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Randers spaces of constant flag curvature induced
by almost contact metric structures
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Abstract. We investigate the Randers space induced by an almost contact metric struc-
ture. We show that a connected almost contact Riemannian manifold of odd dimension
n > 3 whose automorphism group has maximum dimension induces a natural structure
of Randers space of constant flag curvature.
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Iptroduction

The study of metric spaces of constant sectional curvature is a fun-
damental problem in differential geometry. In Riemannian geometry this
problem leads to the Hopf classification theorem for Riemannian space forms
([BCS]).

If one tries to study Finsler spaces of constant flag curvature (the Fins-
lerian analog of the Riemannian space forms), then the problem is very
different from the Riemannian case. In the general Finslerian case, it is
very difficult to make a classification of Finsler spaces of constant flag cur-
vature ([Br], [BCS]).

However, in the case of a class of special Finsler spaces, namely Randers
spaces ([AIM], [Mal], [SS]), a classification theorem was given in 1977 by
H. Yasuda and H. Shimada ([YS]). The proof contains tremendous calcula-
tions, but the result is a very interesting one.

Yasuda-Shimada’s theorem has a long and complicated history. It
was initially proved by H. Yasuda and H. Shimada in 1977 ([YS]), and
by M. Matsumoto in 1989 ([Mal]). However, D. Bao and C. Robles had
shown last year that both proofs contain some errors and they gave new
necessary and sufficient conditions for a Randers space to be of constant
flag curvature [BR].

The first concrete examples of Randers space of constant flag curvature
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are the Finslerian Poincaré disk ([BCS]), and the 3-dimensional sphere S3
([BS]). See also ([BR]) for other examples generated using a method of
Z. Shen.

Bejancu and Farran have shown ([BF]) that a Sasakian space form
induces the structure of a Randers space of positive constant flag curvature
(an RCT space). The result of [BF] is true even though there is a missing
argument in their proof. Inspired by this result, we have investigated if there
are other almost contact structures that induce Randers spaces of constant
flag curvature. We have found out that a cosymplectic space form M(c) of
constant ¢-sectional curvature ¢ = 0 induces a natural structure of Randers
space of constant flag curvature K = 0 (actually, this is a locally Minkowski
space), and that a Kenmotsu space induces a structure of Randers space of
negative constant flag curvature, but this Randers space is not a positive
definite one.

In 1968, S. Tanno ([T]) gave a classification theorem (§2, Theorem 2.1)
of almost contact Riemannian space forms. Based on Tanno’s result we were
able to prove that some connected almost contact Riemannian manifold of
odd dimension n > 3 whose automorphism group has maximum dimension
induces a natural structure of Randers space of constant flag curvature with
curly; = 0 (see (1.7) for definition).

To be more precise here are our main results:

Theorem A Let M be a connected Riemannian manifold of dimension
n=2m+ 1 endowed with an almost contact metric structure (p,€,n,a).

(i) If M(c) be a cosymplectic space form of constant p-sectional cur-
vature ¢ = 0, then there ezists a Randers metric on M(c) of constant flag
curvature K = 0 (actually this is a locally Minkowski structure).

(ii) If M(c) be a Kenmotsu space form of constant w-sectional curva-
ture c, then there exists a Randers metric on M (c) of negative constant flag
curvature K = —%.

These Randers metrics are projectively flat.

From here it follows that on some special Riemannian manifolds there
exists always a natural structure of Randers space of constant flag curvature.

In [BF] it is shown that on any odd dimensional sphere S?™+1 m >
1, there is a natural structure of Randers space of positive constant flag
curvature.

Besides this, we prove:
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Theorem B (i) Let M be one of the global Riemannian products
TxCE™ LxCE™,

where CE™ s a complex Fuclidean space, T and L denote a circle and a
line, respectively. Then there exists on M a natural structure of Randers
space of zero constant flag curvature. In fact this structure is a locally
Minkowski one.

(i) Let M be the warped product space L xy CE™, where f(t) = cet.
Then on M there is a natural structure of Randers space of negative constant
flag curvature —;i—.

These theorems are interesting because they show the correspondence
between connected almost contact Riemannian manifolds of constant sec-
tional curvature and Randers space of constant flag curvature with curly; =
0.

Our paper is organized as follows. In §1 we recall the basics about
Randers spaces and the classification theorem for Randers space of constant
flag curvature by Yasuda and Shimada. In §2, we recall some results on
almost contact metric structures and in §3 we show how an almost contact
metric structure induces a Randers structure. This is the section where we
prove our main results.

1. Randers spaces of constant flag curvature

Let M be an n~-dimensional, real, differentiable manifold, and 7 : TM —
M the tangent bundle of M. We denote by u = (z,%%) the local coordi-
nates of a point u € TM induced from a covering {U, (z*)} by a system of
coordinate neighbourhoods on M.

A function F : TM — R is called a Finsler metric if it satisfies the
following conditions:

(1) F(z,y) >0 and F(z,y) =0 if and only if y = 0.

(2) F(z,y) is smooth on TM = TM \ {0}.

(3) F(z,ky) =kF(z,y) for Yk > 0.

(4) The fundamental tensor field

1 B2 F?
% 1= 3 oyoy

is positive definite.
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In his Ph.D. Thesis, Paul Finsler used these conditions, but further
development of physics shows that for the most important physical appli-
cations these assumptions are too restrictive ({I]). Conditions (1) and (4)
are inconsistent with the pseudo-Euclidean character of physical space-time
(existence of light cone) ([AIM]). The notion of Finsler space can be formu-
lated only by the conditions (2) and (3).

Let F™ = (M, F) be an n-dimensional Finsler space. The fundamental
function F(z,y) is called an (a, 8)-metric if F' = F(a, () is a homogeneous
function of @ and B of degree one, where o® = a(y,y) = aij(z)y'y’, y =
Y o e 0.1, € T,M is a Riemannian metric, and 8 = b;(z)y* is a linear 1-form
on TM.

In the present paper we will consider the case of a Randers space, which
is a Finsler space whose fundamental function is given by

F(z,y) = a(z,y) + Bz, y). (1.2)

" This metric was introduced by G. Randers in 1941 to discuss the asym-
metrical metric in the four dimensional space of general relativity. It has
been studied latter by many physicists and mathematicians as the simplest
Finslerian deformation of a Riemannian space (M, a) by a linear one form
. This metric was called Randers metric by R. Ingarden in 1957 and used
to study the optical representation in the electron microscope ([AIM], [I}).

The 1-homogeneity of the fundamental function F(z,y) = F(a, 8) im-
plies

alLy + BLg =2L, alaa+ BLog = La,

1.3
aLaﬁ + IBL,Bﬁ = Lﬁa azLaa + ZQIBLaﬁ -+ ﬂ2Lﬁ,@ = 2L, ( )
where we have put L := F?(o, 8), Lo aa, Lg = ‘gg, Loo = a(faLw etc.

The following result is known ([AIM], [BCS)):

Proposition 1.1  The fundamental function F of a Randers space is pos-
itive and its fundamental tensor g;; is positive definite if and only if

I1b]|2 = o (2)bid; < 1. (1.4)

However, we remark that the classical study of Randers spaces does not
need this condition. Indeed, the applications in Physics ([AIM]) as well as
the proofs of constant curvature properties of Randers spaces do not need
the restriction (1.4).
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Let us consider the 0-homogeneous frame (b;, [;), where

1 1 ;
li =~y = _ayy’, (1.5)

and b; = g—g.
If we denote by r;;(x,y) the fundamental tensor of the Randers space

(M, o+ B), then we obtain ([BCS], [SS)):

Proposition 1.2 For o positive definite Randers space we have

. a+ Byntl
(i) det[lryll = (222)" - et llayll,
.\ a+p o
(i) 7y = T'B hsj +dsd;,
. v 2 . . . . 2 2 . .
(i) r9=—2 o0 L (b0 4 B + Mpp,

“a+p” T (a+ By (a+B)°

where we have denoted by ;Lij:: az; —l;l; the angular metric of the Rieman-
nian space (M, a), and d; := b; + ;.

Let us denote by R, (z,y) the coefficients of the hh-curvature ([AIM])

1 js

of the Randers space (M, F’). If we put

_ 11 5,

I

where the index 0 means the contraction by y¢, then the space (M, F) is
called to be of scalar curvature if the relation

F?KR; = Ry, (1.6)

holds in any point of T M, and to be of constant curvature if, furthermore,
the scalar K is constant. Here hg- = gikhkj, and hg; is the angular tensor of
the Randers space (M, F).

The following result is known as Yasuda-Shimada’s theorem in the re-
vised form ([BR]):

Theorem 1.3 Let F™ = (M, a+f) be a non-Riemannian Randers metric
on a smooth manifold M of dimension n > 2. Let a;; be the underlying
Riemannian metric and § = by’ the drift 1-form, both globally defined on
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M. Let us introduce the quantity
curlbi = bs(bs[i - bils) (1.7)

where | is the covariant derivative with respect to the Levi Civita connection
of the Riemannian metric a;;. Then
A) F™ has constant negative flag curvature K and curly = 0 if and

only if

(i) The Riemannian space (M,a) is of negative constant sectional

curvature ¢ := —R?, where R is a non-zero constant,

(i) bi; = Rasg — bidy),
where | represents the covariant derivative with respect to Levi Civita con-
nection of the Riemannian space form (M, a).

In this case we have K = —54% and the Randers space is called an
RCG-space.

B) F™ is flat (i.e., K = 0) and curly; = 0 if and only if it is locally
Minkowsks.
C) F™ has constant positive flag curvature K and curly, = 0 if and

only if
(i) The Riemannian curvature tensor R = R(z) of the Riemannian
space (M, a) satisfies the relation

Rpikj = K(brbjaix — bebras;) + K (bibran; — bibjakn)
+ K(||6]1* = 1)(arnai; — anjair)
+ 2bipbjik — bijkbhlj — bilDk|ns (1.8)
(i) |[b]] s a constant, and b is not parallel,
(iii) by; + by = 0.
Then the flag curvature of the Randers space is equal to K and the
Randers space is called an RCT-space.

Remark The revised version of Yasuda-Shimada theorem, clarifies the
fact that curly; = 0 is not a tautology but a restriction. In [BR] it is
explained why the condition curly; = 0 cannot be removed. Let us point
out that the Riemannian curvature tensor Rp;k; from (1.8) is different from
the one used by Yasuda and Shimada only by sign. We used here the form
from [BR].

The name “RCG” stands for Randers space of constant curvature with



Randers spaces of constant flag curvature 221

gradient. Indeed, in the case A), the vector field b; is gradient because
On the other hand, “RCT” stands for Randers space of constant cur-
vature with translation, because b; satisfies

and has constant length.

A Randers space F" = (M, F = o + 3) is called projectively related to
the Riemannian space (M, a) if its geodesics coincide with the geodesics of
the associated Riemannian space (M, a). It is known ([BM]) that a Randers
space F™ = (M, F = o + ) is projectively related to (M, a) if and only if
the linear one-form ( is closed, i.e. d8 = 0.

2. Almost contact metric structures

Let M be an n = (2m + 1)-dimensional manifold, and let ¢, &, n be
a tensor field of type (1,1), a vector field, a 1-form on M, respectively. If
(p, &, ) satisfies the relations

n(€)=1,  ¢*’X=-X+n(X)E (2.1)

for any vector field X € X(M), then M is said to have an almost contact
structure (¢, €,7n) and it is called an almost contact manifold.

There exists a Riemannian metric @ on M compatible with an almost
contact structure, i.e.:

a(pX, ¢Y) = a(X,Y) — n(X)n(Y) (2.2)

for any X,Y € X(M). In this case M is said to have an almost contact

metric structure (p,€,1,a).
The following relations hold ([Bl], [YK]):

Proposition 2.1
e§ =0, n(eX)=0, (2
a(pX,Y) + a(X, oY) =0, 2
a(X, §) = n(X), (2.
a(§,§) =1. (2
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Let us denote by V the Levi Civita connection of the Riemannian metric
aon M.
If V satisfies the relation:

(Vxp)Y =n(Y)X —a(X,Y)E, (2.7)
then M is called a Sasakian manifold.

Remark In the paper [BF], the Sasakian manifold is defined by the re-
lation (Vx)Y = a(X,Y)¢ — n(Y)X, which is different from ours only by
the sign.

We have ([Bl], [YK], [H]):

Proposition 2.2 On Sasakian manifolds the following relations are known

Vx{ =X, (2.8)
(VxmY =a(pX,Y), (2.9)
(Vxn)Y + (Vyn)X =0, (2.10)
(VzVxn)Y = a(Y, Z)n(X) — a(X, Z)n(Y). (2.11)

Lemma 2.3 In a Sasakian manifold with the almost contact metric struc-
ture (v, &,n,a), the relation

curly; == 773(775|i - 77i|s) =0, (2'12)

always holds good, where | is the covariant derivative with respect to the
connection V given in (2.7).

Proof. The relation (2.10) reads locally

)5 + 15 = 0, (2.13)
On the other hand, taking the covariant derivative | of (2.6) it follows
o — (2.14)

- This relation is true for any almost contact metric structure.
Now, from (2.13) and (2.14) the statement follows immediately. O

A plane section in T, M is called a @-section if there exists a unit vector
X in T, M orthogonal to & such that {X, X} is an orthonormal basis of



Randers spaces of constant flag curvature 223

the plane section. Then, the sectional curvature
H(X) := a(R(X, pX )pX, X) , (2.15)

is called @-sectional curvature. It is known that on a Sasakian manifold
the p-sectional curvatures determine the curvature completely. A Sasakian
manifold of constant p-sectional curvature c is called a Sasakian space form
and it is denoted by M (c).

One has ([K]):

Proposition 2.4 The Riemannian curvature tensor R of Sasakian space
form M(c) is given by

R(X,Y)Z = %3[(1(1/, 2)X — a(X, Z)Y]

+&- 1 [n(X)n(Z)Y = n(¥)n(Z)X + a(X, Z)n(Y)¢

—a(Y, Z)n(X)E+ a(X, 0Z)pY — a(Y, pZ)pX
+2a(X, 9Y)pZ], (2.16)

for any X,Y,Z € X(M).

Tt is known that if the Levi-Civita connection of the Riemannian met-
ric a of an almost contact metric structure (¢,&,n,a) on M satisfies the
relations

Vxp=0, Vxn=0 (2.17)
then M is called cosymplectic manifold ([L]).

Proposition 2.5 In a cosymplectic manifold the following relations hold
good:

Vx€ =0, (VzVxn)Y =0. (2.18)
We have:

Lemma 2.6 In a cosymplectic manifold with the almost contact metric
structure (p,€,n,a) the relation (2.12) always holds good, where | is the
covariant derivative with respect to the Levi-Civita connection defined in
(2.17).

Proof. It is straightforward from (2.17). O
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A cosymplectic manifold of constant ¢-sectional curvature c is called a
cosymplectic space form and it is denoted by M(c).
Then we have ([L]):

Proposition 2.7 The Riemannian curvature tensor R of a cosymplectic
space form M(c) is given by

R(X,Y)Z = —%[a(X, 2)Y — (Y, 2)X]

— ZIn(Mn(2)X = n(X)(Z)Y + (Y, Z)n(X)E

4
—a(X, Z)n(Y)E +a(Y, pZ)pX
—a(X, pZ)pY — 2a(X, @Y )pZ] (2.19)

for any X,Y,Z € X(M).

On the other hand, if the Levi Civita connection V of the Riemannian
“metric a on M satisfies the relation

(Vxp)Y =n(Y)eX —a{pX,Y)¢ (2.20)
then M is called a Kenmotsu manifold ([K, P]).
Remark In the original paper [K],

(Vx)Y = —n(Y)oX + a(pX, Y)¢

which is different from our definition only by sign.
We have ([K, P]):

Proposition 2.8 In a Kenmotsu manifold the following relations hold
good

Vx§=—-X+n(X)¢ (2.21)
(Vxn)Y = —[a(X,Y) — n(X)n(Y)] (2.22)
(VxmY — (Vyn)X =0 (2.23)
(VzVxn)Y = —a(X, Z)n(Y) - a(Y, Z)n(X) + 2n(X)n(Y)n(2).
(2.24)

Lemma 2.9 In a Kenmotsu manifold with the almost contact metric
structure (v, €, 1, a) the relation (2.12) always holds good, where this time |
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is the covariant derivative with respect to the connection V given by (2.20).
Proof. The statement is obvious because of (2.23). O

As in the case of Sasakian manifolds, a Kenmotsu manifold of constant
-sectional curvature c is called a Kenmotsu space form M/(c).
Then we have ([K]):

Proposition 2.10 The Riemannian curvature tensor R of a Kenmotsu
space form M(c) is given by

¢ - 31a(Y, 2)X — a(X, Z)Y]

c+1

R(X,Y)Z =

+ (X)In(2)Y = n(Y)n(2)X + a(X, Z)n(Y)¢

—a(Y, Z)n(X)§ + a(X, pZ)pY — a(Y, pZ)pX

+ 2a(X, oY) Z]. (2.25)
An interesting property follows ([K]):

Theorem 2.11 If M is a Kenmotsu space form M(c) of dimension n >
3, then M is a Riemannian space form of constant sectional curvature ¢ =
—1.

Remark One can remark that because of the Theorem 2.11 there is a big
difference between Sasakian and Kenmotsu space forms. Namely, in the
first case the ¢-sectional curvature determines the Riemannian curvature
tensor of this space, but in the second case, the only possibility is ¢ = —1.

In 1968, S. Tanno has classified connected almost contact Rieman-
nian manifolds whose automorphism group has maximum dimension ([T]).
Namely, he proved:

Theorem 2.12 (S. Tanno) Let M be a connected almost contact Rieman-
nian manifold of dimension n = 2m + 1. Then the maximum dimension of
the automorphism group is (m-+1)%. This mazimum is attained if and only
if the sectional curvature for 2-planes which contain £ is a constant ¢ and
M is one of the following spaces:

(i) ¢ > 0: M is a homogeneous Sasakian manifold of constant -
sectional curvature,

(i) ¢=0: M is a global Riemannian product of a line or a circle and
a Kdhlerian space form,
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(iii) ¢ <0: M is the warped product L xy CE™, where f(t) = c- €,
CE™ is an m-dimensional complex Fuclidean space, and L is a line.

We recall that the warped product M = L xy CE™ is the manifold
L x CE™ endowed with Riemannian structure a such that

a(X,Y) = dt(p«X)dt(p.Y) + f2(px)ao(m X, mY), (2.26)

for every X,Y € X(M), where ag is the canonical metric on CE™, p: L X
CE™ — L, and 7 : L x CE™ — CE™ are the canonical projections of the
product manifold L x CE™.

Remark The classes of connected almost contact Riemannian manifolds

whose automorphism group has maximum dimension (i), (ii), and (iii) given

in Theorem 2.12 are exactly the Sasakian, cosymplectic and Kenmotsu space

forms discussed above in the present paragraph, respectively.

3. The Randers space induced by an almost contact metric struc-
ture

Let us restrict ourselves to a differential manifold M of odd dimension
n =2m+ 1, m > 1, endowed with an almost contact metric structure
(p,€,m,a). In this way we have a Riemannian metric a and a 1-form 7 =
ni(z)dz* on M, so we can construct in a natural way a Randers metric
F = o + 3, where we put 8 := n;(z)y*. This metric will be called in the
following the Randers metric induced by the almost contact metric structure
(¢, &,m,0).

More general, one can construct an (¢, 8)-metric from an almost con-
tact metric structure on M. However, in the present paper we restrict our
considerations only to Randers metrics.

One can remark that from (2.6) it follows ||n|| = 1, so the positive
definiteness condition is not satisfied in general by a Randers metric F' =
a+ 3, where 3 is constructed as above. However in some cases this problem
can be solved by scaling properly the linear 1-form 3, for example one can
consider 8 := en;(z)y’, 0 < € < 1 instead of n;(z)y*. Unfortunately this is
not always possible, as it will be seen.

Recently, Bejancu and Farran have shown the following ([BF]):

Theorem 3.1 Let M(c) be a Sasakian space form of constant p-sectional
curvature ¢ € (—3,1). Then for any constant K > 0 there exists a Randers
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metric F on M(c) such that (M(c), F) has constant flag curvature K and
is not projectively flat.

Namely, starting with a Sasakian space form structure (¢, &,7,a) on
M, and taking 3 := @myi on M, the function F' = « + (3 satisfies the
conditions in Theorem 1.3, C). Indeed, by writing (2.16) in local coordinates
it results (i), the Riemannian length of ( is a constant, and (2.10) written in
local coordinates gives (iii) of C). Taking into account Lemma 2.3 it follows
that the Randers space with the fundamental metric F = o+ 3 is an RCT
space of constant flag curvature X = 1. Now, if one puts

F*(z,y) = (3.1)

\/1—I—<F (z,v)
then the Randers space (M, F*) satisfies the conditions of Theorem 1.3,C).
Moreover, this Randers space is positive definite.
_ We mention that the authors of [BF] were not aware, that time, of the
fact that Yasuda-Shimada theorem holds good only in the form given in
Theorem 1.3, that means only if the supplementary condition curly; = 0 is
added, so they did not check this fact.
Fortunately, our Lemma 2.3 shows that the condition curly; = 0 is
satisfied for any Sasakian manifold, so their result is completely true.
They give also the following:

Corollary 8.2 ([BF]) On any odd dimensional sphere S*™*1, m > 1,
there is a natural structure of Randers space of positive constant flag cur-
vature.

The RCT space induced by the Sasakian space form structure is re-
markable because it shows the existence of an RCT structure on any odd
dimensional sphere generalizing in this way the result in [BS] about S3.

Inspired by this result, we study the Randers space induced by a cosym-
plectic space form and a Kenmotsu space form M (c).

Proof of Theorem A. (i) Let (M,F = a+ 3) be the Randers space in-
duced by the cosymplectic space form M(c), where a? := a(y,y) and 8 :=
eni(z)y’, 0 < € < 1. In this case the Riemannian length ||8|| is less than
one, i.e. the Randers space (M, F' = a + [3) is a positive defined one.

From (2.17) it follows that the Randers space induced as above by a
cosymplectic space is a Berwald space, and therefore its Chern connection
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coincides with the Levi Civita connection V of the Riemannian manifold
(M, a), defined by the relations (2.17). Since our cosymplectic space form
is of y-sectional curvature ¢ = 0, using this fact and (2.19) it follows the
induced Randers space is a locally Minkowski space.

The projectively flatness of this Randers space (M, F) can be seen as
follows. A locally Minkowski space means that there is a coordinate system
in which F = F(y). Since the fundamental tensor g;; of the space has
no z dependence, it results that the formal Christoffel symbols I‘fj of gi;
must all vanish. Hence the geodesics of constant Finslerian speed of the
Randers space (M, F') satisfy the equation % = 0. In other words, in this
particular coordinate system, the geodesics are straight lines.

Then, from Theorem 1.3, B) it results that (M, F = a+ /() is a Randers
space of constant flag curvature K = 0, and curly; = 0. In this case, the
relation curly; = 0 also can be shown directly.

(ii) Let us consider the Randers space (M, F' = a+ () induced by the
given Kenmotsu structure. We will show that F' satisfies all the conditions
of the Theorem 1.3, A).

Since M(c) is a Kenmotsu space form, from Theorem 2.11. It follows
that (M, a) is a Riemannian space form of constant sectional curvature ¢ =
~R?=—1. Tt follows R=10r R= —1.

On the other hand, from (2.22) it follows that (ii) of A) in Theorem 1.3
holds good for R = —1. Now, taking into account Lemma 2.9, all the
necessary conditions being satisfied, from Theorem 1.3, A) it follows that
the induced Randers metric is a RCG space of constant flag curvature K =
i

From (2.22) it follows dn(X,Y) = 3((Vxn)Y — (Vyn)X) = 0, so this
Randers space is projectively related to the Kenmotsu manifold (M, a). On
the other hand, since the Riemannian space (M, a) is of constant sectional
curvature K = _411 it follows from Beltrami’s theorem for Riemannian space
forms that (M, a) is projectively flat. Finally, it results that the Randers
space is projectively flat being projectively related to a flat Riemannian
space. U

Proof of Theorem B. (i) From Theorem 2.12 (ii) it follows that the base
manifold it has to be one of the following manifolds

TxCpP™, T x CE™, TxCD™,

LxCP™, LxCE™, LxCD™,
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where T and L are a circle and a line, respectively, and CP™, CE™, and
CD™ are a complex projective space, an unitary Euclidean space and an
open ball, respectively. Among these, the only ones with zero constant
@-sectional curvature are the manifolds 7" x CE™ and L x CE™, so the
statement follows from Theorem A, (i).

(if) It follows immediately from [K] and (ii) of Theorem A. O

Remark Let M be an almost contact Riemannian manifold with the
structure (@, £, 7n,a). Let us consider the deformed equation

(Vx@)Y = k{n(Y)eX —a(pX,Y)n} (3.2)

instead of (2.20), where k is a positive constant. Then we have
Vx§ =—k{X —n(X)¢} (3.3)
(Vxn)Y = —k{a(X,Y) —n(X)n(Y)}. (3-4)
If M is of constant (p-sectional curvature, then M is of constant sec-
tional curvature ¢ = —k2. Therefore, because of Theorem 1.3,A) we can

reformulate (ii) in our Theorem A as follows.

Proposition 3.3 Let M(c) be a Kenmotsu space form of constant -
sectional curvature c. Then for any real constant k € R there exists a
Randers metric on M of constant flag curvature K = —%.

We recall that the 1-form 7 has unit Riemannian length. In the case of
RCG spaces, this length cannot be made less than 1 by any means because
of the following reason.

Lemma 3.4 In an RCG space (M, F = a+f), if ||bl| is a constant, then
this constant has to be equal to 1. In other words if ||b|| = constant then
the RCG space (M, F = o + 3) cannot be positive definite.

Proof. Let us start from the relation
|b||% = a¥(2)bibj =p, pER.

By covariant differentiation with respect to the Levi Civita connection
of (M, a) we obtain

(a¥ (2)b;)byp, = 0



230 I. Hasegawa, V.S. Sabav and H. Shimada

and using (ii) from Theorem 1.3, A) it follows
aijbj(aik — bzbk) =0

since R # 0. In other words (5% — a¥bby)b; = 0, or bi(|[b]|2— 1) = 0.

If by # 0 it follows ||b]| = 1 and the proposition is proved. The case
br = 0 is not possible because in this case (ii) implies that for this & we
have

bk|i:R(aki—bkbi), Vie{1,2,...,n},

what is equivalent with ax; = 0, Vi € {1,2,...,n}. This is impossible
because the Riemannian metric a cannot be degenerate. O

Summarizing some results from [K] we obtain:

Corollary 3.5 Let M be a Kenmotsu manifold of dimensionn = 2m+1.
_If M is one of the following:

(a) a locally symmetric Riemannian space,

(b) a conformally flat space of dimension n > 3,
then on M there exists an RCG structure.

Proof. Corollary 6 in [K]| states that if M is a Kenmotsu manifold that
is locally symmetric, then M is of constant negative curvature —1. It fol-
lows that it is a Kenmotsu manifold of constant ¢-sectional curvature and
therefore from Theorem A, (ii) we obtain (a).

In the same way, Proposition 11 in [K] states that if M is a Kenmotsu
manifold of dimension n > 3 that it is conformally flat, then M is a space
of constant negative curvature. By the same argument as above, we obtain

(b). 0

4. Conclusion

We have studied the way an almost contact metric structure (¢, &,7,a)
induces a Randers metric on the manifold M of dimension n = 2m+1. Pre-
cisely, a Sasakian space form structure induces an RCT-structure ([BF]), a
cosymplectic space form induces a locally Minkowski structure and a Ken-
motsu space form induces an RCG space, in a natural way, i.e. F := a+ (3,
where o2 = a(y,y) and 8 = 7;(z)y*. However, the Riemannian length of 7
is equal to one, so these Randers metrics are not positive definite. This is
no trouble in the first two cases because one can scale the length of 3 by
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defining 8 = en;(z)y*, 0 < € < 1, but in the third case the induced Randers
space cannot be made a positive definite one.

S. Tanno’s classification theorem shows that an almost contact metric
structure of constant ¢-sectional curvature induces a Randers space of con-
stant flag curvature with curly; = 0. Moreover, on the manifolds: S?™+1,
TxCE™, L x CE™, L x; CE™ we can construct a natural structure of
Randers space of constant flag curvature with curly; = 0.
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