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Extrinsic upper bounds for the first eigenvalue
of elliptic operators
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Abstract. We consider operators defined on a Riemannian manifold M™ by Ly(u) =
—div(TVu) where T is a positive definite symmetric (1, 1)-tensor such that div(T) =
0. We give an upper bound for the first nonzero eigenvalue Ay 7 of Lz in terms of
the second fundamental form of an immersion ¢ of M™ into a Riemannian manifold of
sectional curvature bounded above by §. We apply these results to a particular family of
operators defined on hypersurfaces of the space forms and we prove a stability result.
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1. Introduction

Let (M™, g) be a compact, connected m-dimensional Riemannian ma-
nifold. In this paper, we are interested in extrinsic upper bounds for the first
nonzero eigenvalue of elliptic operators defined on (M™, g) (i.e. in terms of
the second fundamental form of an isometric immersion of (M™, g) into
an n-dimensional Riemannian manifold (N™, h)). The elliptic second order
differential operators Ly, which we are interested in, are of the form

Lyu = —divy (TVMu), ue C®(M),

where T is a (1, 1)-tensor on M (which will be divergence-free and symmet-
ric), and divys and VM denote respectively the divergence and the gradient
with respect to the metric g. In the sequel, we will denote by A1 7, the first
nonzero eigenvalue of such operator L.

When T is the identity, L = Liq is nothing but the Laplace operator of
(M™, g). In this case, it is well known that if (M™, g) is isometrically im-
mersed in the simply connected space form N™(c¢) (¢ =0, 1, —1 respectively
for the Euclidean space R”, the sphere S or the hyperbolic space H"), then
we have the following estimate of A\; = A; 14 in terms of the square of the
length of the mean curvature
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MV(M)<m [ (JH+¢) dvg, (1)
M
where dvy and V(M) denote respectively the Riemannian volume element
and the volume of (M™, g) and where H denotes the mean curvature vec-
tor of the immersion of (M™, g) into N™(c). Furthermore, equality holds
in (1) if and only if (M™, g) is immersed as a minimal submanifold of some
geodesic hypersphere of N™(¢). For ¢ = 0, this inequality was proved by
Reilly ([17]) and can easily be extended to the spherical case ¢ = 1 by consid-
ering the canonical embedding of S” in R*! and by applying the inequality
(1) for ¢ = 0 to the obtained immersion of (M™, g) in R®*!. For immersions
of (M™, g) in the hyperbolic space H"”, Heintze ([14]) first proved an L
equivalent of (1) and conjectured (1) which was finally obtained by El Soufi
and Ilias ([9]). Note that, the estimates shown in ([14]) and ([9]) are given
for immersions of (M™, g) in a space which is not necessarily of constant
~ sectional curvature.
Later, these estimates were extended to more general operators called
L, (0 < r < n) defined on hypersurfaces (M™, g) of N™*1(c). Let us first
define these operators. Let ¢ be an isometric immersion of (M™, g) into
N™*1(¢) and denote by A its shape (or Weingarten) operator. For any
integer r € {0, ..., n}, the (1, 1)-tensors T, of Newton are defined induc-
tively by: Top = Id and T;. = S, Id —AT,_1, where S, is the r-th elementary
symmetric function of the eigenvalues of A (i.e. the principal curvatures).
Note that 7T, is a divergence free tensor because the ambient space is of
constant curvature (see for instance [19]). The r-th mean curvature of ¢ is
given by H, = (1/(?)) Sy. Now, the operator L, is defined by L, = L,
which is the linearized operator of the first variation of Sp41 ([18]). It is
important for us to know when L, is elliptic. Walter proved in [21] that
if Hyr41 > 0 and if the immersion ¢ is convex (i.e. the second fundamen-
tal form is semi-definite), then 7, is positively definite (i.e. L, is elliptic).
This result was strengthened by Barbosa and Colares ([6]). They proved
without any convexity assumption that if H,.; > 0 and if, in the case ¢ =
1, (M) is contained in a hemisphere, then L, is elliptic. For simplicity
the first nonzero eigenvalue of L, will be denoted Aq,, (instead of A1 7).
The first extension of the Reilly inequality (1) to such operators L, was
obtained by Alencar, do Carmo and Rosenberg ([4] and [5]). They proved
that, if (M™, g) is an m-dimensional compact immersed hypersurface of the
Euclidean space R™*! and if H,41 > 0, then
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A“/ Hydvg < (m—r)(" /H,?+1dvg,
Y ) Jm

and equality holds if and only if (M™, g) is a geodesic sphere of R™*1, In
our paper [12] (Theorem 1.1, see also [11]), we obtained a similar optimal
upper bound for A; , of hypersurfaces of any space form N™l(c). We
proved for all 0 < r < m — 2, that if H.y; > 0 and if ¢ is convex (i.e. the
second fundamental form is semi-definite) then

H? H?
A V(M) <(m-—r) <T:> /M __TH;_# dvg, (2)
T

and equality holds if and only if ¢ immerses M as a geodesic sphere of
Nm+1 ( C).

Our approach to obtain such estimates was a generalization of the con-
formal technique used by El Soufi and Ilias and in this approach the con-
vexity assumption was essential to obtain the estimate (2). Nevertheless, it
is natural to ask if such estimates still valid without the convexity assump-
tion. In this paper, to answer this purpose, we use a different approach
inspired by the method of Heintze ([14]). In fact, an Lo, estimate similar
to (2) will be a consequence of an estimate (Theorem 1) obtained in a more
general setting: for the operators L defined above and for ambient spaces
not necessarly of constant sectional curvature.

Before stating the results, we need to define the following normal vector
field Hp. If ¢ is an isometric immersion of (M™, g) in (N™, h) and B is its
second fundamental form, then we define Hr at a point z € M, by

Hr(z) = ZB(Tei, €i)s
i=1

where (e;)1<i<m is an orthonormal basis of the tangent space to M at x.
The main result of our paper is

Theorem 1 Let (M™, g) be a compact, connected, m-dimensional Rie-
manmnian manifold (m > 2) and let ¢ be an isometric immersion of (M™, g)
in an n-dimensional complete Riemannian manifold (N™, h) of sectional
curvature bounded above by 8. If § < 0, we assume that (N™, h) is simply
connected, and if 6 > 0, we assume that ¢(M) is contained in a convex
ball of radius less than or equal to w/4\/6. Let T be a (1, 1)-tensor on M
which is divergence-free and symmetric and let Ly be the associated elliptic
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operator defined on (M™, g) as above. Then, we have

A o < SUPar [HT|* + supy 6(tr(T))?
LT = inf s tr(T) ’

and if equality holds, then ¢(M) is contained in a geodesic sphere.

When (N™, h) is a simply connected space form and 7' = T, we deduce
from this Theorem an estimate of A; , without the convexity assumption.
In fact, we have

Corollary 1 Let (M™, g) be a compact, connected, orientable m-dimen-
sional Riemannian manifold (m > 2), immersed in a simply connected space
form (N™*L(c), h) (¢ =0, =1, +1). Assume, if c = 1, that ¢(M) is con-
tained in a ball of radius w/4. If Hr4q1 > 0 forr € {0, ..., m—1}, then we
have

3

m)\ supy; HZ 1 + supy (cH?)
7 inf s Hy

A,r < (m—r)(

and equality holds if and only if (M) is a geodesic sphere.

This last corollary has just been obtained independently by Alencar, do
Carmo and Marques ([3]).

When |Hr| is constant, we show a different estimate which is usefull in
the proof of stability results; indeed, we have

Theorem 2 Let (M™, g) be a compact, connected, m-dimensional Rie-
mannian manifold (m > 2) and let ¢ be an isometric immersion of (M™, g)
in an n-dimensional complete Riemannian manifold (N™, h) of sectional
curvature bounded above by 6. If § < 0, we assume that (N™, h) is simply
connected, and if 6 > 0, we assume that ¢(M) is contained in a convex
ball of radius less than or equal to 7/4v/5. Let T be a (1, 1)-tensor on M
which is divergence-free and symmetric and let Lt be the associated elliptic
operator defined on (M™, g) as above. Then, we have

AT < S]‘&PUHTHH] + 6 tr(T)),
and if equality holds then ¢(M) is contained in a geodesic sphere. Here, H
is the classical mean curvature, i.e. H = (1/m)> i~ B(ei, €;).

As a consequence, we have
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Corollary 2 Let (M™, g) be a compact, connected, orientable m-dimen-
sional Riemannian manifold (m > 2), immersed in a space form (N™1(c),
h) (¢ =0, =1, +1). Assume that, if c = 1, ¢(M) is contained in a ball of
radius w/4. If forr € {0, ..., m — 1}, H,41 45 a positive constant, then we
have

A1, < sup <(m —7) (m> (Hr1Hi + CHT)) ,
M T

and equality holds if and only if (M) is a geodesic sphere.

This paper is organized as follows: the first part deals with the proofs
of these theorems and corollaries. In the second part, we give a theorem
(see Theorem 3) on the stability problem of hypersurfaces of constant r-th
mean curvature in a space form, which is a consequence of a generalization
of the Corollary 2 for Schrédinger operators of the form L, + q.

The results of this paper were announced in the note [13].

2. Proofs of the results

Let (M™, g) be a compact, connected m-dimensional Riemannian ma-
nifold isometrically immersed by ¢ in an n-dimensional Riemannian ma-~
nifold (N™, h) which sectional curvature is bounded by §. The manifold
M is endowed with a symmetric positive definite (1, 1)-tensor T of free
divergence. The associated operator Ly defined by Lr(u) = —div(TV¥u)
is self-adjoint and elliptic, and we denote by Ay, 7 its first nonzero eigenvalue.

Let po € N and exp,, the exponential map at this point. We consider
(#i)1<i<n the normal coordinates of N centered at pp and for all x € N,
we denote by 7(z) = d(po, =), the geodesic distance between py and z on
(N™, h). If § > 0, we assume that ¢(M) lies in a convex ball around pg of
radius less than or equal to 7/2v/3.

Let s5 and c¢s be the functions defined by

1
— sinor if 6>0
V5

ss(ry=«¢ r it §=0
sinh /[6]r if <0,

9]

and
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cos Vor if 6>0
cs(ry=+¢ 1 if 6=0
cosh+/|6]r if 6 <O.

We remark that c2 + §s2 = 1, s§ = c5 and c5 = —Jss.
In the sequel, we denote respectively by VM and V¥, the gradients
associated to (M™, g) and (N™, h). It is easy to see that the coordinates

of Z = s5(r)V¥r in the normal local frame are ((35(r)/7")a:i)1<i<n. Fur-

thermore, the tangential and normal projection of a vector field X on the
tangent bundle and the normal bundle to ¢(M) will be denoted by X* and
X™ respectively.

We recall now some facts and properties of the exponential map. Let
U,V €Ty,N and z € N. If we set X = exp, ' (z), then, we have

Z ha (VN 23, (d exppy ) x (U))

i<n

b (VNas, (dexpp,) (V) = hpo (U, V). (3)

On the other hand, exp,, is a radial isometry (Gauss lemma), that is, for
each z of NV, we have

hx((dexppo)X(X), (dexppo)X(U)) = hpo (X, U). (4)
First, we begin by proving some lemmas.
Lemma 1 For each z of M, we have

3o (o (20) 7 (£

1<i<n
<tx(T) — 6g.(TZ*, Z%), (5)
and equality holds if (N™, h) has constant sectional curvature §.

Proof. We compute the left hand side of (5). Since

vM <Mmz> = res(r) — ss(r) (VMp)z; + %T(T)VM:Q,

r r2

we have

B (82) (£
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2
(______7“05(7”)7; ss(7) xz) Ga (TVMT, VMT')
1

s Z res(r) — 35 r)s 57Er) 292 (TVMr, VM ;)

s2
+Z 5 TVMxZ,Vsz)
Using the fact that > v, 2;VM™z; = rVMr, we deduce

S (22) o (2£)

s2(r) —
= % > 0:(TVMa;, VM)
=1

r2 r2

i [t s, jres(r) - )., g s, w5,

After an easy computation and noting that Z¢ = s5(r)V*r, we obtain

B () ()

2

ng (TVMg;, VM)

(1 — (T)) go(TVMr, VMp) — §g,(TZ¢, 7). (6)

Since T is a positive symmetric (1, 1)-tensor, we can define a natural positive
symmetric (1, 1)-tensor v/T. Indeed, if (&;)1<i<m is an orthonormal basis
at z which diagonalizes T' in such a way that T' = diag(u1, ..., tm), then
VT is defined at z by VT = diag(y/Iys - - v/Hypy)-

Now let (e;)1<i<m be an orthonormal frame at x such that VTe, lies
in the direction of VM7 and let e, be a unit vector orthogonal to V7 such
that vTem = AVVr + pe?,. Then (6) becomes

S (222) o (22)
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= ZZ Noi, Tej)

2
1 50N o My O s, (T2, 2
r2

+

_ 33(7“) - zm:hm(vai’ \/Tej)Q

2

n .
5= > (he(VV @i, AVNT) + ho (VN @y, pel,))

?;}27“)) VTVMy2 — 6g,(TZ, Z°). (7)

+(1—5

Now, by setting v; = VTe; — h(v/Te;, VMr)VVr for all j < m — 1, we
rewrite the first term of the right hand side of (7) as

Ve, V/Te;)?

i=1 j=1
n m 2
(hw N, v;) + he (\/Tej,VMr)hx(VNmi, VNr))
=1 j=1
n m
o Na; UJ')Q
i=1 j=1
s3(r
+ ZZh (VTe;, VM) 2Ry (VN s, V)2

i=1 j=1

2%0) Z i ho(VTes, VMr)ha (VY mi, v))ha (VN5 V7). (8)

We compute each term of the right hand side of (8). Using the standard
Jacobi field estimates (cf. for instance, Corollary 2.8, p. 1563 of [20]), we
have, for all v orthogonal to VVr,

52 T
‘;(2) \(d(exp;(}))x (v>\; < |vl3, (9)

with equality if NV has a constant sectional curvature 6. Since v; is orthog-
onal to VNr (j =1, ..., m — 1), and by applying successively (3) and (9),



A Reilly type inequality 327

we obtain
‘;2 ZZh (VVz;i, v5)? = dexppO (vj) o
=1 j=1
m— m—1
Z 052 =" [VTe;2 - Zh (VTe;, VMr)2. (10)

Moreover, from (3) and (4), we have, for all v orthogonal to V/Vr,

hw(VNxz-, v)hm(Vin, VN')“)

ﬁ"Ma

1
oo ( (e, (0), (dexpyy), (V7))

hpo <(deXP;01)x (v), £>

r
= he(v, V¥ (r)) = 0. (11)
Hence, the last term of the right hand side of (8) vanishes identically. By

substituting (10) in (8), and noting that > &, he(VNz;, VV7)2 =1 by (3),
we find

83(27") Zn: ihw(vaw \/Tej)Q

82(7") m—1
< D IVTeils + ( T 1> ha(VTe;, VMr)?
i=1

s2(r) ml
= tr(T) — |[VTen|? + ( 573 — 1) he(VTej, VMr)2. (12)
j=1

Furthermore, from (9) and (11), we deduce that

) S (ha (W s, XTVP) + g (TN, picty))?
=1
)/\Zih 513 VNT')2+S(25(T) Zzn:h (vN . *)2
:v (2] 7"2 ,u‘ T xh em
=1 =1

< AQSJ—TLQ + 2, (13)
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Finally, by substituting (12) and (13) into (7), we get

S (220). v (2

=1

< t2(T) — |[VTen)?

s3(r) sy Moz 2550
=1

2

+ (1 - 3%?) 9:(VTVMr, e,)’

32 r m—1
+ (1 - %) > 9 (VTVMr, ) - 6g.(TZ", 2°)

i=1

2 253(7") 2

_ﬁﬁ M 2 _ t ot
+ (1 3 Ge(VTVMr, e)? — 69, (TZ¢, ZY).

Here we have

Ge(VTVMr, 1) = he(VTem, VVr) = A
and

N+ P = [VTenl3,

which yield the desired inequality, and if (N, h) is of constant sectional
curvature, all the inequalities above are in fact equalities. O

Now, we will prove

Lemma 2 For all symmetric divergence-free positive definite (1, 1)-ten-
sors T on M, we have

divy (TZ2Y) > (tx(T))es + h(Z, Hr),

and if T is the identity and (N™, h) has a constant sectional curvature equal
to 6, then equality holds.

Proof. We use the same local frame as in the proof of Lemma (1) and
we compute divy (T Z?) in this frame by using the fact that T is a free
divergence tensor (i.e., .5y (VMT)e; =0.)
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n
divy (T2%)=Y_ g.(VY(TZ"), &)

i=1
=> 0 ((VIT)Z, &)
i=1
n
= 9:(V¥ 2", Te;)
=1
n
= he(VZ, Te;)
=1
=> he(VEZ, Ter) — Y ho(VEZ", Te))
=1 1<i<m

i=1 1<i<m
= ho(VY 2, Tei) + hoZ, Hr). (14)
=1

Now, we want to estimate > | Ag (Vg Z, Tei). We first have

m

> he(VEZ, Te))

i=1

= > ho(VE(s5Vr), Te;)

m
= cshe (Y7, T(VN1)') + 55> ha(VEVVr, Tey)

i=1
= cshy (T(VNr)t, (VNr)t) + 85 Z hy (V%eiVNr, \/Tei) (15)
i=1
Using the standard Jacobi field estimates (see Lemma 2.9 p. 153 of [20]),

we can find a lower bound of the last term of (15). Indeed, we have for all
vector & orthogonal to VVr at z, the inequality

C,
ha(VE Ve, €) > s—imi,

and equality holds if NV has constant sectional curvature §. Thus, we have
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NgE

ha (Ve VT, VTe;)

%

I

1

m—1

:th vy VNT,\/Tei)—f—h(V\/— Nr,\/Tem)
i=1

m—1

%Z Z‘\/Tezlz + thw(Vé\;nVNr, e*m)

v

IV

S a2

and inserting this inequality into (15), we obtain

n m—1
th(ng, Tei) > 05‘\/T_(VNT)t]i + ¢ Z ‘\/Tez‘i + p2es. (16)
i=1

i=1
ANOW we have
(\/_em, VN) (\/—em, (V& 7"))
=hx(em, \/—(VNT‘) )
<[VT(vr)'[:

and if 7" is the identity, equality holds in this last inequality. Furthermore,
it is easy to verify that

N4t = I\/Tem]i.
Thus, inequality (15) becomes

m—1

Zh (VY Z, Te;)>c50? + cs Z:lx/TeZ + nlcs
i=1 i=1
:tr(T)C5,

and inserting this last inequality into (14), we complete the proof of Lemma
2. U

Lemma 3 We have

6/ 9:(TZ¢, Z") d'ugz/ tr(T)cgdvg—/ |Hr|sscs dug.
M M M



A Reilly type inequality 331

Proof. If § # 0, then
5/ g(TZ, Zt)dvg=l/ g(TVM05(r), VMC5(7°)) dvg
M 6 Jm

1 . M

=—= | divy(TV"cs(r))cs(r) dug
6 Jm

=/ diVM(TZt)Cg;dUg
M

2/ cgtr(T)dvg—/ | Hr|sscs dvg,
M M

where the last inequality follows from Lemma 2. Moreover, if § = 0, then
cs(r) = 1 and we have

0= / div (T Z%)es dvg > / c3 tr(T) dvg — / | Hr|sscs dug.
M M M
This concludes the proof. [l

We are in position to give the proof of our results.

Proof of Theorem 1. Let po € N and r(z) = d(po, ), where r(z) is the
geodesic distance between pg and z. We will use (s5(r)/r)z; as test functions
in the variational characterization of A; 7 but the mean of these functions
must be zero. For this purpose, we use a standard argument used by Chavel
and Heintze ([14] and [8]). Indeed, let ¥ be a vector field defined by

S§ (d(Q> p))
From the fixed point theorem of Brouwer, there exists a point pg € N such
that Yp, = 0 and consequently, for a such pg, f[;,(ss(r)/r)zs dvy = 0. But
for § > 0, we must assume ¢(M) is contained in a ball of radius m/4+/3.
Indeed, in this case ¢(M) lies in a ball of center py (the point pg such that
Yp, = 0) with a radius less or equal to 7/2v/3 (this hypothesis is necessary
in the proof of the preceding Lemmas). It follows from the above and the
variational characterization of Ay 7, that

Al,T/ sg(r)dvg:)\l,T/ |Z|? dv,
M M

n 2
_ ss(r)
_Al,T/M; < " :171) dvg

Y, = expy " (p) dvg(p) € T,N, q € M,
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:/Mig <TVM <S5—7{7“—)m> , VM <¥xz>> dvg

and using Lemmas 1 and 3, we obtain

Al,T/ sgdvgg/ tr(T)dvg — 68 | g(TZ, Zt)dvg
M M M
S/ tr(T) dvg—/ tr(T)cgd'Ug—f—/ |Hr|sscs dvg
M M M
Sé/ tr(T)sgd'ug-l-sup]HTl/ sscs dvg
M M M
35/ tr(T)s2 do,
M

1
+ Sup | Hr| sup <t (T)> /M tr(1')sscs dug.

Furthermore, from Lemma 2, we deduce

/tr(T)55C5dvg§/ s§|HT\dvg+/ ssdivy (TZ") dug
M M M

- / s3|Hr| dvy + / divis(ssTZ) do,
M M
= [ o(VMss, 729,
M

:/ s2|Hr| dv, —/ csss9(VMr, TVMr) dy,
M M

Since ¢s and ss are positive functions (because for § > 0, ¢(M) C B(py,
7/2v/8)), we deduce that

/tr(T)s(gc(;dng/ s3|Hr| dvg,
M M

and if equality holds, then ¢(M) lies in a geodesic sphere. Finally, we have

)\1,T/ Sgdvggé/ tr(T")s3 dug 4 S0Py [T IHT|/ |Hr|s3 dvg
M M l'lfMtI'

supyy |Hr| / 2
< Ste(T — d
_<Szléfp( D)+ iﬂfM’Gr(T)> M Kk
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and this completes the proof of Theorem 1. ]

Proof of Theorem 2. We assume now that |Hyp| is constant. Then from
the first step of the preceding proof, it follows that

/\1,T/ sgd'ugg/ (§tr(T))s2 dvg—|—|HT|/ sscs dvg.
M M M

Now applying Lemma 2 to the identity, we get

/ div(Z")ss dvg >m (0535 + h(VNr, H)sg) dvg,
M M

and an easy computation gives

div(Z%)ss dv, = —/ sscs|VMr|2 du, <0,
M M

From this, we deduce

/35C5dvg§/ |H |52 dvg,
M M

thus
/\1,T/ sgdvgg/ (|Hr||H| + 6 tr(T))s3 dvy,
M M

which completes the proof. O

Proof of Corollaries 1 and 2. Let (M™, g) be a compact, connected and
orientable m-dimensional Riemannian manifold (m > 2) isometrically im-
mersed by ¢ in a simply connected space form N™*1(c) (¢ = 0,1 or —1
respectively for R™+1 §™+1 or H™*1) and let A be the Weingarten oper-
ator associated to the second fundamental form of the immersion. When
¢ < 0, assumptions of Theorems 1 and 2 are trivially verified. For ¢ =1, we
assume that ¢(M) lies in a ball of radius 7/4. Since H,41 > 0 with ¢(M)
contained in a hemisphere when ¢ = 1, then L, is elliptic ([6]). Finally,
under these hypotheses, the corollaries follow from the Theorems by apply-
ing them to the special (1, 1)-tensors 7, defined in the introduction and by
using the following relations: tr(Zy) = (m — r)(7")H, and tr(AT,) = (m —
P (7 Hrsn (7).

Furthermore, from Theorems, if inequalities expressed in corollaries are
equalities, then ¢(M) is a geodesic sphere. Conversely, if (M) is a geodesic
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variations F' and for a constant x,

/Xfmﬂ+%ﬁm@=a
M

Thus, M is a constant (r+ 1)-th mean curvature hypersurface if and only if,
¢ is a critical point of A,, with constant balance volume, and in this case,

A10) = [ (Lols)+ af) f o, (20)

where we put ¢ = k(r + 1)Hyq2 — m(k(r)/(r + 1)) H1Hy41 — ck(r)H,. We
give now definition for the stability of hypersurfaces with constant r-th
mean curvature H,y; following [4] and [6].

Definition 1 Let (M™, g) be an orientable compacte hypersurface of
(N™*1(c), h) with H,y; constant. Then (M™, g) is said to be H,1-stable
~ if A7(0) > 0 for all variations such that V(t) = 0.

From Theorem 2, we have the following theorem

Theorem 3 Let (M™, g) be an orientable compact Riemannian manifold
of dimension m > 2 and ¢ an isometric immersion of (M™, g) in H™*L,
Then, if Hyy1 is a nonnegative constant, then M is H,11-stable if and only
if (M) is a geodesic sphere.

Remark 2 Note that Alencar, do Carmo and Rosenberg have proved this
stability result for hypersurfaces of R™*! ([4] and [5]). Barbosa and Colares
extend it to hypersurfaces of H™+! and of an open hemisphere of S™*1, but
without using estimates of the eigenvalues of the second variation operator
([6]). In [11] and [12], we proved independently a stability result for convex
hypersurfaces of H™*! and S™*!, by using an upper bound of the second
eigenvalue of the second variation operator (of A4,).

Proof of Theorem 3. A straightforward computation shows that the geo-
desic spheres are H,,1-stable. In fact, such spheres are totally umbilical.
This implies that H, = H] and

b:(m_ﬁﬂm.

r

Variations (F}) for which V (¢) = 0 are the one satisfying that [, f dvg =0
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([6]). For such variations, we have from (20):
" _fm—= 1 r 2 2
A(0)= . H] . (fAf—m(Hl +of ) dvg

2<m_ 1>H{/M (M —m(le—i-c)) fZdvg =0,

T

where A1 denotes the first nonzero eigenvalue of the Laplacian. This proves
the stability of the geodesic spheres. Conversely, suppose that ¢ is Hpy1-
stable. This implies that A”(0) > 0 for all variations (F}) such that V() =
0, and from (20), we have

/ Lo+ 9)(f)f dvg > 0
M

for any smooth function f on M such that [, au J dvg = 0. Hence, by the
min-max principle, we deduce that

A2(Ly +q) 2 0,

and from the inequality (17) of the Remark 1, we have

>\2 (Lr + Q) / 'S<25 dvg
M

k
< / (k(r)HrHHl +k(r+1)Hpyo — m—-—(T) HlHr+1> sg dug,
M r+1

and consequently

k(r)
r+1

0<L / <k(’f‘)HT+1H1 -+ ]{:(T‘ + 1)HT+2 —-m HlHr+1) S% d’Ug.
M

Now, using the fact that H,,2 < HyH,11, with equality at umbilical points
([4]), we obtain

k(r
k(’T‘)HH_lHl + k(?” + 1)Hr+2 - mr _(*_)1H1Hr+1
k(r
< (k(r) +k(r+1) —m- i)l> HyHpy1,

and it is easy to verify that

k(r)+k(r+1)— mrk—(:)l =0.
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Thus finally, we get

/ (Hpyo — Hpy1Hy)s3 dvg =0,
M

hence M is totally umbilical and then it is a geodesic sphere. O
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Univalent functions with missing Taylor coefficients
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Abstract. For n > 2, let U(\) denote the class of all analytic functions f in the unit
disc A of the form

F(2) =2+ ap4r2™F 4

satisfying the condition

2

£ _1 <) zeA.

f(2)
In this paper, among other results, we find condition on A so that each function in U(A)
is starlike, strongly starlike or convex of some order. In addition, we discuss the mapping

()

properties of the integral operator

c z [
e = 25 [ e >0

Key words: Univalent, starlike and convex functions, and integral transform.

1. Introduction

Let M denote the class of all functions f analytic in the unit disc A =
{z:|z| < 1}. For n > 1, a positive integer, let

e )
An = {f eEH: f(z) =2+ Zan+kz”+k}
k=1
with A; = A, where A is referred to as the normalized analytic functions
in the unit disc. A function f € A is called starlike in A if f(A) is starlike
with respect to the origin. The class of all starlike functions is denoted by
§* =87(0). For a < 1, we define

S*(a) = {f € A: Re<zJ{;S)> >aq, z€ A}

and is called the class of all starlike functions of order c. Clearly, S*(a) C
S*for0<a< 1. For0< a<1,afunction f € A is called strongly starlike
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