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On the connected components
of a global semianalytic subset
of an analytic surface
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Abstract. A global semianalytic subset of a real analytic manifold is a finite union of
finite intersections of the solutions of equations and inequalities of real analytic functions
on the manifold. Is a union of connected components of a global semianalytic set again
global semianalytic? We consider a two-dimensional global semianalytic set such that
the normalization of the Zariski closure of it is affine. We show that a union of con-
nected components of it is again global semianalytic. We also give some partial results
on connected components of global semianalytic subset of a three-dimensional analytic
manifold.
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1. Introduction

A global semianalytic sets are recently studied by real algebraic and
analytic geometers, for instance, [2], [3], [4], [5], [8], [10], [11] and [19].
A subset X of a real analytic manifold M is called global semianalytic if
there exist finitely many real analytic functions f;, g;; on M with

X = U{x € M; fi(x) =0, gin(z) >0,..., gin(x) > 0}.

=1

Consider the case where M is a connected paracompact real analytic man-
ifold and let N be a coherent analytic subset of M. The notation O
denotes the sheaf of real analytic functions on M and Zy C Oj; denotes
the sheaf of real analytic functions vanishing on V. A subset X of NV of the
form

X = U{az € N; fi(x) =0, gi(x) >0,..., gin(z) >0}
i=1

is also called global semianalytic. Here f; and g;; are global sections of the
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sheaf Op;/Zn. A global semianalytic subset of N is also a global semiana-
lytic subset of M by Cartan’s theorem A and B ([9]). We consider global
semianalytic sets in the present paper.

It is well-known for real algebraic and analytic geometers that a con-
nected component and the closure of a semialgebraic set are again semi-
algebraic ([6]) and that the similar statement holds true for semianalytic
sets ([16]). As in the semialgebraic case and semianalytic case, it is natural
to study the problem whether the closure and a union of connected compo-
nents of a global semianalytic set is again global semianalytic. Indeed, it is
already known that any union of connected components and the closure of
a boundary bounded global semianalytic subset of M are again global semi-
analytic ([1], [19]). In the non-compact case, Andradas and Castilla showed
that any union of connected components of a global semianalytic subset
of M is again global semianalytic when dim(M) < 2 and so is the closure
when dim(M) < 3 ([2], [11]). In the present paper, we consider the problem
whether any union of connected components of a global semianalytic set is
again global semianalytic.

We first consider a connected paracompact real analytic manifold M
and a coherent real analytic subset A of M. Let Aic\be the complexification
of A. Consider the (complex) normalization 7: A — A® defined in [14,
Section 8.3]. Then A’ := m~!(A) is a coherent and normal real analytic

variety whose complexification is AC ([15, Theorem IV.3.14]). We call A’
(real) normalization of A. A real analytic space A’ is called affine if there
exists a closed embedding of A’ into R" for some n € N. We consider the
real analytic space A of dimension 2 whose normalization is affine. The
following theorem is our first main theorem.

Theorem 1.1 Let M be a connected paracompact real analytic manifold.
Let A C M be a coherent analytic subset of dimension < 2. Assume that the
normalization of A is affine. Consider a global semianalytic subset X of A
and a union W of connected components of X. Then W is again a global
semianalytic subset of M.

We next consider a 3-dimensional connected paracompact real analytic
manifold. The Zariski closure of a subset A of a real analytic manifold M
means the smallest coherent analytic subset of M containing A in the
present paper. The second main theorem is as follows.
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Theorem 1.2 Let M be a connected paracompact real analytic manifold
of dimension 3 and X be a global semianalytic subset of M. Consider
a union W of connected components of X. Assume that dim(WNX \ W) <
1 and the Zariski closure of W N X \ W has at most finitely many analyt-
ically irreducible components of dimension 1. Here ~ denotes the closure
i M. Then W is again global semianalytic.

We mainly consider a coherent real analytic subset in the present paper.
Hence we simply call a coherent analytic subset analytic. The notation X
denotes the closure of a set X. We consider the sheaf of real analytic func-
tions on a real analytic manifold M in the present paper. The symbol Oy,
denotes it and Oy, is the stalk of Oy at £ € M. When X is a coherent
real analytic subset of M, Tx denotes the ideal sheaf of all real analytic
functions on M vanishing on X. The symbol Zx , also denotes the stalk
at * € M. The global sections H°(M, Oy /Zx) is denoted by C¥(X). The

notation U~ represents the Zariski closure of U.

When M is a connected paracompact real analytic manifold, M is
a closed real analytic submanifold of a Euclidean space by [13]. Hence
Cartan’s theorem A and B hold true in M by [9]. We use this fact in the
proof of the present paper in many times.

2. Low Dimensional Case

Disjoint closed subanalytic subsets of a connected paracompact real
analytic manifold are separated by a single real analytic function. More
precisely,

Lemma 2.1 Let M be a connected paracompact real analytic manifold.
Let X and Y be disjoint closed subanalytic subsets of M. Then there exists
a real analytic function f with f >0 on X and f <0 onY.

Proof. We may assume that M is a closed real analytic submanifold of
a FEuclidean space R? by [13]. There exists a continuous function d: M —
R with d(z) = 1 for all z € X and d(y) = —1 for all y € Y. Indeed,
define d; and ds as the distance functions from X and Y, respectively, then
d := (dy — d1)/(dy + dy) satisfies the requirement. Let d be a continuous
extension of d to R?. Then there exists a real analytic function f on R? with

|f(x) —d(x)] < 1/2 for all x € R? by [21]. Then f satisfies the requirement.
([
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We next introduce the results of [2] and [3].

Lemma 2.2 Let M be a connected paracompact real analytic manifold.
A semianalytic subset of an analytic set of dimension 1 is a global semian-
alytic subset of M.

Proof. See [2, Lemma 3.1]. O

Remark 2.3 Let M be a connected paracompact real analytic manifold.
An open semianalytic set and an open global semianalytic set are strictly
open [3].

The following two lemmas are generalizations of the lemmas of [2].

Lemma 2.4 Let M be a real analytic manifold and p € M. Let F), and
F}, be closed semianalytic germs at p such that F, N Fy = {p}. Then there
exists an open germ G, with F) C G, U {p} and F, NG, = {p}.

Proof. Since the statement of this lemma is local, we may assume that
M = R4, There exist germs f;; of real analytic functions with

m n
Fy=J({fs =0}

i=1j=1

by [1, Corollary VIII.3.2].
We fix i = 1,...,m and set [, := (;_; {fij(x) > 0}. Let d be the germ

of the real analytic function defined by d(z1,...,z4) = Yy (z1 —m)?%
where p = (p1,...,pq). Consider the subanalytic function ¢;: [0,7) — R
defined by

oi(t) = max{min{fﬂ(:ﬂ), s fin(@)}; e By, d(z) = t},

where 7 is a small positive number. By the definition, ¢;(0) = 0 and
¢i(t) <0 for all 0 < ¢ < r. Since a 1-dimensional subanalytic set is semian-
alytic, ¢; is semianalytic. Hence, considering the Puiseux series expansion
of the graph of ¢;, it is obvious that there exists a positive number Cj
and a natural number n; with ¢;(t) + C;jt™ < 0 for all 0 < ¢ < r. Set
9ij(z) == fij(x) + Cid(z)". Then g;j(z) > 0 for all x € F},\ {p} and, for
all x € F),\ {p}, there exist j = 1,...,n with g;;(z) < 0. Consider the open
semianalytic germ
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n

Gip == [ {gij > 0}.

j=1
Then Fj, C Gip U {p} and F, NG, = {p}.
We can construct G, in the same way for another ¢ = 1,...,m. Set
Gp =", Gip. Then G), satisfies the requirement. O

Lemma 2.5 Let M, F,, F]’) and G be the same as in Lemma 2.4. Let

n

i=1j=1

s

Gy =

where gi; € Onp are the germs constructed in the proof of Lemma 2.4.
Then there exists a natural number p such that, if ggj — gij € mb, then
G;) satisfies the conditions on G, in Lemma 2.4, where m,, is the mazimal

ideal of Onyp and

G, = U ﬂ{ggj > 0}.

i=1j=1

Proof. We define a real analytic function d as in the proof of Lemma 2.4.
Consider the subanalytic function ¢: [0,7) — R defined by
o(t) :== min{ max min g;;(z); z € Fp, d(z) = t},
i=1,..mj=1,....n

where r is a small positive number. Then ¢(0) = 0 and ¢(t) > 0 for all
0 <t < r. In the same way as the proof of Lemma 2.4, there exists C; > 0
and g1 € N such that ¢(t) > C1t9 for any sufficiently small ¢ > 0. Remark
that, for any f € m]%qlﬂ, Cid(z)? > |f| on a small neighborhood of p.
Hence, if g;; — gij € mat F, C G}, U{p}.

Remember that, for all i = 1,...,m and for all € F},\ {p}, there exist
Jj=1,...,n with g;;(z) < 0. Consider the subanalytic function «: [0,7) —
R defined by

=(t): min{l min  max —g;j(z); v € Fp, d(x) = t},

i=1,..mj=1,...,n

where r is a small positive number. Then ¥ (0) = 0 and () > 0 for all 0 <
t < r. In the similar way, we can find ¢ € N such that, if gz’-j — gij € mzqzﬂ,
for all ¢ = 1,...,m and for all z € F}, \ {p}, there exist j = 1,...,n with

: 2g2+1 =
9ij(z) < 0. Hence, if gi; — gij € myt F,NG), = {p}.
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Set = max{2q; + 1,2qy + 1}, then u satisfies the requirement. O

By generalizing the argument of [2], we can show that a union of con-
nected components of a global semianalytic set is again global semianalytic
when the intersection of the closure of disjoint two components is of dimen-
sion 0 or less.

Proposition 2.6 Let M be a connected paracompact real analytic man-
ifold and X be a global semianalytic subset of M. Let W be a union of
connected components of X. Assume that dim(W N X\ W) < 0. Then
W is again a global semianalytic subset of M.

Moreover, there exist natural numbers qi, q2 depending only on the
dimension of the Zariski closure of X and real analytic functions f;; on M
such that

q1  q2

W:XﬂU ﬂ{$€M; fij(x) > 0}.

i=1j=1

Proof. Let {zn }nen=WNX \ W. There exist open semianalytic germs G,
at x, with W C Gp,U{z,} and X \ WNG,, = {x,} by Lemma 2.4. There ex-
ist p, ¢ € N depending only on the dimension of the Zariski closure of X sat-
isfying the following condition by [1, Theorem VIII.2.12, Corollary VIII.3.2].
There exist real analytic germs g;j, at , fori=1,...,pand j =1,...,q
with

iS]

q
Gn = ﬂ{gijn > 0}.
1j=1

(2

Applying Lemma 2.5 in the case where le) =W, F,=X\W and p = z,,
there exists p, € N such that, if gijn — gj;, € mbyr, then W C G U {z,}
and X \ W NG, = {z,}, where m,, is the maximal ideal of Oy, and

P q
i=1j=1
Let M be the coherent sheaf of ideals of Oy defined by
gn if x = ny
M, = {m roifr==a

O,  otherwise.
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We define global sections s;; of Opr/M by

Hno e
‘ Gijn + My, if x =2,
i,x = .
Oy otherwise.

Since HO(M, Oy) — H°(M, Oy /M) is surjective by Cartan’s theorem B,
there exist real analytic functions h;; on M with h;; — gijn, € mk, for all

n

n € N. Consider the global semianalytic set

H := O ﬁ{x € M; h;j(x) > 0}.

i=1j=1

Then WNHNXNH\W =0 and W\ HNX \W = 0. There exist real
analytic functions hy and he on M with hy > 0 on W N H, hy < 0 on
XNH\W,hy>0o0on W\ H and hg < 0on X \ W by Lemma 2.1. Then
W =Xn(HnN{z e M; hi(z) > 0} U {x € M; hao(z) > 0}). We have
finished the proof of this proposition. (|

3. Proof of Theorem 1.1

We will show Theorem 1.1 in the present section. We first show the
following technical lemma.

Lemma 3.1 Let M be a connected paracompact real analytic manifold and
Y be a coherent real analytic subset of M. Let X be a global semianalytic
subset of M with X CY and V be a union of connected components of X.
Set W := X \ V. Assume that Sing(Y) N (VHWZ) is of dimension <
dim(Y) — 1. Here Sing(Y) denotes the singular locus of Y. Then there
exists a real analytic function f on M such that

dm(VA{f >0 NWA{f>0}) <dim(Y)—2 and
dim(Vn{f<o}nWn{f<0}) <dim(Y)—2.

]
Proof. Set Z := (VNW ) and let T be the union of all analytically

irreducible components of Z of dimension < dim(Y) — 2. The constant
function f = 1 satisfies the inequalities of this lemma in the case where
dim(Z) < dim(Y’) — 1. Hence we only consider the case where dim(Z) =
dim(Y) — 1. Set Y’ := Y \ (Sing(Y) U T U Sing(Z)), then Y’ is a real
analytic manifold. Here Sing(Z) denotes the singular locus of Z. We set
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Oy := O /Ty and T}, := Tz /Ty . Remark that Oy~ is isomorphic to Oy |y-.
Hence the stalk ng at z € Y’ is a principal ideal of Oy, because Oy, is
an unique factorization domain. By [12], ZF (Y”) is finitely generated. Since
ZY(Y") is generated by I} (V) := H°(M,Zz/Zy) by Cartan’s theorem A,
we can choose generators fi,..., fy € H(M,Oy) of I} (Y'). Consider the
exact sequence

0—Zy — Oy — Oy — 0.

There exist real analytic functions g; on M such that f; — g; € Zy (M)
by Cartan’s theorem B. Replacing f; with g¢;, we may assume that the
generators f1,..., fr are all real analytic functions on M.

We will choose f € C¥(M) and a real analytic subset D of Z with
dim(D) < dim(Y’) — 2 such that I;x is generated by f for all z € Z\ D.
Let {Z;}ien be the analytically irreducible components of Z of dimension
dim(Y) — 1. Let 2, € YN (Z, \ Uizn Z;). Consider the set

00 k
Fn = U{(G&,...Mlk) E]Rk; (Za]fj>()y,$n #ngn}

n=1 J=1

Write F' = J,, Fn. As Iz, = (f1,---, fk)e,, using Nakayama lemma, we
see that F), is a proper analytic set, and then by the Baire theorem, F' is
proper. Since F is proper, there exists (a1, . ..,a;) € R such that Zle a; fi
generates I;xn for all n € N. Set f := Zle a; f;. For any analytically

irreducible component Z;, the set
D;={z € Z;; fOyy #7T},}

is a real analytic subset of Z;. Since x; ¢ D; by the definition, D; is of
smaller dimension than Z;. Set

D := (Sing(Y)NZ)UTUSing(Z)U < U Dn) U ( U Zmzj> .

neN 1#£]

Then f and D satisfy the requirement of the claim.

We next show that E:=V Nn{f >0}nWn{f >0} CD. It is obvious
that £ C Z by the definition. Let x € Z\ D. Remark that Y is a real
analytic submanifold of M and Z is that of Y in a small neighborhood of .
When x ¢ 0V N OW, it is obvious that x ¢ E. Consider the case where
x € 0V NOW. Choose a small neighborhood U of x in M, then all subsets
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{yeYNU; f(y) >0}, ZNU and {y € YNU,; f(y) < 0} are connected and
are not empty. Since VAW C Z, either VN{f > 0}NU or WN{f > 0}NU
is empty. Hence x ¢ E.

We can also show that VN {f <0} NW N{f <0} C D in the same
way. We have finished the proof of this lemma. (|

Recall the normalization of a complex analytic set [14], [17]. It is pos-
sible to define the normalization of a real analytic set in a similar way.
The real normalization is compatible with the complex normalization of its
complexification [15].

Proposition 3.2 Let M be a paracompact real analytic manifold. Let
Y C M be an analytically irreducible analytic set and w: Y' — 'Y be its nor-
malization. Then the quotient fields IK(Y) of C*(Y) and K(Y') of C¥(Y"),
respectively, are isomorphic.

Proof. The normalization 7: Y’ — Y induces an injection 7*: C¥(Y) —
C“(Y"). This can be extended to 7*: K(Y) — K(Y’). We show that 7* is
an isomorphism.

Let MC and Y© be the complexifications. Fix f’ € O(Y'). For any
peY,let Yi,, ..., Y., be the complex analytic germs of Yp(C at p.

The notation Oy, denotes the ring of all complex analytic function
germs at p. For any complex analytic germ Z,, at p, Igp denotes the ideal
of complex analytic functions vanishing on Z,. The notation Zz,, denotes
the ideal of real analytic functions whose complexification vanishes on Z,.

Remark that I((Z:p =17, ® C. Remember that OMCJ)/IEP = Omy ®C

and O p/Zyyp = Omp/Iy, ,p X -+ X Omp/Ty, , p, Where - denotes the
normalization ([18, Proposition II1.2.7]). Hence there exist complex analytic

set germs W; which are the normalizations of Y;, and {J,c (p)(Y’ )g =
U;-“:l W;. Remark that Zy;, = Zy, , N --- NIy, ,. Hence the quotient ring
K(Yy) of Onp/Zyyp is isomorphic to the direct product [[K(Y;p). The
intersection of W; with m~1(p) consists of one point, say p;. Since Ow, p,
is the integral closure of Oy /Ty, , p in K(Yip), K(Wiyp,) = K(Y;p). Hence
K(Y}) is isomorphic to [[K(W;,,). We may consider naturally that the
germ f, is an element of K(Y}). Consider the sheaf M(Y) of germs of
meromorphic functions. Then it is coherent by [14, Proposition 6.3.1] and
M(Y), = K(Y,) by the definition. Then f’ € H'(M, M(Y)) = K(Y). We
have shown that 7*: K(Y) — K(Y”) is an isomorphism. O
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Corollary 3.3 (Artin-Lang Property for Surface) Let M be a connected
paracompact real analytic manifold and X C M be an irreducible analytic
subset of M of dimension 2. Assume that the normalization of X is affine.
Let f1,..., fm be real analytic functions on M and o € Spec, (K(X)). As-
sume that fi(a) > 0,..., fm(a) > 0, then the set U := {z € X; fi(z) > 0,
ooy fm(x) > 0} is not empty. Here f(a)) > 0 denotes the conditions f € «
and —f ¢ a.

Proof. Let m: X’ — X be the normalization. By Proposition 3.2, K(X) =
K(X'). Hence we may view « as a point in Spec, (K(X")), naturally. Since
Artin-Lang Property for affine normal surfaces holds true [5], the set U’ :=
{r e X'; fiom(z) >0,..., fmom(x) > 0} is not empty. Consider the set
U:={z € X;fi(z) >0,..., fm(x) > 0}. Let y € U’, then n(y) € U.
Especially U # (). O

We recall the definition of the tilde operator.

Definition 3.4 Let A be an irreducible real analytic set of dimension 2
whose normalization is affine. Let X be a global semianalytic subset of the
form

X = U ﬂ{x € A; fij(x) x5 0},

i=1j=1

where *;; € {=,>}. Set

X = J [{o € Spec, (K(A)); fij(e) *i; 0}.

i=1j=1

Then the map ~ defines a surjective homomorphism from the lattice of
global semianalytic subsets of A onto the lattice of constructible subsets of
Spec, (K(A)) and X # () if and only if the interior of X in Reg(A) is not
empty by [2, Proposition 2.4] and Corollary 3.3.

We have finished the preparation of the proof of Theorem 1.1.

Proof of Theorem 1.1.

We first consider the case where A is irreducible. Let 7: A’ — A
be the normalization map. Consider the sets X' := 771(X) and W’ :=
7 1(W). Remark that X’ is a global semianalytic subset of A’. Since
dim(Sing(A’)) < 0, we can apply Lemma 3.1 to X’ and W’. Then there
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exists a real analytic function f on A’ such that

dim(W' n{f>0}n(X'\W)N{f>0}) <0 and
dim(W'n{f <0}n(X'\W)n{f<0})<0.

Apply Proposition 2.6 to X' N {f > 0} and X’ N {f < 0}, then there exist
natural numbers p, ¢ depending only on dim(A’) and f{; € O(A’) with
W'\ {f =0} =X"NnU', where

P q
U = U m{x e A fi(z) > 0}.
i=1j=1
Since K(A") = K(A) by Proposition 3.2, there exists f;; € K(A) cor-
responding to fi’j. Multiplying non-negative real analytic functions on A,

we may assume that all f;; are real analytic functions on A and f;; equals
!/

to fi; multiplied by some non-negative real analytic function. Set

P q
U := U ﬂ{x € A; fij(x) >0} and V := XNU.
i=1j=1
Then dim ((W"\71(V))u(zx~1(V)\W’)) < 1 by [2, Proposition 2.4] because

W’ = Wfi\(_‘;/) Hence dim((W \ V) U (V \ W)) < 1. We have succeeded in
constructing a global semianalytic set V' of the form

» q
V=xnlJ({z €4 fij(z) >0}
i=14=1
with dim((W\ V)U (V\W)) < 1.
We next consider the case where A is not irreducible. Let Ay, Ao, ...

be the irreducible components of A. For any [, there exists fi;; € O(A4;)
with dim((W N A\ V) U (V,\ W N 4;)) <1, where

P q
U= ({z € 4; fuj(z) > 0} and V] := XN,
i=1j=1
By Cartan’s theorem B, we may assume that f;; are real analytic functions
on M. We fix real analytic functions ¢;: M — R with ¢; =0 on U#i Aj and
¢i >0on M\ Uj# Aj. Set I, := {l; x € A;}. The function germ f;;, =
> e, Claflije i3 well defined and a global section of Oy /Z4. Hence there
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exists a real analytic extension of f;; to M by Cartan’s theorem B. We
also denote this extension f;;. Set U := J}_; ﬂ?zl{x € X; fij(x) > 0} and
V := X NU. One easily checks that

148 (Am\ U An> = me<Am\ U An),

hence off the curve (U, .,,,(An N Ap,), the set V works as the V;,,’s, and in
the end V' \ W and W \ V have dimension < 1. We have succeeded in
constructing a global semianalytic set V' of the form

P oq
V=XnlJ [z € 4; fij(z) > 0}
i=1j=1
with dim((W \ V)U (V\W)) < 1.
Since both W\ V and V' \ W are of dimension < 1, they are global
semianalytic by Lemma 2.2. Hence W =V U (W \ V) \ (V \ W) is global
semianalytic. O

Using Lojasiewicz inequality for global semianalytic sets [3, Theorem],
we can generalize Theorem 1.1.

Remark 3.5 Let M be a paracompact real analytic manifold and A be
an analytic subset of M of dimension 2. Let S be the singular locus of A
and S1, So,... be its connected components. Assume that there exists an
open neighborhood U; of S; in A such that the normalization of U; N A is
affine. Let X C A be a global semianalytic subset of M and W be a union
of connected components of X. Then W is again global semianalytic.

Proof. Remark that we can choose U; to be subanalytic.

Define Z as the Zariski closure of W N X\ W. We first show that
Z is of dimension < 1. Let {A)} be irreducible components of A. When
W NX\Wn A, is empty, Z is contained in the union of the irreducible
components A, other than A). Hence we will consider the other case.
Assume that X N Ay is of the form: {J,(;{fi;; > 0} N {g; = 0}, where
fijy 9i € C*(M) and f;; # 0 on Ay. Then WNX\WnNA, C 90X C
U; U;{fi; = 0} # Aj. Since A, is irreducible, dim(Z N A,) < 1. We have
shown that dim(Z) < 1.

Consider the family C of all analytically irreducible components of Z of
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dimension 1. Set Cc := C \ {C}. Define S¢ as the family of all analytically
irreducible components S” of S with S’ # C.

Claim There exist natural numbers p, g satisfying the following condition.
For any C € C, there exist real analytic functions f;jc on M and there
exists an analytic subset Do C C of dimension 0 and an open subanalytic
neighborhood Ue of C'\ D¢ with dim(Wcﬂ X\ Wen UC) <0and WnN
Uc =WenNUeg. Here W := Ule ﬂg-:l{x € X; fijc(af) > 0}.

Proof of Claim. We first consider the case where C' ¢ S. We will show that
there exists fo € C*¥(M) with

(*) dim(Wn{fe>0}n(X\W)N{fc>0}NC)<0 and
dim(Wn{fec <0}nN(X\W)n{fc <0}nC) <0.

Set Fo := UC,EQC,#C C'NC’. Choose a subanalytic open neighborhood T¢
of C'\ E¢ with Tc N Z = C. We may assume that T¢ is global semianalytic
by Lemma 4.4 which we will show later. Apply Lemma 3.1 to Tpo N X,
Te NW and T N (X \ W), then there exists fo € C¥(M) satisfying the
condition (x).

Set

DL=Wn{fc>0}n(X\W)n{fc>0}nC,
Do:=Wn{fc<0}n(X\W)n{fe<0}nC

and
Dc:= |J (¢'ncyu |J (€ns)uDiuDg.
C'eCco S'eSc

Then there exists an open subanalytic neighborhood Ug of C'\ D¢ such
that

dim(W n{fe >0}n(X\W)n{fc>0}NUc) <0 and
dim(W n{fe <0}n(X\W)n{fc <0}nUc) <0

by the condition (). Let Ct be the interior of W N {fc > 0} NC'\ D¢ in
C\ D¢. We define C~ in the same way. There exists g}, € C¥(M) with
Ct ={z € C; g, (z) > 0} by [4, Theorem 4.4]. Construct g; in the same
way. Set We = {z € X; fo >0, gg>O}U{xEX;fo<O, go > 0} and
shrink Ug if necessary. Then D¢, Us and Wi satisfy the requirement.
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We next consider the case where C' C S. We may assume without
loss of generality that C' C S;. By the proof of Theorem 1.1, there ex-
ist natural numbers p, ¢ depending only on dim(M), f/,» € C¥(U1) with
dim((W N U1 \ W) U (We \ W)) < 1. Here Wi, := U_; Nji{z €
Ui; f! ic(x) > 0}. Consider the family F¢ of analytically irreducible compo-
nents B of ANUP_; Ui, (ff;)71(0) of dimension 1 with B # C. Set D¢ as
the intersection of C' with the union of all elements of 7, Cc and S¢. There
exists an open subanalytic neighborhood U¢c of C'\ D¢ such that Uc does
not intersect with any elements of F¢, Coc and S¢ except at Do. We may
assume that Uc is global semianalytic by Lemma 4.4. Set W/, := Uc N
{z € U; fiic(x) >0,..., fi,c(x) > 0}. Remark that Wio 0 ( {j)_l(O) ccC
for any j = 1,...,q. There exists a positive equation do € C¥(M) of C
with | 'i/jC| > dc on W], N Ve, where Vi is an open neighborhood of C,
by [3, Theorem]. By Cartan’s theorem B, there exists f;jc € C¥(M) with

Lo —dg — fijo € HY(M,d¢,On). Consider the set Weo = Uj_; = {z €
X fijc(x) > 0}. By the definition of W, there exists an open subanalytic
neighborhood U/, of C'\ D¢ such that dim(We N X\ W NU/) < 0 and
We NUL = W5 NUG. Replace U with Uf, then Do, Uc and We satisfy
the requirement. We have finished the proof of Claim.

Enlarging D¢ if necessary, we may assume that C N C’ C D¢ and C'N
S’ € D¢ for any C' € Co and S” € S¢. Shrinking U if necessary, we may
assume that Uc N Z = C and Uo N U = () for any C, C’ € C with C # C".

Consider the set W/ := We NnUc N{z € X¢; fuc(z) > 0,...,
fiqc(x) > 0}, then fzg(lj(O) ﬂm C C'. Hence there exist positive equations
eijc of C such that |e;;c| < [fijo| on W/o\ C by [3, Theorem]. Let b € D¢
and dy: M — R be a positive equation of {b}. Consider the subanalytic
function p;jcp: (0,7) — R defined by

picatt) = max{ oL o g v aya) = o}
where r is a small positive integer. By Lojasiewicz inequality, there
exist m(7,7,C,b) € N and real numbers B(i,j,C,b) > 0 with p;jcp(t) >
1/(B(i,3,C, b)tm(i’j’c’b)). We can construct real analytic functions h;;c with
hijc > 0 on M, h;é(O) = D¢ and h;jc € mim(z’y’c’b) in the same way as
the proof of Lemma 4.4. Then there exist positive continuous functions ¢;;c
with ¢ic > (hijc\fijd)/e?jo + 2 outside of Up. There exist real analytic
functions 1;jc on M with |¢;;c — ¢sjc| < 1 by [13] and [21]. Set g;jc =
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hijc fijc — ¢z‘ijZ2jc- It is obvious that g;é,(()) C Uc U C. Furthermore,
there exists an open neighborhood V. of C'\ D¢ with

p q
WnUeNVs = Vinl ({z € X; gijo(x) > 0}
i=1j=1

by the definition of g;;c.

Fixi=1,...,pand j =1,...,q. Let A;; be the family of analytically
irreducible components of |Jo e g;é(O) of dimension = dim(M) — 1. Set
Ajj = UYeAij Y. Since Uc NUg = ) and Uo NUqx = C N C' for any
C,C" € C, Ajj is a coherent real analytic set. Remember that Y € A;;
is an irreducible component of gi;é(O), g;é(O) CUcUCand UsNZ =
C. Hence any Y € A;; contains only one curve C' € C. Define my as
the minimum number satisfying that g;;c € H°(M,Zy )™, where C is the
unique irreducible component of Z contained in Y. Consider the sheaf Z;;
defined by

Iij,ac = H I;?;f

YEAij,Z‘EY

Since A;; is coherent, Z;; is coherent. Since Z;; , is a principal ideal of Oy
for any « € M, the ideal Z;;(M) is finitely generated by [12]. Let
Gij1,- .., Gijm € C¥(M) be its generators. For any [ = 1,...,m, we set

Qi i={r € Z; G;iOme = Lijo}-

We choose a discrete points set D C Z such that

e Sing(Z) C D,

o &\ Dareopenforalll=1,...,m,

e 7 does not intersect with any other analytically irreducible compo-
nents of g;é(O) except Y € A;; at « € C\ D C Z, where C € C,
and

o {®;j;\ D}i=1,. m covers Z\ D.

Here Sing(Z) denotes the singular locus of Z. By the definition of Z;;
and ®;;;, for any = € @5\ D, there exists a unit u;j; », with g;jc = wijiGiji €
Oar. We define the set ®;;(1) C @i \ D consisting of points x with
Uiji.e > 0 near x. The set ®;5,(—1) C ®;5; \ D is the set of all points x € Z
with u;j;, < 0 near . Remark that ®;; \ D = ®;;(1) U ®;;1(—1). By
Lemma 4.4, there exist open global semianalytic neighborhoods Tj;;(k) of
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®;51(k) in M such that T55, (k)N (Z\®;5(k)) € DN®;j (k) for any k = —1, 1.
Consider the global semianalytic set

p q

Wi(k) = | ) Tu(kis)n{z € X; sign(Giji(x)) = kiz}
i=1j=1

for any [ = 1,...,m and tuples k= (klla k1o, ko1, k22) S {:|:1}4.
Fix | = 1,. o, m and E = (k‘n,klg,k‘gl,km) S {:|:1}4. We show that,

for any = € (Z\ D) N W;(k), there exists a neighborhood U of M with
W NU = W;(k)NU. By the definition of Tiji(kij), there exists a unit w;j
with Gij; = wijagijc € Oa and sign(ugj.) = ki; near x, where C' € C and

x € C. Therefore, there exists an open neighborhood U of z with

Un{z € M; gijc(x) >0} = UN{zx € M; k;i;Giji(x) > 0}.
Since WNU =UNU, ﬂgzl{:): € X;gijo(z) >0}, WU =W, (k)nU.
As we have shown above, dim ((W;(k) N W)N(W;(k) \ W)) < 0. Hence,

Wi (k) N W is global semianalytic by Proposition 2.6. Set X, := X \
U,z Wi(k). Then dim(W N XooNXoo \ W) < 0 because dim(CNW N Xoo )
< 0 for all C € C. Therefore, W N X is global semianalytic by Proposi-

tion 2.6. Since W = (W N Xoo) U,z W NWi(k), W is also global semian-
alytic. O

4. Proof of Theorem 1.2

We prove Theorem 1.2 in the present section. For that, we first show
that the localization of the ring of real analytic functions is regular.

Proposition 4.1 Let M be a connected paracompact real analytic mani-
fold and X be an analytically irreducible coherent real analytic subset of M .
We set Ox := Op/Ix. Let Y be an irreducible coherent real analytic
subset of X with dim(Y N Sing(X)) < dim(Y') and Zy C Ox denote the
ideal sheaf of Y. Here Sing(X) denotes the singular locus of X. Then the
ring HO(X, (’)X)HO(XJY) is a reqular local ring of Krull dimension dim X —
dimY.

Proof. Set A := H°(X,0Ox) and P := H°(X,Zy). Let Q be a prime
ideal of Ap. There exists a prime ideal @)1 of A with Q1Ap = Q. Since
()1 is contained in P, the complex common zero set Z of ()1 contains the
complexification of Y. Set r(Y) := dimX — dimY. We first show the
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following claim.

Claim There exist f1,...,fr € @1 which generate ). Moreover, we can
choose r(Y') generators fi,..., f.(y) when Z =Y.

Proof of Claim. We first need to define an ideal sheaf for the proof of this
claim. For any Ox-modules A and B, (A : B) denote the sheaf generated
by {f € Ox; f- A C B}. It is well-known that (A : B) is coherent if so are
both A and B.

Let 7, C Ox denote the ideal sheaf of Z. We first show that
H°(X,T7) = Q1. Let x be a regular point of Y, namely, z € Y \
(Sing(Y') U Sing(X)). Remark that the common complex zero set germs of
HO(X, I7)Ox  and Q1O0x , coincide. Hence /Q10x , = Iz, by Hilbert’s
Nullstellensatz. For any f € HY(X,Zyz), there exists n € N with f* €
Q10x ;. On the other hand, finitely many generators gi,...,gr € @ of
Q10x , exist because Ox, is Noetherian. Consider the coherent ideal
sheaf D = (f"Ox : (91,...,9x)Ox). Since D, = Ox,, there exists
h € H°(X,D) such that Y ¢ h~%(0), namely, h ¢ P. Remark that
H°(X,(g1,...,98)O0x) = (91, ..., gx) by Cartan’s theorem B. Hence, hf" €
(91,---,9%) C Q1. Since @ is prime, f € Q1. We have shown that
H(X,Zz7) = Q.

The coherent sheaf is generated by its global sections by Cartan’s The-
orem A and Zz, is generated by f1,...,f, € H*(X,Zz) = Q1. Moreover,
we can choose 7(Y) generators fi,..., fr(y) € Q1 of Iy, when Z =Y. We
will show that these f1,..., f. generate Q). Let g € Q1. Consider the coher-
ent sheaf (¢Ox : (f1,..., fr)Ox). Applying the same argument as above,
there exists b’ € A with b’ ¢ P and hg' € (f1,..., fr). We have shown that
fi,--., fr generate @ and have finished the proof of Claim.

We first show that Ap is Noetherian. We have only to show that all
prime ideals @@ of Ap are finitely generated. Hence Ap is Noetherian by
Claim.

Since PAp is generated by r(Y) elements, dim Ap < r(Y). Let fi,...,
fr(vy € P be the generators given in Claim. Choose y € Y\ (Sing(X) U
Sing(Y')). Let (x1,...,%qim(y)) be an analytic local coordinate of Y at y.
Since the maximal ideal of Ox , is generated by 1, ..., Zaim(y), f1, - - -5 fr(v),
(1, s Tdim(v)s J15 - - -5 fr(v)) is a local coordinate of X at y. Define Y; as
the irreducible component of U§:1 fj_l(O) containing a point y. Then Y7 D
Yo 2 ... 2 Yy) = Y because (z1,...,ZTdim(y)s f1,-- - fr(y)) is a local
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coordinate. Hence we can construct the strictly ascending chain
IM)Ap CI(Y2)Ap C -+ CI(Y.(v))Ap = PAp,

where Z(Y;) denotes the ideal of real analytic functions on Z vanishing
on Y;. Hence dimAp = r(Y). By Claim, the only one maximal ideal is
generated by dim Ap (= r(Y)) elements, namely, Ap is a regular local ring
of dimension r(Y"). O

We prove Thom’s Lemma for convergent power series. The original
Thom’s Lemma says that, for any polynomial f(x) with one valuable x of de-
gree n, the set {2 € R; sign(f(x)) = g, sign(f'(x)) = i1,...,sign(f™(z)) =
in} is empty, a point or an open connected interval, where i; = —1, 0, 1
and, for any a € R, the notation sign(a) = —1, 0, 1 represent the conditions
a < 0,a=0and a > 0, respectively.

Lemma 4.2 We first fixt n > 1. Let mg be the maximal ideal (x1,x2) of
the ring R{z1,x2} of convergent power series. Fiz f € mg \ ngrl. Then
there exists a map o: {1,...,n} — {1,2} satisfying the following condition.
Set fo := f and fi, := 0fx—1/0%s4) for 1 <k <n. Then f; ¢ m{~t for
alli =0,....,n.

Proof. We prove this lemma by the induction on n. When n = 1,
(0f/0x1)(0) # 0 or (0f/0x2)(0) # 0. Set (1) such that (9f/0x1))(0) #
0.

We next consider the case where n > 1. By the assumption of the
induction, 0f/0x1 ¢ my or 0f/0xe ¢ m{. We define the number o(1)
such that 0f/0z,(1) ¢ mg. Apply this lemma to 0f/0z,(1). There exists
amap o': {1,...,n— 1} — {1,2} satisfying the conditions of this lemma
for 0f /0x4(1y. Set o(k) := o'(k — 1) for all 2 < k < n. Then o satisfies the
requirement. ]

Lemma 4.3 (Thom’s Lemma for convergent power series) Let n, my,
f be the same as in Lemma 4.2. Let o: {1,...,n} — {1,2} be a map.
We define fo, fi,..., fn in the same way as Lemma 4.2. Assume that f; ¢
mgfiﬂ for alli=0,...,n. Then the semianalytic set germ

X1y = {sign(fo(x)) = 1(0), sign(fi(2)) = I(1),....
sign(fa(2)) = I(n), sign(z1) = J(1), sign(w2) = J(2)}
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is a connected germ for any maps I: {0,1,...,n} — {-=1,0,1} and
J:{1,2} — {-1,0,1}.

Proof. We prove this lemma by the induction on n. When n = 1, the
set germ {f = 0} is a germ of a real analytic submanifold of dimension 1,
and {f > 0} and {f < 0} is connected. Since (9f/0x,(1))(0) # 0, Xy is
obviously connected.
We next consider the case where n > 1. We fix maps I: {0,1,...,n} —
{-1,0,1} and J: {1,2} — {—1,0,1}. We show that X;; is connected.
The semianalytic set germ

X}, = {sign(fi()) = I(1),..., sign(fu(x)) = I(n),
sign(a1) = J(1), sign(rz) = J(2)}

is connected. Hence we may consider X7} ; is a global semianalytic subset
of an open neighborhood U of [—r,7]? for any sufficiently small positive
number 7 > 0. When dim(X7} ;) < 1, X7 is connected because X7 C X7 ;.

Consider the case where dim(X7} ;) = 2. We may assume without loss
of generality that (1) =1 and J(1) = J(2) = 1. We first consider the case
where dim(X7;) = 1. Assume that X;; is not connected. Shrinking U if
necessary, we may assume that there exist two strictly increasing continuous
subanalytic functions h1, ha: [0,7] — [0, 00) such that 1|, < h2|(, are
real analytic functions and

{(x1,22); 0 <21 <7, o =hi(z1)}
U{(x1,22); 0 <z <7, w9 =ho(x1)} C XyyJ.

The cardinality of the set {z2 = a}N X/ is more than 1. On the other hand,
f(-,a): (0,7] — R is constant, strictly increasing or strictly decreasing
because sign((0f/0z1)(-,a)) is constant on X ,. Contradiction. Hence
Xy is connected.

We next consider the case where dim(Xy;) = 2. Shrink U if neces-
sary, then the boundary X\ X/, is a finite union of graphs of continuous
subanalytic functions hq, ..., hy with by < hg < --- < hy, and h; are real
analytic on (0,7]. As we showed before, the set X}, N {f =0} N {z2 = a}
consists of only one element for any sufficiently small ¢ > 0. Assume that
X717 is not connected. The analytic function f(-,a) attains a minimal value
at a point in (0,r]. Since f(-,a) is constant, strictly increasing or strictly
decreasing, f(-,a) is constant. Hence f; = 0, which contradicts the assump-
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tion Of/0x1 ¢ my. O
We give a technical lemma on separation of analytic subsets.

Lemma 4.4 Let M be a paracompact real analytic manifold and C C
M be an analytic set of dimension 1. Let D C C be an analytic subset
of dimension 0. Consider an open subanalytic neighborhood U of C \ D.
Then there exists an open global semianalytic neighborhood V of C'\ D with
VcU.

Proof. There exists a real analytic function h on M with h=1(0) = C and
h < 0on M. For any point b € D, let d;, be a real analytic function d;l(O) =
{b} and d; > 0 on M. Consider the function p; : [0,7) — [0, 00) given by

py(t) == minf{|h(y)|; y € M\U, dp(y) = t},

where 7 is a small positive number. Since p; is subanalytic, there exists
my € N and C, > 0 with py(t) > Cpt™ for all 0 < t < r by Lojasiewicz’s
inequality. Consider the locally principal sheaf of ideals 7, whose nontrivial
stalks are d;nbﬂ(’)b. Then, by [12], this sheaf has finitely many (in fact,
three) global generators a;. Then a = ), a? generates J2, so that a =
unit - d;* for some n, > my. Let Up be a sufficiently small neighborhood
of b. Then Cydp(y)™ > a(y) for all y € Uy \ {b}. Set G = a + h. Since
h=0onC, G > 0on C\D. By the definition of py, |h(y)| > Cpdy(y)™ for
any y € Uy. Hence, G < 0 on Uy \ U. Consider a sufficiently small closed
neighborhood S of C. Then,

SNn({z e M;G(z) >0} \U) =0.

There exists a real analytic function G’ on M such that G’ > 0 on S
and G’ <0 on {z € M; G(z) > 0} \ U by Lemma 2.1. Set V := {z € M;
G(z) >0, G'(x) > 0}, then V satisfies the requirement. O

The following theorem is the generalization of Theorem 1.2.

Theorem 4.5 Let M be a connected paracompact real analytic manifold

of dimension 3. Let X be a global semianalytic subset of M and W be

a union of connected components of X. Let S be an analytically irreducible
Z

component of the Zariski closure W N X \ W  of dimension 1. Then there
exists a proper analytic subset D C S and a global semianalytic neighbor-
hood U of S\ D such that WNU is global semianalytic and W NUNX \ W
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is of dimension < 0.

Proof. Let B be the Zariski closure of X \ Int(X), where Int(X) is the
interior of X. Fix a point z € S\ Sing(S) such that S does not intersect
S

at o with any irreducible component of WN X \ W except S and any
irreducible component of B which does not contain S. Since S is regular
at x, there exist hy, hg € C¥(M) which generate the ideal Zy, C O,
by Proposition 4.1. Choose a real analytic function hgy € C“(M) such
that (hq, ha, h3) is a local coordinate on an open neighborhood of z. We
may assume that M is a closed real analytic submanifold of a Euclidean
space RY. We may assume that z is the origin and linearly independent
linear functions x1, x2, x3 are also a local coordinate of M in an open
neighborhood of . Consider Hessian H = 9(hy, he, h3)/0(x1, z2, x3). Then
det(H)(x) # 0. Let A;j be the (7, j)-minor of H. We define partials

3

;2 C¥ (M) aer(ary) — C“(M)aer(rryy by 95(f) = T

for all j = 1, 2, 3. There exists a distinct points set D C Z such that, for
any y € Z\D, det(H)(y) # 0, (hy, ha, hs—hs(y)) and (1 —21(y), v2—22(y),
x3 — x3(y)) are local coordinates of M at y. Furthermore, we may assume
that, at any point y € S\ D, S does not intersect with any irreducible
component of B of dimension < 2. There exists an analytic function f €
C¥(M) with f~1(0) = B. Since ()2, Z5 = (0), there exists n € N with
fezs \Ig‘“. Since the sheaf (Ingl: T%) is coherent, the set {y € S; f €
Ig;l} is an analytic set of dimension < 0. Enlarging D if necessary, we
may assume that f € Zg, \Ig‘;l for all y € S\ D. Choose a point
2’ € S\ D, then the surface hy'(h3(z")) is a real analytic manifold near z’
and (hi,hs) is a local coordinate of this surface. Hence, by Lemma 4.2,
there exists U {1, R n} — {1, 2} with 80(@')(' .- (80(1)(f|h;1(h3(:c/)))) .- ) ¢
(h17h2)n+1—z C (/)M@-//(hg — hg(x/)) foralli=1,...,n. Set P := Iy(M)
and R := C¥(M)p. Then R is a regular local ring by Proposition 4.1. Hence
there exists a monomorphism 7: R — (R/PR)[[h1, h]]. Therefore there ex-
I8tS Tay,a0 € R/ PR wWith 7(f) := 37, o, Ta1,a0h7 ' hy*. We may consider the
element of R/PR as the quotient of C¥(Y’), namely, the fraction of real
analytic functions on Y. For any i = 1,...,n, we define (o) as the cardi-
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nality of the set {k; 1 < k <n, o(k) =1} and set aa(0) :=n — a;(i). Set
To = Tay(o),a2(0)- Then aU(n)( o (00(1) (f)-- )(ZL‘/) = ai(o)! az(o)! Ta(x,)
by the definition. Hence 7, # 0. Enlarging D, we may assume that,
for all y € S\ D, 7, is defined near y and 7,(y) # 0. We define f; :=

coincides with f; constructed from f \h;1(h3 @) in Lemma 4.2 under the real

analytic diffeomorphism between an open neighborhood of the origin in R?
and hg ! (h3(y)) for all i = 0,...,n.

Consider the family M of all pairs of maps I: {0,1,...,n} — {—1,0,1}
and J: {1,2} — {—1,0,1}. For any (I,J) € M, set

X1y :={y € M,; sign(f;) =1(i) foralli=0,1,..., n,
sign(hy) = J(1), sign(he) = J(2), det(H) # 0}.

Then X, is a global semianalytic set. Remark that the germ of f5 ' (y)N X1,
at y € S\ D is connected by Lemma 4.3.

It is well known that the class R,, of sets (in R"™, for n =0, 1, 2,...)
which is subanalytic in the projective space P™(R) forms an o-minimal
structure. (Here R™ is identified with an open subset of P"*(R) via the map
(1, @) — (Lixy -+ 2 xy).) See [20] for the theory of an o-minimal
structure. Applying the theory of an o-minimal structure, we modify D
and construct a subanalytic open neighborhood U of S\ D satisfying the
following conditions:

@) TAWNX\W =8

(b) Any connected component V of U contains at most one connected
component C' of S\ D, UN S = C if U contains a connected compo-
nent C of S\ D, and U NS = () otherwise.

(c) For any connected component V of U, V N X1 is connected.

We will begin with the construction of U.
Choose a subanalytic open neighborhood U’ of S\ D with U’ N

wWnx\ WZ = S. Let {K)} be a locally finite subanalytic open cover-
ing of S in M such that K} is compact and [J, (K, \ K) NS is a discrete
points set. Such a covering exists because M is a closed real analytic sub-
manifold of a Euclidean space R™ by [13]. Enlarging D if necessary, we
may assume that (J, (K \ Kx)NS C D. Remark that K, KNS, KxNnU’
and K, N X;yj are all definable in R,, as a subset of R". Apply the cell
decomposition theorem to K, KxND, KNS, KyNU' and Ky N X7;.
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There exist finite connected definable sets {INV);};, which are called cells,

satisfying the following conditions:

() Nyj N Ny, = 0 if j #k and Ky = UjNAj'

(if) If Ny; N Ny, # 0, then Ny, C Ny;.

(iii) Let E be one of the sets KN D, KxNS, KxNU" and Ky N X;y. If
N)\j Nk 75 @, then N)\j Cc FE.

Define E) as the union of all 0-dimensional cells contained in S. Remark

that (J, B\ U D is a discrete points set. Enlarging D if necessary, we may

assume that E) C D. Define Uy as the union of all 1-dimensional cells

contained in S and all cells whose closure contain 1-dimensional cells con-

tained in S. It is an open definable set, especially, it is subanalytic. Set

U := {J, Uy, then it is a subanalytic open neighborhood of S\ D because

{Ux} is locally finite.

Since U is contained in U’, U satisfies the condition (a). The condi-
tion (b) is also satisfied because |J, (K \ Kx) NS C D and U is contained
in U'. We show that U satisfies the condition (c¢). Let V be a connected
component of U. The set V is a finite union of connected components V)
of Uy. We first show that V), N X;; is connected. Assume otherwise. Let
{N)ji)}i be cells contained in Vi N Xy and set C':= V) N S. Remark that
C coincides with a cell, hence, Ny ;(;) contains C. Choose y € C. Since C' C
m and f5'(y) is transversal to C, the germ of Nyjy N fit(y) at y is
not the empty set germ. It is obvious that the germ |J, Nyj@i N fg_l(y) at y
is not connected because V\ N X7y = Y, NV, j(i) 1s not connected. However,
the germ of | J; Ny N f3_1(y) coincides with the germ of X;;N fg_l(y) and
the latter is connected by Lemma 4.3. Contradiction. We have shown that
VAN X1y is connected. For any A and )\, V) N V) is a neighborhood of C.
Hence, V) N Vy N X1 is not empty. Therefore, VN X7y = J, Va N Xy is
connected. We have shown that U satisfies the condition (c).

Since U satisfies the condition (c), there exists only one subfamily
M € Mwith (x): WOV = U e, X1sNV for any connected compo-
nent C' of S\ D. There exists a global semianalytic open neighborhood of
S\ D contained in U by Lemma 4.4. Replace U with this global semianalytic
neighborhood. Then U is a global semianalytic open neighborhood of S\ D
satisfying the conditions (a), (b) and (x). For any (I,J), set Sry:=C,
where C runs all connected components of S\ D with (I,J) € M¢. There
exists a real analytic function f;; on M with S;; = {xz € S; f;; > 0} by [4,
Theorem 4.4]. Let grs be a real analytic function on M with C'\ (DUSy;) =
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{z € C;g15 > 0}. Replace U with

un |J {ze€M; fii(z) > 0}u{z € M;grs(x) > 0}.

(I,J)eM
Then
Unw=0n |J {ze€M; fry(x)>0}NX;; and
(I,J)em
UNX\W)=Un |J {z€M; gr(z)>0}nXy.
(I,J)eM

We have shown that UNW and UN (X \ W) are global semianalytic. O

Proof of Theorem 1.2.

Let S1,..., S, be analytically irreducible components of W N X \ WZ
of dimension 1. By Theorem 4.5, there exist analytic subsets D; C S;
of dimension 0 and open global semianalytic neighborhoods U; of S; \ D;
with dim(WﬂUi N X\W) < 0 for any ¢ = 1,...,m. Consider the
global semianalytic subset X \ J, U; of M. Then dim(W \ U, U; N
X\ (U, U; UW)) <0 by the definition of S; and U;. Hence W \ U, U;
is global semianalytic by Proposition 2.6. Therefore W = |J;~,(W N U;) U
(W\ U~ U;) is global semianalytic. O
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