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Purifiability in pure subgroups
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Abstract. Let G be an abelian group. A subgroup A of G is said to be purifiable in

G if, among the pure subgroups of G containing A, there exists a minimal one. Suppose

that A is purifiable in G and H is a pure subgroup of G containing A. Then A need not be

purifiable in H. In this note, we ask for conditions that guarantee that A is purifiable in

the intermediate group H. First, we prove that if A is a torsion-free purifiable subgroup

of a group G and H is a direct summand of G containing A, then A is purifiable in

H. Next, we characterize the pure subgroups K of a group G with the property that a

torsion-free finite rank subgroup A of K is purifiable in K if A is purifiable in G.

Key words: purifiable subgroup, pure hull, strongly ADE decomposable group, mixed

basic subgroup.

1. Introduction

Let G be an abelian group. A subgroup A of G is said purifiable in
G if, among the pure subgroups of G containing A, there exists a minimal
one. Such a minimal pure subgroup is called a pure hull of A.

Let G be a p-primary group, B a basic subgroup of G, and A a subgroup
of B. In general, even if A is purifiable in G, then A need not be purifiable
in B. This is shown by the following example from [3, Remark, p. 93].

Example 1.1 Let G be the maximal torsion subgroup of
∏∞

n=1〈xn〉 and
B =

⊕∞
n=1〈xn〉 with o(x) = pn. Set

yi = x2i + p2x2i+1 − p2x2i+2.

Let H = 〈yi | i = 1, 2, . . .〉 and let H be the p-adic closure of H in B.
Then H is pure in G and H = 〈px2〉 ⊕H is not pure in G. Moreover H is
purifiable in G but not in B.

Proof. By the proof of [3, Remark, p. 93], H is pure in G and H = 〈px2〉⊕H

is not pure in G. Observe that o(yi) = p2i. Further, by [1, Proposition 3.4],
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H is the unique maximal vertical subgroup of G supported by H[p] and
contains H. If H is purifiable in B, then there exists a pure subgroup K

of B such that K ⊇ H and K[p] = H[p]. Since H is the unique maximal
vertical subgroup of G supported by H[p] and K is vertical in B, we have
K = H and this contradicts the fact that H is not purifiable in B. However,
since G is torsion-complete and H is vertical in G, H is purifiable in G by
[5, Theorem 4.8]. ¤

Suppose that A ⊆ H ⊆ G, and H is pure in G. Clearly, if A is purifiable
in H, then it is purifiable in G. Now we pose the following problem.

Problem If a subgroup A of an abelian group G is purifiable in G, then,
for which pure subgroups H containing A, is A purifiable in H?

In this note, we consider the Problem. First, we prove that if a torsion-
free subgroup A of a group G is purifiable in G, then, for every direct
summand H of G containing A, A is purifiable in H.

We characterized purifiable torsion-free finite rank subgroups in [9]. In
Section 4, using the result, we characterize the pure subgroups K of an
abelian group G with the property that a torsion-free finite rank subgroup
A of K is purifiable in K if A is purifiable in G.

In the process, we consider dim(D/(E ⊕A))[p] where D/A is the max-
imal divisible subgroup of (G/A)p and E is the maximal divisible subgroup
of Gp. Define dim(G, A, p) = dim(D/(E ⊕ A))[p]. In fact, if the sub-
group A of the group G is purifiable torsion-free finite rank in G and H

is a pure subgroup of G containing A, then A is purifiable in H if and
only if dim(G, A, p) = dim(H, A, p) for all primes p. So the dimension
dim(G, A, p) could play an important role in the study of purifiable torsion-
free subgroups.

In Section 5, we consider pure subgroups of strongly ADE decomposable
groups (see Definition 5.3) that are again strongly ADE decomposable. In
Section 6, as an application of the main result, we give a sufficient condition
for mixed basic subgroups (see Definition 6.1) of a group of torsion-free finite
rank to be isomorphic. By [10, Example], not all mixed basic subgroups of
a group are isomorphic.

All groups considered in this note are arbitrary abelian groups unless
stated otherwise. The terminologies and notations not expressly introduced
follow the usage of [2]. Throughout this note, Z∗ denotes the set of non-
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negative integers, P the set of all prime integers, p always denotes a prime,
T the maximal torsion subgroup, and Gp the p-component of an abelian
group G.

2. Notation and basics

We recall definitions and properties mentioned in [5]. We frequently
use them in this note.

From the definition [5, Definition 1.1] of p-almost-dense subgroups and
its characterization [5, Proposition 1.3, Proposition 1.4], we can define p-
almost-dense and almost-dense subgroups as follows.

Definition 2.1 A subgroup A of a group G is said to be p-almost-dense
in G if, for all n ∈ Z∗,

pnG[p] ⊆ A + pn+1G.

Moreover, the subgroup A is said to be almost–dense in G if A is p-almost-
dense in G for every p ∈ P.

Recall definition of p-purifiable [purifiable] in a group G.

Definition 2.2 Let G be a group. A subgroup A of G is said to be p-
purifiable[purifiable] in G if, among the p-pure[pure] subgroups of G contain-
ing A, there exists a minimal one. Such a minimal p-pure[pure] subgroup
is called a p-pure[pure] hull of A.

Proposition 2.3 ([5, Theorem 1.8, Theorem 1.11]) Let G be a group and
A a subgroup of G. Let H be a p-pure [pure] subgroup of G containing A.
Then H is a p-pure [pure] hull of A in G if and only if the following three
conditions are satisfied:
(1) A is p-almost-dense [almost-dense] in H;
(2) H/A is p-primary [torsion];
(3) [for every p ∈ P,] there exists mp ∈ Z∗ such that

pmpH[p] ⊆ A.

From Proposition 2.3, for purifiable torsion–free subgroups, we imme-
diately obtain the following.

Corollary 2.4 Let G be a group and A a subgroup of G. Suppose that A

is purifiable in G. Let H be a pure hull of A in G. If A is torsion-free, then
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Hp is bounded for all p ∈ P.

The following is a relationship between purifiability and p-purifiability.

Proposition 2.5 ([5, Theorem 1.12]) Let G be a group. A subgroup A of
G is purifiable in G if and only if, for every p ∈ P, A is p-purifiable in G.

Definition 2.6 Let G be a group and A a subgroup of G. For every n ∈
Z∗, we define the nth p-overhang of A in G to be the vector space

Vp,n(G, A) =
(A + pn+1G) ∩ pnG[p]

(A ∩ pnG)[p] + pn+1G[p]
.

Moreover, the set

OG
A(p) = {t | Vp,t(G, A) 6= 0}.

is called the p-overhang set of A in G.

We immediately obtain the following properties.

Proposition 2.7 Let G and A be as in Definition 2.6. Then the following
hold.
(1) If Gp = 0, then OG

A(p) = ∅.
(2) Vp,m+n(G, A) = Vp,n(pmG, A ∩ pmG) for all n,m ∈ Z∗.
Proposition 2.8 ([5, Proposition 2.2]) Let G be a group and A a sub-
group of G. For a p-pure subgroup K of G containing A,

Vp,n(G, A) ∼= Vp,n(K, A)

for all n ∈ Z∗. Hence OG
A(p) = OK

A (p).

Proposition 2.8 leads the following intrinsic necessary condition for p-
purifiability.

Proposition 2.9 ([5, Theorem 2.3]) If a subgroup A of a group G is p-
purifiable in G, then the set OG

A(p) is finite.

Proposition 2.9 and Proposition 2.7 (2) lead to the following useful
property.

Corollary 2.10 If a subgroup A of a group G is p-purifiable in G, then
OpmG

A∩pmG(p) = ∅ for some m ∈ Z∗.
The following is useful when we consider purifiable torsion-free sub-
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groups. A proof was written in [9, Corollary 2.15].

Corollary 2.11 Let G be a group and A a subgroup of G. Suppose that
A is torsion-free and purifiable in G. Let H be a pure hull of A in G. Then
the following are equivalent:
(1) OG

A(p) = ∅ for all p ∈ P;
(2) H is torsion-free.

The following is used frequently in this note.

Proposition 2.12 ([5, Theorem 4.1]) Let G be a group and A a subgroup
of G. Then the following hold.
(1) If A is p-purifiable in G and H is a p-pure hull of A in G, then, for

all n ∈ Z∗, A∩ pnG is p-purifiable in pnG and pnH is a p-pure hull of
A ∩ pnG in pnG.

(2) If A ∩ pmG is p-purifiable in pmG for some m ∈ Z∗, then A is p-
purifiable in G.

We recall a characterization of purifiable torsion-free finite rank sub-
groups.

Proposition 2.13 ([9, Theorem 3.6]) Let G be a group, A a torsion-free
finite rank subgroup of G, and let G(p)/A = (G/A)p. Then A is p-purifiable
in G if and only if the following two conditions are satisfied.
(1) OpsG

A∩psG(p) = ∅ for some s ∈ Z∗.
(2) Let r be the least integer satisfying the condition (1). Then there exist

an integer m = r and a divisible subgroup D/(A ∩ prG) of pr(G/(A ∩
prG))p = prG(p)/(A ∩ prG) such that

pnG(p) + (A ∩ prG) = D ⊕ pnGp for all integers n = m.

We conclude this section with the following useful lemma.

Lemma 2.14 Let G be a group and H a pure subgroup of G such that
G/H is torsion. Then the following hold.
(1) G = H + T .
(2) If Gp = Hp⊕Up for every p ∈ P, then G = H⊕U where U = ⊕p∈PUp.
(3) Suppose that A is purifiable torsion-free in G. Let K be a pure hull of

A in G. If G/A is torsion, then G = K ⊕ T ′ for some subgroup T ′ of
T .

Proof. (1)(2) By [9, Lemma 3.1].
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(3) By Proposition 2.5 and Corollary 2.4, for every p ∈ P, Kp is bounded
and so Kp is a direct summand of Gp. If G/A is torsion, then, by (2), the
assertion is confirmed. ¤

3. Divisible subgroups of quotient groups

Let G be a group and A a torsion-free subgroup of G. In this section,
we consider the maximal divisible subgroup of the quotient (G/A)p.

First we give a convenient reduction theorem.

Theorem 3.1 Let G be a group and A a torsion-free subgroup of G. Sup-
pose that A is p-purifiable in G and G = M ⊕N with M ⊇ A. Then A is
p-purifiable in M .

Proof. Since A is p-purifiable in G, by Corollary 2.10, OpmG
A∩pmG(p) = ∅ for

some m ∈ Z∗. Let r be the least integer such that

OprG
A∩prG(p) = ∅. (3.2)

Let H be a p-pure hull of A in G and G(p)/A = (G/A)p. Then, by Proposi-
tion 2.12(1), prH is a p-pure hull of A∩prG in prG(p). Then, by Lemma 2.14,

prG(p) = prH ⊕K and K < prGp. (3.3)

By (3.2) and Corollary 2.11,

prH is torsion–free. (3.4)

Further, by (3.3) and (3.4), we have

K = prGp and prG(p) = prH ⊕ prGp. (3.5)

Recall that A ⊆ M . Let M (p)/A = (M/A)p. Since G = M ⊕ N , we have
Gp = Mp ⊕Np. Therefore, by (3.5), we have

prG(p) = prH ⊕ prMp ⊕ prNp and prMp ⊆ prM (p).

Intersecting with prM (p), we get

prM (p) = L⊕ prMp where L = prM (p) ∩ (prH ⊕ prNp). (3.6)

By (3.6), L is torsion-free and p-pure in prM . Since L/(A ∩ prG) is a p-
group, by Proposition 2.3, L is a p-pure hull of A ∩ prG in M . Hence, by
Proposition 2.12(2), A is p-purifiable in M . ¤
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Definition 3.7 Let G be a group and A a torsion-free subgroup of G.
Let D/A be the maximal divisible subgroup of (G/A)p and E the maximal
divisible subgroup of Gp. We define

dim(G, A, p) = dim(D/(E ⊕A))[p].

Remark 3.8 Let G, A, D, and E be as in Definition 3.7. Since A is
torsion-free, A ∩ E = 0 and there exists an E-high subgroup R of G con-
taining A. Since E is divisible, G = R ⊕ E. Let D′/A be the maximal
divisible subgroup of (R/A)p. Then D/A = D′/A⊕ (E ⊕A)/A and

dim(G, A, p) = dim(D/(E ⊕A))[p]

= dim(D′/A)[p] = dim(R, A, p).

Moreover, if A is p-purifiable in G, then A is p-purifiable in R by Theo-
rem 3.1. Hence, when we consider purifiable torsion-free subgroups in the
group G, without loss of generality, we may assume that Gp is reduced.

Lemma 3.9 Let F be a torsion-free group and B a subgroup of F . Suppose
that F/B is torsion. Then

dim(F/B)[p] 5 rk(F ).

Proof. Since B ⊆ F ⊆ QF , we have

(F/B)[p] = (F ∩ p−1B)/B ⊆ p−1B/B ∼= B/pB.

Hence dim(F/B)[p] 5 rk(B/pB) 5 rkp(B) 5 rk(B) 5 rk(F ). ¤

Using Proposition 2.13, we can obtain the following result.

Proposition 3.10 Let G be a group, A a subgroup of G, and G(p)/A =
(G/A)p. Then the following hold.
(1) For every integer n = 0, let Dn/(A ∩ pnG) be the maximal divisible

subgroup of pn(G/(A ∩ pnG))p = pnG(p)/(A ∩ pnG). Then

D0/A ∼= Dn/(A ∩ pnG)

for all integers n = 0.
(2) If A is p-purifiable subgroup of G and A is torsion-free of finite rank,

then

dim(G, A, p) = dim(Dr/(A ∩ prG))[p]
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is finite.

Proof. (1) Since pn(G(p)/A) = (pnG(p) + A)/A ∼= pnG(p)/(A ∩ pnG), the
maximal divisible subgroup D0/A of G(p)/A is isomorphic to Dn/(A∩pnG).
(2) By Remark 3.8, without loss of generality, we may assume that

Gp is reduced. (3.11)

Suppose that A is purifiable torsion-free finite rank subgroup of G. Then,
by Corollary 2.10, OpsG

A∩psG(p) = ∅ for some s ∈ Z. Let r be the least integer

such that OprG
A∩prG(p) = ∅. Further, by Proposition 2.13, there exists an

integer m = r such that

pnG(p) + (A ∩ prG) = Dr ⊕ pnGp for all n = m (3.12)

Then we have

dim(G, A, p)
(3.12)(3.9)

= dim(D0/A)[p]
(1)
= dim(Dr/(A ∩ prG))[p]. (3.13)

By the definition of Dr, Dr ⊆ prG(p) and so T (Dr) ⊆ prGp. Hence, by
(3.12), Dr is torsion-free. Further rk(A ∩ prG) is finite and Dr/(A ∩ prG)
is a p-group. Therefore, by Lemma 3.9, dim(Dr/(A ∩ prG))[p] is finite and
by (3.13), (2) is confirmed. ¤

4. Purifiability in pure subgroups

In this section, we consider purifiable torsion-free finite rank subgroups
A in a group G.

Lemma 4.1 Let G be a group, A a torsion-free subgroup of G and H a
pure subgroup of G containing A. For every p ∈ P, let G(p)/A = (G/A)p

and H(p)/A = (H/A)p. Then the following hold.
(1) G(p) is p-pure in G and T (G(p)) = Gp.
(2) G(p) = H(p) + Gp.
(3) Suppose that A is p-purifiable torsion-free in G and let L be a pure

hull of A in G. Then G(p) = L(p) ⊕K where L(p)/A = (L/A)p and K

is a subgroup of Gp.

Proof. (1) is easily checked.
(2) Note that H(p) is p-pure in G and G(p)/H(p) is a p-group. Let g ∈ G(p).
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Then png ∈ H(p) ∩ pnG = pnH(p) for some n ∈ Z. Then we have png = pnh

for some h ∈ H and g − h ∈ Gp. Hence G(p) = H(p) + Gp.
(3) By Proposition 2.3(3), Lp is bounded and so Lp is a direct summand of
Gp. Hence, by (2) with H = L, the assertion is confirmed. ¤

We recall the so-called Dedekind short exact sequence.

Lemma 4.2 Let T, S, K be submodules of a module G over some ring
such that T ⊆ S. Then there exists the following short exact sequence:

0 −→ S ∩K

T ∩K
−→ S

T
−→ S + K

T + K
−→ 0.

In particular, if (S ∩K) + T = S, then (S ∩K)(T ∩K) ∼= S/T .

Lemma 4.3 Let G be a group, A a torsion-free subgroup of G, H a p-pure
subgroup of G containing A, G(p)/A = (G/A)p, H(p)/A = (H/A)p, and r ∈
Z∗. Then we have

pnH(p) + (A ∩ prG)
pnHp ⊕ (A ∩ prG)

∼= pnG(p) + (A ∩ prG)
pnGp ⊕ (A ∩ prG)

for all integers n = r.

Proof. Let S = pnG(p) +(A∩ prG), T = pnGp⊕ (A∩ prG), and K = H(p).
Then

S ∩K = (pnG(p) + (A ∩ prG)) ∩H(p)

= (pnG(p) ∩H(p)) + (A ∩ prG) = pnH(p) + (A ∩ prG),

T ∩K = (pnGp + (A ∩ prG)) ∩H(p)

= (pnGp ∩H(p)) + (A ∩ prG) = pnHp + (A ∩ prG),

and

(S ∩K) + T = pnH(p) + (A ∩ prG) + (pnGp ⊕ (A ∩ prG))

= pnH(p) + pnGp + (A ∩ prG)
(4.1(2))

= pnG(p) + (A ∩ prG) = S.

Hence, by Lemma 4.2, the assertion is confirmed. ¤

Theorem 4.4 Let G be a group, A a torsion-free subgroup of finite rank of
G, L a p-pure subgroup of G containing A, G(p)/A = (G/A)p, and L(p)/A =
(L/A)p. Suppose that A is p-purifiable in G. Then A is p-purifiable in L if
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and only if

dim(G, A, p) = dim(L, A, p). (4.5)

Proof. By Remark 3.8, without loss of generality, we may assume that Gp

is reduced. By Proposition 2.13, the following two conditions are satisfied.
(1) OpsG

A∩psG(p) = ∅ for some s ∈ Z∗.
(2) Let r be the least integer satisfying the condition (1) and let

D/(A∩prG) be the maximal divisible subgroup of pr(G/(A∩prG))p =
prG(p)/(A∩prG). Then there exists a nonnegative integer m = r such
that

pnG(p) + (A ∩ prG) = D ⊕ pnGp for all n = m.

By the definition of r in (2) and Proposition 2.8, r is the least integer such
that

OprL
A∩prL(p) = ∅. (4.6)

Further, by the above condition (2), we have

pnG(p) + (A ∩ prG)
A ∩ prG

=
D

A ∩ prG
⊕ pnGp ⊕ (A ∩ prG)

A ∩ prG

for all n = m. (4.7)

(⇒) Suppose that A is purifiable in L. Note that A ∩ prG = A ∩ prL. By
Proposition 2.13 and (4.6), there exist a nonnegative integer m′ = r and a
divisible subgroup D′/(A ∩ prG) of pr(L/(A ∩ prG))p = prL(p)/(A ∩ prG)
such that

pnL(p) + (A ∩ prG) = D′ ⊕ pnLp for all n = m′

and hence, for all n = m′,

pnL(p) + (A ∩ prG)
A ∩ prG

=
D′

A ∩ prG
⊕ pnLp ⊕ (A ∩ prG)

A ∩ prG
. (4.8)

By Lemma 4.3, (4.7) and (4.8),

D′/(A ∩ prG) ∼= D/(A ∩ prG). (4.9)

Therefore, by Proposition 3.10, dim(G, A, p) = dim(L, A, p).
(⇐) Suppose that (4.5) is satisfied. Let D′′/(A ∩ prG) be the maximal
divisible subgroup of pr(L/(A ∩ prG))p = prL(p)/(A ∩ prG). Note that
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D′′ ⊆ D. Since

dim
D

A ∩ prG
[p]

(3.10(2))
= dim(G, A, p)

(4.5)
= dim(L, A, p)

(3.10(2))
= dim

D′′

A ∩ prG
[p],

we have

D/(A ∩ prG)) ∼= D′′/(A ∩ prG). (4.10)

By Proposition 3.10, dim(D/(A∩ prG))[p] is finite. Therefore D = D′′ and
we have

pnL(p) + (A ∩ prG) = L ∩ (pnG(p) + (A ∩ prG))
(2)
= L ∩ (D ⊕ pnGp) = D′′ ⊕ pnLp

for all n = m. Therefore, by (4.6) and Proposition 2.13, A is p-purifiable in
L. ¤

Theorem 4.4 and Proposition 2.5 combined lead to the following.

Corollary 4.11 Let G be a group, A a torsion-free finite rank subgroup of
G, and H a pure subgroup of G containing A. Suppose that A is purifiable
in G. Then A is purifiable in H if and only if, for every p ∈ P, we have

dim(G, A, p) = dim(H, A, p).

5. Strongly ADE decomposable groups

First we recall definition of full free subgroups of a group G.

Definition 5.1 Let G be a group. A subgroup of A of G is said to be full
free in G if A is free and G/A is torsion.

Definition 5.2 A group G is said to be an ADE group if there exists a
torsion-free subgroup N such that N is almost-dense and T -high in G. Such
a subgroup N is called a moho subgroup of G.

We studied ADE groups of torsion-free rank 1 in [4]. By Definition 2.1,
we can easily see that all torsion-free groups are ADE groups.

We also recall the definition of strongly ADE decomposable groups.
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Definition 5.3 A group G is said to be a strongly ADE decomposable
group if there exists a purifiable T -high subgroup of G.

From Definition 5.3 and Lemma 2.14, we have the following.

Proposition 5.4 Let G be a strongly ADE decomposable group. Then
there exist an ADE subgroup H of G and a subgroup U of T such that G =
H ⊕ U .

Proof. By Definition 5.3, there exists a purifiable T -high subgroup N of
G. Note that G/N is torsion. Let H be a pure hull of N in G. Then,
by Lemma 2.14, we have G = H ⊕ U for some subgroup U of T . By
Proposition 2.3, N is almost-dense in H. Hence H is an ADE group with
N as a moho subgroup. ¤

Let G be a strongly ADE decomposable group. Then there exist a
T -high subgroup N of G. If OG

N (p) = ∅ for every p ∈ P, then, by Corol-
lary 2.11, H is torsion-free. Hence G is splitting. We know that non-splitting
ADE groups exist (see [4, Example]). So strongly ADE decomposable is
weakening of splitting and splitting is an extreme case of strongly ADE
decomposable.

Strongly ADE decomposable groups of torsion-free rank 1 were investi-
gated in [6], [7], and [9].

Recall [10, Example 4.2]. Z denotes the ring of integers and N the set
of all positive integers.

Example 5.5 Let G = A⊕B where A = Z[p−1] = {m/pn |m ∈ Z, n ∈N}
and B =

⊕∞
n=1〈xn〉 with o(xn) = pn. Let an = 1/pn. Define

L = 〈an + xn | n = 1〉.
Then L is pure in G and not strongly ADE decomposable.

Proof. By [10, Property 4.10], L is pure in G. Suppose that L is strongly
ADE decomposable. Then there exists a purifiable T -high subgroup N of
L. Let H be a pure hull of N in L. By Proposition 5.4, we have L = H⊕U

for some subgroup U of B. Further, by Corollary 2.4, T (H) is bounded
and so T (H) is a direct summand of H. Hence H is splitting and so L is
splitting. This contradicts [10, Property 4.13]. Therefore the assertion is
clear. ¤

By Example 5.5, not all pure subgroups of strongly ADE decomposable
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groups are strongly ADE decomposable. In the rest of this section, we
examine pure subgroups of strongly ADE decomposable groups of finite
torsion-free rank. Before doing this, the following is useful.

Proposition 5.6 ([9, Theorem 4.4]) Let G be a group. Then G is strongly
ADE decomposable group if and only if there exists a purifiable full free
subgroup of G.

Theorem 5.7 Let G be a strongly ADE decomposable group of finite tor-
sion-free rank and L a pure subgroup of G. Then L is a strongly ADE
decomposable group if and only if there exists a full free subgroup A of L

such that A is purifiable in G and

dim(G, A, p) = dim(L, A, p)

for every p ∈ P.

Proof. (⇒) Suppose that L is strongly ADE decomposable. Then, by
Proposition 5.6, there exists a purifiable full free subgroup A of L. Then A

is purifiable in G. Further, by Corollary 4.11, dim(G, A, p) = dim(L, A, p)
for every p ∈ P.
(⇐) Suppose that there exists a full free subgroup A of L such that A is
purifiable in G and dim(G, A, p) = dim(L, A, p) for every p ∈ P. Then,
by Corollary 4.11, A is purifiable in L and by Proposition 5.6, L is strongly
ADE decomposable. ¤

Since splitting is an extreme case of being strongly ADE decomposable
on the basis of Proposition 5.6, Proposition 5.4, and Corollary 2.11, we can
characterize splitting groups as follows.

Proposition 5.8 Let G be a group. Then G is splitting if and only if
there exists a purifiable full free subgroup A of G such that OG

A(p) = ∅ for
every p ∈ P.

Proof. (⇒) Suppose that G is splitting. Then G = F ⊕T for some torsion-
free subgroup F of G. Let A be a full free subgroup of F . Then, by
Proposition 2.3, F is a pure hull of A in G and so A is purifiable in G.
Further, by Proposition 2.7(2), OG

A(p) = OF
A(p) = ∅ for every p ∈ P. Hence

the assertion is confirmed.
(⇐) Suppose that there exists a purifiable full free subgroup A of G such
that OG

A(p) = ∅ for every p ∈ P. By Proposition 5.6 and an argument as in
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the proof of Proposition 5.4, we have G = H ⊕ U for a pure hull H of A

and some subgroup U of T . By Corollary 2.11, H is torsion-free and so G

is splitting. ¤

From Corollary 4.11 and Proposition 5.8, we have the following.

Corollary 5.9 Let G be a splitting group of finite torsion-free rank and L

a pure subgroup of G. Then L is splitting if and only if there exists a full
free subgroup A of L such that A is purifiable in G and

dim(G, A, p) = dim(L, A, p) and OG
A(p) = ∅

for every p ∈ P.

Proof. (⇒) Suppose that L is splitting. Then, by Proposition 5.8, there
exists a purifiable full free subgroup A of L such that OL

A(p) = ∅ for every
p ∈ P. Note that, by Proposition 2.8, OG

A(p) = ∅ for every p ∈ P. Since A

is purifiable in G, by Corollary 4.11, dim(G, A, p) = dim(L, A, p) for every
p ∈ P. Hence the assertion is confirmed.
(⇐) Suppose that there exists a full free subgroup A of L such that A is pu-
rifiable in G, dim(G, A, p) = dim(L, A, p), and OG

A(p) = ∅ for every p ∈ P.
Then, by Corollary 4.11, A is purifiable in L. Further, by Proposition 2.8,
OL

A(p) = ∅ for every p ∈ P. Hence, by Proposition 5.8, L is splitting. ¤

6. Isomorphy of mixed basic subgroups

We extended the concept of basic subgroups from p-primary abelian
groups to arbitrary abelian groups in [10]. The basic subgroup extended to
arbitrary abelian groups is called a mixed basic subgroup. By [10, Example],
not all mixed basic subgroups of a group are isomorphic.

Now we consider isomorphy of mixed basic subgroups of strongly ADE
decomposable groups of finite torsion-free rank. First we recall the definition
of mixed basic subgroups.

Definition 6.1 A subgroup L of a group G is said to be a mixed basic
subgroup of G if L satisfies the following three conditions:
(1) T (L) is a direct sum of cyclic groups;
(2) L is pure in G;
(3) G/L is torsion divisible.

Recall that ft(Gp) is the tth Ulm-Kaplansky invariant of the p-compo-
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nent of a group G.

Lemma 6.2 Let G be a group and A a torsion-free rank-k subgroup of G.
Suppose that A is purifiable in G. Let H be a pure hull in G. Then

fn(Hp) 5 k. (6.3)

Furthermore, Hp is finite for all p ∈ P.

Proof. Suppose, by way of contradiction, that

pnH[p] =
(k+1⊕

i=1

〈xi〉
) ⊕

Sn

⊕
pn+1H[p]

where hp(xi) = n and Sn is a subgroup of pnH[p]. By Proposition 2.3(1), A

is almost-dense in H. Hence there exist ai ∈ A and gi ∈ H for 1 5 i 5 k+1
such that xi = ai + pn+1gi. Since rk(A) = k, {ai | i = 1, 2, . . . , k + 1}
is linearly dependent. Hence we have

∑k+1
i=1 αiai = 0 with αi ∈ Z and

αrar 6= 0 for some 1 5 r 5 k. If p divides αi for every 1 5 i 5 k + 1, then
p(

∑k+1
i=1 βiai) = 0 with βi ∈ Z and

∑k+1
i=1 βiai = 0. Hence we may assume

that p does not divide αm for some 1 5 m 5 k + 1. It follows that

k+1∑

i=1

αixi =
k+1∑

i=1

αiai +
k+1∑

i=1

αip
n+1gi =

k+1∑

i=1

αip
n+1gi.

This is a contradiction. Hence (6.3) is confirmed.
Further, by Proposition 2.5 and Corollary 2.4, Hp is bounded. Hence,

by (6.3), Hp is finite for every p ∈ P. ¤

Theorem 6.4 Let G be a strongly ADE decomposable group of torsion-
free rank k = 1. Suppose that pure subgroups L, M of G are strongly ADE
decomposable of torsion-free rank k. Then L ∼= M if and only if T (L) ∼=
T (M) and there exists a common full free subgroup B of L and M such that
B is purifiable in G and dim(L, B, p) = dim(G, B, p) = dim(M, B, p) for
all p ∈ P.

Proof. (⇒) Suppose that L ∼= M . Then it is immediate that T (L) ∼=
T (M). Since L is strongly ADE decomposable, by Proposition 5.6, there
exists a purifiable full free subgroup A of L. Let H be a pure hull of A in
L. Then, by Lemma 2.14 and Lemma 6.2, we have

L = H ⊕ U, Lp = Hp ⊕ Up, Hp is finite for all p ∈ P. (6.5)
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Since M ∼= L, we have

M = C ⊕W, C ∼= H, and W ∼= U.

Then A ∩ C is a full free subgroup of C. Let B = A ∩ C. Since Hp, Cp

are bounded for all p ∈ P, B is purifiable in both H and C by [5, Theo-
rem 5.2] and hence so is B in all of G, L and M . Then, by Corollary 4.11,
dim(L, B, p) = dim(G, B, p) = dim(M, B, p) for all p ∈ P. Hence the
assertion is confirmed.
(⇐) Suppose that T (L) ∼= T (M) and there exists a full free subgroup
B of both L and M such that B is purifiable in G and dim(L, B, p) =
dim(G, B, p) = dim(M, B, p) for all p ∈ P. By Corollary 4.11, B is purifi-
able in both L and M . Let K, N be pure hulls of B in L, M , respectively.
Then, by Lemma 2.14 and Lemma 6.2, we have

L = K ⊕ V, Lp = Kp ⊕ Vp, Kp is finite for all p ∈ P (6.6)

and

M = N ⊕W, Mp = Np ⊕Wp, Np is finite for all p ∈ P(6.7)

Since K and N are pure hulls of B in G, by [8, Theorem],

K ∼= N. (6.8)

Since T (L) ∼= T (M), by (6.8), (6.6) and (6.7), we have Vp
∼= Wp for all

p ∈ P. Hence L ∼= M . ¤

As an application of Theorem 6.4, we obtain the following result. Note
that all basic subgroups of the maximal torsion subgroups of mixed basic
subgroups are isomorphic.

Corollary 6.9 Let G be a strongly ADE decomposable group of torsion-
free rank k = 1. Suppose that mixed basic subgroups L, M of G are strongly
ADE decomposable of torsion-free rank k. Then L ∼= M if and only if there
exists a common full free subgroup B of L and M such that B is purifiable
in G and dim(L, B, p) = dim(G, B, p) = dim(M, B, p) for all p ∈ P.
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