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Global stability in discrete models of nonautonomous
Lotka-Volterra type

Yoshiaki MUROYA!
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Abstract. In this paper, we establish sufficient conditions for the global asymptotic
stability of the following discrete models of nonautonomous Lotka-Volterra type:

n m
Ni(p+1) = Ni(p) exp{ci(p) — ai(p)Ni(p) = D_ > ab;()Ns(p — k) },
j=1 1=
’ 1§(7)I§n, for p=0,1,2,...,
Ni(p) =Nyp >0, for p< 0, and Ny >0, 1 <i<n,
where each ¢;(p), a;(p) and a! ,(p) are bounded for p > 0 and
- jnfai(p) >0, aki(p) =0, ali(p) >0,1<i<j<n, 0<i<m,
{ ko =0, integers k; >0, 1 <1< m.

We establish a condition for the permanence of system and applying the former work
(2002, J. Math. Anal. Appl. 273 492-511) to this system, we improve a known condition
for the global asymptotic stability of system.

Key words: permanence, global asymptotic stability, discrete model of nonautonomous
Lotka-Volterra type.

1. Introduction

Consider the following discrete system of nonautonomous Lotka-
Volterra type:

1<iLn, for p=0,1,2,...,
"Ni(p) = Nip >0, for p<0, and Ny >0, 1<i<n,
(1.1)
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where we assume that each ¢;(p), ai(p) and aéj (p) are bounded for p > 0
and

inf a;(p) > 0, ad(p) =0, aﬁj(p) >0,
p>0

1<i1<j<n, 0<I<m, (1.2)
ko =0, integers k1 >0, 1 << m.

For the system (1.1)—(1.2), there are several literatures in autonomous
cases. In the case of a prey-predator system for n = 2 and m = 0, or the
two species are competitive, then Hofbauer, Hutson and Jansen [7] offered a
theorem that the existence of positive equilibrium in the system guarantees
its permanence. But Lu and Wang [8] show that if the system is cooperative,
it can not be permanent in any case. For no delay case m = 0, Lu and Wang
[8] also give sufficient conditions for permarence. In the case n = 2 and any
m > 0, Saito, Ma and Hara [16] and Saito, Hara and Ma [15] generalized
them and established the necessary and sufficient conditions for permanence
(see also Muroya [11]).

On the other hand, Wang and Lu [19] and Wang et al. [20] fined further
conditions in the case of prey-predator and competitive system for n = 2
and m > 0, to ensure that the discrete system is globally asymptotically
stable.

Recently, for the cases n > 2 and m > 0, applying the techniques offered
by Ahmad and Lazer [2] and Muroya [12], Muroya [13] established sufficient
conditions for the persistence and global asymptotic stability of the system
(1.1)-(1.2).

In this paper, using results in Muroya [13] to the discrete system (1.1)—
(1.2) of nonautonomous Lotka-Volterra type, we establish a condition for
the permanence of system (cf. Wang et al. [20]). For the global asymptotic
stability of the system (1.1)—(1.2), we apply also Muroya’s results in [13]. In
particular, for the autonomous case of n = 1, we improve the result offered
by Muroya [9] for conditions of the global asymptotic stability. This is other
type condition than those established by So and Yu [17] and Muroya [10]
(see Remark 2.4).

For a given sequence {g(p)}p2q, We set

{ gm =sup{g(p) |p=0,1,2,...},

(1.3)
gL = inf{g(p) | p=0,1,2,.. '},
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and put
( 1 _ - I+
aijL - aijL + a‘z’jL’ 'L]L <0< a"LjL’
[ I+ I+
iy = G t+ a’ijM’ ng <0< agy,
m
_ 1— —
biL = D G by = Z%M’ iM = Z%M
1=0 (1.4)
1 < , 7 <mn,
Ar = diag(air, asr, - - -, anr), B = [bj1]; Bi; = [b;;M] and
D}, = diag(bf s, bdonss - - -5 Db as) are m x m matrices, and
L ¢r = [ciz] and epr = [cip] are m-dimensional vectors.
For the system (1.1)—(1.2), assume the following condition:
(AL+ B;) ey > 0. (1.5)
For (1.4), put
( i—1
Gim = et — Y _ b N,
j=1
N- . 5¢M/aiL, EiM < 1>
' e /a;r, Gm > 1, (1.6)

- ) 2 .
air, = mln(“iL, 7 aiM) >0,1<i<n,
_ i
Ap = diag(@ir, @21, - - -, GnL),

and N = [Ny].

\

We refer that the system (1.1)—-(1.2) is permanent, if there are positive
constants § and 7y such that

0 < ¢ < liminf N;(p) < limsup N;(p) < v < +o0,
p20 p>0
1<i<n. (1.7)
" We shall establish the following results to the system (1.1)—(1.2).

Theorem 1.1 Assume the conditions (1.5) and

Zb”MN =3 by N; >0, 1<i<n, (1.8)
Ji
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where
( m
aip = aim + Z Glint
=1 .
xexp{ kl<ch—alMN waMN meM— )}
7=1
(1.9)
( ZbUMN = > b N )/alM,
J;ﬁz
N, =min<ﬂi,1\_fiexp{ (ch Zb”MN meM V ) —diM]\_fi})
J#l
\ >0, 1<i<n.
Then, the system (1.1)—(1.2) is permanent.
Moreover, if
Ap — (Bi; — Bp) is an M-matriz, (1.10)

then for any two solutions {M;(p)}p2o and {Ni(p)}5le, 1 < i < n of the
system (1.1)—(1.2), it holds
lim (M;(p) — Ny(p)) =0, 1<i<n. (1.11)
p—00
The organization of this paper is as follows. In Section 2, for the
permanence of the system (1.1)—(1.2), in addition to upper bounds N; of
lim sup,_,o, Ni(p), 1 <1 < n of Lemma 2.2 in Muroya [13], we obtain new
lower bounds N; > 0 of liminf,_,oo N;(p), 1 < i < n (see Theorem 2.1).
For the global asymptotic stability of the system (1.1)-(1.2), applying the
recent results in Muroya [13], we establish Theorem 1.1. In particular, for

the special case of n = 1, we find an improved result than those of Muroya
[9] and [10] (cf. So and Yu [17]).

2. Conditions of permanence and global asymptotic stability

Using the techniques of Muroya [13], we consider the permanence and
the global asymptotic stability of the discrete system (1.1)-(1.2) of nonau-
tonomous Lotka-Volterra type.

Lemma 2.1 For the system (1.1)—(1.2),
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p—1 n m
N(e) = N exp 3 elo) — a@Mla) =30 D as(@Nsla - ki } ).

and every solutions {N;(p)}2,, 1 < i < n ezist and remain positive for all

p=0,1,2,....

p=0>

Proof. By (1.1), we obtain (2.1), from which we get the conclusion. O

Remark 2.1 Consider the following differential equations with piecewise
constant delays:

dz;(t " &
) — st el — ax D) ~ Y- D aly(eas(le— kD |
j=11=0 (2 2)
t>0,1<i<n, '
- L zi(p) = ¢i(p) >0, for p<0, and ¢;(0) >0, 1<7i<n,
where [t] denotes the maximal integer less than or equal to ¢ and
¢’L( )= ips fOI‘ pS 0
Then, we easily see that for any p <t <p+1, for p >0,
) . /t{cz(p) ai(p)zi(p) - ZZG {(p)z;(p — kz)}
dt xz(t) p g if J
=0. (2.3)

Thus, integrating both sides with respect to ¢t on [p, p + 1], we obtain (1.1)
and N;(p) = z;i(p), for p=0,1,....

For the permanence of the system (1.1)—(1.2), in addition to upper
bounds N; of lim SUPp00 Ni(p), 1 < i < n of Lemma 2.2 in Muroya [13],
we obtain new lower bounds IN; > 0 of liminf, oo Nj(p), 1 <4 < n.

Theorem 2.1  Under the condition
(AL + B;)~ICM >0, (2.4)
for any solutions N;(p n of the system (1.1)—(1.2), it holds that

) 1
lim sup N;(p )SN 1<i<n (2.5)

p—00
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where N;, 1 <1i<n are defined by (1.6).
Moreover, if (1.8) holds, then

liminf NV;(p) > N,, 1<i<n, (2.6)
P—00

where N;, 1 < i< n are defined by (1.9).

Proof. Since Ay + B is an M-matrix, it is well known that there is a
diagonal matrix D = diag(d,,dy,...,d,) such that d;, > 0, 1 < i < n and
(Ap + By )D is a diagonally dominant matrix.
Thus, we may assume, without loss of generality, that A; + By is
diagonally dominant, that is, a;;, > 0 and a;r, + Z’ L 1650 >0,1<i<n.
Then, (2.5) follows from the proof of Lemma 2 2 in Muroya [13].
Hence, for any € > 0, there exists a constant 5, > maxXg<i<m ki such
that

- Ni(p) < Nij+e€, p>pn, 1<i<n.

Moreover, assume (1.8) and for some 1 < i < n, suppose that for any
sufficiently small fixed constant € > 0, there exists a constant P, 2 Pn such
that

limianj(p)Zﬂj——e>O, 1<i<i—1.
p—00

If Ni(p) < N, — {(- ; 1lbz_gM + D ki Z]M)/GZM}G for some p > p,, then
by (1.1) and the definition of ﬂ

Ni(p+1) > N;i(p exp{cz[, Zb”M

- meM (Nj + €) — aspr N (p)} > N;(p).
J#i

For the case that N;(p ) is eventually increasing and bounded upper by N, —
{( b_ M +>° 4 03 M) /a; M}e we apply the similar discussions to the
case ¢ = 1 in the proof of Lemma 2.2 in Muroya [13], and we get

liminf Ni(p) = {< Zb M+ZbUM>/azM}

J#i
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On the other hand, if N;(p) > N, — {(- ;;11 i T2 g b;’;M)/ELiM}e for
some p > P, then by (1.1)

N<p+1>>N<>exp{<ch ii”MN = 3 Wl ) = Vi) |

=1 ]#7[
J#
Since for a > 0, ming<,<z re~% = min(ge“@, Ze %), we get
lim inf N;(p) > min(ﬁi exp{—( Zb vt Z%w) } Mg,
e J#
(N; + €) exp {QiL — aypr (N + 6)}) ,

where

( {< ZbZ]M+Zb;;M>/aiM}6

g

con{ (- S03+Su1)

J#

i, = CGiL — ZbWMN > bEyN;, 1<i<n,
\ J#i

Since € > 0 is any sufficiently small positive constant, we have that

liminf Ny(p) > N;, 1<i<n.
p—o0

Hence, by inductions, we complete the proof. O

Remark 2.2 Note that the condition (1.8) is a sufficient condition for the
permanence of the system (1.1)—(1.2) (cf. (1.22) and (1.24) in Muroya [13]).

Recently, Muroya [13] has established a result which is an improved
version of known conditions for the global asymptotic stability in discrete
system (1.1)—(1.2) (cf. Gopalsamy [4]-[6], Tineo and Alvalez [18], Redheffer
[14], Ahmad and Lazer [1]-[2] and Wang et al. [20}).
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Lemma 2.2 For the system (1.1)-(1.2), assume the conditions (1.5) and
(1.8), and suppose that there exist positive constants oy, ag,...,0m, 1 > 0
and a positive integer py such that for p > po,

ala’l p) Zajla‘jz Za]Zla’]z p+kl))>7h 1<z<n,
JF#i J=1 =1
(2.7)
where
o . 2
aup) = win (0s0), 52
i

Then any two solutions {M;(p)}g2o, {Ni(p)}p2o: 1 < @ < m of the system
(1.1)—(1.2), satisfy the condition

Jim (Mi(p) — Ni(p)) =0, 1<i<nm. (2.9)

_%@0’ 1<i<n. (2.8)

Proof. 'The proof of this theorem follows from Theorem 2.1 and the proof
of Lemma 2.8 in Muroya [13]. O

By Lemma, 2.2, in order to prove Theorem 1.1, it is sufficient to show
that the condition (1.10) implies the existence of a; > 0, 1 < ¢ < n such
that (2.7) holds. We can see that (1.10) implies stronger inequalities in
(2.10) (cf. Ahmad and Lazer [2, Lemma 3.2]).

Lemma 2.3 (See Berman and Plemmons [3, p.137]) (1.10) holds, if and
only if there exist constants cy; > 0, 1 <1 < n such that for 1 <i < n,

n

idic =y aj(adin —afip) — Y Z%M‘m >0,

j# J=
1<i<n. (2.10)

From Theorem 1.1, we easily obtain the following corollary.

Corollary 2.1 (Cf Theorem 1 in Wang et al. [20]) For the system (1.1)—
(1.2) and (1.6), i
&im < aiL/aiM <1 aend N;=¢&pm/air, 1<i<n,
(AL +B;) Yem >0, e > (Bi; — D) (AL + Br ) tey, (2.11)
and A, — (BR} — By ) is an M-matriz,
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then for any two solutions {M;(p)}g2y and {Ny(p)}52:, 1 < i < n of the
system (1.1)—(1.2), (1.11) holds.

Proof. By (1.6) and (2.11), we have N; = &inr/air, < 1/asnr, 2/Ni—aing >
1/N; = a;p/¢p > aip, 1 <i<nand N = (Ap + BZ)_ch. Then, in this
case, (2.11) implies (1.5), (1.8) and (1.10). Therefore, by Theorem 1.1, we
obtain (1.7) and (1.11). O

Remark 2.3 In Theorem 1 in Wang et al. [20], it is assumed the condition
that the system (1.1)~(1.2) is strongly persistent, that is, lim inf, o N;(p) >
0, 1 £ ¢ £ n. For the competitive system with n = 1 and 2, Wang et al.
[20] has given sufficient conditions similar to (2.11), which are improved and
extended by Theorem 1.1 to n > 1 (see also Corollary 2.2 and Remark 2.4).

Consider the following differential equation with piecewise constant ar-
guments:

B2 = Waro {1 -wNe) = Y b0

p<t<p+1l,p=012,...,
N(0)=Ny >0, and N(—j)=N_; >0, 1<j<m,

(2.12)

where each r(t) is a nonnegative continuous function on [0, c0), 7(t) # 0,
bp >0, and b; >0, 1 <i<m. (2.13)

Then, similar to the proof in Remark 2.1, we have that

N(p+1) = N(p) exp{rp (1 —boN(p Zb N(p—1)

p=0,1,2,...,
N()=Ny>0, and N(—j)=N_;>0, 1<j<m,
J

(2.14)

where
. p+1
Tp =/ r(t)dt, p>0. (2.15)
p

To this system, we apply Theorem 1.1 and get the following corollary.
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Corollary 2.2 For (2.12)—(2.13), assume that

m
bo > > b, liminfrp >0 and
=1 (2.16)

7= uprp<1+ln{2bo/<2b>} <1l+In2.

p2 i=0

Then, the positive equilibrium N* = 1/(372 b;) of (2.12)—(2.13) is globally
asymptotically stable.

Proof. For (2.14), the condition liminf,_,o, 7p > 0 implies (1.8). Now, put

1 <1
_ bo -
N _
e’r—l _ )
s >
7bg

Ifr <1 3 then from the conditions (2.13) and by > > i*;b;, we have

min (rbo £ — Tbg) = by > TZ bz, which 1mphes (1.10) for (2.14).
I 1 then by (2.16), "1 < 2by/ (3 12 b;) and from 7Y 10 b; <
(f;ib% = '12V we have that
2 m
min <be, 7 fb0> > F; b;,

from which we get (1.10) for (2.14). Thus, by Theorem 1.1, we obtain the
conclusion of this corollary. O

Remark 2.4 The condition (2.16) in Corollary 2.2 improve the sufficient
conditions of (2.9) that by > 7%, b; and rp, < 1 in Muroya [9] which has
the “contractivity condition”. Similarly, Theorem 3 in Wang et al. [20] is
also improved by Theorem 1.1.

So and Yu [17] have established sufficient conditions that
limsup,_c7p > 0 and 1, < 52 +1) for (2.12)-(2.13), and Muroya [10]
offer the sufficient condition r, < #(&) = f(0;7(&)) < sups; f(t;7(&)) =
2bo/ (3w bi), @ = 1 — (372 bi) /bo < O, where #(@&), f(t;r) are defined
in [10]. Thus, the condition (2.16) is other type condition than those of So
and Yu [17] and Muroya [10]. From these results, we have a conjecture that
there is a larger region of sufficient conditions which contains all the above
conditions. To solve this conjecture is our future work.
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