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On the connected components

of a global semianalytic subset

of an analytic surface
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Abstract. A global semianalytic subset of a real analytic manifold is a finite union of

finite intersections of the solutions of equations and inequalities of real analytic functions

on the manifold. Is a union of connected components of a global semianalytic set again

global semianalytic? We consider a two-dimensional global semianalytic set such that

the normalization of the Zariski closure of it is affine. We show that a union of con-

nected components of it is again global semianalytic. We also give some partial results

on connected components of global semianalytic subset of a three-dimensional analytic

manifold.
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1. Introduction

A global semianalytic sets are recently studied by real algebraic and
analytic geometers, for instance, [2], [3], [4], [5], [8], [10], [11] and [19].
A subset X of a real analytic manifold M is called global semianalytic if
there exist finitely many real analytic functions fi, gij on M with

X =
m⋃

i=1

{x ∈M ; fi(x) = 0, gi1(x) > 0, . . . , gin(x) > 0}.

Consider the case where M is a connected paracompact real analytic man-
ifold and let N be a coherent analytic subset of M . The notation OM

denotes the sheaf of real analytic functions on M and IN ⊂ OM denotes
the sheaf of real analytic functions vanishing on N . A subset X of N of the
form

X =
m⋃

i=1

{x ∈ N ; fi(x) = 0, gi1(x) > 0, . . . , gin(x) > 0}

is also called global semianalytic. Here fi and gij are global sections of the
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sheaf OM/IN . A global semianalytic subset of N is also a global semiana-
lytic subset of M by Cartan’s theorem A and B ([9]). We consider global
semianalytic sets in the present paper.

It is well-known for real algebraic and analytic geometers that a con-
nected component and the closure of a semialgebraic set are again semi-
algebraic ([6]) and that the similar statement holds true for semianalytic
sets ([16]). As in the semialgebraic case and semianalytic case, it is natural
to study the problem whether the closure and a union of connected compo-
nents of a global semianalytic set is again global semianalytic. Indeed, it is
already known that any union of connected components and the closure of
a boundary bounded global semianalytic subset of M are again global semi-
analytic ([1], [19]). In the non-compact case, Andradas and Castilla showed
that any union of connected components of a global semianalytic subset
of M is again global semianalytic when dim(M) ≤ 2 and so is the closure
when dim(M) ≤ 3 ([2], [11]). In the present paper, we consider the problem
whether any union of connected components of a global semianalytic set is
again global semianalytic.

We first consider a connected paracompact real analytic manifold M

and a coherent real analytic subset A of M . Let AC be the complexification
of A. Consider the (complex) normalization π : ÂC → AC defined in [14,
Section 8.3]. Then A′ := π−1(A) is a coherent and normal real analytic
variety whose complexification is ÂC ([15, Theorem IV.3.14]). We call A′

(real) normalization of A. A real analytic space A′ is called affine if there
exists a closed embedding of A′ into Rn for some n ∈ N. We consider the
real analytic space A of dimension 2 whose normalization is affine. The
following theorem is our first main theorem.

Theorem 1.1 Let M be a connected paracompact real analytic manifold.
Let A ⊂M be a coherent analytic subset of dimension ≤ 2. Assume that the
normalization of A is affine. Consider a global semianalytic subset X of A
and a union W of connected components of X. Then W is again a global
semianalytic subset of M .

We next consider a 3-dimensional connected paracompact real analytic
manifold. The Zariski closure of a subset A of a real analytic manifold M

means the smallest coherent analytic subset of M containing A in the
present paper. The second main theorem is as follows.
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Theorem 1.2 Let M be a connected paracompact real analytic manifold
of dimension 3 and X be a global semianalytic subset of M . Consider
a union W of connected components of X. Assume that dim(W ∩X \W ) ≤
1 and the Zariski closure of W ∩X \W has at most finitely many analyt-
ically irreducible components of dimension 1. Here · denotes the closure
in M . Then W is again global semianalytic.

We mainly consider a coherent real analytic subset in the present paper.
Hence we simply call a coherent analytic subset analytic. The notation X

denotes the closure of a set X. We consider the sheaf of real analytic func-
tions on a real analytic manifold M in the present paper. The symbol OM

denotes it and OM,x is the stalk of OM at x ∈ M . When X is a coherent
real analytic subset of M , IX denotes the ideal sheaf of all real analytic
functions on M vanishing on X. The symbol IX,x also denotes the stalk
at x ∈M . The global sections H0(M,OM/IX) is denoted by Cω(X). The
notation U

Z represents the Zariski closure of U .
When M is a connected paracompact real analytic manifold, M is

a closed real analytic submanifold of a Euclidean space by [13]. Hence
Cartan’s theorem A and B hold true in M by [9]. We use this fact in the
proof of the present paper in many times.

2. Low Dimensional Case

Disjoint closed subanalytic subsets of a connected paracompact real
analytic manifold are separated by a single real analytic function. More
precisely,

Lemma 2.1 Let M be a connected paracompact real analytic manifold.
Let X and Y be disjoint closed subanalytic subsets of M . Then there exists
a real analytic function f with f > 0 on X and f < 0 on Y .

Proof. We may assume that M is a closed real analytic submanifold of
a Euclidean space Rq by [13]. There exists a continuous function d : M →
R with d(x) = 1 for all x ∈ X and d(y) = −1 for all y ∈ Y . Indeed,
define d1 and d2 as the distance functions from X and Y , respectively, then
d := (d2 − d1)/(d2 + d1) satisfies the requirement. Let d̃ be a continuous
extension of d to Rq. Then there exists a real analytic function f on Rq with
|f(x)− d̃(x)| < 1/2 for all x ∈ Rq by [21]. Then f satisfies the requirement.

¤



158 M. Fujita

We next introduce the results of [2] and [3].

Lemma 2.2 Let M be a connected paracompact real analytic manifold.
A semianalytic subset of an analytic set of dimension 1 is a global semian-
alytic subset of M .

Proof. See [2, Lemma 3.1]. ¤

Remark 2.3 Let M be a connected paracompact real analytic manifold.
An open semianalytic set and an open global semianalytic set are strictly
open [3].

The following two lemmas are generalizations of the lemmas of [2].

Lemma 2.4 Let M be a real analytic manifold and p ∈ M . Let Fp and
F ′p be closed semianalytic germs at p such that Fp ∩ F ′p = {p}. Then there
exists an open germ Gp with F ′p ⊂ Gp ∪ {p} and Fp ∩Gp = {p}.
Proof. Since the statement of this lemma is local, we may assume that
M = Rq. There exist germs fij of real analytic functions with

F ′p =
m⋃

i=1

n⋂

j=1

{fij ≥ 0}

by [1, Corollary VIII.3.2].
We fix i = 1, . . . ,m and set F ′ip :=

⋂n
j=1{fij(x) ≥ 0}. Let d be the germ

of the real analytic function defined by d(x1, . . . , xq) =
∑q

l=1 (xl − pl)2,
where p = (p1, . . . , pq). Consider the subanalytic function φi : [0, r) → R
defined by

φi(t) = max
{

min{fi1(x), . . . , fin(x)}; x ∈ Fp, d(x) = t
}
,

where r is a small positive number. By the definition, φi(0) = 0 and
φi(t) < 0 for all 0 < t < r. Since a 1-dimensional subanalytic set is semian-
alytic, φi is semianalytic. Hence, considering the Puiseux series expansion
of the graph of φi, it is obvious that there exists a positive number Ci

and a natural number ni with φi(t) + Cit
ni < 0 for all 0 < t < r. Set

gij(x) := fij(x) + Cid(x)ni . Then gij(x) > 0 for all x ∈ F ′ip \ {p} and, for
all x ∈ Fp \ {p}, there exist j = 1, . . . , n with gij(x) < 0. Consider the open
semianalytic germ
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Gip :=
n⋂

j=1

{gij > 0}.

Then F ′ip ⊂ Gip ∪ {p} and Fp ∩Gip = {p}.
We can construct Gip in the same way for another i = 1, . . . ,m. Set

Gp :=
⋃m

i=1Gip. Then Gp satisfies the requirement. ¤

Lemma 2.5 Let M , Fp, F ′p and Gp be the same as in Lemma 2.4. Let

Gp :=
m⋃

i=1

n⋂

j=1

{gij > 0},

where gij ∈ OM,p are the germs constructed in the proof of Lemma 2.4.
Then there exists a natural number µ such that, if g′ij − gij ∈ mµ

p , then
G′p satisfies the conditions on Gp in Lemma 2.4, where mp is the maximal
ideal of OM,p and

G′p :=
m⋃

i=1

n⋂

j=1

{g′ij > 0}.

Proof. We define a real analytic function d as in the proof of Lemma 2.4.
Consider the subanalytic function φ : [0, r) → R defined by

φ(t) := min
{

max
i=1,...m

min
j=1,...,n

gij(x); x ∈ F ′p, d(x) = t
}
,

where r is a small positive number. Then φ(0) = 0 and φ(t) > 0 for all
0 < t < r. In the same way as the proof of Lemma 2.4, there exists C1 > 0
and q1 ∈ N such that φ(t) > C1t

q1 for any sufficiently small t > 0. Remark
that, for any f ∈ m2q1+1

p , C1d(x)q1 > |f | on a small neighborhood of p.
Hence, if g′ij − gij ∈ m2q1+1

p , F ′p ⊂ G′p ∪ {p}.
Remember that, for all i = 1, . . . ,m and for all x ∈ Fp \{p}, there exist

j = 1, . . . , n with gij(x) < 0. Consider the subanalytic function ψ : [0, r) →
R defined by

= ψ(t) : min
{

min
i=1,...m

max
j=1,...,n

−gij(x); x ∈ Fp, d(x) = t
}
,

where r is a small positive number. Then ψ(0) = 0 and ψ(t) > 0 for all 0 <
t < r. In the similar way, we can find q2 ∈ N such that, if g′ij − gij ∈ m2q2+1

p ,
for all i = 1, . . . ,m and for all x ∈ Fp \ {p}, there exist j = 1, . . . , n with
gij(x) < 0. Hence, if g′ij − gij ∈ m2q2+1

p , F ′p ∩G′p = {p}.
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Set µ = max{2q1 + 1, 2q2 + 1}, then µ satisfies the requirement. ¤

By generalizing the argument of [2], we can show that a union of con-
nected components of a global semianalytic set is again global semianalytic
when the intersection of the closure of disjoint two components is of dimen-
sion 0 or less.

Proposition 2.6 Let M be a connected paracompact real analytic man-
ifold and X be a global semianalytic subset of M . Let W be a union of
connected components of X. Assume that dim(W ∩ X \W ) ≤ 0. Then
W is again a global semianalytic subset of M .

Moreover, there exist natural numbers q1, q2 depending only on the
dimension of the Zariski closure of X and real analytic functions fij on M

such that

W = X∩
q1⋃

i=1

q2⋂

j=1

{x ∈M ; fij(x) > 0}.

Proof. Let {xn}n∈N=W∩X \W . There exist open semianalytic germs Gn

at xn with W ⊂ Gn∪{xn} and X \W∩Gn = {xn} by Lemma 2.4. There ex-
ist p, q ∈ N depending only on the dimension of the Zariski closure of X sat-
isfying the following condition by [1, Theorem VIII.2.12, Corollary VIII.3.2].
There exist real analytic germs gijn at xn for i = 1, . . . , p and j = 1, . . . , q
with

Gn =
p⋃

i=1

q⋂

j=1

{gijn > 0}.

Applying Lemma 2.5 in the case where F ′p = W , Fp = X \W and p = xn,
there exists µn ∈ N such that, if gijn − g′ijn ∈ mµn

xn , then W ⊂ G′n ∪ {xn}
and X \W ∩G′n = {xn}, where mxn is the maximal ideal of OM,xn and

G′n =
p⋃

i=1

q⋂

j=1

{g′ijn > 0}.

Let M be the coherent sheaf of ideals of OM defined by

Mx :=

{
mµn

xn if x = xn,

Ox otherwise.
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We define global sections sij of OM/M by

sij,x :=

{
gijn +mµn

xn if x = xn,

Ox otherwise.

Since H0(M,OM ) → H0(M,OM/M) is surjective by Cartan’s theorem B,
there exist real analytic functions hij on M with hij − gijn ∈ mµn

xn for all
n ∈ N. Consider the global semianalytic set

H :=
p⋃

i=1

q⋂

j=1

{x ∈M ; hij(x) > 0}.

Then W ∩H ∩X ∩H \W = ∅ and W \H ∩X \W = ∅. There exist real
analytic functions h1 and h2 on M with h1 > 0 on W ∩ H, h1 < 0 on
X ∩H \W , h2 > 0 on W \H and h2 < 0 on X \W by Lemma 2.1. Then
W = X ∩ (H ∩ {x ∈ M ; h1(x) > 0} ∪ {x ∈ M ; h2(x) > 0}). We have
finished the proof of this proposition. ¤

3. Proof of Theorem 1.1

We will show Theorem 1.1 in the present section. We first show the
following technical lemma.

Lemma 3.1 Let M be a connected paracompact real analytic manifold and
Y be a coherent real analytic subset of M . Let X be a global semianalytic
subset of M with X ⊂ Y and V be a union of connected components of X.

Set W := X \ V . Assume that Sing(Y ) ∩ (V ∩WZ
) is of dimension <

dim(Y ) − 1. Here Sing(Y ) denotes the singular locus of Y . Then there
exists a real analytic function f on M such that

dim(V ∩ {f > 0} ∩W ∩ {f > 0}) ≤ dim(Y )− 2 and

dim(V ∩ {f < 0} ∩W ∩ {f < 0}) ≤ dim(Y )− 2.

Proof. Set Z := (V ∩WZ
) and let T be the union of all analytically

irreducible components of Z of dimension ≤ dim(Y ) − 2. The constant
function f ≡ 1 satisfies the inequalities of this lemma in the case where
dim(Z) < dim(Y ) − 1. Hence we only consider the case where dim(Z) =
dim(Y ) − 1. Set Y ′ := Y \ (Sing(Y ) ∪ T ∪ Sing(Z)), then Y ′ is a real
analytic manifold. Here Sing(Z) denotes the singular locus of Z. We set
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OY := OM/IY and IY
Z := IZ/IY . Remark that OY ′ is isomorphic to OY |Y ′ .

Hence the stalk IY
Z,x at x ∈ Y ′ is a principal ideal of OY,x because OY ′,x is

an unique factorization domain. By [12], IY
Z (Y ′) is finitely generated. Since

IY
Z (Y ′) is generated by IY

Z (Y ) := H0(M, IZ/IY ) by Cartan’s theorem A,
we can choose generators f1, . . . , fk ∈ H0(M,OY ) of IY

Z (Y ′). Consider the
exact sequence

0 → IY → OM → OY → 0.

There exist real analytic functions gi on M such that fi − gi ∈ IY (M)
by Cartan’s theorem B. Replacing fi with gi, we may assume that the
generators f1, . . . , fk are all real analytic functions on M .

We will choose f ∈ Cω(M) and a real analytic subset D of Z with
dim(D) ≤ dim(Y ) − 2 such that IY

Z,x is generated by f for all x ∈ Z \ D.
Let {Zi}i∈N be the analytically irreducible components of Z of dimension
dim(Y )− 1. Let xn ∈ Y ′ ∩

(
Zn \

⋃
i6=n Zi

)
. Consider the set

Fn =
∞⋃

n=1

{
(a1, . . . , ak) ∈ Rk;

(
k∑

j=1

ajfj

)
OY,xn 6= IY

Z,xn

}
.

Write F =
⋃

n Fn. As IZ,xn = (f1, . . . , fk)xn , using Nakayama lemma, we
see that Fn is a proper analytic set, and then by the Baire theorem, F is
proper. Since F is proper, there exists (a1, . . . , ak) ∈ Rk such that

∑k
i=1 aifi

generates IY
Z,xn

for all n ∈ N. Set f :=
∑k

i=1 aifi. For any analytically
irreducible component Zi, the set

Di := {x ∈ Zi; fOY,x 6= IY
Z,x}

is a real analytic subset of Zi. Since xi /∈ Di by the definition, Di is of
smaller dimension than Zi. Set

D := (Sing(Y )∩Z)∪T∪Sing(Z)∪
( ⋃

n∈N
Dn

)
∪

( ⋃

i6=j

Zi∩Zj

)
.

Then f and D satisfy the requirement of the claim.
We next show that E := V ∩ {f > 0}∩W ∩ {f > 0} ⊂ D. It is obvious

that E ⊂ Z by the definition. Let x ∈ Z \ D. Remark that Y is a real
analytic submanifold of M and Z is that of Y in a small neighborhood of x.
When x /∈ ∂V ∩ ∂W , it is obvious that x /∈ E. Consider the case where
x ∈ ∂V ∩ ∂W . Choose a small neighborhood U of x in M , then all subsets
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{y ∈ Y ∩U ; f(y) > 0}, Z ∩U and {y ∈ Y ∩U ; f(y) < 0} are connected and
are not empty. Since V ∩W ⊂ Z, either V ∩{f > 0}∩U or W ∩{f > 0}∩U
is empty. Hence x /∈ E.

We can also show that V ∩ {f < 0} ∩W ∩ {f < 0} ⊂ D in the same
way. We have finished the proof of this lemma. ¤

Recall the normalization of a complex analytic set [14], [17]. It is pos-
sible to define the normalization of a real analytic set in a similar way.
The real normalization is compatible with the complex normalization of its
complexification [15].

Proposition 3.2 Let M be a paracompact real analytic manifold. Let
Y ⊂M be an analytically irreducible analytic set and π : Y ′ → Y be its nor-
malization. Then the quotient fields K(Y ) of Cω(Y ) and K(Y ′) of Cω(Y ′),
respectively, are isomorphic.

Proof. The normalization π : Y ′ → Y induces an injection π∗ : Cω(Y ) →
Cω(Y ′). This can be extended to π∗ : K(Y ) → K(Y ′). We show that π∗ is
an isomorphism.

Let MC and Y C be the complexifications. Fix f ′ ∈ O(Y ′). For any
p ∈ Y , let Y1,p, . . . , Yr,p be the complex analytic germs of Y Cp at p.

The notation OMC,p denotes the ring of all complex analytic function
germs at p. For any complex analytic germ Zp at p, ICZp

denotes the ideal
of complex analytic functions vanishing on Zp. The notation IZp,p denotes
the ideal of real analytic functions whose complexification vanishes on Zp.

Remark that ICZp
= IZp ⊗ C. Remember that ̂OMC,p/ICZ,p = ̂OM,p/IY ⊗ C

and ̂OM,p/IY,p = ̂OM,p/IY1,p,p × · · · × ̂OM,p/IYr,p,p, where ·̂ denotes the
normalization ([18, Proposition III.2.7]). Hence there exist complex analytic
set germs Wi which are the normalizations of Yi,p and

⋃
q∈π−1(p)(Y

′)Cq =⋃r
i=1Wi. Remark that IY,p = IY1,p ∩ · · · ∩ IYr,p . Hence the quotient ring

K(Yp) of OM,p/IY,p is isomorphic to the direct product
∏K(Yi,p). The

intersection of Wi with π−1(p) consists of one point, say pi. Since OWi,pi

is the integral closure of OM,p/IYi,p,p in K(Yi,p), K(Wi,pi) = K(Yi,p). Hence
K(Yp) is isomorphic to

∏K(Wi,pi). We may consider naturally that the
germ f ′p is an element of K(Yp). Consider the sheaf M(Y ) of germs of
meromorphic functions. Then it is coherent by [14, Proposition 6.3.1] and
M(Y )p = K(Yp) by the definition. Then f ′ ∈ H0(M,M(Y )) = K(Y ). We
have shown that π∗ : K(Y ) → K(Y ′) is an isomorphism. ¤
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Corollary 3.3 (Artin-Lang Property for Surface) Let M be a connected
paracompact real analytic manifold and X ⊂ M be an irreducible analytic
subset of M of dimension 2. Assume that the normalization of X is affine.
Let f1, . . . , fm be real analytic functions on M and α ∈ Specr(K(X)). As-
sume that f1(α) > 0, . . . , fm(α) > 0, then the set U := {x ∈ X; f1(x) > 0,
. . . , fm(x) > 0} is not empty. Here f(α) > 0 denotes the conditions f ∈ α
and −f /∈ α.

Proof. Let π : X ′ → X be the normalization. By Proposition 3.2, K(X) =
K(X ′). Hence we may view α as a point in Specr(K(X ′)), naturally. Since
Artin-Lang Property for affine normal surfaces holds true [5], the set U ′ :=
{x ∈ X ′; f1 ◦ π(x) > 0, . . . , fm ◦ π(x) > 0} is not empty. Consider the set
U := {x ∈ X; f1(x) > 0, . . . , fm(x) > 0}. Let y ∈ U ′, then π(y) ∈ U .
Especially U 6= ∅. ¤

We recall the definition of the tilde operator.

Definition 3.4 Let A be an irreducible real analytic set of dimension 2
whose normalization is affine. Let X be a global semianalytic subset of the
form

X =
m⋃

i=1

n⋂

j=1

{x ∈ A; fij(x) ∗ij 0},

where ∗ij ∈ {=, >}. Set

X̃ =
m⋃

i=1

n⋂

j=1

{α ∈ Specr(K(A)); fij(α) ∗ij 0}.

Then the map ·̃ defines a surjective homomorphism from the lattice of
global semianalytic subsets of A onto the lattice of constructible subsets of
Specr(K(A)) and X̃ 6= ∅ if and only if the interior of X in Reg(A) is not
empty by [2, Proposition 2.4] and Corollary 3.3.

We have finished the preparation of the proof of Theorem 1.1.

Proof of Theorem 1.1.
We first consider the case where A is irreducible. Let π : A′ → A

be the normalization map. Consider the sets X ′ := π−1(X) and W ′ :=
π−1(W ). Remark that X ′ is a global semianalytic subset of A′. Since
dim(Sing(A′)) ≤ 0, we can apply Lemma 3.1 to X ′ and W ′. Then there
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exists a real analytic function f on A′ such that

dim
(
W ′ ∩ {f > 0} ∩ (X ′ \W ′) ∩ {f > 0}) ≤ 0 and

dim
(
W ′ ∩ {f < 0} ∩ (X ′ \W ′) ∩ {f < 0}) ≤ 0.

Apply Proposition 2.6 to X ′ ∩ {f > 0} and X ′ ∩ {f < 0}, then there exist
natural numbers p, q depending only on dim(A′) and f ′ij ∈ O(A′) with
W ′ \ {f = 0} = X ′ ∩ U ′, where

U ′ :=
p⋃

i=1

q⋂

j=1

{x ∈ A′; f ′ij(x) > 0}.

Since K(A′) = K(A) by Proposition 3.2, there exists fij ∈ K(A) cor-
responding to f ′ij . Multiplying non-negative real analytic functions on A,
we may assume that all fij are real analytic functions on A and fij equals
to f ′ij multiplied by some non-negative real analytic function. Set

U :=
p⋃

i=1

q⋂

j=1

{x ∈ A; fij(x) > 0} and V := X∩U.

Then dim
(
(W ′\π−1(V ))∪(π−1(V )\W ′)

) ≤ 1 by [2, Proposition 2.4] because

W̃ ′ = ˜π−1(W ). Hence dim
(
(W \ V ) ∪ (V \W )

) ≤ 1. We have succeeded in
constructing a global semianalytic set V of the form

V = X∩
p⋃

i=1

q⋂

j=1

{x ∈ A; fij(x) > 0}

with dim
(
(W \ V ) ∪ (V \W )

) ≤ 1.
We next consider the case where A is not irreducible. Let A1, A2, . . .

be the irreducible components of A. For any l, there exists flij ∈ O(Al)
with dim

(
(W ∩Al \ Vl) ∪ (Vl \W ∩Al)

) ≤ 1, where

Ul :=
p⋃

i=1

q⋂

j=1

{x ∈ A; flij(x) > 0} and Vl := X∩Ul.

By Cartan’s theorem B, we may assume that flij are real analytic functions
on M . We fix real analytic functions ci : M → R with ci ≡ 0 on

⋃
j 6=iAj and

ci > 0 on M \⋃
j 6=iAj . Set Ix := {l; x ∈ Al}. The function germ fij,x :=∑

l∈Ix
cl,xflij,x is well defined and a global section of OM/IA. Hence there
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exists a real analytic extension of fij to M by Cartan’s theorem B. We
also denote this extension fij . Set U :=

⋃p
i=1

⋂q
j=1{x ∈ X; fij(x) > 0} and

V := X ∩ U . One easily checks that

V ∩
(
Am\

⋃

n6=m

An

)
= Vm∩

(
Am\

⋃

n6=m

An

)
,

hence off the curve
⋃

n6=m(An ∩ Am), the set V works as the Vm’s, and in
the end V \ W and W \ V have dimension ≤ 1. We have succeeded in
constructing a global semianalytic set V of the form

V = X∩
p⋃

i=1

q⋂

j=1

{x ∈ A; fij(x) > 0}

with dim
(
(W \ V ) ∪ (V \W )

) ≤ 1.
Since both W \ V and V \W are of dimension ≤ 1, they are global

semianalytic by Lemma 2.2. Hence W = V ∪ (W \ V ) \ (V \W ) is global
semianalytic. ¤

Using ÃLojasiewicz inequality for global semianalytic sets [3, Theorem],
we can generalize Theorem 1.1.

Remark 3.5 Let M be a paracompact real analytic manifold and A be
an analytic subset of M of dimension 2. Let S be the singular locus of A
and S1, S2, . . . be its connected components. Assume that there exists an
open neighborhood Ui of Si in A such that the normalization of Ui ∩ A is
affine. Let X ⊂ A be a global semianalytic subset of M and W be a union
of connected components of X. Then W is again global semianalytic.

Proof. Remark that we can choose Ui to be subanalytic.
Define Z as the Zariski closure of W ∩ X \W . We first show that

Z is of dimension ≤ 1. Let {Aλ} be irreducible components of A. When
W ∩ X \W ∩ Aλ is empty, Z is contained in the union of the irreducible
components Aµ other than Aλ. Hence we will consider the other case.
Assume that X ∩ Aλ is of the form:

⋃
i

⋂
j{fij > 0} ∩ {gi = 0}, where

fij , gi ∈ Cω(M) and fij 6≡ 0 on Aλ. Then W ∩ X \W ∩ Aλ ⊂ ∂X ⊂⋃
i

⋃
j{fij = 0} 6= Aλ. Since Aλ is irreducible, dim(Z ∩ Aλ) ≤ 1. We have

shown that dim(Z) ≤ 1.
Consider the family C of all analytically irreducible components of Z of



Connected components of a global semianalytic subset 167

dimension 1. Set CC := C \ {C}. Define SC as the family of all analytically
irreducible components S′ of S with S′ 6= C.

Claim There exist natural numbers p, q satisfying the following condition.
For any C ∈ C, there exist real analytic functions fijC on M and there
exists an analytic subset DC ⊂ C of dimension 0 and an open subanalytic
neighborhood UC of C \DC with dim

(
WC ∩X \WC ∩ UC

) ≤ 0 and W ∩
UC = WC ∩ UC . Here WC :=

⋃p
i=1

⋂q
j=1{x ∈ X; fijC(x) > 0}.

Proof of Claim. We first consider the case where C 6⊂ S. We will show that
there exists fC ∈ Cω(M) with

(∗) dim
(
W ∩ {fC > 0} ∩ (X \W ) ∩ {fC > 0} ∩ C) ≤ 0 and

dim
(
W ∩ {fC < 0} ∩ (X \W ) ∩ {fC < 0} ∩ C) ≤ 0.

Set EC :=
⋃

C′∈C,C′ 6=C C ∩C ′. Choose a subanalytic open neighborhood TC

of C \EC with TC ∩Z = C. We may assume that TC is global semianalytic
by Lemma 4.4 which we will show later. Apply Lemma 3.1 to TC ∩ X,
TC ∩W and TC ∩ (X \W ), then there exists fC ∈ Cω(M) satisfying the
condition (∗).

Set

D+
C :=W ∩ {fC > 0} ∩ (X \W ) ∩ {fC > 0} ∩ C,

D−
C :=W ∩ {fC < 0} ∩ (X \W ) ∩ {fC < 0} ∩ C

and

DC :=
⋃

C′∈CC

(C ′ ∩ C) ∪
⋃

S′∈SC

(C ∩ S′) ∪D+
C ∪D−

C .

Then there exists an open subanalytic neighborhood UC of C \ DC such
that

dim
(
W ∩ {fC > 0} ∩ (X \W ) ∩ {fC > 0} ∩ UC

) ≤ 0 and

dim
(
W ∩ {fC < 0} ∩ (X \W ) ∩ {fC < 0} ∩ UC

) ≤ 0

by the condition (∗). Let C+ be the interior of W ∩ {fC > 0} ∩ C \DC in
C \ DC . We define C− in the same way. There exists g+

C ∈ Cω(M) with
C+ = {x ∈ C; g+

C (x) > 0} by [4, Theorem 4.4]. Construct g−C in the same
way. Set WC := {x ∈ X; fC > 0, g+

C > 0} ∪ {x ∈ X; fC < 0, g−C > 0} and
shrink UC if necessary. Then DC , UC and WC satisfy the requirement.
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We next consider the case where C ⊂ S. We may assume without
loss of generality that C ⊂ S1. By the proof of Theorem 1.1, there ex-
ist natural numbers p, q depending only on dim(M), f ′ijC ∈ Cω(U1) with
dim((W ∩ U1 \ W ′

C) ∪ (W ′
C \ W )) ≤ 1. Here W ′

C :=
⋃p

i=1

⋂q
j=1{x ∈

U1; f ′ijC(x) > 0}. Consider the family FC of analytically irreducible compo-
nents B of A∩⋃p

i=1

⋃q
j=1(f ′ij)

−1(0) of dimension 1 with B 6= C. Set DC as
the intersection of C with the union of all elements of FC , CC and SC . There
exists an open subanalytic neighborhood UC of C \DC such that UC does
not intersect with any elements of FC , CC and SC except at DC . We may
assume that UC is global semianalytic by Lemma 4.4. Set W ′

iC := UC ∩
{x ∈ U1; f ′i1C(x) > 0, . . . , f ′iqC(x) > 0}. Remark that W ′

iC ∩ (f ′ij)
−1(0) ⊂ C

for any j = 1, . . . , q. There exists a positive equation dC ∈ Cω(M) of C
with |f ′ijC | ≥ dC on W ′

iC ∩ VC , where VC is an open neighborhood of C,
by [3, Theorem]. By Cartan’s theorem B, there exists fijC ∈ Cω(M) with
f ′ijC − d2

C − fijC ∈ H0(M,d3
COM ). Consider the set WC :=

⋃p
i=1

⋂q
j=1{x ∈

X; fijC(x) > 0}. By the definition of WC , there exists an open subanalytic
neighborhood U ′C of C \ DC such that dim

(
WC ∩ X \W ∩ U ′C

) ≤ 0 and
WC ∩ U ′C = W ′

C ∩ U ′C . Replace UC with U ′C , then DC , UC and WC satisfy
the requirement. We have finished the proof of Claim.

Enlarging DC if necessary, we may assume that C ∩ C ′ ⊂ DC and C ∩
S′ ⊂ DC for any C ′ ∈ CC and S′ ∈ SC . Shrinking UC if necessary, we may
assume that UC ∩Z = C and UC ∩UC′ = ∅ for any C, C ′ ∈ C with C 6= C ′.

Consider the set W ′′
i,C := WC ∩ UC ∩ {x ∈ XC ; fi1C(x) > 0, . . . ,

fiqC(x) > 0}, then f−1
ijC(0)∩W ′′

i,C ⊂ C. Hence there exist positive equations
εijC of C such that |εijC | ≤ |fijC | on W ′′

i,C \C by [3, Theorem]. Let b ∈ DC

and db : M → R be a positive equation of {b}. Consider the subanalytic
function ρijC,b : (0, r) → R defined by

ρijC,b(t) := max
{ |fijC(x)|
εijC(x)2

; x /∈ UC , db(x) = t

}
,

where r is a small positive integer. By ÃLojasiewicz inequality, there
exist m(i, j, C, b) ∈ N and real numbers B(i, j, C, b) > 0 with ρijC,b(t) >
1/

(
B(i, j, C, b)tm(i,j,C,b)

)
. We can construct real analytic functions hijC with

hijC ≥ 0 on M , h−1
ijC(0) = DC and hijC ∈ m

2m(i,j,C,b)
b in the same way as

the proof of Lemma 4.4. Then there exist positive continuous functions φijC

with φijC > (hijC |fijC |)/ε2ijC + 2 outside of UC . There exist real analytic
functions ψijC on M with |ψijC − φijC | < 1 by [13] and [21]. Set gijC :=
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hijCfijC − ψijCε
2
ijC . It is obvious that g−1

ijC(0) ⊂ UC ∪ C. Furthermore,
there exists an open neighborhood V ′C of C \DC with

W∩UC∩V ′C = V ′C∩
p⋃

i=1

q⋂

j=1

{x ∈ X; gijC(x) > 0}

by the definition of gijC .
Fix i = 1, . . . , p and j = 1, . . . , q. Let Aij be the family of analytically

irreducible components of
⋃

C∈C g
−1
ijC(0) of dimension = dim(M) − 1. Set

Aij :=
⋃

Y ∈Aij
Y . Since UC ∩ UC′ = ∅ and UC ∩ UC′ = C ∩ C ′ for any

C, C ′ ∈ C, Aij is a coherent real analytic set. Remember that Y ∈ Aij

is an irreducible component of g−1
ijC(0), g−1

ijC(0) ⊂ UC ∪ C and UC ∩ Z =
C. Hence any Y ∈ Aij contains only one curve C ∈ C. Define mY as
the minimum number satisfying that gijC ∈ H0(M, IY )mY , where C is the
unique irreducible component of Z contained in Y . Consider the sheaf Iij

defined by

Iij,x :=
∏

Y ∈Aij ,x∈Y

ImY
Y,x .

Since Aij is coherent, Iij is coherent. Since Iij,x is a principal ideal of OM,x

for any x ∈ M , the ideal Iij(M) is finitely generated by [12]. Let
Gij1, . . . , Gijm ∈ Cω(M) be its generators. For any l = 1, . . . ,m, we set

Φijl := {x ∈ Z; GijlOM,x = Iij,x}.
We choose a discrete points set D ⊂ Z such that
• Sing(Z) ⊂ D,
• Φijl \D are open for all l = 1, . . . ,m,
• Z does not intersect with any other analytically irreducible compo-

nents of g−1
ijC(0) except Y ∈ Aij at x ∈ C \ D ⊂ Z, where C ∈ C,

and
• {Φijl \D}l=1,...,m covers Z \D.

Here Sing(Z) denotes the singular locus of Z. By the definition of Iij

and Φijl, for any x ∈ Φijl\D, there exists a unit uijl,x with gijC = uijl,xGijl ∈
OA,x. We define the set Φijl(1) ⊂ Φijl \ D consisting of points x with
uijl,x > 0 near x. The set Φijl(−1) ⊂ Φijl \D is the set of all points x ∈ Z
with uijl,x < 0 near x. Remark that Φijl \ D = Φijl(1) ∪ Φijl(−1). By
Lemma 4.4, there exist open global semianalytic neighborhoods Tijl(k) of
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Φijl(k) in M such that Tijl(k)∩(Z\Φijl(k)) ⊂ D∩Φijl(k) for any k = −1, 1.
Consider the global semianalytic set

Wl(k) :=
p⋃

i=1

q⋂

j=1

Tijl(kij)∩{x ∈ X; sign(Gijl(x)) = kij}

for any l = 1, . . . ,m and tuples k = (k11, k12, k21, k22) ∈ {±1}4.
Fix l = 1, . . . ,m and k = (k11, k12, k21, k22) ∈ {±1}4. We show that,

for any x ∈ (Z \ D) ∩ Wl(k), there exists a neighborhood U of M with
W ∩ U = Wl(k) ∩ U . By the definition of Tijl(kij), there exists a unit uij,x

with Gijl = uij,xgijC ∈ OA,x and sign(uij,x) = kij near x, where C ∈ C and
x ∈ C. Therefore, there exists an open neighborhood U of x with

U∩{x ∈M ; gijC(x) > 0} = U∩{x ∈M ; kijGijl(x) > 0}.
Since W ∩ U = U ∩⋃p

i=1

⋂q
j=1{x ∈ X; gijC(x) > 0}, W ∩ U = Wl(k) ∩ U .

As we have shown above, dim
((
Wl(k) ∩W )∩(

Wl(k) \W )) ≤ 0. Hence,
Wl(k) ∩ W is global semianalytic by Proposition 2.6. Set X∞ := X \⋃

l,k Wl(k). Then dim
(
W ∩X∞∩X∞ \W ) ≤ 0 because dim

(
C∩W ∩X∞

)
≤ 0 for all C ∈ C. Therefore, W ∩ X∞ is global semianalytic by Proposi-
tion 2.6. Since W = (W ∩X∞) ∪⋃

l,k W ∩Wl(k), W is also global semian-
alytic. ¤

4. Proof of Theorem 1.2

We prove Theorem 1.2 in the present section. For that, we first show
that the localization of the ring of real analytic functions is regular.

Proposition 4.1 Let M be a connected paracompact real analytic mani-
fold and X be an analytically irreducible coherent real analytic subset of M .
We set OX := OM/IX . Let Y be an irreducible coherent real analytic
subset of X with dim(Y ∩ Sing(X)) < dim(Y ) and IY ⊂ OX denote the
ideal sheaf of Y . Here Sing(X) denotes the singular locus of X. Then the
ring H0(X,OX)H0(X,IY ) is a regular local ring of Krull dimension dimX −
dimY .

Proof. Set A := H0(X,OX) and P := H0(X, IY ). Let Q be a prime
ideal of AP . There exists a prime ideal Q1 of A with Q1AP = Q. Since
Q1 is contained in P , the complex common zero set Z of Q1 contains the
complexification of Y . Set r(Y ) := dimX − dimY . We first show the
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following claim.

Claim There exist f1, . . . , fr ∈ Q1 which generate Q. Moreover, we can
choose r(Y ) generators f1, . . . , fr(Y ) when Z = Y .

Proof of Claim. We first need to define an ideal sheaf for the proof of this
claim. For any OX -modules A and B, (A : B) denote the sheaf generated
by {f ∈ OX ; f · A ⊂ B}. It is well-known that (A : B) is coherent if so are
both A and B.

Let IZ ⊂ OX denote the ideal sheaf of Z. We first show that
H0(X, IZ) = Q1. Let x be a regular point of Y , namely, x ∈ Y \
(Sing(Y ) ∪ Sing(X)). Remark that the common complex zero set germs of
H0(X, IZ)OX,x and Q1OX,x coincide. Hence

√
Q1OX,x = IZ,x by Hilbert’s

Nullstellensatz. For any f ∈ H0(X, IZ), there exists n ∈ N with fn ∈
Q1OX,x. On the other hand, finitely many generators g1, . . . , gk ∈ Q of
Q1OX,x exist because OX,x is Noetherian. Consider the coherent ideal
sheaf D := (fnOX : (g1, . . . , gk)OX). Since Dx = OX,x, there exists
h ∈ H0(X,D) such that Y 6⊂ h−1(0), namely, h /∈ P . Remark that
H0(X, (g1, . . . , gk)OX) = (g1, . . . , gk) by Cartan’s theorem B. Hence, hfn ∈
(g1, . . . , gk) ⊂ Q1. Since Q1 is prime, f ∈ Q1. We have shown that
H0(X, IZ) = Q1.

The coherent sheaf is generated by its global sections by Cartan’s The-
orem A and IZ,x is generated by f1, . . . , fr ∈ H0(X, IZ) = Q1. Moreover,
we can choose r(Y ) generators f1, . . . , fr(Y ) ∈ Q1 of IY,x when Z = Y . We
will show that these f1, . . . , fr generate Q. Let g ∈ Q1. Consider the coher-
ent sheaf (gOX : (f1, . . . , fr)OX). Applying the same argument as above,
there exists h′ ∈ A with h′ /∈ P and hg′ ∈ (f1, . . . , fr). We have shown that
f1, . . . , fr generate Q and have finished the proof of Claim.

We first show that AP is Noetherian. We have only to show that all
prime ideals Q of AP are finitely generated. Hence AP is Noetherian by
Claim.

Since PAP is generated by r(Y ) elements, dimAP ≤ r(Y ). Let f1, . . .,
fr(Y ) ∈ P be the generators given in Claim. Choose y ∈ Y \ (Sing(X) ∪
Sing(Y )). Let (x1, . . . , xdim(Y )) be an analytic local coordinate of Y at y.
Since the maximal ideal ofOX,y is generated by x1, . . . , xdim(Y ), f1, . . . , fr(Y ),
(x1, . . . , xdim(Y ), f1, . . . , fr(Y )) is a local coordinate of X at y. Define Yi as
the irreducible component of

⋃i
j=1 f

−1
j (0) containing a point y. Then Y1 )

Y2 ) . . . ) Yr(Y ) = Y because (x1, . . . , xdim(Y ), f1, . . . , fr(Y )) is a local
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coordinate. Hence we can construct the strictly ascending chain

I(Y1)AP ( I(Y2)AP ( · · · ( I(Yr(Y ))AP = PAP ,

where I(Yj) denotes the ideal of real analytic functions on Z vanishing
on Yj . Hence dimAP = r(Y ). By Claim, the only one maximal ideal is
generated by dimAP (= r(Y )) elements, namely, AP is a regular local ring
of dimension r(Y ). ¤

We prove Thom’s Lemma for convergent power series. The original
Thom’s Lemma says that, for any polynomial f(x) with one valuable x of de-
gree n, the set {x ∈ R; sign(f(x)) = i0, sign(f ′(x)) = i1, . . . , sign(f (n)(x)) =
in} is empty, a point or an open connected interval, where ij = −1, 0, 1
and, for any a ∈ R, the notation sign(a) = −1, 0, 1 represent the conditions
a < 0, a = 0 and a > 0, respectively.

Lemma 4.2 We first fix n ≥ 1. Let m0 be the maximal ideal (x1, x2) of
the ring R{x1, x2} of convergent power series. Fix f ∈ mn

0 \mn+1
0 . Then

there exists a map σ : {1, . . . , n} → {1, 2} satisfying the following condition.
Set f0 := f and fk := ∂fk−1/∂xσ(k) for 1 ≤ k ≤ n. Then fi /∈ mn−i+1

0 for
all i = 0, . . . , n.

Proof. We prove this lemma by the induction on n. When n = 1,
(∂f/∂x1)(0) 6= 0 or (∂f/∂x2)(0) 6= 0. Set σ(1) such that (∂f/∂xσ(1))(0) 6=
0.

We next consider the case where n > 1. By the assumption of the
induction, ∂f/∂x1 /∈ mn

0 or ∂f/∂x2 /∈ mn
0 . We define the number σ(1)

such that ∂f/∂xσ(1) /∈ mn
0 . Apply this lemma to ∂f/∂xσ(1). There exists

a map σ′ : {1, . . . , n − 1} → {1, 2} satisfying the conditions of this lemma
for ∂f/∂xσ(1). Set σ(k) := σ′(k − 1) for all 2 ≤ k ≤ n. Then σ satisfies the
requirement. ¤

Lemma 4.3 (Thom’s Lemma for convergent power series) Let n, m0,
f be the same as in Lemma 4.2. Let σ : {1, . . . , n} → {1, 2} be a map.
We define f0, f1, . . . , fn in the same way as Lemma 4.2. Assume that fi /∈
mn−i+1

0 for all i = 0, . . . , n. Then the semianalytic set germ

XIJ := {sign(f0(x)) = I(0), sign(f1(x)) = I(1), . . . ,

sign(fn(x)) = I(n), sign(x1) = J(1), sign(x2) = J(2)}
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is a connected germ for any maps I : {0, 1, . . . , n} → {−1, 0, 1} and
J : {1, 2} → {−1, 0, 1}.
Proof. We prove this lemma by the induction on n. When n = 1, the
set germ {f = 0} is a germ of a real analytic submanifold of dimension 1,
and {f > 0} and {f < 0} is connected. Since (∂f/∂xσ(1))(0) 6= 0, XIJ is
obviously connected.

We next consider the case where n > 1. We fix maps I : {0, 1, . . . , n} →
{−1, 0, 1} and J : {1, 2} → {−1, 0, 1}. We show that XIJ is connected.

The semianalytic set germ

X ′
IJ := {sign(f1(x)) = I(1), . . . , sign(fn(x)) = I(n),

sign(x1) = J(1), sign(x2) = J(2)}
is connected. Hence we may consider X ′

IJ is a global semianalytic subset
of an open neighborhood U of [−r, r]2 for any sufficiently small positive
number r > 0. When dim(X ′

IJ) ≤ 1, XIJ is connected because XIJ ⊂ X ′
IJ .

Consider the case where dim(X ′
IJ) = 2. We may assume without loss

of generality that σ(1) = 1 and J(1) = J(2) = 1. We first consider the case
where dim(XIJ) = 1. Assume that XIJ is not connected. Shrinking U if
necessary, we may assume that there exist two strictly increasing continuous
subanalytic functions h1, h2 : [0, r] → [0,∞) such that h1|(0,r] < h2|(0,r] are
real analytic functions and

{(x1, x2); 0 ≤ x1 ≤ r, x2 = h1(x1)}
∪ {(x1, x2); 0 ≤ x1 ≤ r, x2 = h2(x1)} ⊂ XIJ .

The cardinality of the set {x2 = a}∩XIJ is more than 1. On the other hand,
f( · , a) : (0, r] → R is constant, strictly increasing or strictly decreasing
because sign

(
(∂f/∂x1)( · , a)

)
is constant on X ′

IJ . Contradiction. Hence
XIJ is connected.

We next consider the case where dim(XIJ) = 2. Shrink U if neces-
sary, then the boundary XIJ \XIJ is a finite union of graphs of continuous
subanalytic functions h1, . . . , hm with h1 < h2 < · · · < hm and hj are real
analytic on (0, r]. As we showed before, the set X ′

IJ ∩ {f = 0} ∩ {x2 = a}
consists of only one element for any sufficiently small a > 0. Assume that
XIJ is not connected. The analytic function f(·, a) attains a minimal value
at a point in (0, r]. Since f(·, a) is constant, strictly increasing or strictly
decreasing, f(·, a) is constant. Hence f1 ≡ 0, which contradicts the assump-
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tion ∂f/∂x1 /∈ mn
0 . ¤

We give a technical lemma on separation of analytic subsets.

Lemma 4.4 Let M be a paracompact real analytic manifold and C ⊂
M be an analytic set of dimension 1. Let D ⊂ C be an analytic subset
of dimension 0. Consider an open subanalytic neighborhood U of C \ D.
Then there exists an open global semianalytic neighborhood V of C \D with
V ⊂ U .

Proof. There exists a real analytic function h on M with h−1(0) = C and
h ≤ 0 on M . For any point b ∈ D, let db be a real analytic function d−1

b (0) =
{b} and db ≥ 0 on M . Consider the function ρb : [0, r) → [0,∞) given by

ρb(t) := min{|h(y)|; y ∈M \U, db(y) = t},
where r is a small positive number. Since ρb is subanalytic, there exists
mb ∈ N and Cb > 0 with ρb(t) ≥ Cbt

mb for all 0 ≤ t < r by ÃLojasiewicz’s
inequality. Consider the locally principal sheaf of ideals J , whose nontrivial
stalks are dmb+1

b Ob. Then, by [12], this sheaf has finitely many (in fact,
three) global generators αi. Then α =

∑
i α

2
i generates J 2, so that α =

unit · dnb
b for some nb > mb. Let Ub be a sufficiently small neighborhood

of b. Then Cbdb(y)mb > α(y) for all y ∈ Ub \ {b}. Set G = α + h. Since
h ≡ 0 on C, G > 0 on C \D. By the definition of ρb, |h(y)| ≥ Cbdb(y)mb for
any y ∈ Ub. Hence, G < 0 on Ub \ U . Consider a sufficiently small closed
neighborhood S of C. Then,

S∩({x ∈M ;G(x) > 0} \ U )
= ∅.

There exists a real analytic function G′ on M such that G′ > 0 on S

and G′ < 0 on {x ∈ M ; G(x) > 0} \ U by Lemma 2.1. Set V := {x ∈ M ;
G(x) > 0, G′(x) > 0}, then V satisfies the requirement. ¤

The following theorem is the generalization of Theorem 1.2.

Theorem 4.5 Let M be a connected paracompact real analytic manifold
of dimension 3. Let X be a global semianalytic subset of M and W be
a union of connected components of X. Let S be an analytically irreducible

component of the Zariski closure W ∩X \W
Z

of dimension 1. Then there
exists a proper analytic subset D ⊂ S and a global semianalytic neighbor-
hood U of S \D such that W ∩U is global semianalytic and W ∩ U ∩X \W
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is of dimension ≤ 0.

Proof. Let B be the Zariski closure of X \ Int(X), where Int(X) is the
interior of X. Fix a point x ∈ S \ Sing(S) such that S does not intersect

at x with any irreducible component of W ∩X \W
Z

except S and any
irreducible component of B which does not contain S. Since S is regular
at x, there exist h1, h2 ∈ Cω(M) which generate the ideal IY,x ⊂ OM,x

by Proposition 4.1. Choose a real analytic function h3 ∈ Cω(M) such
that (h1, h2, h3) is a local coordinate on an open neighborhood of x. We
may assume that M is a closed real analytic submanifold of a Euclidean
space RN . We may assume that x is the origin and linearly independent
linear functions x1, x2, x3 are also a local coordinate of M in an open
neighborhood of x. Consider Hessian H = ∂(h1, h2, h3)/∂(x1, x2, x3). Then
det(H)(x) 6= 0. Let ∆ij be the (i, j)-minor of H. We define partials

∂j : Cω(M)(det(H)) → Cω(M)(det(H)) by ∂j(f) :=

3∑

i=1

∆ij
∂f

∂xi

det(H)

for all j = 1, 2, 3. There exists a distinct points set D ⊂ Z such that, for
any y ∈ Z\D, det(H)(y) 6= 0, (h1, h2, h3−h3(y)) and (x1−x1(y), x2−x2(y),
x3 − x3(y)) are local coordinates of M at y. Furthermore, we may assume
that, at any point y ∈ S \ D, S does not intersect with any irreducible
component of B of dimension < 2. There exists an analytic function f ∈
Cω(M) with f−1(0) = B. Since

⋂∞
l=1 I l

S = (0), there exists n ∈ N with
f ∈ In

S \ In+1
S . Since the sheaf (In+1

S : In
S ) is coherent, the set {y ∈ S; f ∈

In+1
S,y } is an analytic set of dimension ≤ 0. Enlarging D if necessary, we

may assume that f ∈ In
S,y \ In+1

S,y for all y ∈ S \ D. Choose a point
x′ ∈ S \D, then the surface h−1

3 (h3(x′)) is a real analytic manifold near x′

and (h1, h2) is a local coordinate of this surface. Hence, by Lemma 4.2,
there exists σ : {1, . . . , n} → {1, 2} with ∂σ(i)(· · · (∂σ(1)(f |h−1

3 (h3(x′)))) · · · ) /∈
(h1, h2)n+1−i ⊂ OM,x′/(h3 − h3(x′)) for all i = 1, . . . , n. Set P := IY (M)
and R := Cω(M)P . Then R is a regular local ring by Proposition 4.1. Hence
there exists a monomorphism τ : R→ (R/PR)[[h1, h2]]. Therefore there ex-
ists τα1,α2 ∈ R/PR with τ(f) :=

∑
α1,α2

τα1,α2h
α1
1 hα2

2 . We may consider the
element of R/PR as the quotient of Cω(Y ), namely, the fraction of real
analytic functions on Y . For any i = 1, . . . , n, we define α1(σ) as the cardi-
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nality of the set {k; 1 ≤ k ≤ n, σ(k) = 1} and set α2(σ) := n− α1(i). Set
τσ := τα1(σ),α2(σ). Then ∂σ(n)(· · · (∂σ(1)(f)) · · · )(x′) = α1(σ)!α2(σ)! τσ(x′)
by the definition. Hence τσ 6≡ 0. Enlarging D, we may assume that,
for all y ∈ S \ D, τσ is defined near y and τσ(y) 6= 0. We define fi :=
∂σ(i)(· · · (∂σ(1)(f)) · · · ) for all i = 1, . . . , n, then fi|h−1

3 (h3(y)) ∈ Oh−1
3 (h3(y)),y

coincides with fi constructed from f |h−1
3 (h3(y)) in Lemma 4.2 under the real

analytic diffeomorphism between an open neighborhood of the origin in R2

and h−1
3 (h3(y)) for all i = 0, . . . , n.

Consider the family M of all pairs of maps I : {0, 1, . . . , n} → {−1, 0, 1}
and J : {1, 2} → {−1, 0, 1}. For any (I, J) ∈M, set

XIJ := {y ∈M ; sign(fi) = I(i) for all i = 0, 1, . . . , n,

sign(h1) = J(1), sign(h2) = J(2), det(H) 6= 0}.
ThenXIJ is a global semianalytic set. Remark that the germ of f−1

3 (y)∩XIJ

at y ∈ S \D is connected by Lemma 4.3.
It is well known that the class Ran of sets (in Rn, for n = 0, 1, 2, . . .)

which is subanalytic in the projective space Pm(R) forms an o-minimal
structure. (Here Rm is identified with an open subset of Pm(R) via the map
(x1, . . . , xm) 7→ (1 : x1 : · · · : xm).) See [20] for the theory of an o-minimal
structure. Applying the theory of an o-minimal structure, we modify D

and construct a subanalytic open neighborhood U of S \ D satisfying the
following conditions:

(a) U ∩W ∩X \W
Z

= S.
(b) Any connected component V of U contains at most one connected

component C of S \D, U ∩ S = C if U contains a connected compo-
nent C of S \D, and U ∩ S = ∅ otherwise.

(c) For any connected component V of U , V ∩XIJ is connected.

We will begin with the construction of U .
Choose a subanalytic open neighborhood U ′ of S \ D with U ′ ∩

W ∩X \W
Z

= S. Let {Kλ} be a locally finite subanalytic open cover-
ing of S in M such that Kλ is compact and

⋃
λ(Kλ \Kλ) ∩ S is a discrete

points set. Such a covering exists because M is a closed real analytic sub-
manifold of a Euclidean space Rm by [13]. Enlarging D if necessary, we
may assume that

⋃
λ(Kλ \Kλ)∩S ⊂ D. Remark that Kλ, Kλ ∩S, Kλ ∩U ′

and Kλ ∩ XIJ are all definable in Ran as a subset of Rm. Apply the cell
decomposition theorem to Kλ, Kλ ∩ D, Kλ ∩ S, Kλ ∩ U ′ and Kλ ∩ XIJ .
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There exist finite connected definable sets {Nλj}j , which are called cells,
satisfying the following conditions:
(i) Nλj ∩Nλk = ∅ if j 6= k and Kλ =

⋃
j Nλj .

(ii) If Nλj ∩Nλk 6= ∅, then Nλk ⊂ Nλj .
(iii) Let E be one of the sets Kλ ∩D, Kλ ∩ S, Kλ ∩ U ′ and Kλ ∩XIJ . If

Nλj ∩ E 6= ∅, then Nλj ⊂ E.
Define Eλ as the union of all 0-dimensional cells contained in S. Remark
that

⋃
λEλ ∪D is a discrete points set. Enlarging D if necessary, we may

assume that Eλ ⊂ D. Define Uλ as the union of all 1-dimensional cells
contained in S and all cells whose closure contain 1-dimensional cells con-
tained in S. It is an open definable set, especially, it is subanalytic. Set
U :=

⋃
λ Uλ, then it is a subanalytic open neighborhood of S \D because

{Uλ}λ is locally finite.
Since U is contained in U ′, U satisfies the condition (a). The condi-

tion (b) is also satisfied because
⋃

λ(Kλ \Kλ) ∩ S ⊂ D and U is contained
in U ′. We show that U satisfies the condition (c). Let V be a connected
component of U . The set V is a finite union of connected components Vλ

of Uλ. We first show that Vλ ∩ XIJ is connected. Assume otherwise. Let
{Nλj(i)}i be cells contained in Vλ ∩XIJ and set C := Vλ ∩ S. Remark that
C coincides with a cell, hence, Nλj(i) contains C. Choose y ∈ C. Since C ⊂
Nλj(i) and f−1

3 (y) is transversal to C, the germ of Nλj(i) ∩ f−1
3 (y) at y is

not the empty set germ. It is obvious that the germ
⋃

iNλj(i) ∩ f−1
3 (y) at y

is not connected because Vλ ∩XIJ =
⋃

iNλj(i) is not connected. However,
the germ of

⋃
iNλj(i) ∩ f−1

3 (y) coincides with the germ of XIJ ∩ f−1
3 (y) and

the latter is connected by Lemma 4.3. Contradiction. We have shown that
Vλ ∩XIJ is connected. For any λ and λ′, Vλ ∩ Vλ′ is a neighborhood of C.
Hence, Vλ ∩ Vλ′ ∩XIJ is not empty. Therefore, V ∩XIJ =

⋃
λ Vλ ∩XIJ is

connected. We have shown that U satisfies the condition (c).
Since U satisfies the condition (c), there exists only one subfamily

MC ⊂M with (∗): W ∩V =
⋃

(I,J)∈MC
XIJ ∩V for any connected compo-

nent C of S \D. There exists a global semianalytic open neighborhood of
S\D contained in U by Lemma 4.4. Replace U with this global semianalytic
neighborhood. Then U is a global semianalytic open neighborhood of S \D
satisfying the conditions (a), (b) and (∗). For any (I, J), set SIJ :=

⋃
C,

where C runs all connected components of S \D with (I, J) ∈MC . There
exists a real analytic function fIJ on M with SIJ = {x ∈ S; fIJ > 0} by [4,
Theorem 4.4]. Let gIJ be a real analytic function on M with C \(D∪SIJ) =
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{x ∈ C; gIJ > 0}. Replace U with

U∩
⋃

(I,J)∈M
{x ∈M ; fIJ(x) > 0}∪{x ∈M ; gIJ(x) > 0}.

Then

U ∩W = U ∩
⋃

(I,J)∈M
{x ∈M ; fIJ(x) > 0} ∩XIJ and

U ∩ (X \W ) = U ∩
⋃

(I,J)∈M
{x ∈M ; gIJ(x) > 0} ∩XIJ .

We have shown that U ∩W and U ∩ (X \W ) are global semianalytic. ¤

Proof of Theorem 1.2.

Let S1, . . . , Sm be analytically irreducible components of W ∩X \W
Z

of dimension 1. By Theorem 4.5, there exist analytic subsets Di ⊂ Si

of dimension 0 and open global semianalytic neighborhoods Ui of Si \ Di

with dim
(
W ∩ Ui ∩ X \W ) ≤ 0 for any i = 1, . . . ,m. Consider the

global semianalytic subset X \ ⋃m
i=1 Ui of M . Then dim

(
W \⋃m

i=1 Ui ∩
X \ (

⋃m
i=1 Ui ∪W )

) ≤ 0 by the definition of Si and Ui. Hence W \⋃m
i=1 Ui

is global semianalytic by Proposition 2.6. Therefore W =
⋃m

i=1(W ∩ Ui) ∪(
W \⋃m

i=1 Ui

)
is global semianalytic. ¤
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[ 8 ] Dı́az-Cano A., Índice de estabilidad y descripción de conjuntos semianaĺıticos, PhD.
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