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Univalent functions with missing Taylor coefficients
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Abstract. For n > 2, let U(\) denote the class of all analytic functions f in the unit
disc A of the form

F(2) =2+ ap4r2™F 4

satisfying the condition

2

£ _1 <) zeA.

f(2)
In this paper, among other results, we find condition on A so that each function in U(A)
is starlike, strongly starlike or convex of some order. In addition, we discuss the mapping

()

properties of the integral operator

c z [
e = 25 [ e >0
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1. Introduction

Let M denote the class of all functions f analytic in the unit disc A =
{z:|z| < 1}. For n > 1, a positive integer, let

e )
An = {f eEH: f(z) =2+ Zan+kz”+k}
k=1
with A; = A, where A is referred to as the normalized analytic functions
in the unit disc. A function f € A is called starlike in A if f(A) is starlike
with respect to the origin. The class of all starlike functions is denoted by
§* =87(0). For a < 1, we define

S*(a) = {f € A: Re<zJ{;S)> >aq, z€ A}

and is called the class of all starlike functions of order c. Clearly, S*(a) C
S*for0<a< 1. For0< a<1,afunction f € A is called strongly starlike
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of order « if

we(2)| <2, sea

We denote by S, the set of all strongly starlike functions of order « and
it is a well-known fact that each function f € S, is not only starlike but
bounded for each a € (0, 1). Clearly, S; = S*. These classes of functions
are investigated by several authors [D, G|. A function f € A is said to be
convex of order «, denoted by K(a) (a < 1), if and only if zf'(z) € S*(«a).
Thus, the correspondence between the families K(a) and §*(a) is given by

o= [ Ma ges@,

which is actually referred to as Alexander transform. Now, for 0 < o < 1
and 0 < v < 1, we introduce the following subclasses for our investigation:

s;:{fes*(a): zﬁg)q <l-a, zeA},
ICaz{feIC(a): z]{//;,(;) <1-a, zEA},
R, = {fedilaes (<G seal
and for A > 0,
L{(A):{feA: f’(z)<ﬁ>2—1‘<)\, zeA},

f(z)#£0 for =ze A\{0}.
The following result is well-known [ON, OP, OPSV]:

UN) C S

whenever 0 < A < 1 and we note that functions in U(\) for A > 1 need
not be univalent in A. The typical elements of /(1) is the Koebe function
z/(1 — 2)? and the function z/(1 — 22). Further, it is also known that if
f € U(N) with f”(0) = 0 then f € S* whenever 0 < A < 1/4/2. A number
of problems has been discussed in [PV] for functions in U/ (\) of the form
f(2) = z+azz®+---. In view of these inclusions, it is natural to look for the
counterparts of these results for those functions f in 2/(\) with () (0) = 0
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for k=2, 3, ..., n(n > 2) rather than assuming just the condition f”(0) =
0. The aim of this paper is to fill this gap.

Let us start discussing certain basic properties of the functions f € U(\)
of the form

f(2)=z+apng1 2"+, n>2

As f € U(N), we can write

=1+ Aw(z) (1.1)
with w € B, where
lw(z)] <1 and
B,=<cweH: .
w®(0)=0 for k=0,1,2,...,n—1

By the Schwarz lemma, we have |w(z)| < |z|*. By (1.1), it is a simple
exercise to see that

z Law(tz)
—— =1- . 2
Rt AA ) at (1.2)
As |lw(z)| < |2|™, by (1.2), it follows that
z A z|™
and
A z|™ z A z|™
— < — | < _ . .
1 n—l_Re<f(z)>_1+n—1’ z€A (1.4)

e By (1.2), we note that the equality holds in each of the last two in-
equalities (1.3) and (1.4) for the function

&) =T m=)

e By (1.3), it follows that

nfm—1
A

z

/(z)

e{w:|lw-1] <1} for |z]|<
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and thus,

z wfn—=1
Re(W) >0 for |Z| < h\

In particular, for 0 < A <n — 1, we have

Re<i>>0 for z € A.

f(2)
On the other hand, (1.3) is equivalent to
flz) (n— 1) Alzl"/(n — 1)
z (=12 =X T - (N (n— 1))

which implies that

f(z) 1 n—1
> A.
Re( z _1+)\]z[”/(n—1)>n—1+/\’ Z€

In this paper, we address the following

1.5. Problems (1) Find conditions on A so that functions in U()) be-
longs to $*(a), Sk, Sa, K(a) or Ra.
(2) Find conditions on A so that the integral operator defined by

1@ =25 [ frg e e>o

carries the class U()) into S, K{a) or Kq.

In these two problems, we consider only those functions f € U()A) such
that f®)(0)=0for k=2, ...,n (n>2).
2. Inclusion results for U(A)

2.1. Theorem If f(2) = z + apnt12™™L + - belongs to U(N) for some
n > 2, then f € §*(a) whenever 0 < A < Ma, n), where

(n—-1)y/(1-2a)[(n—-1)2+1-2a] | 1
(n—1)2+1-2a if Osasity

(n—-1)(1-a) . 1
n+a-—1 if n+1<a<1'

Ma,n)=
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Proof. Suppose that f(z) = 2z + an112™™ + -+ € U()X). Then, by the
representations (1.1) and (1.2), we see that

zf’() 1+/\w()
f(2) Y 28

and therefore,
_1_<zf’(z) _a> _lHw(z)/1-a)+ (e (1-a) fy U5 dt
1—o f(z) 1_)\f1wtz dt ’

We need to show that f € S*(a). To do this, according to a well-known
result [R] and the last equation, it suffices to show that

1+ Aw(z)/(1 — a) (eM/(1—a)) [ 22 gy
)\fl w tz) dt

#4 —iT, TeR,

‘which is equivalent to

\ w(z) + (e —i(l —a) )flw(tz
(1—o)(14:T)

];é—l, T eR.

If we let

w(z) + (o —i(1 - a)T) [ U gt
(1—a)(1+4T)

M= sup
2€A, weB,, TER

then, in view of the rotation invariance property of the space 5, we obtain
that

Re<2]{;i§)>>a if AM <1.

This observation shows that it suffices to find M. First we notice that

1++/a2+(1—a)2T?/(n—1)
MS%%{ (1-a)V1+T? }

Define ¢: [0, co0) — R by

n—1++/a?+(1-a)3z

o) = T VT s
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Differentiating ¢ with respect to x, we get
1
(n—1)(1-a)(1+x)

— (1—a)? n—1+4++/a?+(1-a?)z
1+:c<2 a2+(1—a)2m)—< 2v1+z )}

¢'(z)=

X

z€|0, 0o).

Case (i). Let 0 < & <1/(n-+1). Then we see that ¢ has its only critical
point in the positive real line at

NG —1a>2 Kln_—zféy ‘“2]'

Further, we easily observe that ¢'(z) > 0 for 0 < z < zp and ¢'(z) < 0 for
x > xg. Therefore, ¢(z) attains its maximum at zo and hence,

¢(z) < ¢(zo)
(n—1)%+1-2a

T (-1/O-2a)[n-12+1- 20 for >0 (23)

Case (ii). Let @ > 1/(n+ 1) We can easily observe that.

Px)<0<e=1-2a<(n—1)/a?+(1—-a)2z, for z>0.

This observation shows that ¢/(z) < 0 for all z > 0 whenever 1 — 2a <
a(n — 1). Therefore, if @ > 1/(n+ 1), ¢ is decreasing on [0, co) and hence,

n—1+a«a
< = —  f 11 > 0. 2.4
¢(z) < ¢(0) TR orall z>0 (2.4)
The required conclusion follows from (2.3) and (2.4). O

The case n = 2 of Theorem 2.1 has been obtained by Ponnusamy and
Vasundhra in [PV].

2.5. Corollary Let n > 2 be fized and f(2) = z + 12"+ e U).
Then, we have

(i) fe8* whenever 0 <A< (n—1)/y/(n—1)2+1.
(i) feS*(1/2) whenever 0 <A< (n—1)/(2n—1).

Notice that in the first case, the upper bound on A is increasing to 1 as
n — oo and in the second case, the corresponding bound on A is increasing
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to 1/2 as n — oo.

2.6. Theorem Let v € (0,1] and n > 2 be fized. Let f(z) = z +
ans12™ 4 e UN),

(n —1)sin(my/2)
\/n? — 4(n — 1) sin®(my/4)
and A% (v, n) be the largest positive A > 0 satisfying the equation

\/1—/\2sin% - 2<L> 1— (-/\—)2+>\COSW—;.

n—1 n—1

Ny, n) =

Then
iy feUN)=feS8S for 0<AZN(y,n).
(i) feUN)=FfeR, for 0<A<AR(y,n).

Proof. Suppose that f(2) = z+ap112" " +--- € U(N) for some X € (0, 1]
and n > 2. Then, by the definition of /(\), we have

‘(%)2]”(2) - 1’ <) zEA, (2.7)
and, by (1.3),

%Z)— ’ 2‘i|71<ni1, zeA. (2.8)
Therefore, it follows that

arg<}%>2 F(2)| < arcsin())
and

ol <oen()
Now

, 2
(05 sl ) 70 + e ()

A
00 :
<arcsin(A) + arcsm(n — 1),
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which shows that

Zf/(2)> ’ ™y
arg| ——* || < — for A€ {0, A*(n, v)|,
()| <3 (0, X7n, )
whenever A\*(n, ) is the solution of the equation
. . Ty
A =—. 2.
arcsin(\) + arcsm(n — 1) 5 (2.9)
Simplifying (2.9) gives
sin(my/2)

A(n, v) =

\/(n/(n - 1))2 — (4/(n—1)) sin2(7rfy/4)‘

For the proof of the second part, we estimate

o) o n(2)

A
<arcsin A + 2 arcsin ( >
n—1

| arg f(2)|< +

so that f € R, if and only if the right hand side of the previous equation
equals 7y/2. This observation implies that

' ‘ )y A \2? ™
arcsin(\) 4 arcsin (2 <_n _ 1) 1= (n — 1) ) T2

and the required result follows from simplifying this equation. 0

3. Integral Transforms

In [PSV], Ponnusamy, Singh and Vasundhra introduced and studied the
following integral transform in detail:

TN =P =51 [ fosde, e>0 (3.1)

In [PSV], the authors found condition on Ag = Ao(]f”(0)|/2, e, ¢) so that,
for 0 < A < Ag, f € U(N) belong to Sk, K, and K(a), respectively. In this
section, we address the same problem but now for functions f € U()) of the
form
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where n > 2 is fixed.

3.2. Theorem Let f(2) = z+app12" 14 € U(N)
n>2 Forc>0and a <1, let F be defined by (3.
whenever ¢ and A are related by

(1-a)n+c)(n—-1)
0<As c(n+1-—a) '

for some A > 0 and
1). Then, F € S

(3.3)

Proof. Assume that f(2) = z+anc12" 1 +--- € U()\). Then, it is a simple
exercise to show that F' = I(f) defined by (3.1) satisfies the second order
differential equation

2(1 - %) @ + @ - 1> F(z) - %zF”(z)

2
z
= — ) fl(z) =1+ w(z 3.4
(45) 7 © (3.4
where w € B,. It follows that
F(z) cA Law(tz)(1 —eet?)
7_1—C+1/ - dt (3.5)
and
A tw(tz)
Flz)=1- - / 1— et 1 4 et dt. :
(2) cr1), & (1=t 4+ 14" )dt (3.6)

Using (3.5) and (3.6), we compute

F(z) | __ (Ml 1)) fy 2 (1 4 ety dt
F(z) - 1—(0/\/c+1)flwtz —tet)dt

and therefore, as |w(z)| < |z|",

‘zF’(z) ~ 1’ (M (e+1) fy t” 2 1+ctc+1)dt
F(z) 1— (eA/(c+1)) fy tn=2(1 — tot1) dt
_ (cA/(c+1))[1/(n—1) +c/(c+n)]
1= (eM(e+ D) [1/(n—1) —1/(c+n)]
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<l—¢q, by (3.3).
This completes the proof. O

3.8. Corollary Suppose that f(z) = z + any12™ + - € U(N) for some
A such that 0 < A < (n+c)(n—1)/[e(n+1)] and n > 2. Then F defined
by (3.1) satisfies the condition

2F'(2)

-1 1.

s
For ¢ = 1, Corollary 3.8 shows that if f(z) = 2+ ap+12" ™+ € U(N),
then
z

¢ ‘
——d¢ € S,

A 1) ’

whenever 0 < A <n — 1.

3.9. Theorem Let f(z) = z+ anp12" '+ €U\ forn > 2, a < 1
and ¢ > 0. Then F defined by (3.1) is in K(a) for 0 < A < Ao = Ao(c, n,y @),
where
( (c+n)(n—-1)(1—0)

cn+1)(n+1l—-a)

(1—a)(n—1)(c+n)
c[2t8_1—|—(1—a)(n+1)+(n—1)(n+c)]
for 2<cL2(2—-q)
(1—a)(n—1)(c+n)
c[2t37F +2(3—2a)t7 +2¢(n—1) + (n+ 1)a+n? —dn—1]
for ¢>2(2—a)

for 0<e<2

Ao=

where

_ 2 et (20420 -a) \YE
t“‘(c<c—1>> and “‘([c—zu—an(c—l)) '

Proof. From the differential equation (3.4) and the representation (3.6),
we can easily see that

2F"(2) . cA [l wlte) (2+c(1 —o)tet) dt + cAw(z)

14+ —1_cildo (310
F'(2) 1— 2 el o (1 - cjettyde (310)
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Recall that F' is convex of order « if and only if

zF"(2) ‘
1+W7éa—z(1—a)’f, T eR. (3.11)

From (3.10), we observe that (3.11) is equivalent to

A L (i
Cil [(1_a)}1+iT)/o g )(2+c(1_c)tc+1)dt

lw z z
+/0 g )(2— (1—c)tc+1)dt} + a _Ci)uéim £ 1

which can be rewritten as
cA
2(c+1)(1-«a)

[(F) [ e ca-oena

1 z
+/O wiz )[2+4(1“Oé)+(0—2(1_a))(1_c)tc+1] dt

cAw(z)
(1—a)(1+4T)
By the triangle inequality and |w(z)| < |z|™, the left hand side is bounded
by

£1.

cA

m[h + I+ 2(c+1)]

where

1
I1:/ t”_2|2—|—c(1—c)tc+1[dt,
0

I = /01 " 722(1 4 2(1 — ) + (e —2(1 — @)) (1 — )t dt.

These observations show that (3.11) holds whenever

cA
(I —-a)lc+1) [

We compute these integrals and show that the hypotheses imply that (3.12)

L+L+2c+1)] <1 (3.12)
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holds. To do this, we first notice that, for 0 < ¢ < 2,
2+c(l =)ttt >t (2 —¢)(c+ 1)
and

2(14+2(1 —a)) + (¢ —2(1 — @) (1 — c)tet?
>t (c+1)(2(2 - @) — 0.

Case (i). If 0 < ¢ < 2, then both the integrands are nonnegative and
therefore, evaluating the integrals in (3.12), we get the required result.
Case (ii). If 2(2 — @) > ¢ > 2, then we see that 2 + c(1 — ¢)t°*! takes
negative and positive value in the interval [0, 1] and it has only one positive
real root at

o 9 1/(c+1)
"7 ele—1) '

Now I + I3 becomes
to
/ 722 4 (1 — )t ] dt
0

1
_/ tn—2 [2+C(1 _c)tc-i—l] dt
11

N /1 772[2(1 4 2(1 — ) + (c — 2(1 — a))(1 — )t°+] dt.
0

Notice that the integrand in the second integral is nonnegative here. By

evaluating these integrals we get the required result from the inequality

(3.12).

Case (iii). Finally, for ¢ > 2(2 — a), we see that the function

2(14+2(1—a)) + (c—2(1 — a)) (1 — )t

changes its sign once in the interval [0, 1] and has positive real root at
214201 —a)) M)

(c=2(1-a))(c—1)

Therefore, the sum Iy + I» equals

t1 =

I —I+I,—1IY
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where

I{:/to 77224 (1 — )t ] dt
O1

1= / 7224 (1 — )t ] de

Igz/t1 " 221+ 2(1 —a)) + (¢ —2(1 — @) (1 — c)tt!] dt
0

Ij= /1 "22(14+2(1 — @) + (e —2(1 — ) (1 — ¢)tH] dt.
t1

Again, evaluating these integrals we get the required result from the in-
equality (3.12). O

8.13. Theorem Letn > 2 and A > 0 be fized. Let f(2) = z+apy12" 1 +

-eU(N), a<1andc>0. Then F defined by (3.1) satisfies the condition
2F"(2)
F'(z)

<l—-a«o

for 0 < XA < A1 = M, ¢, n), where Ay is given by

(n—=1(1—-a)c+mn)

cn+1)(n+1-aq)
(1-a)c+m)(n—1)

for 0<ec<2

A=

clatg™ + 2c+n—1)(n—1) - (n+ 1)a] for ¢>2
Here ty is defined as in Theorem 3.9.
Proof. Recall (3.10)
) 2Ly wiéz) (2+c(1 - )tc+1)dt+c>\w(z)
Fz) R 2N —o)terlydt

Then, since |w(z)| < |z|? for z € A, we have

= fO e 2|2+c( )tc+1|dt+c)\
S22 — (1 - c)terl)dt

2F" ()
F'(z)

c+1
Writing
k() =2+ c(l — )ttt = 2(1 — oY) + 5712 — ) (1 + ¢)
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we observe that k(t) > 0 for all ¢ € [0, 1] whenever 0 < ¢ < 2. Note that
k(t) is a decreasing function of ¢ for ¢ > 2 and the only positive root t; in
the interval (0, 1) is given by

. 9 1/(c+1)
0~ clc—1) '

Therefore, for 0 < ¢ < 2, it is easy to see that

[(2=c)n+(c+1)
(n—1)(n+c)

1
I=/ =29 4 (1 — )+ dt =
0
and for ¢ > 2, we write

to 1
I= / t772(2 4 c(1 — o)t°tY) dt — / t"2(2 + (1 — o)t dt,
0 t

0

so that, by a simple computation, we get

c+1
S N B— Y S
I= et ~@-an—d
Therefore, we have
2F" ()
Filz) <l—-«a
where
n(n + 1)cA .
f <2
1 n—D(n+o)—c\nt 1) i U<es
—a= _ n—1 _ . _
A (n—1)(n+c) +4t] (2-cn—c $ o> 9
(n—1){n+c)—cA(n+1)
which gives A1 (e, n, c). O
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