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First order extensions of holomorphic foliations
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Abstract. Let S be a subvariety of a complex manifold M. Let F be a holomorphic
foliation on S and £ a coherent sheaf on 5. We give a definition of first order tangency
extension of F to M with respect to £ and prove that, under some suitable hypotheses,
the existence of extensions give rise to localization of certain characteristic classes on S.
This point of view includes both the classical Camacho-Sad index theorem, variation and
the newer indices theorems for holomorphic self-maps along fixed points sets.
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Introduction

The theory of holomorphic foliations has been studied since the time of
Poincaré [16] and Dulac [9]. One of the main question was that of the
existence of separatrices through a singular point for a (germ of) one-
dimensional foliation in C2. It has been known since the early years of
the past century that “generically” the answer is affirmative. But a final
positive answer was obtained only in 1982 by Camacho and Sad [8] who
exploited an “index theorem” to reduce the non-generic cases to a known
ones. The work of Camacho and Sad gave rise to many studies on those “in-
dices (or residues) theorems”. After preliminary works of Lins Neto [15] and
Suwa [18], a general comprehension of this phenomenon, together with gen-
eral principles, is, at least in the opinion of the author, due to Lehmann and
Suwa (see, e.g., [12], [13], [14] and [19]) who understood that the Camacho-
Sad index theorem and its further generalizations were essentially examples
of localizations of characteristic classes of a particular vector bundle due to
the existence of a so-called “holomorphic action” on such a bundle outside
some closed subsets.
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Referring the reader to [19] or to section 3 for a precise definition of holo-
morphic actions, here we content ourselves to state more precisely Camacho-
Sad’s type theorems in terms of the Lehmann-Suwa theory. Let M be a
complex manifold of dimension n and S C M a submanifold of dimension
m. Suppose F is a holomorphic foliation on M of dimension r for which S
is invariant. Then, outside the singular locus of F (see section 1), F holo-
morphically acts on the normal bundle Ng of S in M, and there exists a
“special connection” for Ng so that, as a consequence of the Bott vanishing
theorem (see section 3), the associated characteristic forms of degree greater
than 2(m — r) vanish on such an open subset of S. The Cech-de Rham co-
homology allows then to localize the characteristic classes of Ng of degree
greater than 2(m — r) near the singular locus of F. If S is compact the
Poincaré and Alexander dualities give then the corresponding localization
at homology level, that is, the residues theorem (see section 4). A similar
localization, called variation, is done for the virtual bundle TM|s — F (see
(19]).

If the foliation F were defined only on S one indeed could interpret
residues theorems as obstructions to the existence of an extension of F to
a foliation of M (or at least of an open neighborhood of S in M).

On the other hand, in recent works on discrete holomorphic dynamics
by Abate, Tovena and the author (see [1], [6], [5] and [2]) it turned out that
a Camacho-Sad type theorem holds (generically) even when S C M is the
fixed points set of a holomorphic self-map f of M. In such a case indeed it
is possible to define a natural holomorphic one-dimensional foliation on S
and from this a holomorphic action on Ng outside some “singular points”
of f and then apply the Lehmann-Suwa machinery to produce residues
theorems (which, as in the foliations case, can be used to get information
about the dynamics of f near S). However we remark that the natural
holomorphic foliation on S coming from f is not extendable to M, and thus
the holomorphic action is not coming from a holomorphic foliation of M
having S invariant, but only from a sort of “first order extension” of such a
foliation.

In the present paper, using the sheaves language, we propose a general
framework which in particular encompasses the Camacho-Sad and variation
type theorems coming both from holomorphic foliations and from holomor-
phic mappings. In other terms the idea we try to formalize and generalize
in here is that a holomorphic action on the normal bundle of a submanifold
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S of M is only determined by its first jet extension along the tangential
directions to S.

To be more precise, let ©g be the holomorphic tangent sheaf of S and
let £ C BOg be a coherent subsheaf. Given a foliation F of S we define a first
order tangency extension with respect to £ to be a family of local extensions
of F in M which glue together in a suitable way, that is, in such a way
that two different extensions of the same element coincide up to order two
in the “normal directions” to £ (see Definition 2.5). Assume F and & are
locally free and let F, E be the associated bundle. If F is compatible with
F—which is always the case if F is involutive and F C E, (see Definition
3.2)—and F has a first order tangency extension with respect to &£, then
there is a natural holomorphic action of F' on TM|s/E (see Theorem 3.3).
Thus one has localization of characteristic classes, that is residues theorems.
The case S is singular (but satisfies some generic suitable hypothesis) is also
included in the theory.

Aside the already cited examples of first order tangency extensions pro-
vided by restrictions of ambient foliations and by holomorphic self-maps of
the ambient, our picture includes the case S is foliated by a foliation &
whose leaves are themselves foliated by another foliation F coming from
the restriction of an ambient foliation (see Corollary 3.5).

The plan of the paper is the following. In the first section we recall
the basics about foliations. In the second section we do some commutative
algebra in order to obtain a natural definition of “first order tangency with
respect to some sheaf” and extensions and provide some examples. In sec-
tion 3 we discuss holomorphic actions and show how a first order tangency
extension with respect to a compatible subbundle gives one. In the last sec-
tion we recall briefly the Lehmann-Suwa theory and determine the residues
theorem for our setting.

1. Holomorphic foliations basics

Let M be a connected complex manifold of dimension n. As a matter
of notations, C*° will denote the sheaf of C* functions on M and Op; the
sheaf of holomorphic functions on M. For a bundle £ on M, we indicate
by C°(FE) the sheaf of C'*° sections of £ on M, while we reserve the italic
symbol & to the sheaf of holomorphic sections of E.

Let O3 denote the sheaf of germs of holomorphic vector fields on M,
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that is the sheaf of holomorphic sections of the holomorphic vector bundle
TM of M. Let F be a coherent subsheaf of ©;. We say that F is involutive
if [Fp, Fp] C Fp for any p € M. Let @ = Oy /F be the quotient sheaf. Let

Sing(F) = {p € M : Qp is not Oy, p-free}.

Definition 1.1 We call an involutive coherent subsheaf 7 C ©p; a (sin-
gular) holomorphic foliation of M. The dimension of F, denoted by dim F,
is the rank of F, for some (and hence any) p € M \ Sing(F). The closed
complex subvariety Sing(F) C M is called the singular locus of F.

Remark 1.2 1. In [3] a foliation F is required also to be full, i.e., if for
any open set U C M and section s € I'(©y, U) such that s, € F,, for any
p € U\ Sing(F) it follows that actually s € I'(F, U). A foliation (defined as
we did) which is full is sometimes called reduced. There is a canonical way
to reduce a non-reduced foliation ([3], [17]). Note also that if a coherent
subsheaf F C Oy is full and involutive on M \ Sing(F) then it is actually
a foliation.

2. If Qpis Oy p-free so is Fp. On the contrary Fp might be Oy p-free
while @, might not (for instance consider the foliation F on M generated
by a single holomorphic vector field v. Then F is Ops-free but @ is not
Ops-free on the zero set of v.)

3. At eachp € M the foliation F naturally defines a C-vector subspace
F,of T,M. It is easy to see that dimg Fp, = dim F if and only if p ¢ Sing(F).
Therefore F' = Upepnsing(7) Fp 1s a vector subbundle of TM on M\ Sing(F),
whose associated sheaf of holomorphic sections is F. Thus a nonsingular
foliation is exactly an involutive distribution of T'M.

4. Let (z1, ..., z,) be local coordinates near p € M and assume F is
generated there by X1, ..., Xs. Then X; = >/ a;0/0z for some aj; €
Oun. Let A = (aj). By the previous remark it follows that p € Sing(F) if
and only if rank A(p) < dim F.

Let S C M be an m~-dimensional globally irreducible complex subvariety
of M. Let Zg C Oy denote the sheaf of germs of holomorphic functions
identically vanishing on S. Thus

0—>Zg— Opy — Og—0 (1.1)

is an exact sequence of sheaves. One can define the sheaf ©g of germs of
holomorphic vector fields on S as follows. Let 257 be the sheaf of germs of
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holomorphic 1-forms on M. One first defines the sheaf Qg of holomorphic
forms on S by means of the following exact sequence of Og-modules:

Ts/T% — Qu ® Og — Qg — 0,

where Ig/Ig 3 [f] = df®l € Qu®0Os. Applying the functor Home, (-, Og)
to the previous exact sequence and denoting by ©g = Home4(Qs, Og) and
Ns = Home, (Zs/Z%, Os) we have the exact sequence

0—0Bg— Oy 0 — Ng.

If S = S\ Sing(S) then Ogl|ss is the sheaf of germs of sections of the
holomorphic tangent vector bundle T'S’. Similarly Mg coincides on S’ with
the sheaf of sections of the normal bundle Ng: = TM|g: /TS’

Definition 1.3 We say that a coherent subsheaf F C ©g is a foliation of
S if F is a holomorphic foliation of S’ = S\ Sing(.9).

As we shall see, the behavior of F on Sing(S) is not important and for
our aim one could define the foliation only on the nonsingular part of .S.

2. First order tangency extensions of foliations

Let § € M be a complex subvariety of M of dimension m < n and
codimension £ =n —m. Let S’ =5\ Sing(S). Let

w: Op = Oy ®o, O — Op ®0,, Os,

wrv=vQ01l—v®Il.

Note that w is a surjective morphism of Oys-modules but @3 ®p,, Os has
a natural structure of Og-module. As an Og-module on S’ one can regard
Onm ®o,, Os as the sheaf of holomorphic sections of the restriction of the
holomorphic tangent bundle TM to S.

One can also think of ©g¢ as an Ops-module with the restriction of
scalars coming from the surjection Oy — Og. Let £ be a coherent Og-
submodule of ©g of rank s < m (possibly £ = ©g). We have the following
diagram of Ops-modules with exact rows and columns:
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0 —— Ou®0o, I3 —— Ou R0y Is ¥, Om ®0,, Zs/Tz —— 0

|

0
(2.1)
We start with the following lemma.
Lemma 2.1 The following morphism of Opr-modules
Oum ®0y, Is/Te — Om ®0,, Ls/TE ®0,, Os, 2.2)

velf] » velflel
s an isomorphism.

Proof. Let T := O Qo,, Is/Z%. Apply the functor 7 ®p,, - to the exact
sequence (1.1). Thus we obtain the following exact sequence

T®(9M Ig L T®@M Om ——E——> T®@M O —— 0. (2-3)

Hence B is an isomorphism if and only if Im A = 0. Denote by Y : Tg —
Om.- Letw=vQ[f]|®g € Op Qo,, Ig/I% ®0,; Zs. Then

Alw) =v@[fl®Y(g) =v®[gfl®1=0,
and Im A = 0 has wanted. O
By Lemma 2.1 we can well define the following Oys-morphism:
X% 1 € ®0y, Ls/T2 — Oy Qo,, Is/T2. (2.4)
The map x¢ is given by composing the map (7 is given by (2.1))
Y®id: € ®o,, Is/I2 — (On R0, Os) ®0,, Ls/Iz, (2.5)

with the inverse of the isomorphism given by Lemma 2.1.
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Proposition 2.2 If S is locally complete intersection then the morphism
(2.4) is injective.

Proof. We have only to show that the map (2.5) is injective. If A, B are
Os-modules and we indicate by A’, B’ the Op;-modules defined by A, B by
restriction of scalars then (as Op-modules)

(A®os B) =~ A ®0,, B

Since S is locally complete intersection then Zg /I% is locally Og-free. Thus
we have the following commuting diagram of Ops-modules with exact rows
and columns:

O R0y Og Rog Is/Igw — O Rou Og ROy Is/l%
1 o
5 ®OS IS/I% pe—— 5 ®01\/1 IS/I% (26)
0
Therefore x¢ is injective. O

Definition 2.3 Let v € ©y;. We say that v is tangentially vanishing at
the first order with respect to € if w(v) =0 and, if w € Oy ®o,, Zs is the
(only) element such that j(w) = v, then

¥(w) € X° (€ ®o,, Ts/Z5),
where @, j and ¢ are defined in (2.1) and X is defined in (2.4).

Remark 2.4 Letp € 5" and let {21, ..., 2, } be local coordinates centered
at p such that S' = {zp+1 =+ = 2, = 0}. Assume that X1, ..., X; € Og
generate € near p and let X; = > 712 a;;0/0z;. Let v € Op,p. Then v
is tangentially vanishing at the first order with respect to £ if and only if
there exist @i, fi, gk € Op,1=1,...,t,j=1,...,m, k=1,...,nsuch
that a;;|s = as, fi € Is, g; € Igw and

) "9

v= D, filigs D g

i=1,...,t J =1 v
=1 m

Now let F C Og be a dimension r foliation of S. Let {U,} be a covering
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of S made of open subsets of M. For any « let G, C Opsly, be an involutive
subsheaf of O restricted to U,. Thus we have the following commuting
diagram of Oys-modules with exact rows and columns:

Lo

0 —— Ga — Owmlu,
wal lw
Ga ®0,, Os —2— Oulu, ®o, Os (2.7)
| |
0 0

Note that x, is not injective in general.

Definition 2.5 We say that {Uy, G, } is a first order tangency extension
of F with respect to £ if

1. ka(Ga ®0, Os) = Flu,ns for any a.

2. Let p € Uy NUgNS. If fo € Go,p and fg € Gp, are such that

w(talfa)) = w(ta(fs)) then wa(fo) — 1p(fs) is tangentially vanishing
at the first order with respect to £.

Remark 2.6 1. We remark explicitly that condition (2) must hold also
for a = .
2. Assumep € SNU,. Let v € F, and let ¥ € G, such that w(1e (7)) =

v. In the sequel we refer to such a ¥ as an extension of v and sometimes we
simply write 9|g = v.

Let p € 5" and let {z1, ..., z,} be local coordinates centered at p such
that S' = {zm+1 = -+ = 2, = 0}. Assume that X1, ..., X; € Og generate
Eatp Let X; = Z;nzl aija/azj, with Q35 € Og. Let EL,-J- € Our be such
that &ijIS = a;; and set Xz = Zdija/azj'. Let v = Z;E—_l hjﬁ/azj € F for
h; € Og. Then condition (1) means that there exist o and 9 € G, given by
o =31, M8/dz with hj € Op such that

hj(Z1,...,Zm, O,...,O)Ehj(Zl,...,zm), jzl,...,m

. ‘ (2.8)
hj(z1, ..oy 2m, 0, ..., 00 =0, j=m+1,...,n.

Also, for any other extension @ € Gg of v (possibly o = () it follows that

t n
- . 5 0
V— W= E ale—l-E bla—zl
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with a(z1, ..., 2m, 0, ..., 0)=0for I =1, ..., ¢t and

7l 7l
bi(z1, - vy 2n) = Z bigzizr for 1=1,...,n, by € Op.
m+1<j, k<n

Before providing some examples of first order tangency extension, we
state the following simple fact.

Proposition 2.7 Let M be a complez manifold and S C M a subvariety.
Let £ C & C Og be two coherent Og-submodules of ©g. If F C Og is a
holomorphic foliation of S which has a first order tangency extension with
respect to £ then it has also a first order tangency extension with respect to
£

Proposition 2.7 means in particular that each time a foliation F of S
has a first order tangency extension with respect to some submodule of ©g
then it has indeed a first order tangency extension with respect to Og.

If S is an invariant set of a holomorphic foliation F on M then the
foliation F|g of S defined as the image of F ®0,, Os into Og, is a foliation
in §. Tt is not obvious—and indeed it is not true in general-—that extension
is the inverse operation of restriction. That is to say F|s might not have F
as a first order tangency extension with respect to F|g (or with respect to
Og) as the following example shows.

Example 2.8 Consider the foliation F of M = C® with coordinates
(21, 22, z3) generated by X1 = 210/0z1 and Xg = 3/0z. Let S = {z; = 0}.
Then S is invariant by F and Flg is generated (on Og) by X5. However
Xo has the following two extensions in F: v; = X5 and vp = X7 + Xo.
But v; — v2 € O comes from 8/021 ® z1 € Op ®o,, Ls and thus projects
to 8/0z1 ® [z1] € Om ®o,, Zs/Z. Since the image of F|s ® Ig/I% into
Om ®oyy, Ig/l'g is generated by 0/0z2 ® [z1] then F is not a first order
tangency extension of F|g with respect to F|g or with respect to ©g. Note
however that S = Sing F, and the foliation on M generated by 9/9zy pro-
vides a first order tangency extension of F|g with respect to F|g and with
respect to Og.

The problem with the previous example is that the map F ®o,, O —
Om ®o,, Os is not injective on Sing(F). However when F is locally free
everything works. Indeed we have
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Proposition 2.9 Let F C Opr be a holomorphic foliation of M. Let S C
M be a complex subvariety of M which is invariant by F. Let F|g be the
image of F ®a,, Og into Og. Let S° := S\ Sing(F). Then F is a first
order tangency extension of F|go with respect to Fgo.

Proof. On SY the sheaf F is locally Oy;-free. Let
0 A—-B—-C—-0

be an exact sequence of Ojs-modules on S°. Suppose F Qo B = On®o,,
B is injective. Thus we have the following commuting diagram (on S°):

0 0
0 Y Foo, ¢ — Oy 0, C
Oﬁ%f(X)OMA—%@M@@MA NA 0
5 T(s)
0 0 0

Here N4 (and similarly Np) is defined to be the quotient of the modules
on the same row. The exactness of the diagram is clear except, maybe, at
points (1), (2), (3) and (4). Exactness at point (1) comes from being F an
Opr-free and thus Ops-flat module. From this and from a simple diagram
chasing, exactness at point (2) follows. Once we have this, we can define a
natural injective map at (3) and using this, another diagram chasing gives
exactness at point (4).

Now let A =Zg, B= Oy and C = Og. The previous argument shows
that

0— F®o0,ZLs — Oum Q0 Is (2.10)
and

0= F®0uy Os = Op ®0,, Os (2.11)
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are exact. In particular by (2.10) we can repeat the argument of (2.9) for
A= Ig, B=ZIgand C = IS/Ig to get the exact sequence

0 — F ®0,, Is/Z§ — Om ®0,, Ls/TE. (2.12)

Thusifv € Fissuchthat v®@1=0in O, ® Ogthenv®1 =0in FQ Og
by (2.11). Therefore there exists w ® f € F ® Zg which lifts v ® 1. Thanks
to (2.12) it follows that v ® [f] € F ® Tg/T% C Op ® Is/T%. Therefore any
two extensions of the same element of F|g differ by an element which is in
]:®IS/I§. Arguing as in Lemma, 2.1 it follows that .7-“®IS/I§ ~ FR0Os®
Zs/T% = F|s ®ZIs/T% and thus the difference of two extensions of the same
element of F|g is tangentially vanishing at the first order with respect to
Fls. O

Example 2.10 If S has codimension one in M and it is the fixed points
set of a holomorphic self-map f of M which is tangential (or nondegenerate)
to S or if S is comfortably embedded into M (see [2], [5]) then it is possible
to define a natural one-dimensional foliation on S which has a natural first
order tangency extension (but not a true extension) with respect to ©g and
(in some cases) with respect to F on S’. For the reader convenience we
briefly sketch here such a construction. Let p € S. First for H € Oy, we
define T,(H) := max{l € N: Ho f — H € Zj}. Then we define v¢(p) =
min{T,(H): H € O, p}. If S is globally irreducible (as we suppose), then
vf(p) is independent of p € S and we simply denote it by v¢. Then on each
local chart {U, (21, ..., z»)} we consider the (local) section

n
Jj=

0
[zjof—2]® 92 € (Zs/Z%)®" Q04 (O ®0,, Os),
. j

where [z; o f — z;] is the class of zj 0 f — z; in I;f/Ing ~ (Zs/T%)®s.
It turns out that those local sections glue together to form a global sec-
tion Xy of (Zg/I2)® @0y (Om ®o,, Os). We say that f is tangential (or
nondegenerate in the terminology of [1], [6], [7]) if actually Xy is a section
of (Zs/Z%)®"f ®0vs Og (note that being Tg/I2 a rank one Og-free mod-
ule there is a natural injection of (Z5/Z%)®"f ®og Og into (Ts/I2)®"f ®o,
(Om ®0,, Og)). Also, if f is non-tangential but S satisfies some cohomo-
logical condition (for instance if S is the zero section of a line bundle M
on S) then there are natural projections from (Zs/Z%)®" ®og (Om Qo,,
Os) to (Zs/T2)®"f ®oy Os and still one can consider X as a section of
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(Is /Ig)‘g”’f ®0gOs. In the latter case we say that S is comfortably embedded
into M (see [2]). Now, since Zg/Z2 is Og-free, there is a natural injective
morphism from (Zs/Z2)®"f @040 s to Homeg (Homeg (Zs/I2)8",0s),05s).

Thus if f is tangential or .S is comfortably embedded into M one has a
natural one dimensional foliation F of S given by the image of the morphism
from N?Vf = Homog((Zs/Z%)®"*, Og) to ©g induced by Xs. There is a
first order tangency extension of F with respect to Og restricted to the
nonsingular part S’ = S\ Sing(S). For instance, in case f is tangential and
{Uq, (21, ..., zn)} is alocal coordinates system such that S'NU = {z, = 0}
we let G, be the sheaf of Op-modules generated by 3" (20 f —2;)/2: 8/0z;.
Then one can show that {U,, G} is a first order tangency extension of F
with respect to ©g. Similarly for the case S is comfortably embedded (see
[2]). Moreover in case v¢ > 1, S is comfortably embedded and f is tangential
there is a first order tangency extension of F with respect to F itself (see
Theorem 5.3 in [2]).

3. Holomorphic actions for first order tangency extensions

Let M be an n-dimensional complex manifold and let TM be its holo-
morphic tangent bundle. First we recall the definition of holomorphic action
(see, e.g., [19], p. 75).

Definition 3.1 Let I be an involutive subbundle of TM. A holomorphic
action of F' on a holomorphic vector bundle L over M is a C-bilinear map
0: C®(F) x C*®(L) — C°°(L) such that

L. 0([u, v], s) = 0(u, 8(v, s)) — 0(v, O(u, s)) for u, v € C®(F) and s €

Cee(L);

2. O(hu, s) = h8(u, s) for h € C®, u € C®(F) and s € C*®(L);
O(u, hs) = h8(u, s) +u(h)s for h € C*°, uw € C*®(F) and s € C=°(L);
4. O(u,s) € L forue Fand s € L.

b

Holomorphic actions were introduced by Bott [4] in case of a holomor-
phic vector field. We need another definition:

Definition 3.2 Let S be a complex manifold. Let L, FF C TS be two
vector bundles. We say that L is compatible with F if [L, F] C L.

Note that T'S' is compatible with any of its subbundle and each involu-
tive bundle is compatible with itself. Moreover generally if L is involutive
and F C L then L is compatible with F.



Extensions of foliations 485

Theorem 3.3 Let M be an n-dimensional complex manifold and S C M a
(nonsingular) submanifold of dimension m < n. Let F be an r-dimensional
nonsingular holomorphic foliation on S and let ' C T'S be the associated
subbundle. Let L C TS be o subbundle compatible with F and let L be
the sheaf of its holomorphic sections. If F admits o first order tangency
extension with respect to L then there exists a holomorphic action of F' on
Ny :=TM|g/L.

Proof. We want to define a holomorphic action 6: C®(F) x C*®(Nr) —
C*®(NL). Since F @pg C*® = C®(F'), it is enough to define 8 for v € F and
s € C*°(Npr). Let 4 € G, be an extension of u for some « (see Definition
2.5). Let § € C*°(TM) be such that w(3|s) = s, where n: TM|s — Ny, is
the canonical projection. Define

0(u, s) = n([a, 3lls),

where the Lie bracket |-, -] has obviously to be thought of in ©s. First we
show that 6 is well defined, that is, it is independent of the extensions § and
% chosen. Let § € C*°(Ny) be such that n(§'|s) = s. Since u|s € F and
(§—3")|s € C*(L), and since [L, F| C L, it follows that |4, §—35]|s € C*(L)
and thus it goes to 0 once applying «, hence 0 is independent of §. As for
the independence from the extension @, let 4’ be another such an extension
for u. By definition @ — @' =3 g;v; + Y hjw; with gj|s = 0 and v; € Oy
such that v;|s € £, and h; € T2 and w; € Oy Thus

[a -, 3] |g= [Z 975 + 2 by, 5} s

— <Z 5(g5)v; + Zg(hj)wj> L
== 8(g) |5 vs [g€ C=(L).

Applying 7 even this term goes to zero and thus € is well defined.

It is straightforward to see that 6 satisfies properties (2) to (4) of Defi-
nition 3.1. As for property (1), let u, v € F and let @, ¥ be local extensions
of u and v respectively, belonging to the same G,. Since this latter is invo-
lutive by hypothesis, it is easy to see that [i, 0] € G, (Lie bracket made in
©nr) is a local extension of [u, v] (where this time the Lie bracket as to be
thought in ©g). Therefore by the Jacobi identity
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0(u, 0(v,)) = ([[@ 9), 8]|s) = n([a, [&, &]]Is) — = ([5, [a, &]|s)-
Now
0(u, 0(v, 5)) = 8(u, (5, 3]|s)) = = (@, Bls),

where w € C*°(T'M) is any vector field such that m(@|s) = 7([#, 3]|s). Since
we can certainly take W = [0, 5], and similarly we can argue for 6(v, (u, s)),
it follows that even property (4) is satisfied. O

Remark 3.4 1. Incase L =TS we call the holomorphic action given by
Theorem 3.3 a Camacho-Sad action for the first example of such an action
in the case n = 2, m = 1 and F is the restriction of a holomorphic foliation
on M, is due to Camacho and Sad [8].

2. In case L = F we call the holomorphic action given by Theorem
3.3 a Lehmann-Suwa action (see [14] and [11]).

3. The bundle L in Theorem 3.3 needs not to be involutive.

Aside the previous examples, a new typical setting where Theorem 3.3
applies is provided by the following situation.

Corollary 3.5 Let M be a complex manifold of dimension n. Let S C M
be a submanifold of dimension m < n. Assume that L C Og is a nonsingular
Joliation of dimension s of S. Let F C Oy be a nonsingular foliation of
M of dimension r < s leaving invariant the leaves of L, i.e., Fls C L. Let
L, F C TS denote the bundle associated to L and F|g respectively. Then
there exists a holomorphic action of F' on Ny, :=TM]|g/L.

Proof. The bundle L is compatible with F. Moreover, since F|g has a
first order tangency extension with respect to F|g (see Proposition 2.9)
and F|g C L then, by Proposition 2.7, Theorem 3.3 applies and one has a
holomorphic action of F' on TM|g/L. O

4. Residues Theorems

Existence of holomorphic actions on a holomorphic bundle are ob-
structed by characteristic classes. Indeed we have

Theorem 4.1 (Bott vanishing theorem) Let S be a complez manifold of
dimension m. Let F' C T'S be an involutive subbundle of rank r. Suppose
that ' holomorphically acts on the holomorphic subbundle L C T'S. Then
there exists a connection V for L such that for any homogeneous symmetric
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polynomial @ of degree d > m — r it follows
¢(V) =0.
In particular any characteristic class of L of degree > m — r is zero.

For the reader convenience we sketch here a proof of this result and
refer to [19], p. 76, or [3] for details.

Proof of Theorem 4.1. Let §: C®(F) x C*°(L) — C*®(L) denote the holo-
morphic action of F on L. Welet C® TS = F @ F' @ T%1S for some C®
complement F’ of F. Then we define the connection V for L such that:

Vs =0(v, s) forveC®(F), se&C>®(L),
Vs = 0ps for v € C®(T1S), seC®(L).

Thus from property (1) in Definition 3.1 and by the very definition of V it
follows that if K is the curvature of V then K(z, y) = 0 whenever either
z,y € CP(F),orz € C®(F), y € C®(T*'8) or z, y € C®(T%1S). There-
fore in a basis which respects the decomposition C ® T'S* = F* @ F'* @
(T918)* it follows that the matrix of K is made of forms which belong to
the ideal generated by the basis of F'*, from which the result follows. O

Now we recall briefly the general Lehmann-Suwa philosophy for local-
ization of characteristic classes (see, e.g., [19]). Assume S is a subvariety of
dimension m of the complex n-dimensional manifold M. Suppose W is a
C* complex vector bundle on M. Let S° be an open subset of S\ Sing(S)
and assume W = VT/] g0 is holomorphic. Moreover suppose that for some
reason (like existence of holomorphic actions) there exists a connection V
for W on SY such that ¢(V) = 0 for any homogeneous symmetric polyno-
mial of a given degree d. Then we denote by Uy a tubular neighborhood
of SO in M. Also we denote by Uy a regular neighborhood of ¥ := S\ S°
(we are assuming such a regular neighborhood does exist, which is always
the case if X is an analytic set, as in our setting). For the forthcoming
considerations we may assume without loss of generality that Us U U; is a
regular neighborhood of S in M. Let Vg be the pull back to U of V. Let
V1 be any connection for W on U. Let ¢ be a homogenoeus symmetric
polynomial of degree d. Let ¢(Vp, V1) denote the Bott difference form of
©(Vo), ©(V1) relative to the covering Uy, Ui. The cocycle

(¢(Vo), ©(V1), ©(Vo, V1))
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represents in the Cech-de Rham cohomology relative to {Up, U1} the class
e(W) € H*(S, C). Since ¢(Vy) = 0 it follows that actually the cocy-
cle represents a class in the relative cohomology H?¢(S, S\ £, C) which
we indicate by p(W, ). If ¥ is compact, the Alexander homomorphism
A: H*(S, S\ 2, C) = Ham—24(%, C) (see, e.g., [19], V1.4) sends (W, %)
to a “residual class”

ReS(W7 E) = A(QD(W’ E)) € H2m—2d(2a C)

Now, let ¥ = UX) be the decomposition in connected components of ¥
and let iy: Hy (X, C) — H,(S, C) be the morphism coming from the in-
clusion ) — S. if S is compact then by the Poincaré homomorphism
P: H*(S,C) — Ham—«(S, C) we have the following “residue theorem” in
Hap_24(S, C):

> ixRes(W, £5) = [S] N p(W).
A

In case W is a C§z-module such that W ®e,, O is locally free on S°, one
can argue similarly as before, considering a finite resolution of W ®p,, Am
(where Ajy is the sheaf of real analytic functions on M) made of real analytic
locally free sheaves (see [3] or [19], p. 184).

Now we go back to our situation. Let F C ©g be a holomorphic foliation
of S of dimension . Let £ C ©g be a coherent sheaf and denote by

Sing(L) = {p € S\ Sing(S) : Og,p/Lp is not locally Og ,-free}.
Moreover let
(S, F, L) = Sing(S) U Sing(F) U Sing(L),

and UyXy = 2(S,F, L) be the connected components decomposition. Let
F, L ¢ TS° be the holomorphic bundle associated respectively to F and £
on 5% Assume the following:
(a) L is compatible with F' and F has a first order tangency extension
with respect to £ on S°.
(b) There exists a Cg3-module Q such that Q®p,, Os = (O ®0,, Os)/L,
where j: Q RO Og — Op ROy Og.
The previous recalled Lehmann-Suwa theory gives us:

Theorem 4.2 Let ¢ be a homogeneous symmetric polynomial of degree
d > m—r. In the above situation, for any X\ such that ¥ is compact, there
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exists a residue Resy(F, QX)) € Hom—24(Ey, C) determined only by the
local behavior of the first order tangency extension of F near Xy.

If moreover S is compact then

> “iaResy(F, ;55) =[S Np(Q) in Hym-2a(S, C).
A

Some final remarks are in order.
The previous condition (b) means that the sheaf © 3 ® Og/L has some
relation with the ambient M. Actually one needs only an extension
of TM|g — L to M in the K-theory. In particular if S is nonsingular
and L is locally free on S then one can take @ to be the C*°-sheaf of
sections of the pull back of TM|g/L to a tubular neighborhood of S.
In the singular cases the existence of Q depends on £. For instance
if £ is the restriction to S of an ambient foliation than @ naturally
exists. If £L = Og then Q exists in case S is a so-called strongly locally
complete intersection (see [13]).
As remarked several times at various places of the paper, the existence
of a foliation F extending to the first order tangency which acts on
L needs only to have a vanishing of certain forms on S°. Therefore
Theorem 4.2 would apply even if F were defined only outside Sing(S)U
Sing(L).
The explicit calculation of residues is a very important and usually
very involved part of a useful residue theorem. However, we do not
pursue this task here, and refer the reader to [19], [13], [2] for effective
calculations. With regard to the previous comment we only remark
that if F does not exist on Sing(S)USing(L) than it could be impossible
(or at least, not yet done) to calculate explicitly the residue.
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