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Rigidity of the canonical isometric imbedding
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Abstract. In this paper, we investigate isometric immersions of P 2(H) into R14 and

prove that the canonical isometric imbedding f0 of P 2(H) into R14, which is defined

in Kobayashi [11], is rigid in the following strongest sense: Any isometric immersion f1

of a connected open set U (⊂ P 2(H)) into R14 coincides with f0 up to a euclidean

transformation of R14, i.e., there is a euclidean transformation a of R14 satisfying f1 =

af0 on U .
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ity, root space decomposition.

1. Introduction

In our previous paper [8], we proved the rigidity of the canonical isomet-
ric imbedding of the Cayley projective plane P 2(Cay). The purpose of this
paper is to investigate a similar problem for (local) isometric immersions of
the quaternion projective plane P 2(H). As we have proved in [7], any open
set of the quaternion projective plane P 2(H) cannot be isometrically im-
mersed into R13. On the other hand, there is an isometric immersion f0 of
P 2(H) into the euclidean space R14, which is called the canonical isometric
imbedding of P 2(H) (see Kobayashi [11]). Therefore, it follows that R14

is the least dimensional euclidean space into which P 2(H) can be (locally)
isometrically immersed.

In the present paper, we will show that the canonical isometric imbed-
ding f0 is rigid in the following strongest sense:

Theorem 1 Let f0 be the canonical isometric imbedding of P 2(H) into
the euclidean space R14. Then, for any isometric immersion f1 defined
on a connected open set U of P 2(H) into R14, there exists a euclidean
transformation a of R14 satisfying f1 = af0 on U .

The proof of this theorem will be given by solving the Gauss equation

2000 Mathematics Subject Classification : 17B20, 53B25, 53C24, 53C35.



120 Y. Agaoka and E. Kaneda

associated with the isometric imbeddings (immersions) of P 2(H) into R14

in the same line of [8] (see Theorem 7). We use the same notations and
terminology as those of the previous papers [6], [7] and [8].

2. The quaternion projective plane P 2(H)

In this section we review the structure of the quaternion projective plane
P 2(H) and prepare several formulas concerning the bracket operation.

As is well-known, P 2(H) can be represented by P 2(H) = G/K, where
G = Sp(3) and K = Sp(2) × Sp(1). Let g (resp. k) be the Lie algebra
of G (resp. K) and let g = k + m be the canonical decomposition of g

associated with the symmetric pair (G,K). We denote by ( , ) the inner
product of g given by the (−1)-multiple of the Killing form of g. As usual,
we can identify m with the tangent space To(G/K) at the origin o = {K}.
We assume that the G-invariant Riemannian metric g of G/K satisfies

go(X, Y ) = (X, Y ), X, Y ∈ m.

Then, it is well-known that at the origin o the Riemannian curvature ten-
sor R of type (1, 3) is given by

Ro(X, Y )Z = −[[
X, Y

]
, Z

]
, ∀X, Y, Z ∈ m.

We now take a maximal abelian subspace a of m and fix it in the follow-
ing discussions. We note that since rank(P 2(H)) = 1, we have dim a = 1.

For each element λ ∈ a we define two subspaces k(λ) (⊂ k) and m(λ)
(⊂ m) by

k(λ) =
{

X ∈ k
∣∣∣
[
H,

[
H, X

]]
= −(λ,H)2X, ∀H ∈ a

}
,

m(λ) =
{

Y ∈ m
∣∣∣
[
H,

[
H, Y

]]
= −(λ,H)2Y, ∀H ∈ a

}
.

Let Σ be the set of all non-zero restricted roots. (An element λ ∈ a is called
a restricted root if m(λ) 6= 0.) As is known, there is a restricted root µ such
that Σ = {±µ,±2µ}. We take and fix such a restricted root µ. For each
integer i we set ki = k(|i|µ), mi = m(|i|µ) (|i| ≤ 2), ki = mi = 0 (|i| > 2).
Then, we have m0 = a = Rµ and

k = k0 + k1 + k2 (orthogonal direct sum),

m = m0 + m1 + m2 (orthogonal direct sum).
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The dimensions of the factors are given by dim k0 = 6, dim k1 = dim m1 = 4
and dim k2 = dim m2 = 3 (precisely, see [7]).

We now show several formulas concerning the bracket operation of g.
By the definition of the subspaces ki and mi we easily have

[
ki, kj

]⊂ ki+j+ki−j ,
[
mi,mj

]⊂ ki+j+ki−j ,
[
ki,mj

]⊂mi+j+mi−j .

(2.1)
Moreover, we have

Proposition 2 Let Y0, Y ′
0 ∈ a + m2, Y1, Y ′

1 ∈ m1. Then:
[
Yi,

[
Yi,Y

′
j

]]
=−(1+3δij)(µ,µ)

{
(Yi,Yi)Y ′

j − (Yi,Y
′
j )Yi

}
,

(i, j =0,1), (2.2)[
Yi,

[
Y ′

i ,Yj

]]
+

[
Y ′

i ,
[
Yi,Yj

]]
=−2(µ,µ)(Yi,Y

′
i )Yj , (i, j =0,1, i 6=j),

(2.3)[
Yi,

[
Yi,X1

]]
=−(µ,µ)(Yi,Yi)X1, ∀X1∈k1 (i=0, 1), (2.4)

where δij denotes the Kronecker delta.

Proof. We first prove (2.2). Assume that i = j and Yi 6= 0. Set Y ′′
i = Y ′

i −
(Y ′

i , Yi)/(Yi, Yi) ·Yi. Then, we know that (Yi, Y
′′
i ) = 0 and that Y ′′

i ∈ a+m2

if i = 0 and Y ′′
i ∈ m1 if i = 1. Hence, by Proposition 10 of [7], we have[

Yi,
[
Yi, Y

′′
i

]]
= −4(µ, µ)(Yi, Yi)Y ′′

i . Therefore, we can easily obtain (2.2) in
the case i = j. In the case i 6= j, (2.2) directly follows from Proposition 10
of [7].

We next prove (2.3). Since i 6= j, it follows that (Yi, Yj) = (Y ′
i , Yj) = 0.

Hence, by (2.2) we have
[
Yi+Y ′

i ,
[
Yi+Y ′

i , Yj

]]
= −(µ, µ)(Yi+Y ′

i , Yi+Y ′
i )Yj .

This, together with
[
Yi,

[
Yi, Yj

]]
= −(µ, µ)(Yi, Yi)Yj and

[
Y ′

i ,
[
Y ′

i , Yj

]]
=

−(µ, µ)(Y ′
i , Y ′

i )Yj , proves (2.3).
We finally prove (2.4). We note that

[
Y1, a + m2

]
= k1 holds for any

Y1 ∈ m1 (6= 0). In fact, it is easy to see
[
Y1, a + m2

] ⊂ k1 (see (2.1)).
Moreover, the map a + m2 3 Y ′

0 7−→ [
Y1, Y

′
0

] ∈ k1 is bijective, because[
Y1, Y

′
0

] 6= 0 if Y ′
0 ∈ a + m2 (Y ′

0 6= 0) (recall that rank(P 2(H)) = 1) and
because dim(a + m2) = dim k1. Let X1 ∈ k1. Then, by

[
Y1, a + m2

]
= k1 we

can take an element Y ′
0 ∈ a + m2 such that

[
Y1, Y

′
0

]
= X1. Now, applying

adY1 to the equality
[
Y1,

[
Y1, Y

′
0

]]
= −(µ, µ)(Y1, Y1)Y ′

0 (see (2.2)), we have[
Y1,

[
Y1, X1

]]
= −(µ, µ)(Y1, Y1)X1, proving (2.4) for the case i = 1. Simi-

larly, we can prove (2.4) for the case i = 0. ¤
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Let Y0, Y ′
0 ∈ a + m2. Define a linear mapping L(Y0, Y

′
0) of m1 to m by

L(Y0, Y
′
0)Y1 =

[
Y0,

[
Y ′

0 , Y1

]]
, Y1 ∈ m1.

Then, we have

Proposition 3 Let Y0, Y ′
0 ∈ a + m2. Then:

(1) L(Y0, Y
′
0)m1 ⊂ m1. The transpose of L(Y0, Y

′
0) with respect to ( , ) is

given by L(Y ′
0 , Y0), i.e., tL(Y0, Y

′
0) = L(Y ′

0 , Y0).
(2) Let 1m1 be the identity map of m1. Then:

(2a) L(Y0, Y
′
0) + L(Y ′

0 , Y0) = −2(µ, µ)(Y0, Y
′
0)1m1 ;

(2b) L(Y0, Y
′
0) · L(Y ′

0 , Y0) = (µ, µ)2(Y0, Y0)(Y ′
0 , Y

′
0)1m1.

Proof. The assertion (1) is clear from (2.1) and the ad g-invariance of
( , ). Let Y1 ∈ m1. Since

[
Y0, Y1

] ∈ k1, we have
[
Y ′

0 ,
[
Y ′

0 ,
[
Y0, Y1

]]]
=

−(µ, µ)(Y ′
0 , Y

′
0)

[
Y0, Y1

]
(see (2.4)). Hence, by applying adY0 to this equal-

ity, we easily have (2b). The equality (2a) directly follows from (2.3). ¤

Here, we recall the notion of pseudo-abelian subspace of m. Let Q be
a subspace of m. Q is called pseudo-abelian if it satisfies

[
Q,Q

] ⊂ k0 (see [6]).

Proposition 4 (1) Any subspace Q of m2 is pseudo-abelian.
(2) Let Q be a pseudo-abelian subspace satisfying Q 6⊂ m2. Then, dimQ ≤
2.

Accordingly, the inequality dimQ ≤ 3 holds for any pseudo-abelian sub-
space Q, and the equality holds when and only when Q = m2.

Proof. Since
[
m2,m2

] ⊂ k0 (see (2.1)), it follows that any subspace of m2

is pseudo-abelian. On the contrary, we already proved in Lemma 5.4 of [6]
that for a pseudo-abelian subspace Q with Q 6⊂ m2 it holds dimQ ≤ 1 +
n(µ), where n(µ) means the local pseudo-nullity of the restricted root µ.
(For the definition of the local pseudo-nullity, see §3 of [6].) In the case
G/K = P 2(H), we have n(µ) = 1 (see Theorem 3.2 and Table 3 of [6]).
Hence, we have dim Q ≤ 2. ¤

For later use, we obtain the normal form of a 2-dimensional pseudo-
abelian subspace Q with Q 6⊂ m2.

Proposition 5 Let ξ1 and η1 be elements of m1 satisfying (ξ1, ξ1)=2(µ, µ),
η1 6= 0 and (ξ1, η1) = 0. Then, the 2-dimensional subspace Q (⊂ m) defined
by
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Q = R(µ+ξ1)+R

(
η1+

1
4(µ, µ)2

[
µ,

[
ξ1, η1

]])
(2.5)

is pseudo-abelian and Q 6⊂ m2.
Conversely, if Q is a pseudo-abelian subspace of m with Q 6⊂ m2 and

dimQ = 2, then Q can be written in the form (2.5) by utilizing suitable ele-
ments ξ1 and η1 ∈ m1 satisfying (ξ1, ξ1) = 2(µ, µ), η1 6= 0 and (ξ1, η1) = 0.

Proof. Let ξ1 and η1 be elements of m1 satisfying (ξ1, ξ1) = 2(µ, µ), η1 6= 0
and (ξ1, η1) = 0. Then, the subspace Q defined by (2.5) satisfies Q 6⊂ m2 and
dimQ = 2. Set η2 = (1/4(µ, µ)2)

[
µ,

[
ξ1, η1

]]
. Then, it is easily verified that

η2 ∈ m2. We now show that Q is pseudo-abelian. By (2.3) and (ξ1, η1) = 0,
we have

[
ξ1,

[
η1, µ

]]
= −[

η1,
[
ξ1, µ

]]
. Hence, by the Jacobi identity we have

[
µ,

[
ξ1, η1

]]
=

[[
µ, ξ1

]
, η1

]
+

[
ξ1,

[
µ, η1

]]
= −2

[
ξ1,

[
η1, µ

]]
.

Consequently, we have η2 = −(1/2(µ, µ)2)
[
ξ1,

[
η1, µ

]]
. Note that

[
η1, µ

] ∈
k1. Then, by the formula (2.4) and the assumption (ξ1, ξ1) = 2(µ, µ) we
have

[
ξ1, η2

]
= − 1

2(µ, µ)2
[
ξ1,

[
ξ1,

[
η1, µ

]]]
=

(ξ1, ξ1)
2(µ, µ)

[
η1, µ

]
= −[

µ, η1

]
.

Moreover, since
[
µ, η2

]
+

[
ξ1, η1

] ∈ k and since
[
µ,

[
µ, η2

]
+

[
ξ1, η1

]]
= −4(µ, µ)2η2+

[
µ,

[
ξ1, η1

]]
= 0,

it follows that
[
µ, η2

]
+

[
ξ1, η1

] ∈ k0. (Note that an element X ∈ k belongs
to k0 if and only if

[
µ,X

]
= 0.) By these relations we have

[
µ + ξ1, η1 + η2

]
=

[
µ, η1

]
+

[
ξ1, η2

]
+

[
µ, η2

]
+

[
ξ1, η1

]

= 0 +
[
µ, η2

]
+

[
ξ1, η1

] ∈ k0.

Since Q = R(µ + ξ1) + R(η1 + η2), this implies that Q is a pseudo-abelian
subspace.

We next prove the converse. Let Q be a pseudo-abelian subspace with
Q 6⊂ m2 and dimQ = 2. Then, viewing the proof of Lemma 5.4 of [6], we
know that Q ∩m2 = 0 and dim(Q ∩ (m1 + m2)) ≤ n(µ) = 1. Consequently,
we have Q 6⊂ m1 +m2, because dim Q = 2. Therefore, there is a basis {ξ, η}
of Q written in the form ξ = µ + ξ1 + ξ2, η = η1 + η2, where ξ1, η1 ∈ m1,
ξ2, η2 ∈ m2. Here, we note that η1 6= 0, because Q ∩ m2 = 0. Subtracting
a constant multiple of η from ξ if necessary, we may assume that (ξ1, η1) = 0.
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Since
[
ξ, η

]
=

[
µ+ξ2, η1

]
+

[
ξ1, η2

]
+

[
µ+ξ2, η2

]
+

[
ξ1, η1

] ∈ k0

and since
[
µ + ξ2, η1

]
+

[
ξ1, η2

] ∈ k1,
[
µ + ξ2, η2

]
+

[
ξ1, η1

] ∈ k0 + k2 and[
ξ2, η2

] ∈ k0, it follows that
[
µ + ξ2, η1

]
+

[
ξ1, η2

]
= 0, (2.6)[

µ, η2

]
+

[
ξ1, η1

] ∈ k0. (2.7)

Applying adµ to (2.7), we have η2 = (1/4(µ, µ)2)
[
µ,

[
ξ1, η1

]]
. By this

equality and the assumption (ξ1, η1) = 0, we can deduce
[
ξ1, η2

]
=(

(ξ1, ξ1)/2(µ, µ)
)[

η1, µ
]

(see the arguments stated above). Putting this into
(2.6), we have

[(
1− (ξ1, ξ1)

2(µ, µ)

)
µ+ξ2, η1

]
= 0.

Since η1 6= 0 and rank(P 2(H)) = 1, we have
(
1 − (ξ1, ξ1)/2(µ, µ)

)
µ +

ξ2 = 0. This proves (ξ1, ξ1) = 2(µ, µ) and ξ2 = 0, completing the proof of
the converse. ¤

3. The Gauss equation

Let N be a euclidean vector space, i.e., N is a vector space over R

endowed with an inner product 〈 , 〉. Let S2m∗⊗N be the space of N -valued
symmetric bilinear forms on m. We call the following equation on Ψ ∈
S2m∗ ⊗N the Gauss equation associated with N :

([[
X, Y

]
, Z

]
,W

)
=

〈
Ψ(X, Z),Ψ(Y, W )

〉−〈
Ψ(X, W ),Ψ(Y, Z)

〉
,

(3.1)
where X, Y, Z, W ∈ m. We denote by G(P 2(H),N) the set of all solutions
of (3.1), which is called the Gaussian variety associated with N .

As in the case of P 2(Cay) (Theorem 11 of [8]), we can prove the
following

Theorem 6 Let N be a euclidean vector space with dimN = 6. Let Ψ ∈
S2m∗⊗N be a solution of the Gauss equation (3.1), i.e., Ψ ∈ G(P 2(H),N).
Then:
(1) There are linearly independent vectors A and B ∈ N satisfying

(i) 〈A,A〉 = 〈B,B〉 = 4(µ, µ) and 〈A,B〉 = 2(µ, µ);
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(ii) Ψ(Y0, Y
′
0) = (Y0, Y

′
0)A, ∀Y0, Y ′

0 ∈ a + m2;
(iii) Ψ(Y1, Y

′
1) = (Y1, Y

′
1)B, ∀Y1, Y ′

1 ∈ m1;
(iv)

〈
A,Ψ(µ,m1)

〉
=

〈
B,Ψ(µ,m1)

〉
= 0.

(2) Ψ(Y1, Y2) = − 1
(µ, µ)2

Ψ(µ,L(µ, Y2)Y1), ∀Y1 ∈ m1, ∀Y2 ∈ m2.

(3)
〈
Ψ(µ, Y1),Ψ(µ, Y ′

1)
〉

= (µ, µ)2(Y1, Y
′
1), ∀Y1, Y ′

1 ∈ m1.

Let O(N) be the orthogonal transformation group of N . We define an
action of O(N) on S2m∗ ⊗N by

(hΨ)(X, Y ) = h(Ψ(X, Y )),

where Ψ ∈ S2m∗ ⊗ N , h ∈ O(N). It is easily seen that G(P 2(H),N) is
invariant under this action, i.e., hG(P 2(H),N) = G(P 2(H),N) for any
h ∈ O(N). We say that the Gaussian variety G(P 2(H),N) is EOS if
G(P 2(H),N) 6= ∅ and if G(P 2(H),N) is consisting of essentially one solu-
tion, i.e., for any solutions Ψ and Ψ′ ∈ G(P 2(H),N), there is an element
h ∈ O(N) satisfying Ψ′ = hΨ (see [8]).

By Theorem 6 we can show

Theorem 7 Let N be a euclidean vector space with dimN = 6. Then,
G(P 2(H),N) is EOS.

Proof. The proof of this theorem is quite similar to that of Theorem 10
in [8].

First we note that G(P 2(H),N) 6= ∅, because the second fundamental
form of the canonical isometric imbedding f0 at the origin o ∈ P 2(H)
satisfies (3.1).

Let {Ei (1 ≤ i ≤ 4)} be an orthonormal basis of m1. (Note that
dimm1 = 4.) Let Ψ ∈ G(P 2(H),N) and let A, B be the vectors of N stated
in Theorem 6. We define vectors {Fi (1 ≤ i ≤ 6)} of N by setting Fi =
Ψ(µ,Ei)/(µ, µ) (1 ≤ i ≤ 4), F5 = (A+B)/2

√
3 |µ| and F6 = (A−B)/2|µ|.

By Theorem 6 we can show that {Fi (1 ≤ i ≤ 6)} forms an orthonormal
basis of N . Now let Ψ′ be another element of G(P 2(H),N). Let A′ and
B′ be the vectors stated in Theorem 6 for Ψ′. As in the case of Ψ we can
also define an orthonormal basis {F′i (1 ≤ i ≤ 6)} of N . Then, there is
an element h ∈ O(6) satisfying F′i = hFi (1 ≤ i ≤ 6). Here, we note that
A′ = hA, B′ = hB and Ψ′(µ,Ei) = hΨ(µ,Ei) (1 ≤ i ≤ 4). Set Φ =
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Ψ′ − hΨ ∈ S2m∗ ⊗N . Then, by Theorem 6 (1) we have

Φ(a+m2, a+m2) = Φ(m1,m1) = Φ(a,m1) = 0.

By Theorem 6 (2) and by the fact L(µ,m2)m1 ⊂ m1 we have

Φ(m2,m1) ⊂ Φ(µ,L(µ,m2)m1) ⊂ Φ(a,m1) = 0,

which proves Φ(m2,m1) = 0. Therefore, we have Φ = 0, i.e., Ψ′ = hΨ,
completing the proof of Theorem 7. ¤

By Theorem 7 we know that P 2(H) is formally rigid in codimension 6
in the sense of Agaoka-Kaneda [8]. Therefore, Theorem 1 can be obtained
by Theorem 7 and the rigidity theorem (Theorem 5 of [8]).

Before proceeding to the proof of Theorem 6, we make several prepa-
rations.

Let N be a euclidean vector space. In what follows we assume dim N =
6. Let S2m∗⊗N be the space of N -valued symmetric bilinear forms on m.
Let Ψ ∈ S2m∗ ⊗N and Y ∈ m. We define a linear map ΨY of m to N by

ΨY : m 3 Y ′ 7−→ Ψ(Y, Y ′) ∈ N ,

and denote by Ker(ΨY ) the kernel of ΨY . We call an element Y ∈ m singu-
lar (resp. non-singular) with respect to Ψ if ΨY (m) 6= N (resp. ΨY (m) =
N).

Let Ψ ∈ G(P 2(H),N) and let Y ∈ m (Y 6= 0). Take an element k ∈ K

such that Ad(k)µ ∈ RY . Then, as shown in the proof of Proposition 5
of [7], the subspace QY = Ad(k)−1 Ker(ΨY ) is a pseudo-abelian subspace
of m.

Proposition 8 Let Ψ ∈ G(P 2(H),N) and let Y ∈ m (Y 6= 0). Then:
(1) dimKer(ΨY ) = 2 or 3. Moreover, Y is non-singular (resp. singular)
with respect to Ψ if and only if dimKer(ΨY ) = 2 (resp. dimKer(ΨY ) = 3).
(2) Let k ∈ K satisfy Ad(k)µ ∈ RY . Then, Ker(ΨY ) ⊂ Ad(k)m2. Conse-
quently, Y is non-singular (resp. singular) with respect to Ψ if and only if
Ker(ΨY ) ( Ad(k)m2 (resp. Ker(ΨY ) = Ad(k)m2).

Remark 1 Recall that in the case of the Cayley projective plane P 2(Cay)
the inclusion Ker(ΨY ) ⊂ Ad(k)m2 in Proposition 8 (2) can be proved by
a simple discussion. There, the inclusion automatically follows from the
fact that any high-dimensional pseudo-abelian subspace must be contained
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in m2 (see Propositions 8 and 12 of [8]). In contrast, it is not a simple task
to show the inclusion Ker(ΨY ) ⊂ Ad(k)m2 in our case P 2(H). We will
prove this inclusion by making use of the normal form of the pseudo-abelian
subspaces not contained in m2 (see Proposition 5).

Proof of Proposition 8. Let Y ∈m (Y 6= 0). Set QY =Ad(k)−1 Ker(ΨY ),
where k ∈ K is an element satisfying Ad(k)µ ∈ RY . Since QY is pseudo-
abelian, it follows that dimQY ≤ 3 (see Proposition 4). Hence,
dimKer(ΨY ) ≤ 3. On the other hand, since dimN = 6 and dimm = 8, it
follows that dimKer(ΨY ) ≥ 2. Therefore, Y is non-singular (resp. singular)
with respect to Ψ if and only if dimKer(ΨY ) = 2 (resp. dimKer(ΨY ) = 3).
This proves (1).

To show the first statement of (2) it suffices to prove QY ⊂ m2. Now,
let us suppose the contrary, i.e., QY 6⊂ m2. Then, we have dim QY = 2
(see (1) and Proposition 4 (2)). Hence, there is a basis {ξ, η} of QY written
in the form ξ = µ + ξ1, η = η1 + (1/4(µ, µ)2)

[
µ,

[
ξ1, η1

]]
, where ξ1 and

η1 are elements of m1 satisfying (ξ1, ξ1) = 2(µ, µ), η1 6= 0, (ξ1, η1) = 0 (see
Proposition 5). Let {ζ1

1 , ζ2
1} be a basis of the orthogonal complement of

Rξ1 + Rη1 in m1. Set ζi = ζi
1 + (1/4(µ, µ)2)

[
µ,

[
ξ1, ζ

i
1

]]
(i = 1, 2). Since[

µ,
[
ξ1, ζ

i
1

]] ∈ m2 (i = 1, 2), we know that the vectors ζ1 and ζ2 are linearly
independent. More strongly, they are linearly independent modulo QY ,
i.e., QY ∩ (Rζ1 + Rζ2) = 0. Moreover, by Proposition 5 we know that
the subspace Qi = Rξ + Rζi (i = 1, 2) is also pseudo-abelian, because
(ξ1, ζ

i
1) = 0. Consequently, we have

[[
ξ, ζi

]
, µ

]
= 0 (i = 1, 2).

Set X =Ad(k)ξ, Zi =Ad(k)ζi (i=1, 2). Then, we have X ∈Ker(ΨY )
(X 6= 0), Ker(ΨY ) ∩ (RZ1 + RZ2) = 0 and

[[
X, Zi

]
, Y

]
= 0 (i = 1, 2).

By the Gauss equation (3.1) we have

0 =
([[

X, Zi
]
, Y

]
,W

)

=
〈
Ψ(X, Y ),Ψ(Zi,W )

〉− 〈
Ψ(X, W ),Ψ(Zi, Y )

〉
, (i = 1, 2),

where W is an arbitrary element of m. Since ΨY (X) = 0, we obtain by this
equality

〈
ΨX(W ),Ψ(Zi, Y )

〉
= 0, i.e.,

〈
ΨX(m),Ψ(Zi, Y )

〉
= 0 (i = 1, 2).

We note that the vectors Ψ(Z1, Y ) and Ψ(Z2, Y ) are linearly independent,
because Ker(ΨY ) ∩ (RZ1 + RZ2) = 0. Hence, we have dimΨX(m) ≤
dimN − 2 = 4, implying dimKer(ΨX) ≥ 4. This contradicts the asser-
tion (1). Thus, we have QY ⊂ m2, proving the first statement of (2). The
last statement of (2) is now clear. ¤
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As a corollary of Proposition 8 we obtain

Proposition 9 Let Ψ ∈ G(P 2(H),N). Then:
(1) Let Y0 ∈ a + m2 (Y0 6= 0). Then, Ker(ΨY0) ⊂ {ξ ∈ a + m2 | (ξ, Y0) =
0}. If Y0 is singular with respect to Ψ, then Ker(ΨY0) = {ξ ∈ a + m2 |
(ξ, Y0) = 0}.
(2) Let Y1 ∈ m1 (Y1 6= 0). Then, Ker(ΨY1) ⊂ {η ∈ m1 | (η, Y1) = 0}. If
Y1 is singular with respect to Ψ, then Ker(ΨY1) = {η ∈ m1 | (η, Y1) = 0}.
Proof. Let Y0 ∈ a + m2 (Y0 6= 0). Then, we can take an element k0 ∈ K

such that Ad(k0)µ ∈ RY0 and Ad(k0)(m2) = {ξ ∈ a + m2 | (ξ, Y0) = 0} (see
Proposition 7 of [7]). This proves (1). Similarly, for Y1 ∈ m1 (Y1 6= 0), we
can easily show (2). ¤

Let Ψ ∈ S2m∗ ⊗N . We call a subspace U of m singular with respect
to Ψ if each element of U is singular with respect to Ψ.

Proposition 10 Let Ψ ∈ G(P 2(H),N). Assume that Y ∈ m (Y 6= 0) is
non-singular with respect to Ψ. Then, there is a non-zero vector E ∈ N

such that

N = RE+Ψξ(m) (orthogonal direct sum) (3.2)

holds for any ξ ∈ Ker(ΨY ) (ξ 6= 0). Consequently, Ker(ΨY ) is a singular
subspace with respect to Ψ.

Proof. Take an element k ∈ K such that Ad(k)µ ∈ RY . Then, since
Y is non-singular, we have Ker(ΨY ) ( Ad(k)m2. Take a non-zero element
satisfying Y ′ ∈ Ad(k)m2 and Y ′ /∈ Ker(ΨY ) and set E = Ψ(Y, Y ′) ( 6= 0).
Let ξ ∈ Ker(ΨY ) (ξ 6= 0). Then, by the Gauss equation (3.1) we have

([[
ξ, Y ′], Y ]

,W
)

=
〈
Ψ(ξ, Y ),Ψ(Y ′,W )

〉−〈
Ψ(ξ, W ),Ψ(Y ′, Y )

〉
,

where W is an arbitrary element of m. Here, we note that
[[

ξ, Y ′], Y ]
= 0,

because
[[

ξ, Y ′], Y ] ∈ Ad(k)
[[

m2,m2

]
, µ

]
= 0. Since Ψ(ξ, Y ) = 0, we

obtain by the above equality
〈
E,Ψ(ξ, W )

〉
= 0. This shows

〈
E,Ψξ(m)

〉
= 0

and hence Ψξ(m) 6= N . Consequently, ξ is singular with respect to Ψ. Since
dimKer(Ψξ) = 3 (see Proposition 8), we have dimΨξ(m) = 5, which proves
the decomposition (3.2). ¤
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4. Proof of Theorem 6

In this section, with the preparations in the previous sections, we will
prove Theorem 6. We first show

Proposition 11 Let Ψ ∈ G(P 2(H),N). Then, there are singular sub-
spaces U (⊂ a + m2) and V (⊂ m1) with respect to Ψ satisfying dimU ≥ 2
and dimV ≥ 2.

Proof. If a + m2 contains no non-singular element with respect to Ψ, then
set U = a+m2. On the contrary, if there is a non-singular element Y0 ∈ a+
m2, then set U = Ker(ΨY0). In this case we know that dim U = 2, U ⊂ a+
m2 and that U is a singular subspace with respect to Ψ (see Proposition 8,
Proposition 9 and Proposition 10).

Similarly, we can show that there is a singular subspace V of m1 with
respect to Ψ satisfying the desired properties. ¤

Proposition 12 Let Ψ ∈ G(P 2(H),N). Let U (⊂ a+m2) and V (⊂ m1)
be singular subspaces with respect to Ψ satisfying dimU ≥ 2 and dimV ≥ 2.
Then, there are vectors A, B ∈ N such that:
(1) 〈A,A〉 = 〈B,B〉 = 4(µ, µ).
(2) Let ξ ∈ U and η ∈ V . Then:

(2a) Ψ(ξ, Y0) = (ξ, Y0)A, ∀Y0 ∈ a + m2;
(2b) Ψ(η, Y1) = (η, Y1)B, ∀Y1 ∈ m1.

(3) Let Y0 ∈ a + m2 and Y1 ∈ m1. Then:
(3a) 〈A,ΨY0(m1)〉 = 〈B,ΨY0(m1)〉 = 0;
(3b) 〈A,ΨY1(a + m2)〉 = 〈B,ΨY1(a + m2)〉 = 0.

(4) Let ξ ∈ U (ξ 6= 0) and η ∈ V (η 6= 0). Then:
(4a) Ψξ(m) = RA + Ψξ(m1) (orthogonal direct sum);
(4b) Ψη(m) = RB + Ψη(a + m2) (orthogonal direct sum).

(5) Let Y0 ∈ a + m2 and Y1 ∈ m1. Then:
(5a) 〈Ψ(Y0, Y0),A〉 = 4(µ, µ)(Y0, Y0);
(5b) 〈Ψ(Y1, Y1),B〉 = 4(µ, µ)(Y1, Y1).

(6) Let ξ ∈ U , η ∈ V , Y0 ∈ a + m2 and Y1 ∈ m1. Assume that (ξ, Y0) =
(η, Y1) = 0. Then:

(6a) 〈Ψ(Y0, Y0),Ψξ(m1)〉 = 0;
(6b) 〈Ψ(Y1, Y1),Ψη(a + m2)〉 = 0.

Proof. The assertions (1), (2) and (3) can be proved in the same manner
as in the proof of Proposition 16 of [8]. Hence, we omit their proofs.
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Let ξ ∈ U (ξ 6= 0). By (2a) we easily get Ψξ(a + m2) = RA and hence
Ψξ(m) = RA + Ψξ(m1). Since 〈A,Ψξ(m1)〉 = 0 (see (3a)), we have the
decomposition (4a). Similarly, we can show (4b).

The assertions (5a) and (6a) are proved as follows: Let Y0 ∈ a + m2.
Take ξ ∈ U (ξ 6= 0) such that (ξ, Y0) = 0. Then, we have

[[
Y0, ξ

]
, Y0

]
=

4(µ, µ)(Y0, Y0)ξ (see (2.2)) and Ψ(ξ, Y0) = 0 (see (2a)). By the Gauss
equation (3.1) we have

([[
Y0, ξ

]
, Y0

]
, ξ

)
=

〈
Ψ(Y0, Y0),Ψ(ξ, ξ)

〉− 〈
Ψ(Y0, ξ),Ψ(ξ, Y0)

〉
,([[

Y0, ξ
]
, Y0

]
, Y ′

1

)
=

〈
Ψ(Y0, Y0),Ψ(ξ, Y ′

1)
〉− 〈

Ψ(Y0, Y
′
1),Ψ(ξ, Y0)

〉
,

where Y ′
1 is an arbitrary element of m1. By these equalities we have〈

Ψ(Y0, Y0),A
〉

= 4(µ, µ)(Y0, Y0) and
〈
Ψ(Y0, Y0),Ψ(ξ, Y ′

1)
〉

= 0. Therefore,
we obtain (5a) and (6a). The assertions (5b) and (6b) can be proved in
a similar way. ¤

Remark 2 As seen in the proof of Proposition 11, singular subspaces U

and V may not be uniquely determined. However, the vectors A and B in
Proposition 8 do not depend on the choice of singular subspaces U and V ,
which will be clarified at the last part of this section (see Lemma 20).

In the following argument, we take and fix an element Ψ∈G(P 2(H),N).
We denote by U and V singular subspaces with respect to Ψ satisfying U

(⊂ a + m2), V (⊂ m1), dim U ≥ 2 and dimV ≥ 2. We also denote by A, B
the vectors of N obtained by applying Proposition 12 to the pair of singular
subspaces U and V .

Lemma 13 (1) Let Y0 ∈ a + m2. Then:
〈
ΨY0(Y1),ΨY0(Y

′
1)

〉

=
〈
Ψ(Y0, Y0),Ψ(Y1, Y

′
1)

〉− (µ, µ)(Y0, Y0)(Y1, Y
′
1), ∀Y1, Y ′

1 ∈ m1.

(2) Let Y0 ∈ a + m2 and ξ ∈ U satisfy (ξ, Y0) = 0. Then:
〈
ΨY0(Y1),Ψξ(Y ′

1)
〉

= (L(Y0, ξ)Y1, Y
′
1), ∀Y1, Y ′

1 ∈ m1.

Proof. Putting X = Y0, Y = Y1, Z = Y0, W = Y ′
1 into (3.1), we have

([[
Y0, Y1

]
, Y0

]
, Y ′

1

)
=

〈
Ψ(Y0, Y0),Ψ(Y1, Y

′
1)

〉−〈
Ψ(Y0, Y

′
1),Ψ(Y1, Y0)

〉
.

Since
[
Y0,

[
Y0, Y1

]]
= −(µ, µ)(Y0, Y0)Y1 (see (2.2)), we easily get (1).
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Similarly, putting X = ξ, Y = Y1, Z = Y0 and W = Y ′
1 into (3.1), we

have
([[

ξ, Y1

]
, Y0

]
, Y ′

1

)
=

〈
Ψ(ξ, Y0),Ψ(Y1, Y

′
1)

〉− 〈
Ψ(ξ, Y ′

1),Ψ(Y1, Y0)
〉

=
〈
A,Ψ(Y1, Y

′
1)

〉
(ξ, Y0)−

〈
Ψξ(Y ′

1),ΨY0(Y1)
〉
.

Since (ξ, Y0) = 0, we have
〈
Ψξ(Y ′

1),ΨY0(Y1)
〉

= −([[
ξ, Y1

]
, Y0

]
, Y ′

1

)
= (L(Y0, ξ)Y1, Y

′
1),

proving (2). ¤

Let ξ ∈ U (ξ 6= 0). Since dimKer(Ψξ) = 3 (see Proposition 8) and
since dim m = 8, we have dimΨξ(m) = 5. Let us denote by Eξ the one
dimensional orthogonal complement of Ψξ(m) in N .

Proposition 14 Set C = 〈A,B〉 − (µ, µ). Then:
(1) Let ξ ∈ U . Then:

〈
Ψξ(Y1),Ψξ(η)

〉
= C(ξ, ξ)(Y1, η), ∀Y1 ∈ m1, ∀η ∈ V. (4.1)

(2) The inequality 0 < C ≤ 3(µ, µ) holds. The vectors A and B are linearly
independent if C 6= 3(µ, µ) and A = B if C = 3(µ, µ).
(3) Let ξ ∈ U (ξ 6= 0). Then, ΨY0(m1) ⊂ Eξ + Ψξ(m1), ∀Y0 ∈ a + m2.
(4) If C 6= 3(µ, µ), then:

ΨY0(m1) = Ψξ(m1), ∀Y0 ∈ a + m2 (Y0 6= 0), ∀ξ ∈ U (ξ 6= 0);
(4.2)

Ψ(Y0, Y0) ∈ RA + RB, ∀Y0 ∈ a + m2; (4.3)

Ψ(Y1, Y1) ∈ RA + RB, ∀Y1 ∈ m1. (4.4)

Proof. Put Y0 = ξ and Y ′
1 = η into Lemma 13 (1). Then, since Ψ(ξ, ξ) =

(ξ, ξ)A and Ψ(Y1, η) = (Y1, η)B, we get (4.1).
In view of Proposition 12 (1), we easily have 〈A,B〉 ≤ 4(µ, µ) and

hence C ≤ 3(µ, µ). Further, by putting Y1 = η (6= 0) into (4.1) we know
C > 0, because Ψξ(η) 6= 0 (see Proposition 9). This shows 〈A,B〉 > (µ, µ).
Therefore, A and B are linearly independent if 〈A,B〉 6= 4(µ, µ), i.e., C 6=
3(µ, µ). It is easy to see that if C = 3(µ, µ), i.e., 〈A,B〉 = 4(µ, µ), then
A = B.

We next prove (3). Let ξ ∈ U (ξ 6= 0). By Proposition 12 (4a) we know
that the orthogonal complement of RA in N is given by Eξ + Ψξ(m1).
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Hence, by Proposition 12 (3a), we have ΨY0(m1) ⊂ Eξ + Ψξ(m1) for any
Y0 ∈ a + m2.

Finally, we prove (4). Since C 6= 3(µ, µ), the subspace RA+RB forms
a 2-dimensional subspace of N . Let Y0 ∈ a + m2 (Y0 6= 0). Then, by
Proposition 12 (3a) we know that ΨY0(m1) coincides with the orthogonal
complement of RA+RB in N . (Recall that dimΨY0(m1) = 4 and dimN =
6.) Let ξ ∈ U (ξ 6= 0). Since Ψξ(m1) is also an orthogonal complement of
RA + RB, it follows that Ψξ(m1) = ΨY0(m1). If we take ξ ∈ U (ξ 6= 0)
satisfying (ξ, Y0) = 0, then by Proposition 12 (6a) we obtain Ψ(Y0, Y0) ∈
RA+RB. Similarly, we can prove Ψ(Y1, Y1) ∈ RA+RB for any Y1 ∈ m1,
completing the proof of (4). ¤

Let Y0 ∈ a + m2 and ξ ∈ U (ξ 6= 0). Define a linear mapping ΘY0,ξ :
m1 −→ N by

ΘY0,ξ(Y1) = ΨY0(Y1)+
1

C(ξ, ξ)
Ψξ(L(ξ, Y0)Y1), Y1 ∈ m1. (4.5)

Then, we have

Proposition 15 Let Y0 ∈ a + m2, ξ ∈ U (ξ 6= 0) and Y1 ∈ m1. Assume
that (ξ, Y0) = 0 and L(ξ, Y0)Y1 ∈ V . Then:
(1) ΘY0,ξ(Y1) ∈ Eξ. More strongly, if C 6= 3(µ, µ), then ΘY0,ξ(Y1) = 0.
(2) |ΘY0,ξ(Y1)|2=

〈
Ψ(Y0,Y0),Ψ(Y1,Y1)

〉−(µ,µ)
{
1+(µ,µ)/C

}
(Y0,Y0)(Y1,Y1).

Proof. By Proposition 14 (3) we know that ΘY0,ξ(Y1) ∈ Eξ + Ψξ(m1).
Here, we note that 〈Eξ,Ψξ(m1)〉 = 0, because Eξ is orthogonal to Ψξ(m).
Let Y ′

1 ∈ m1. Then, by Lemma 13 (2), Proposition 14 (1) and Proposi-
tion 3 (2) we have

〈
ΘY0,ξ(Y1),Ψξ(Y ′

1)
〉

=
〈
ΨY0(Y1),Ψξ(Y ′

1)
〉

+
1

C(ξ, ξ)
〈
Ψξ(L(ξ, Y0)Y1),Ψξ(Y ′

1)
〉

= (L(Y0, ξ)Y1, Y
′
1) + (L(ξ, Y0)Y1, Y

′
1)

= 0,

proving
〈
ΘY0,ξ(Y1),Ψξ(m1)

〉
= 0. This implies that ΘY0,ξ(Y1) ∈ Eξ. In the

case where C 6= 3(µ, µ), we have ΘY0,ξ(Y1) ∈ ΨY0(m1) + Ψξ(m1) = Ψξ(m1)
(see (4.2)), which proves ΘY0,ξ(Y1) = 0.

Next, we show (2). By Lemma 13 and by the equality
〈
ΘY0, ξ(Y1),Ψξ(m1)

〉



Rigidity of the canonical isometric imbedding of P 2(H) 133

= 0, we have
〈
ΘY0,ξ(Y1),ΘY0,ξ(Y1)

〉

=
〈
ΘY0,ξ(Y1),ΨY0(Y1)

〉

=
〈
ΨY0(Y1),ΨY0(Y1)

〉
+

1
C(ξ, ξ)

〈
Ψξ(L(ξ, Y0)Y1),ΨY0(Y1)

〉

=
〈
Ψ(Y0, Y0),Ψ(Y1, Y1)

〉− (µ, µ)(Y0, Y0)(Y1, Y1)

+
1

C(ξ, ξ)
(
L(ξ, Y0)Y1, L(Y0, ξ)Y

)
.

On the other hand, by Proposition 3 we have
(
L(ξ, Y0)Y1, L(Y0, ξ)Y1

)
=

(
L(ξ, Y0)L(ξ, Y0)Y1, Y1

)

= −(
L(Y0, ξ)L(ξ, Y0)Y1, Y1

)

= −(µ, µ)2(ξ, ξ)(Y0, Y0)(Y1, Y1).

Therefore, we get the assertion (2). ¤

With these preparations we begin with the proof Theorem 6. First, we
consider the case dim V = 2.

Lemma 16 Assume that dimV = 2. Then, C 6= 3(µ, µ). Accordingly, the
vectors A and B ∈ N are linearly independent.

Proof. Take non-zero elements ξ, ξ′ ∈ U satisfying (ξ, ξ′) = 0. Then,
by Proposition 3 (2) it follows that L(ξ, ξ′) = −L(ξ′, ξ) and L(ξ, ξ′) gives
an isomorphism of m1 onto itself. Let Y1 ∈ L(ξ, ξ′)V . Then, by Proposi-
tion 3 (2b) we have L(ξ, ξ′)Y1 ∈ V . Hence, by Proposition 15 (1) we have
Θξ′,ξ(Y1) ∈ Eξ. Since dimL(ξ, ξ′)V = dim V = 2 and dimEξ = 1, it is
possible to take a non-zero element Y1 ∈ L(ξ, ξ′)V satisfying Θξ′,ξ(Y1) = 0.
Therefore, by Proposition 15 (2) and Proposition 12 (2a) we have

0 = |Θξ′,ξ(Y1)|2
=

[〈
Ψ(Y1, Y1),A

〉− (µ, µ){1 + (µ, µ)/C}(Y1, Y1)
]
(ξ′, ξ′).

Since (ξ′, ξ′) 6= 0, we have
〈
Ψ(Y1, Y1),A

〉
= (µ, µ){1+(µ, µ)/C}(Y1, Y1). (4.6)

Now, we suppose the case C = 3(µ, µ). Then, by (4.6) we have〈
Ψ(Y1, Y1),A

〉
= 4

3(µ, µ)(Y1, Y1). On the other hand, by Proposition 12 (5b)
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we have
〈
Ψ(Y1, Y1),A

〉
= 4(µ, µ)(Y1, Y1), because A = B in case C =

3(µ, µ) (see Proposition 14 (2)). Hence, we have (Y1, Y1) = 0, which con-
tradicts the assumption Y1 6= 0. Therefore, we have C 6= 3(µ, µ) and hence
A and B are linearly independent. ¤

Lemma 17 Assume that dimV = 2. Then, V can be extended to a
3-dimensional singular subspace contained in m1, i.e., there is a singular
subspace V̂ (⊂ m1) such that V ⊂ V̂ and dim V̂ = 3.

Proof. Let F ∈ RA + RB be a unit vector which is orthogonal to B.
Then, for any η ∈ V we have

〈
F,Ψη(m)

〉
= 0, because

〈
F,Ψη(m)

〉
=〈

F,RB + Ψη(a + m2)
〉

= 0 (see Proposition 12 (4b) and (3b)).
Now, define a symmetric bilinear form χ on m1 by setting

χ(Y1, Y
′
1) =

〈
Ψ(Y1, Y

′
1),F

〉
, Y1, Y ′

1 ∈ m1.

Since Ψ(Y1, Y
′
1) ∈ RB+ RF (see Proposition 14 (4)) and

〈
Ψ(Y1, Y

′
1),B

〉
=

〈B,B〉(Y1, Y
′
1) for Y1, Y ′

1 ∈ m1 (see Proposition 12 (5)), we have

Ψ(Y1, Y
′
1) = (Y1, Y

′
1)B+χ(Y1, Y

′
1)F, Y1, Y ′

1 ∈ m1. (4.7)

Let V ⊥ be the orthogonal complement of V in m1. Then, we have dimV ⊥ =
2. (Recall that dimm1 = 4 and dimV = 2.) Let {Y1, Y

′
1} be an orthonormal

basis of V ⊥. Then, putting X = Z = Y1 and Y = W = Y ′
1 into the Gauss

equation (3.1), we have
([[

Y1, Y
′
1

]
, Y1

]
, Y ′

1

)
= 〈B,B〉(Y1, Y1)(Y ′

1 , Y
′
1)

+ χ(Y1, Y1)χ(Y ′
1 , Y

′
1)− χ(Y1, Y

′
1)χ(Y ′

1 , Y1).

Since
([[

Y1, Y
′
1

]
, Y1

]
, Y ′

1

)
= 〈B,B〉(Y1, Y1)(Y ′

1 , Y
′
1) (see (2.2)), we have

χ(Y1, Y1)χ(Y ′
1 , Y

′
1)−χ(Y1, Y

′
1)χ(Y ′

1 , Y1) = 0.

This implies that χ is degenerate on V ⊥. Therefore, there is a non-zero
vector ζ ∈ V ⊥ such that χ(ζ, V ⊥) = 0, i.e.,

〈
F,Ψζ(V ⊥)

〉
= 0.

Let us show that the subspace V̂ = Rζ + V (⊂ m1) is singular with
respect to Ψ. Note that

〈
F,Ψζ(a + m2)

〉
= 0 (see Proposition 12 (3b)).

Then, since m = a + m2 + V + V ⊥ and Ψζ(V ) ⊂ RB, it follows that
〈
F,Ψζ(m)

〉
=

〈
F,Ψζ(a + m2) + Ψζ(V ) + Ψζ(V ⊥)

〉

⊂ 0 + 〈F,RB〉+ 0 = 0.
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Hence, we have
〈
F,Ψaζ+η(m)

〉
= 0 for any a ∈ R and η ∈ V . Consequently,

Ψaζ+η(m) 6= N , which implies that aζ+η ∈ V̂ is singular with respect to Ψ.
¤

Now, we assume that dim V = 2 and denote by V̂ be the singular
subspace stated in the above lemma. Let Â and B̂ be the vectors obtained
by applying Proposition 12 to the pair of singular subspaces U and V̂ . Then,
by Proposition 12 (2) we can easily see that Â = A and B̂ = B. Therefore,
we know that all the statements in Proposition 12 and hence the arguments
developed after Proposition 12 are also true if we simply replace V by V̂ .
Accordingly, without loss of generality we can assume that dimV ≥ 3.

Lemma 18
〈
Ψ(Y0, Y0),B

〉
=(µ, µ){1+(µ, µ)/C}(Y0, Y0), ∀Y0 ∈ a+m2.

Proof. As in the proof of Lemma 16, we can prove that C 6= 3(µ, µ). Let
Y0 ∈ a + m2 (Y0 6= 0). Take ξ ∈ U (ξ 6= 0) such that (ξ, Y0) = 0, which
is possible because dim U ≥ 2. Then, by Proposition 3 (2) it follows that
L(ξ, Y0) = −L(Y0, ξ) and that the map L(ξ, Y0) gives an isomorphism of m1

onto itself. Now, take η ∈ V (η 6= 0) such that L(ξ, Y0)η ∈ V . This is also
possible because dim L(ξ, Y0)V = dim V ≥ 3 and dim(V ∩ L(ξ, Y0)V ) ≥ 2.
(Note that dim m1 = 4.) Then, by Proposition 15 and Proposition 12 (2b)
we have

0 = |ΘY0,ξ(η)|2
=

[〈
Ψ(Y0, Y0),B

〉− (µ, µ){1 + (µ, µ)/C}(Y0, Y0)
]
(η, η).

Since (η, η) 6= 0, we get the lemma. ¤

Lemma 19 C = (µ, µ), i.e., 〈A,B〉 = 2(µ, µ).

Proof. Take ξ ∈ U (ξ 6= 0). Then, by Lemma 18 and Ψ(ξ, ξ) = (ξ, ξ)A
(see Proposition 12 (2a)), we have 〈A,B〉 = (µ, µ){1 + (µ, µ)/C}. Since
C = 〈A,B〉 − (µ, µ), we easily have C2 = (µ, µ)2. Moreover, since C > 0
(see Proposition 14 (2)), it follows that C = (µ, µ), i.e., 〈A,B〉 = 2(µ, µ).

¤

Now, we show

Lemma 20 (1) Ψ(Y0, Y
′
0) = (Y0, Y

′
0)A, ∀Y0, Y ′

0 ∈ a + m2.
(2) Ψ(Y1, Y

′
1) = (Y1, Y

′
1)B, ∀Y1, Y ′

1 ∈ m1.

Proof. On account of an elementary fact concerning symmetric bilinear
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forms, we have only to show Ψ(Y0, Y0) = (Y0, Y0)A and Ψ(Y1, Y1) =
(Y1, Y1)B for any Y0 ∈ a + m2 and Y1 ∈ m1.

Let Y0 ∈ a + m2. Then, by Lemma 18 and Lemma 19 we have〈
Ψ(Y0, Y0),B

〉
= 〈A,B〉(Y0, Y0). Moreover, by Proposition 12 (1) and (5a)

we have
〈
Ψ(Y0, Y0),A

〉
= 〈A,A〉(Y0, Y0). Since Ψ(Y0, Y0) ∈ RA + RB

(see (4.3)), it follows that Ψ(Y0, Y0) = (Y0, Y0)A, which proves (1).
We next prove (2). Let Y1 ∈ m1 (Y1 6= 0). Take elements ξ ∈ U (ξ 6= 0)

and η ∈ V (η 6= 0) such that (η, Y1) = 0. Set Y0 =
[
Y1,

[
ξ, η

]]
. Then, it is

easy to see that
[
ξ, η

] ∈ k1 and Y0 ∈ a + m2 (see (2.1)). Further, we have
(ξ, Y0) = 0 and L(ξ, Y0)Y1 ∈ V , because

(ξ, Y0) =
(
ξ,

[
Y1,

[
ξ, η

]])
= −([

ξ,
[
ξ, η

]]
, Y1

)

= (µ, µ)(ξ, ξ)(η, Y1) = 0,

L(ξ, Y0)Y1 =
[
ξ,

[[
Y1,

[
ξ, η

]]
, Y1

]]
= (µ, µ)(Y1, Y1)

[
ξ,

[
ξ, η

]]

= −(µ, µ)2(ξ, ξ)(Y1, Y1)η ∈ V

(see (2.2) and (2.4)). Thus, by Proposition 15 (2), Lemma 19 and
Ψ(Y0, Y0) = (Y0, Y0)A (see (1)), we have

0 = |ΘY0,ξ(Y1)|2 =
[〈

A,Ψ(Y1, Y1)
〉−2(µ, µ)(Y1, Y1)

]
(Y0, Y0).

Here, we note that Y0 6= 0, because L(ξ, Y0)Y1 6= 0. Hence, by the above
equality and Lemma 19, we have

〈
Ψ(Y1, Y1),A

〉
= 〈B,A〉(Y1, Y1). On

the other hand, by Proposition 12 (1) and (5b) we have
〈
Ψ(Y1, Y1),B

〉
=

〈B,B〉(Y1, Y1). Consequently, it follows that Ψ(Y1, Y1) = (Y1, Y1)B, because
Ψ(Y1, Y1) ∈ RA + RB (see (4.4)). This proves (2). ¤

We are now in a final position of the proof of Theorem 6. Let Y0 ∈
a + m2 (Y0 6= 0). Then, by Lemma 20 (1) we have Ker(ΨY0) ⊃ {Y ′

0 ∈
a + m2 | (Y0, Y

′
0) = 0}. This shows dimKer(ΨY0) ≥ 3 and hence Y0 is

singular with respect to Ψ (see Proposition 9 (1)). Accordingly, a + m2 is
a singular subspace. Similarly, by Lemma 20 (2) we can show that m1 is
also a singular subspace.

Now, let us put into Proposition 12 U = a + m2 and V = m1. Then,
by Lemma 20 we know that the vectors A and B are not altered by this
change of singular subspaces. Therefore, all the statements in Proposition 12
and the arguments developed after Proposition 12 are also true under our
setting U = a + m2 and V = m1. Consequently, by Proposition 12 (1),
(2), (3) and Lemma 19 we get the assertion (1) of Theorem 6. We also
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obtain by Proposition 14 and C = (µ, µ) (see Lemma 19) the assertion (3)
of Theorem 6.

Finally, we prove the assertion (2) of Theorem 6. Let Y2 ∈ m2 and
Y1 ∈ m1. Then, since C 6= 3(µ, µ) and (µ, Y2) = 0, we have

ΘY2,µ(Y1) = ΨY2(Y1)+
1

(µ, µ)2
Ψµ(L(µ, Y2)Y1) = 0

(see Proposition 15). Here we note that the conditions µ ∈ U and
L(µ, Y2)Y1 ∈ V in Proposition 15 have no significance, because U = a + m2

and V = m1. Accordingly, we obtain the assertion (2). This completes the
proof of Theorem 6. ¤
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