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Bounds in time for the Klein-Gordon-Schrödinger

and the Zakharov system
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Abstract. It is shown that the spatial Sobolev norms of regular global solutions of

the (2 + 1), (3 + 1) and (4 + 1)-dimensional Klein-Gordon-Schrödinger system and the

(2+1) and (3+1)-dimensional Zakharov system grow at most polynomially with a bound

depending on the regularity class of the data. The proof uses the Fourier restriction norm

method.
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0. Introduction

Consider the Cauchy problem for the Klein-Gordon-Schrödinger system
(KGS) with Yukawa coupling in space dimension 2 ≤ n ≤ 4:

iψt + ∆ψ = −φψ
φtt + (−∆ + 1)φ = |ψ|2 (1)

ψ(0) = ψ0, φ(0) = φ0, φt(0) = φ1

where ψ is the complex-valued nucleon field and φ the real-valued meson
field.

Local existence and uniqueness holds for data (ψ0, φ0, φ1) ∈ Hs×Hm×
Hm−1, if s ≥ 1, m > 0 and s − 1 < m < s + 2, and the life span depends
only on ‖ψ0‖H1 , ‖φ0‖Hδ and ‖φ1‖Hδ−1 , where δ = 0, if n ≤ 3, and δ >

0 arbitrarily small, if n = 4 (for details see Prop. 2.1 below). Cf. also
[13], Thm. 2.1. If we assume data with finite energy, i.e. s, m ≥ 1, the
conservation laws imply that this local solution can be extended globally in
time, if n = 2 or n = 3, and, provided ‖ψ0‖L2 is small, if n = 4.

So the question arises whether a non-trivial bound in time for the
Sobolev norms of the solution can be given. We show in Theorem 2.1
below that for all s À 1 a polynomial bound can be given, and especially
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for s ≤ m ≤ s+ 1 we have the estimate

‖ψ(t)‖Hs + ‖φ(t)‖Hm + ‖φt(t)‖Hm−1 ≤ c(1 + t)s−1

To prove such a result we use the Fourier restriction norm method using
bilinear estimates in order to control the nonlinear terms and to get an
estimate of the form

f(t) ≤ f(τ) + cf(τ)1−δ

with 0 < δ ≤ 1 on any interval t ∈ [τ, τ + t0] for a fixed t0. Here f(t) is the
sum of the involved Sobolev norms of ψ, φ and φt. Bourgain [3] observed
that such an inequality implies the bound (cf. Lemma 2.1)

f(t) ≤ c1 + c2t
1/δ

and used it to prove polynomial bounds for Sobolev norms of solutions to
nonlinear Schrödinger and wave equations [3].

Staffilani [14], [15] improved these results in the case of the nonlinear
Schrödinger equation and considered moreover KdV-type equations.

Colliander, Delort, Kenig and Staffilani [6] improved the results for
the (2 + 1)-dimensional Schrödinger equation iut + ∆u± |u|2u = 0 further
and were able to show the bound ‖u(t)‖Hs ≤ c|t|(2/3)(s−1)+ (s À 1) for
global solutions by using sharp bilinear estimates, which also imply new
local-wellposedness results for rough data. Moreover in the case of blow-up
solutions upper and lower bounds for ‖u(t)‖Hs (sÀ 1) were given.

We also consider the Cauchy problem for the Zakharov system in space
dimension n = 2 and n = 3:

iψt + ∆ψ = φψ

φtt −∆φ = ∆(|ψ|2) (2)

ψ(0) = ψ0, φ(0) = φ0, φt(0) = φ1

A general local existence and uniqueness result was proven by [8] improving
local (and global) wellposedness in energy space [4], [5].

Assuming ψ0 ∈ Hs, φ0 ∈ Hm and (−∆)−1/2φ1 ∈ Hm with s ≥ 1, m >

0, m+1 > s > m it is not difficult to see that their arguments imply that the
life span depends only on ‖ψ0‖H1 , ‖φ0‖L2 and ‖(−∆)−1/2φ1‖L2 (cf. Prop.
3.1). This solution can be extended globally by using the mass and energy
conservation (cf. (18), (19), (20)), provided ‖ψ0‖L2 is sufficiently small if n =
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2, and provided ‖ψ0‖H1 + ‖φ0‖L2 + ‖(−∆)−1/2φ1‖L2 is sufficiently small if
n = 3. Again using the Fourier restriction norm method we show that in this
situation a polynomial bound for ‖ψ(t)‖Hs+‖φ(t)‖Hm+‖(−∆)−1/2φt(t)‖Hm

can be given for m + 1 > s > m and s À 1 (Theorem 3.1). This bound
depends on s and m.

J. Colliander and G. Staffilani [7] considered the case n = 2 for the Za-
kharov system and proved the bound ‖ψ(t)‖Hs ≤ c(1+t)s−1+ for sÀ 1 and
data in the Schwarz class and φ1 ∈ Ḣ−1 ([7], Theorem 1). Their arguments
imply that in fact the Schwarz space here can be replaced by the assump-
tion (ψ0, φ0, φ1) ∈ Hs × Hs × Hs−1, and also a bound for ‖φ(t)‖Hs−1 +
‖φt(t)‖Hs−2 can be given.

The necessary bilinear estimates for both problems are given in Section
1, the KGS system is considered in Section 2 and the Zakharov system in
Section 3.

For an equation of the form iut − ϕ(−i∇x)u = 0 and ϕ measurable we
use the spaces Xs, b

ϕ which are the completion of the Schwarz space S with
respect to

‖f‖
Xs, b

ϕ
:=‖〈ξ〉s〈τ〉bF(e−itϕ(−i∇x)f(x, t))‖L2

ξτ

=‖〈ξ〉s〈τ + ϕ(ξ)〉bf̂(ξ, τ)‖L2
ξ, τ

For ϕ(ξ) = ±〈ξ〉 or ±|ξ| we use the notation Xs, b
± and for ϕ(ξ) = |ξ|2 simply

Xs, b. For a given time interval I we define

‖f‖Xs, b(I) = inf
ef|I=f

‖f̃‖Xs, b and similarly ‖f‖
Xs, b
± (I)

We rely on [8] for the framework of the technique. For the method cf. also
Bourgain [1], [2], Klainerman and Machedon [11], [12], and Kenig, Ponce
and Vega [10].

Fundamental for our bilinear estimates are the following Strichartz type
estimates for the Schrödinger equation:

‖eit∆ψ0‖Lq
t (I, Lr

x(Rn)) ≤ c‖ψ0‖L2
x(Rn)

and

‖f‖Lq
t (I, Lr

x(Rn)) ≤ c‖f‖X0, (1/2)+(I)

if 0 ≤ 2/q = n(1/2 − 1/r) < 1 (cf. [8], Lemma 2.4). The endpoint case
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(q, r) = (2, 2n/(n− 2)) is also admissible if n ≥ 3 (cf. [9], Cor. 1.4).
We use the notation 〈λ〉 := (1+λ2)1/2 for λ ∈ R and a+ (resp. a−) for

a number slightly larger (resp. smaller) than a. Finally, Js := F−1〈ξ〉sF ,
where F denotes the spatial Fourier transform.

1. Bilinear estimates

In this section we collect the estimates which are used to control the
nonlinear terms in KGS as well as the Zakharov system.

We start with the estimates from [8], Lemma 3.4 and 3.5.

Lemma 1.1 In space dimension 2 ≤ n ≤ 4 we have with δ = 0 for n = 2
or n = 3 and δ > 0 arbitrarily small for n = 4:
a)

‖ψ1ψ2‖X
m+1, (−1/2)+
±

≤ c‖ψ1‖Xs, (1/2)+‖ψ2‖Xs, (1/2)+

if s ≥ 0, 2s ≥ m+ 1 + δ, s > m.
b)

‖φ±ψ‖Xs, (−1/2)+ ≤ c‖φ±‖X
m, (1/2)+
±

‖ψ‖Xs, (1/2)+

if m ≥ δ, 0 ≤ s < m+ 1.

Using the Leibniz rule for fractional derivatives we get as an immediate
consequence the following

Lemma 1.2 In space dimension 2 ≤ n ≤ 4 the following estimates hold:
a) if m ≥ 3 and ε > 0 arbitrarily small:

‖ψ1ψ2‖X
m−1, (−1/2)+
±

≤c(‖ψ1‖Xm−2+2ε, (1/2)+‖ψ2‖X1−ε, (1/2)+

+ ‖ψ1‖X1−ε, (1/2)+‖ψ2‖Xm−2+2ε, (1/2)+)

b) if s ≥ 1:

‖φ±ψ‖Xs, (−1/2)+≤c(‖φ±‖X
δ, (1/2)+
±

‖ψ‖Xs, (1/2)+

+ ‖φ±‖X
s−1+, (1/2)+
±

‖ψ‖X1−, (1/2)+)

with δ ≥ 0, and δ > 0 arbitrarily small in the case n = 4.

These estimates are sufficient to give a local existence result in the
form we need it for our investigations, but in order to prove the desired
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polynomial growth for certain Sobolev norms of the solution we need another
bilinear estimate which will be deduced next.

Lemma 1.3 Let b > 1/2. Then for space dimension 2 ≤ n ≤ 4 the
following estimates hold true:

‖fg‖X0,−b≤c‖f‖X0, b‖g‖X0, b
±

(3)

‖fg‖L2
t (H−1−

x )≤c‖f‖X0, b‖g‖X0, b
±

(4)

‖fg‖X−1−,−b≤c‖f‖L2
xt
‖g‖

X0, b
±

(5)

‖fg‖X−1−,−b≤c‖f‖X0, b‖g‖L2
xt

(6)

Proof. Fix 1/q = n/8, 1/q′ = 1− (1/q), 1/p = 1− (n/4), 1/r = 1/2 + 1/n
and 1/q̃ = n/4−1/2. From Strichartz’ estimates we obtain the embeddings

X0, b ⊂ Lq
t (L

4
x) (7)

and

X0, b ⊂ Lq̃
t (L

n
x) (8)

For n = 4 this follows from the endpoint case (q, r) = (2, 4) of the Strichartz
estimates. Now using the dual version of (7), Hölder, again (7) as well as an
embedding in the time variable, we obtain the following chain of inequalities:

‖fg‖X0,−b≤c‖fg‖
Lq′

t (L
4/3
x )

≤c‖f‖Lq
t (L4

x)‖g‖Lp
t (L2

x)≤c‖f‖X0, b‖g‖X0, b
±

This is (3). To see (4) we use Sobolev’s embedding theorem in the x-variable,
Hölder, (8) and again a time embedding:

‖fg‖L2
t (H−1−)≤c‖fg‖L2

t (Lr
x)≤c‖f‖Lq̃

t (Ln
x)
‖g‖Lp

t (L2
x)≤c‖f‖X0,b‖g‖X0,b

±

Concerning (5) and (6) we start by using the dual version of (7) and Sobolev
in x:

‖fg‖X−1−,−b ≤ c‖fg‖
Lq′

t (H−1−, 4/3)
≤ c‖fg‖

Lq′
t (L1

x)

The latter is bounded by

c‖f‖L2
xt
‖g‖

L2p
t (L2

x)
≤ c‖f‖L2

xt
‖g‖

X0, b
±

which gives (5), as well as by

c‖f‖
L2p

t (L2
x)
‖g‖L2

xt
≤ c‖f‖X0, b‖g‖L2

xt
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leading to (6). ¤

Lemma 1.4 Let b > 1/2 and 0 ≤ Θ ≤ 1. Then the estimate

‖uv‖X−1,−b ≤ c‖u‖X−Θ, b‖v‖XΘ−1, b
±

holds, provided the space dimension n fulfills 2 ≤ n ≤ 4.

Proof. We have

‖uv‖X−1,−b =
∥∥∥∥〈τ + |ξ|2〉−b〈ξ〉−1

∫
û(ξ1, τ1)v̂(ξ2, τ2)dν

∥∥∥∥
L2

ξτ

where dν = dξ1dτ1 and (ξ, τ) = (ξ1 + ξ2, τ1 + τ2). We split the domain
of integration into the regions A and B, where in A we have |ξ1| ≤ c|ξ|
implying |ξ2| ≤ c|ξ|. So the contribution from this part is bounded by

c

∥∥∥∥〈τ + |ξ|2〉−b

∫
〈ξ1〉−Θû(ξ1, τ1)〈ξ2〉Θ−1v̂(ξ2, τ2)dν

∥∥∥∥
L2

ξτ

= c‖(J−Θu)(JΘ−1v)‖X0,−b ≤ c‖u‖X−Θ, b‖v‖XΘ−1, b
±

by (3). Next we consider the region B, where |ξ| ¿ |ξ1| ∼ |ξ2|. This implies
(for ε > 0 sufficiently small)

|ξ|ε|ξ1|Θ|ξ2|1−Θ ≤ c(〈τ + |ξ|2〉b + 〈τ1 + |ξ1|2〉b + 〈τ2 ± |ξ2|〉b)
Thus we get three contributions from region B, the first of them being

‖(J−Θu)(JΘ−1v)‖L2
t (H−1−ε) ≤ c‖u‖X−Θ, b‖v‖XΘ−1, b

±

by (4). Writing Λb = F−1〈τ + |ξ|2〉bF the second contribution (correspond-
ing to the symbol 〈τ1 + |ξ1|2〉b) is

‖(ΛbJ−Θu)(JΘ−1v)‖X−1−,−b≤c‖ΛbJ−Θu‖L2
xt
‖JΘ−1v‖

X0, b
±

=c‖u‖X−Θ, b‖v‖XΘ−1, b
±

where we used (5). Finally, a similar argument using (6) gives the same
bound for the third contribution (corresponding to 〈τ2 ± |ξ2|〉b). ¤
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2. The Klein-Gordon-Schrödinger system

We consider the Cauchy problem for the KGS system (1) in space di-
mension 2 ≤ n ≤ 4. This system satisfies the conservation laws

‖ψ(t)‖L2 ≡M (9)

and

‖∇ψ(t)‖2
L2+

1
2
(‖A1/2φ(t)‖2

L2+‖φt(t)‖2
L2)−

∫
|ψ(t)|2φ(t)dx ≡ E

(10)
where A := −∆ + 1.
By Gagliardo-Nirenberg we have for 6 ≥ n ≥ 3:

∣∣∣∣
∫

Rn

|ψ|2φdx
∣∣∣∣≤‖φ‖L2n/(n−2)‖ψ‖n−2

L2n/(n−2)‖ψ‖6−n
L2

≤c‖A1/2φ‖L2‖∇ψ‖n−2
L2 ‖ψ‖6−n

L2

If n = 3 this is easily estimated by (1/4)‖A1/2φ‖2
L2 +(1/2)‖∇ψ‖2

L2 +c‖ψ‖6
L2 ,

if n = 4 we have a bound by (1/4)‖A1/2ψ‖2
L2 + (1/2)‖∇ψ‖2

L2 , provided
‖ψ0‖L2 is sufficiently small. Because the case n = 2 is easy to handle we
have by the conservation laws in the case 2 ≤ n ≤ 4 an a-priori bound

‖ψ(t)‖H1 + ‖φ(t)‖H1 + ‖φt(t)‖L2 ≤ const ∀t ∈ R+

The equivalent first order system reads as follows:

iψt + ∆ψ=−1
2
(φ+ + φ−)ψ

iφ±t ∓A1/2φ±=∓A−1/2(|ψ|2) (11)

ψ(0) = ψ0, φ±(0)=φ0 ± iA−1/2φ1 =: φ0±

where φ± = φ± iA−1/2φt or, conversely, φ = (1/2)(φ+ + φ−), 2iA−1/2φt =
φ+ − φ−.
Using the corresponding system of integral equations

ψ(t)=eit∆ψ0 + i

∫ t

0
ei(t−s)∆ 1

2
(φ+(s) + φ−(s))ψ(s)ds

φ±(t)=e∓itA1/2
φ0± ± i

∫ t

0
e∓i(t−s)A1/2

A−1/2(|ψ(s)|2)ds (12)

and Lemma 1.2 combined with the energy bound above we get the following



146 A. Grünrock and H. Pecher

version of the existence theorem by standard arguments:

Proposition 2.1 Let s ≥ 1, m > 0 satisfy s−1 < m < s+2. Assume ψ0 ∈
Hs, φ0± ∈ Hm. Then there exists T = T (‖ψ0‖H1 , ‖φ0±‖Hδ) > 0, where δ =
0, if 2 ≤ n ≤ 3, and δ > 0 arbitrarily small, if n = 4, such that system (11)
has a unique solution ψ ∈ Xs, (1/2)+ [0, T ], φ± ∈ Xm, (1/2)+

± [0, T ] (especially
ψ ∈ C0([0, T ], Hs), φ± ∈ C0([0, T ], Hm)). This solution satisfies:

‖ψ‖Xσ, (1/2)+[0, T ] + ‖φ+‖X
ρ, (1/2)+
+ [0, T ]

+ ‖φ−‖X
ρ, (1/2)+
− [0, T ]

≤ d(‖ψ0‖Hσ + ‖φ0+‖Hρ + ‖φ0−‖Hρ)

for σ ≥ 1, ρ > 0 and σ − 1 < ρ < σ + 2. This solution exists globally,
provided ‖ψ0‖L2 is sufficiently small in dimension n = 4.

Remark A global existence result for rougher data also holds true, namely
(ψ0, φ0±) ∈ Hs ×Hm with 1 ≥ s, m > 7/10 and s+m > 3/2 (cf. [13]).

Our aim is to give a bound in time for ‖ψ(t)‖Hs and ‖φ±(t)‖Hm for
s, mÀ 1.

The proof uses the following well-known elementary observation (used
by [3], e.g.).

Lemma 2.1 Assume f ∈ C0(R+, R+). Moreover assume the existence
of t0 > 0 s. th. ∀τ, t ∈ [τ, τ + t0] the following estimate holds

f(t) ≤ f(τ) + cf(τ)1−δ

where 0 < δ ≤ 1, c > 0. Then there exist c1, c2 > 0 s. th.

f(t) ≤ c1f(0) + c2t
1/δ

for t ≥ 0.

Our main result for the KGS system is the following:

Theorem 2.1 Let s > 1 be an even integer, m ≥ 3 and s+2 > m > s−1.
For 2 ≤ n ≤ 4 assume that (ψ0, φ0, φ1) ∈ Hs ×Hm ×Hm−1 with ‖ψ0‖L2

sufficiently small in the case n = 4. Then the global solution of Prop. 2.1
for the KGS system (1) fulfills:

‖ψ(t)‖Hs +‖φ(t)‖Hm +‖φt(t)‖Hm−1 ≤ c(1+t)1/δ (13)

where 1/δ = max
(
(m − 1)/(m − s + 1), s − 1, (s − 1)/(s −m + 2)

)
. If in

addition s ≤ m ≤ s+ 1, we have 1/δ = s− 1.
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Proof. We use the KGS system (11) on any interval I where the local
existence theorem Prop. 2.1 applies. We assume w.l.o.g. I = [0, T ].
Estimate for the Schrödinger part:

‖ψ(t)‖2
Hs − ‖ψ0‖2

Hs =
∫ t

0

∂

∂τ
‖ψ(τ)‖2

Hsdτ

= 2 Re
∫ t

0
〈ψt(τ), ψ(τ)〉Hsdτ

= 2 Re
(
i

∫ t

0
〈∆ψ(τ), ψ(τ)〉Hsdτ

)

+ 2Re
(
i

∫ t

0
〈(1−∆)s/2(ψφ), (1−∆)s/2ψ〉L2dτ

)

The first term vanishes, since 〈∆ψ(τ), ψ(τ)〉Hs ∈ R, and the second one
can be estimated by

c
∑

|α1|+|α2|≤s, |α2|<s

∫

I
|〈Dα1φ(τ)Dα2ψ(τ), (1−∆)s/2ψ(τ)〉L2

x
|dτ

In this sum no |α2| = s-contribution occurs, since 〈φ(τ), |(1−∆)s/2ψ|2〉L2
x
∈

R. The |α1| = s-contributions can be estimated by Lemma 1.4 with θ = 0
and Prop. 2.1:

∫

I
|〈ψ(τ), Dα1φ(τ)(1−∆)s/2ψ(τ)〉L2

x
|dτ

≤ ‖ψ‖X1, b(I)‖JsφJsψ‖X−1,−b(I)

≤ c‖ψ‖X1, b(I)(‖Js−1φ+‖X0, b
+ (I)

+ ‖Js−1φ−‖X0, b
− (I)

)‖ψ‖Xs, b(I) (14)

≤ c(‖ψ0‖H1 + ‖(φ0+, φ0−)‖H1)(‖(φ0+, φ0−)‖Hs−1 + ‖ψ0‖Hs−3+)

× (‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hs−1+)

(here ‖(φ0+, φ0−)‖2
Hs−1 := ‖φ0+‖2

Hs−1 + ‖φ0−‖2
Hs−1). Proceeding similarly

with (3) instead of Lemma 1.4 we get the following bound for the remaining
terms:

c
∑

|α1|+|α2|≤s, |α1|, |α2|<s

(‖φ+‖X
|α1|, b
+ (I)

+ ‖φ−‖X
|α1|, b
− (I)

)

× ‖ψ‖X|α2|, b(I)‖ψ‖Xs, b(I)

≤ c‖ψ‖Xs, b(I)

(
(‖φ+‖Xs−1, b

+ (I)
+ ‖φ−‖Xs−1, b

− (I)
)‖ψ‖X1, b(I) (15)
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+ (‖φ+‖X1, b
+ (I)

+ ‖φ−‖X1, b
− (I)

)‖ψ‖Xs−1, b(I)

)

≤ c(‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hs−1+)

×[(‖(φ0+, φ0−)‖Hs−1 + ‖ψ0‖Hs−3+)(‖ψ0‖H1 + ‖(φ0+, φ0−)‖H1)

+ (‖(ψ0+, φ0−)‖H1 + ‖ψ0‖H1)(‖ψ0‖Hs−1 + ‖(φ0+, φ0−)‖Hs−2+)]

Taking into account that ‖ψ0‖H1 + ‖(φ0+, φ0−)‖H1 ≤ const we arrive at

‖ψ(t)‖2
Hs − ‖ψ0‖2

Hs (16)

≤ c(‖(φ0+, φ0−)‖Hs−1 + ‖ψ0‖Hs−1)(‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hm)

≤ c(‖(φ0+, φ0−)‖1−ϑ1
Hm + ‖ψ0‖1−ϑ2

Hs )(‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hm)

with ϑ1 = (m− s+ 1)/(m− 1) (∈ (0, 1], provided m > s− 1 ≥ 1) and with
ϑ2 = 1/(s− 1).
Estimate for the Klein-Gordon part: a similar computation as above
shows that

‖(φ+(t), φ−(t))‖2
Hm − ‖(φ0+, φ0−)‖2

Hm

= 2Re
(
i

∫ t

0
〈Jm−1(|ψ(τ)|2), Jm(φ+(τ)− φ−(τ))〉L2

x
dτ

)

≤ c‖ψ‖X1, b(I)(‖Jm−1ψJmφ+‖X−1,−b(I) + ‖Jm−1ψJmφ−‖X−1,−b(I))

≤ c‖ψ‖Xm−2, b(I)(‖φ+‖Xm, b
+ (I)

+ ‖φ−‖Xm, b
− (I)

)

≤ c(‖ψ0‖Hm−2 + ‖(φ0+, φ0−)‖Hm−3+)

× (‖(φ0+, φ0−)‖Hm + ‖ψ0‖Hm−2+)

≤ c(‖ψ0‖1−ϑ3
Hs + ‖(φ0+, φ0−)‖1−ϑ4

Hm )

× (‖(φ0+, φ0−)‖Hm + ‖ψ0‖Hs) (17)

with ϑ3 = (s −m + 2)/(s − 1) and ϑ4 = 3/(m − 1)+, where we now used
Lemma 1.4 with Θ = 1.
Conclusion: combining (16) and (17) we see that for

f(t) = ‖ψ(t)‖2
Hs + ‖(φ+(t), φ−(t))‖2

Hm

the inequality

f(t) ≤ f(0) + cf(0)1−ϑ/2

holds with ϑ = min1≤i≤3 ϑi, provided s + 2 > m ≥ 3 and m > s − 1 ≥ 1
(remark that ϑ1 < ϑ4). Lemma 2.1 gives f(t) ≤ c(1 + t)2/δ, where 1/δ =
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max((m − 1)/(m − s + 1), s − 1, (s − 1)/(s − m + 2)). This implies the
claimed result. ¤

3. The Zakharov system

The Cauchy problem for the Zakharov system (2) is considered in space
dimension n = 2 and n = 3.

The conservation laws are the following:

‖ψ(t)‖L2 ≡M (18)

and

E(ψ, φ) ≡
∫ (

|∇ψ|2+1
2
(|φ|2+|V |2)+φ|ψ|2

)
dx (19)

where div V = φt.
It is well-known (cf. [17], Proof of Thme. 1) that this implies a uniform
a-priori-bound

‖ψ‖H1+‖φ‖L2+‖(−∆)−1/2φt‖L2 ≤ K ∀t ∈ R+ (20)

if ‖ψ0‖L2 is sufficiently small for n = 2, and if
‖ψ0‖H1 + ‖φ0‖L2 + ‖(−∆)−1/2φ1‖L2 is sufficiently small for n = 3.
The equivalent first order system is

iψt + ∆ψ=
1
2
(φ+ + φ−)ψ

iφ±t ∓ (−∆)1/2φ±=±(−∆)1/2(|ψ|2) (21)

ψ(0) = ψ0, φ±(0)=φ0 ± i(−∆)−1/2φ1 =: φ0±

where φ± = φ± i(−∆)−1/2φt or, conversely,

φ =
1
2
(φ+ + φ−), 2i(−∆)−1/2φt = φ+ − φ−.

The corresponding system of integral equations is

ψ(t)=eit∆ψ0 − i

∫ t

0
ei(t−s)∆ 1

2
(φ+(s) + φ−(s))ψ(s)ds

φ±(t)=e∓it(−∆)1/2
φ0±

∓ i

∫ t

0
e∓i(t−s)(−∆)1/2

(−∆)1/2(|ψ(s)|2)ds (22)
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Lemma 1.1 and 1.2 combined with the energy bound above implies the
following existence theorem by standard arguments:

Proposition 3.1 Let n = 2 or n = 3, s ≥ 1, m > 0 satisfy m +
1 > s > m. Assume ψ0 ∈ Hs, φ0± ∈ Hm. Then there exists T =
T (‖ψ0‖H1− , ‖φ0±‖L2) > 0 such that the system (21) has a unique solution
ψ ∈ Xs, (1/2)+[0, T ], φ± ∈ Xm, (1/2)+

± [0, T ]. This solution satisfies

‖ψ‖Xσ, (1/2)+[0, T ] + ‖φ+‖X
ρ, (1/2)+
+ [0, T ]

+ ‖φ−‖X
ρ, (1/2)+
− [0, T ]

≤ d(‖ψ0‖Hσ + ‖φ0+‖Hρ + ‖φ0−‖Hρ)

for 1 ≤ σ ≤ s, 0 < ρ ≤ m and σ > ρ > σ − 1. This solution exists globally,
provided ‖ψ0‖L2 is sufficiently small for n = 2, and provided ‖ψ0‖H1 +
‖φ0+‖L2 + ‖φ0−‖L2 is sufficiently small for n = 3.

Remark A more general local result for rougher data can also be given
(cf. [8]).

Our aim is to give a bound in time for ‖ψ(t)‖Hs and ‖φ±(t)‖Hm for
s, mÀ 1. The main result is the following

Theorem 3.1 Let n = 2 or n = 3, let s > 0 (an even integer) and m ≥
0 satisfy m + 1 > s > m. Assume ψ0 ∈ Hs, φ0 ∈ Hm, (−∆)−1/2φ1 ∈
Hm with ‖φ0‖L2 sufficiently small for n = 2, and with ‖ψ0‖H1 + ‖φ0‖L2 +
‖(−∆)−1/2φ1‖L2 sufficiently small for n = 3. Then the global solution of
Prop. 3.1 for the Zakharov system fulfills

‖ψ(t)‖Hs + ‖φ(t)‖Hm + ‖(−∆)−1/2φt(t)‖Hm ≤ c(1 + t)1/δ

where 1/δ = max
(
m(s− 1)/(m− s+ 1), (s− 1)/(s−m)+

)
.

Remark Especially, for m = s − 1/2 we have 1/δ = (s − 1)(2s − 1) =
O(2s2), and for m = s− 1/s we have 1/δ = O(s2).

Proof. Estimate for the Schrödinger part: In the proof of Theorem
2.1 we have shown in (14) and (15):

‖ψ(t)‖2
Hs − ‖ψ0‖2

Hs

≤ c(‖ψ‖X1, b(I)(‖φ+‖Xs−1, b
+ (I)

+ ‖φ−‖Xs−1, b
− (I)

)

+ ‖ψ‖Xs−1, b(I)(‖φ+‖X1, b
+ (I)

+ ‖φ−‖X1, b
− (I)

))‖ψ‖Xs, b(I)
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By use of Prop. 3.1 and (20) the latter is estimated by:

c[(‖ψ0‖H1 + ‖(φ0+, φ0−)‖H0+)(‖(φ0+, φ0−)‖Hs−1 + ‖ψ0‖Hs−1+)

+(‖ψ0‖Hs−1 + ‖(φ0+, φ0−)‖Hs−2+)(‖(φ0+, φ0−)‖H1 + ‖ψ0‖H1+)]

× (‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hs−1+)

≤ c[(1+ ‖(φ0+, φ0−)‖0+
Hm)(‖(φ0+, φ0−)‖(s−1)/m

Hm + ‖ψ0‖(s−2)/(s−1)+
Hs )

+ (‖ψ0‖(s−2)/(s−1)
Hs + ‖(φ0+, φ0−)‖(s−2)/m+

Hm )

× (‖(φ0+, φ0−)‖1/m
Hm + ‖ψ0‖0+

Hs)](‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hm)

≤ c(‖(φ0+, φ0−)‖(s−1)/m+
Hm + ‖ψ0‖(s−2)/(s−1)+

Hs

+ ‖ψ0‖(s−2)/(s−1)
Hs ‖(φ0+, φ0−)‖1/m

Hm )(‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hm)

≤ c(‖(φ0+, φ0−)‖1−ϑ1
Hm + ‖ψ0‖1−ϑ1

Hs )(‖ψ0‖Hs + ‖(φ0+, φ0−)‖Hm) (23)

where ϑ1 = (m− s+ 1)/{m(s− 1)}.
Estimate for the wave part: In the estimate for the Klein-Gordon part
in the proof of Theorem 2.1 we replace the term J−1(|ψ|2) by J−1∆(|ψ|2)
and arrive at

‖(φ+(t), φ−(t))‖2
Hm − ‖(φ0+, φ0−)‖2

Hm

≤c‖ψ‖X1, b(I)‖ψ‖Xm, b(I)(‖φ+‖Xm, b
+ (I)

+ ‖φ−‖Xm, b
− (I)

)

≤c(‖ψ0‖H1 + ‖(φ0+, φ0−)‖H0+)(‖ψ0‖Hm + ‖(φ0+, φ0−)‖Hm−1+)

×(‖(φ0+, φ0−)‖Hm + ‖ψ0‖Hm+) (24)

≤c(‖ψ0‖1−ϑ2
Hs + ‖(φ0+, φ0−)‖1−ϑ3

Hm )(‖(φ0+, φ0−)‖Hm + ‖ψ0‖Hs) (25)

where we used (20) and Prop. 3.1. Now ϑ2 = (s −m)/(s − 1)− and ϑ3 =
(1/m)−. Adding (23) and (25) we get:

‖ψ(t)‖2
Hs − ‖ψ0‖2

Hs + ‖(φ0+, φ0−)‖2
Hm − ‖(φ0+, φ0−)‖2

Hm

≤c(‖(φ0+, φ0−)‖1−ϑ1
Hm + ‖ψ0‖1−ϑ1

Hs + ‖ψ0‖1−ϑ2
Hs + ‖(φ0+, φ0−)‖1−ϑ3

Hm )

(‖(φ0+, φ0−)‖Hm + ‖ψ0‖Hs)

Using Lemma 2.1 this implies the claimed estimate similarly as for the KGS
system. ¤
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