x)
have identical character tables by comparing the actions of  on D,, and @,
because D,, and @), have identical character tables. As result, we exhibit
series of groups with identical character tables. The character tables of D,,
and @, are well-known. So we have also an interest to character tables of
G¢(Dy) and G¢(Qy). In Section 3 we explicitly determine character tables
of these groups.

Notation For positive numbers n and k, 2" | k and 2" 1 k imply that
2" devides k and 2" doesn’t devide k, respectively. We write 2" || k& when
2" | k and 2" k. And a primitive n-th root of 1 is denoted by (.

2. Irreducible representations and characters of G:(D,) and

Gt(Qn)

In this section we determine all irreducible representations and chat-
acters of G¢(Dy,) and G¢(Qy) (1 <t < n —2). We will use the following
lemmas.
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Lemma 2 ([1, Corollary(45.5)]) Let H <G, and let T be an irreducible
representation of H. Then the induced representation TC is irreducible if
and only if, for all x ¢ H, the representations T and T™): h — T(zhx™")
of H are disjoint.

Lemma 3 For any integersn, t, l and k (1 <t <n-2,1>0, k> 1,
21 k), there exists an odd number r such that

(1+271)2'% = 1 pon—tH  (mod 2M).
Proof. Clear. O

We set G = G¢(Dy,) or G¢(Qy,). Let G’ be the commutator subgroup
of G. Tt is easily seen that G’ D (bab~ta™!) = (a?) and G/(a?) is abelian.
So we have G’ = (a?). Then G/G’ = (@) x (b) x (¥) and the relations
a2 =5 =72 =1. So we have 2/*2 one-dimensional representations x .~
of G:

Xupy,vs @ (=¥, b= (=1)7, x~ (5,

where p=1,2,vy=1,2and 1 <v < 2%,

Next it follows from Yamada [11, Theorem 1] that the rest of irreducible
representations of G are induced from one-dimensional representation of
H, = (a,2%") (0 < s <t). We note that H, is a normal subgroup of G.
From now we write Hg by H simply, and let H be the commutator subgroup
of H. We consider into two cases for integers s (0 < s <1t).

(Case 2-1) s =0, i.e., H = (a,x).
It is easily seen that H' = (zaz~ta™!) = (a2" "), H/H' = (a) x (z) and
the relations a2" " = 7'

tions ¢q,,,, of H:

= 1. So we have 2" one-dimensional representa-

¢0,u,l/: at— anftu € = Cé/tv

where 1 < p < 2" %tand 1 < v < 2% Set Suy = ¢o,pu, for simplicity. We
have the decomposition into disjoint right cosets: G = H U Hb. Using this,
we have induced representations @ﬁy of G affording the character qbﬁl,:

e 0 0 1 & 0
aH(o g;,fit’bH1o’xH 0 )

By Lemma 2, @ﬁy is irreducible, if and only if 4 #Z —pu (mod 2"7Y) i.e.,
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2n—t—1 T:U'

Now we have ¢;€iv(g) = 0 for any ¢ € G — H since H < G. And
qbiy(ak:nl) = ¢uu(afal) + gbzﬂj(akxl) = Cé’f((gf,t +/ C;,fili). /It is easy to
see that ¢G, # 6%, if and only if ¢l + G, # G+ G or G # G4
This is clearly equivalent to the condition p # +u’ (mod 2"7%) or v # V/
(mod 2%). As result we have (27 t~1 — 1) x 2¢ = 27~ — 2! jrreducible
characters of G:

0 m =1,

ekt + M), m=o,

where 1 < < 2" 1 and 1 <v <28

Sy (abmal) = {

(Case 2-11) 1 < s < t.

We note that if s = ¢, then H = (a). It is easily seen that H' =
(2% az2 a1 = (@), H/H' = (@) x (%) and the relations a2 " =
(z2)%° =1. So we have 2" one-dimensional representations ¢, of H:

25
¢s,u,u: ar— an—t+s7 - = Cé/t—s,

where 1 < g < 277" and 1 < v < 275 Set ¢ = ¢s,p, for simplicity.
We have the decomposition into disjoint right cosets:

25—1 25—1
G = ( U Ha:)U( U Hb:v)
1=0 =0

Using this, we have induced representations @iu of G affording (;Sﬁy. Indeed
we define 2° x 2% metrices as follows:

an—t+s 0 e 0
#(1_,'_2”—15)1 .
A _ O C2n7t+5 ’
: ' 0
0 = 0 Rt
1 0 0
B, — 0 1 0 7
0 0 1
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¢W(b2) 0 0
2
’ 0
0 0 ¢uu(b?)
0 1 0 0
0 0 1
X == t. . O 9
0 0 0 1
CAN( 0 0

where

b0 () = {1—1 s=tand G = G¢(Qn),

othewise.

And we denote the 2° x 2% zero matrix by O.
Then we have an induced representation (I);Cj,v of G affording the char-
acter gzbfiy:

A O 0O B X O
ar—>(0 A1>’ b+—><B2 O), :L“+—><O X>
By Lemma 2, @ﬁy is irreducible, if and only if for each integer i (1 < i <
25 —1), p Z p(1+274% (mod 2"~ +9), u 2 — (142771 (mod 2" t*+%) and
pu Z —p (mod 2771F8). This is equivalent to the condition 2 4 p. Indeed,
because p # u(1 + 272" (mod 277F5), it follows from s > 1 that
21 p. Clearly if 2  p, the above condition for ¢iu € Irr(G) holds.

Now we have Qﬁy(g) = 0 for any ¢ € G — H since H < G. And for
each integer [ (0 <1< s), k(1 <k<2"! 21k),a(0<a<?2)andf
(0 < B < 257h), it follows from Lemma 3 that

42l k(142702 kB ol k(14n—tts—l)a(142n—t)8
an t+s Czn t+s
+2lpuk(142n1)8
an t+s
Similarly, for each integer I (0 <1 < s), k (1 <k < 2" 2} k)and 3
(0 < B < 25771, it follows from Lemma 3 and 2 ¢z that

——
CiQINk(lJFQn_t)QS 1+5 <i2l#k(1+2n_t+s_l_1)(1+2n_t)6
n t+s - n t+s
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_doluk(142n )8 fon—tts =l k(142 )0
C2n t+s oan—t+s

+2! k(1427 t)ﬁ
- _CQn t+s

So we have <Z>i,,(a2lk) =0, where 0 <1< s, 1<k< 20! and 21k. And

s ! _ol—s
since (on—t = (gn,tﬂ, we have clearly (ﬁﬁy(ank) = 2° (an J 4 C2n2 ¢ ”k),
where s <1 <n,1<k<2" 24k Here we have

25—-1 251

¢ k 28 ] Z qs k 2j + Z ¢) k 2%
251 21
= Guu(@ (Z ¢ (") + ¢Z”?L(a’“)>
1=0

= (.0, (d")

It is easy to see that qS# L gb# o if and only if ¢, _, 4+ ¢, # QS,IH +

§2n,t or (b # Czt,s. This is clearly equivalent to the condition pu # 4y’
(mod 2"~%) or v # v/ (mod 2¢7%). As result we have 27772 x 2= = gn—s-2

irreducible characters of G:

Sy (a"b™al)
)0, 2°ftkorm=1or2°¢tl,
T2t L+ G L), 26 kand m =0 and 2 |1,

where 1 < <2771 24 pand 1 <v <2075,
The total number of irreducible characters of G which we have now is

t
22 ponml_f 4y "ot = .90 o 2(3.90 1),
s=1
We know easily these irreducible characters is all ones of G = G¢(D,,) or
G(Qy) from orthogonality relation (for example, see [1, (31.14)]). In fact
we have
t
2t+2xl+(2n71_2t)X22+Z(2n7572x(28+1)2) — ontt+l _ ’G|
s=1
Consequently we have all irreducible characters of Gy(D,,) or G¢(Qy)
as follows, the number of which is 3 - 2¢ +277t=2(3. 2t —1):
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(1) 2272 one-dimensional characters X, (1=1, 2, y=1, 2 and 1<v<2%):
Xy (@0 al) = (=1)PF (1)
(2) 27! — 2! irreducible characters ‘ZS(C)T:#,V 1<p<2t=land1<v<2Y):

0, m=1,
vl ( ik —pk =0
ot ((27171& + CQn—t)v m = .

(3) for each integer s (1 < s <t), 2"~*~2 irreducible characters gbsG’W/ (1<
p<2rtl 24 and 1 < v <2079

¢S, ("ol

_Jo, 2°fkorm=1or2°{l,
o s vl A1k —pk s _ s
2°Ci (€ + (oittes), 2° | kand m =0 and 2° | I.

2n—t+s

G (a"b™a') = {

3. Conjugacy classes of G¢(D,,) and G¢(Qn)

Now it is sufficient to determine the set of conjugacy classes in order to
give character tables of G¢(D,,) and G¢(Qy,). Let G = G¢(D,,) or Gp(Qp)-
Since (a) <G, we have the set of conjugacy classes concluded in (a) in G by
Lemma 3:

{1},
),
{ai(1+2’“t)”’a—i(1+2’”t)" ‘ 1<pu< 2t} (1<i<2m, 2t4),
{ai(1+2"")“7 afi(1+2”’t)“ ‘ 1<p< 2#5}
(I1<i<2™ 2% |1, 1 <s<t—1),
{a',a™"} (1<i<2m 20|, 2771 td).
The total number of these conjugacy classes is

t—1
141+ (Qn/2)/2t+1 + Z(Zn/25+1)/2t—s+1 + (2n/2t _ 2)/2

s=1
— 2 + 2n—t—2 + (t _ 1) X 27’1—t—2 _|_ 2n—t—1 _ 1
=1+ (t+2) 212

Next we consider conjugacy classes concluding elements a’bz’/ (1 < i
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<2n 1< j <20 Since abbziaF = @22 =1}/2} i gk gbgiqk =
2RI A+2" ) =13 /2} i and b = bx, we have the following conjugacy
classes:
fabol[1<p<2l} (1<) <20,
{a'F2rbpd |1 < p < 2771} (1<j5<
The total number of these conjugacy classes is 2 x 2t = 2!+,
Next we consider conjugacy classes concluding the elements a‘z? (1 <
i <27 1 <5 <2, Since
(a"z”)(a'z?)(az") ™! = (a¥alx ™) (a" 2zl a™H)
= ai(1+2"’t)”(au$ja7u)7
and  (atbz”)(a'z?)(a*bz”) "t = (2¥a "'z (a" 2T a ™)

= a*i(1+2"‘t)”(auxja7u)’

we consider the set of conjugacy classes concluding elements a#z/a ™" (1 <
p< 2" 1< j<2' in three cases.

(Case 3-1) 1 < j <2t 2¢3.
Since there exists an odd number k3 such that atria P =
at1=(+2" "0} 05 — =2"""ur1 g0 by Lamma 3, we have

{a“xjcf“ | 1<u< 2”} = {azn_t“a;j } 1<u< Qt}.
And so we have for integers ¢ (1 < i < 2")
{ai(1+2"’t)”(auxja—u), a2 (b i g1 |
1<p<2®, 1<v<2y
o 2T 2 |

o i 1+2n7t V+2’ﬂ7t ;
={a ( ) Pl

1<p<2,1<v<2f
(0|12 <) =)
{a*2" gl q= 2" gl | 1<y <28 (244),
{ai+2" gl @2 igd | 1 < < 2t}
2u)li, 1<u<n—t—2),
(@t |1 g2} = o' 120 < 2,2 | )
(2n7t71 || Z)
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We note that i+2""tk; = —i+2" ks (mod 2") for some integers k1 and ko,
if and only if 27t~ | i. Consequently the total number of these conjugacy
classes is

n—t—2
1+(2n—1/2t+1>_|_ Z (271—u—1/2t+1)+1

u=1
n—t—2
—92 4 2n—t—2 4 2n—t—2—u
u=1
-9 + 2n—t—2 + 2n—t—2 -1

— 1 + 277,71‘/71'
Since the number of elements of {j|1 < j < 2!, 2 { j} is 2!7!, the total
number of conjugacy classes in this case is (142" 7t71) x 2t=1 = 2i=1 4 on=2,

(Case 3-I1) 1 < j < 2¢, 2% || j for each integer s (1 < s <t—2).
Since there exists an odd number kg such that atzia H =
qr =420} 05 — =277 k200 by Lemma 3, we have

{a“xja*“ ‘ 1<u< 2”} = {aQn_Hs“mj ‘ 1<u< 2“5}.
And so we have for integers i (1 <14 < 2")
{ai(1+2"*t)”(augcja—u)7 a—i(1+2”*t)”(auxja—u) ‘
l<p<2", 1<v <2y
_ {ai(1+2”*’5)V+2n*’f+sugcj7 q (A2 Ty ‘
l<p<27® 1<y <2}
{aQn*t“ij ‘ 1<p< 21;—5} (i = 2m),
{ai*2" gl q= 2" ngd | 1< <28 (244),
{ai+2"*t+“uxj’afi+2"*t+“u$j } 1<pu< 2t7u}
2" i, 1 <u<s),
{ai+2n_t+s“xj,a‘i+2n_t+s“xj ‘ 1< p<2t=s}
2% |li, s+1<u<n—t+s—2),
{ai-‘r?ﬂfﬂrsul_]’ 1< p<2s)
= {a'ad |1 <i<om2n sl i) (anmthsml | ).

We note that i + 2" 15k = —i 4+ 2" 15k (mod 2") for some integers k1
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and kg, if and only if 2"7+s~1 | . Consequently the number of these
conjugacy classes for each integer s (1 < s <t—2)is

s n—t+s—2
1+(2n71/2t+1)+Z(2n7u71/2t7u+1)+ Z (2n7u71/2t73+1)_’_1
u=1 u=s+1
s n—t+s—2
:2+2n—t—2+22n—t—2+ Z 2n—t+s—2—u
u=1 u=s+1

=1 _|_2n—t—1 +2n_t_28.

Since the number of elements of {j|1 < j <2t 2% j} is 287571, the total
number of conjugacy classes in this case is

o~
(V]

((1 + 2n7t71 + 2n7t728) % 2257571)
1
t

@
Il

2
(2t7571 +2n7572 _i_snfszS)

—_

s=
t—2
— (2t—1 _ 2) 4 (2n—2 _ 2n—t) 4 2n—3 Z 2—88
s=1
— 2t—1 —9 4 2n—2 _ 2n—t 4 2n—3(2 _ 23—t _ (t _ 2)22—t)
="t 42 — (k4227 -2,

(Case 3-IIT) 1 < j < 2t 2t=1 || 4, ie., j = 2t~ 1.
Since we have a#a? aF = gri1-(142"71)

Lemma 3, we have

ot—1 t—1 n—1 t—1
2T = @ g2 by

{a“x?_la*“ ‘ 1<p<2"} = {a2n_1“a:2t_1 ‘ p=0,1}
= {xztil, aQnilrL‘?Fl}.
And so we have for integers i (1 <i < 2™)
{a“HQnit)V(a“a:y*la_“), a_i(1+2n4)u(a“x2t71a_“) ’
1<p<2", 1<v<2}
_ {ai(1+2n*t)V+2"*1M$2t*1’ o AF2n T2 20 ‘

p=0,1 1<y <2
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¢ {(:LQ"—lM;UQt_I ‘ w=0, 1} = {th_17 a2n_1$2t_1} (Z - 2n)7
{ait2 g2 g2 g2 < <2t (244),
{ai+2n,t+uu$2t71’ a_i+2n7t+uul‘2i71 ‘ 1 S ,LL S 2t—u}

2" i, 1<u<t—1),
{ai+2n—1#x2t—1 a_i+2n—1#x2t—l ‘ _ 0 1}

b M o ’

2% i, t<u<n-—3),

{ai+2n71’u’£l?2t71 | o= O, 1} _ {a2n72x2t71’a3.2n—2$2t71}

(272 1 4).

We note that i + 2" 'k; = —i + 2" !ky (mod 27) for some integers k1
and ko, if and only if 2”2 | i. And we remark ¢ — 1 < n — 2. Consequently
the total number of conjugacy classes in this case is

t—1 n—3
1 4 2n—1/2t+1 4 Z 2n—u—1/2t—u+1 4 Z 2n—u—1/22 4 1
u=1 u=t

t—1 n—3
-1 + 2n—t—2 + Z 27’L—t—2 4 Z 2%—3—’1}. + 1
u=1 u=t

=142 2t +1).
The total number of conjugacy classes of GG in this section is

(14272t +2) + 2 4 (21 4 2772)
R ] (2 ) LA ) I [ L (7N )
=3.2"72 432 onit gty gt
=3.2""243.20 —ont2
=3.2t 4 2n7172(3. 2t _ 1),
which is equal to the number of irreducible characters of G (see Secion 3).

So we have now the set of conjugacy classes of G.
Consequently we have the conjugacy classes of G as follows, the number

of which is 3 - 2¢ + 277 12(3 .2t — 1):

1 {1}, { '},

{ai(1+2"_t)“7 g i(H2n s [1<p<2t} (244),
{az’(1+2”_t)“7 g2t [1<p<2=5) (25)i,1<s<t—1),
{a', a7} (2[4, 27 14),
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(2) 1<j<2
{a2“bxj ‘ 1<pu< 2”_1}, {a1+2“bxj ‘ 1<pu< 2"‘1},
3) 1<j<22¢;
{aznit“xj ’ 1<pu< 2t},
{a"+2n7t“:ﬂj, a2 g [ 1<p<2t} (244),
{a"”n%“:nj, a2 g [1<p<2} (2], 1<u<n—t-2),
{afad |1 <i<2n, 2n71 i},
(4) 1<j <2t 25| j for each integer s (1 < s <t —2)
{a2n_t+s“xj | 1<pu< 2’5*5},
{a*2" g @72 gl | 1< <2t (2449),
{a*2" g T2 gl | 1< p <2y (2¢ )4, 1 <u < s),
{ai+2”_t+s,uxj7 a2 T g } 1<pu< 2tfs}
2%, s+1<u<n—t+s—2),
{aizd |1 <i<2n, an=trs=l 4}
(5) {:c2t_1, a2n_1x2t_1},
{ai+2n7t“932t71, a2 g2 [1<p<2t) (210),
{a”z"*tﬂ“x?*l, g2 2t ‘ 1<u< 2t—u}
2], 1<u<t—1),
{aith_I’a—ith_17 ai“"_let_l, a—i+2”_1x2t_l}
2|l i, t <u<n-—3),
{azn—2x2t—1’ a3'2n_2x2t_1},

where 1 <4 < 27,

4. Extensions of G¢(D,,) and G¢(Qn)

Let H, = D,, or Q, (n > 3). From the argument in Section 2 it follows
that G¢(H,) (1 <t < n—2) has faithful irreducible characters all which are
algebraically conjugate to each other. In fact the induced character qbg ;Sfln)
from ¢r 1 (1< p <2771 24 1) of Hy = (a) is faithful. So we consider
Problem (IT) in Section 1 for H = Gy(H,) and ¢"¥™) e FIrr(H). We

tp,1
difine some 2-groups:
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1 1 1

. =1,0=1,22=1,y 11
Go(Dyp)=(a,b, x,y bab =g, zaz= = 1+2n ,xbrl=b),
yay " =az, yby_ bx yry T =x

yay ' =azx, yby~ 1—a baz yry t=zx

i =1,0=a 2r=Llyi=1
GQ(QR):<G7 b,z,y | bab '=a"1, zaz™! alt2" ! , whr~ :b>,

Moreover we define some 2-groups for integers t (3 <t <n —2):

ét(Dn)
=1, 02=1, 2% =1, =0
={ a, b7 T,y bab_ =aq 1’ xch = 1+2n t+1’ xg)l;_lzb 7
oyl = a2 =2 eyt =
where e; is the odd number satisfying (1427 "t+1)¢ = (142771)2
(mod 2™),
ét(Qn)

— 1, b2 =aQ s = 17 — €t
B <a’ bz, y | babl=a"t, zaz~t =a 2" zba~l=b >7
yay ' =a T2 byt = b2, yay =

where e; is the odd number satisfying (1+4277tF1)% = (142771)2
(mod 2m).
In [10] Sekiguchi showed the following theorem.

Theorem 4 Let H=D,, (n > 3) or Q, (n > 3). Let G be a 2-group with
G>H and|G: H| =2 (t >1). Take a ¢ € Flrr(H). If % € Trr(G), then
t <n —2 and one of the following holds:

(1) G 2 Gy(H) whent =1,

(2) G = Gy(H) or Go(H) when t =2,

(3) G = Gy(H) or Gy(H) when 3 <t <n—2.

Proof of Theorem A. From the results in Section 2 we have ¢ = CZ’tGL fl n)
for some integer p (1 < g < 2771 and 2 t p). It is clear that ¢t,u,1 €
Flrr(H,) and gbf/’i(f o= (¢flﬁ71)0f(H”). So it follows from Theorem 4 that

G = Giys(Hy) or Gyyg(Hy) for some integers s (1 < s <n—t—2). Itis
(H,) > Gy(Hy) and Gyps(Hy,) > Gy(Hy,). Theorem A
is proved. ]

easily known that Gy
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