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A conjugate system and tangential derivative norms

on parabolic Bergman spaces
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Abstract. The a-parabolic Bergman space b?, (\) is the Banach space of solutions of
the parabolic equation L(®) = 9/0t + (—A4)® on the upper half space H which have
finite LP (H,t*dV) norms, where t*dV is the weighted Lebesgue volume measure on H.
It is known that bf/z(/\) coincide with the harmonic Bergman spaces. In this paper,
we introduce the extension of notion of conjugate functions of b® (A)-functions and
study their properties. As an application, we give estimates of tangential derivative
norms on b? (\).

Key words: conjugate function, tangential derivative, heat equation, parabolic opera-
tor of fractional order, Bergman space.

1. Introduction

Let H be the upper half space of R"™ (n > 1), that is, H = {X =
(z,t);z € R", t > 0}. For 0 < a < 1, the parabolic operator L(®) is defined
by

0

L= 2 4 (—A,)”
o+ (=),

where A, = 86—;2 + -+ % is the Laplacian on the z-space R™. A real-
1 n

valued continuous function u on H is said to be L(®-harmonic if v satisfies
L™y = 0 in the sense of distributions. (The explicit definition of the L(*)-
harmonic function is described in Section 3.) For A > —1 and 1 < p < oo, the
a-parabolic Bergman space b” ()) is the set of all L(®)-harmonic functions
u on H with

1/p
menz</W@mWﬂWﬁ> < o0,
H
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where dV is the Lebesgue volume measure on H and LP()) := LP(H,t*dV).
In particular, we may write LP = LP(0) and b2 = b? (0), respectively.

Our aim of this paper is to study conjugate systems on a-parabolic
Bergman spaces. The a-parabolic Bergman spaces b2 were introduced and
studied by Nishio, Shimomura, and Suzuki [7]. It was shown in [7] that
bf /2 coincide with the usual harmonic Bergman spaces of Ramey and Yi
[11]. Accordingly, usual harmonic Bergman spaces are the classes of LP-
solutions of the parabolic equation L(®vy = 0 with a = 1 /2. In this paper,
we extend the notion of conjugacy of harmonic functions to a-parabolic
Bergman spaces. In [12], Stein and Weiss studied properties of systems
of conjugate harmonic functions on the harmonic Hardy spaces. In the
theory of the harmonic Bergman spaces, properties of conjugate functions
were also studied by Ramey and Yi [11], and as an application, estimates
of tangential derivative norms of harmonic Bergman functions were given.
However, the suitable notion of conjugacy are not extended to a-parabolic
Bergman spaces. (For instance, although Yamada [13] gave an extension
of the notion of conjugacy, it seems that the extension of Yamada is not
suitable.) In this paper, we introduce a suitable extension of conjugacy
to a-parabolic Bergman spaces and study their properties. We also give
estimates of tangential derivative norms of a-parabolic Bergman functions.

Now, we introduce the extension of conjugacy to a-parabolic Bergman
spaces. Let 0; = 0/0x; (1 < j <n)and 0; = 0/0t. Let C(Q2) be the set of
all real-valued continuous functions on a region €2, and for a positive integer
k, C*(£2) C C(£2) denotes the set of all k times continuously differentiable
functions on €2, and put C>(Q) = NRC*(Q). Furthermore, for a real num-
ber k, let Dff = (—0;)" be the fractional differential operator with respect
to t. (The definition of the fractional differential operator and the funda-
mental properties of fractional calculus for a-parabolic Bergman functions
are described in Section 2.)

Definition 1  For a function u € b2 (), we shall say that a vector-valued
function V' = (v1,...,v,) on H is an a-parabolic conjugate function of u if
v; € C'(H) and V satisfies the equations

Vou= =DV, Vgv;=0;V (1<j<n), (C.1)

and
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1

D lu=V,V, (C.2)
where V, = (01,...,0,) and V, - V is the divergence of V.

We remark that the fractional derivative Dtéflu is well defined when-
ever u € b2(A) with 0 < a < 1,1 < p < oo, and A > —1 (see Section
2). Our formulation of the extension of conjugacy is based on the Cauchy-
Riemann equations u, = v; and —u; = v, on a region of the two-dimensional
Euclidean space. Evidently, when a = 1/2, the equations (C.1) and (C.2)
coincide with the generalized Cauchy-Riemann equations for harmonic func-
tions in [12];

(9ju = 8tvj, ak'l)j = aj’l)k, 1< j,k <n, (1.1)
and
dru+ Y dv; =0. (1.2)
j=1

Particularly, an (n+ 1)-tuple (v1,...,v,,u) which satisfies (1.1) and (1.2) is
said to be a system of conjugate harmonic functions on H. We present re-
sults of Ramey and Yi [11] concerning with conjugate functions of harmonic
Bergman functions.

Theorem A (Theorem 6.1 of [11]) Let 1 < p < oo and u € b ,. Then,
there exists a unique 1/2-parabolic conjugate function V- = (v1,...,v,) of
u such that v; € b’l’/z. Also, there exists a constant C = C(n,p) > 0
independent of u such that

CHullze < IVIllze < Clullzr,

where |V| := {v? 4 - +02}1/2,

For a multi-index v = (y1,...,7,) € N, let 97 := 9" ... 9], where

Np := NU{0}. The following theorem gives estimates of tangential derivative
norms of harmonic Bergman functions.

Theorem B (Theorem 6.2 of [11]) Let 1 < p < oo and u € b ,. Then,
for each m € Ny, there exists a constant C = C(n,p, m) > 0 independent of
u such that
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C M ullwe < Y ([ 0%ul < Clullzs.

[v|=m

We describe the main results of this paper. We remark that the condi-
tion p(i — 1) + A > —1 in Theorem 1 below holds for all 1 < p < oo and
A > —1 whenever 0 < o < 1/2.

Theorem 1 Let0<a<1,1<p<oo, A>—1, andu e bl(N). If o, p,
and X\ satisfy the condition n = p(i —1) +A > —1, then there exists a unique
a-parabolic conjugate function V = (v1,...,vy,) of u such that v; € bk (n).
Also, there exists a constant C = C(n,p,a,\) > 0 independent of u such
that

CMullony < MVIllzee < Cllullpen- (1.3)

In Section 4, we show that b2 (A\) = {0} when A < —1. Therefore, similar
statements in Theorem 1 can not hold for the case n = p (i — 1) +A< -1,
We do not know whether Theorem A is extended to the full range 0 < o < 1,
1 < p < oo, and A\ > —1. However, we can give estimates of tangential
derivative norms of b® (\)-functions.

Theorem 2 Let 0 < a < 1,1 < p < oo, A > —1, and u € bL(N).
Then, for each m € Ny, there exists a constant C = C(n,p,a, A\,m) > 0
independent of u such that

CHullLren) < Z Ht%@UHLP(A) < Cllullzeeny- (1.4)

[v|=m

We display the plan of this paper. In Section 2, we describe basic
properties of fractional calculus on b? ()). In Section 3, we define integral
operators induced by the fundamental solution of the parabolic operator L(¢)
and investigate their properties, which are useful for studying a-parabolic
conjugate functions. In Section 4, we give the proof of Theorem 1. Moreover,
we show a decomposition theorem for a-parabolic conjugate functions when
n = p(i — 1) + A > —1. In Section 5, we give the proof of Theorem 2.
More properties of a-parabolic conjugate functions are studied in Section 6.

Throughout this paper, C' will denote a positive constant whose value is
not necessary the same at each occurrence; it may vary even within a line.
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2. Fractional calculus on bf ()

In order to extend conjugacy to a-parabolic Bergman spaces, we need
fractional calculus on b2 ()). First, we describe fractional differential oper-
ators for functions on Ry = (0,00). For a real number k > 0, let

FC " :={peC(Ry);Ie >0, 3C > 0s.t. [p(t)| < Ct "%, VE € Ry }.
(2.1)

For a function ¢ € FC™", we can define the fractional integral D; "¢ of ¢
by

1 o 1 °
D, "p(t) == / " ro(r 4 t)dr = / (1 — )" Lp(r)dr,
' I'(k) Jo L(k) Ji
teRy, (2.2)
where I' is the gamma function. Moreover, let
FC" = {yp; dtpﬂgp € ]-‘C_(M]_“)}, (2.3)

where d; = d/dt, [k] is the smallest integer greater than or equal to k, and
we will write 7C" := C(R,). We can also define the fractional derivative
Dy of ¢ € FC" by

Dip(t) =D, 17 ((—d) o) (1), teR,. (2.4)

In particular, we will write DY¢ = ¢. For a real number x, we may call both
(2.2) and (2.4) the fractional derivatives of ¢ with order k. And, we call Df
the fractional differential operator with order k. Some basic properties of
the fractional differential operators are the following.

Lemma 2.1 (Proposition 2.1 of [4])  For real numbers k,v > 0, the fol-
lowing statements hold.

(1) If p € FC", then D; "p € C(Ry).

(2) If p e FCT"77, then D, "Dy "o = D; " V.

(3) If dFp € FCV for all integers 0 < k < [k] — 1 and dtfﬁ]go €
FCURI=R= then DED;Vp = D7 VDo = D V.
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(@) I dev](p e FC- M=) for all integers 0 < k < [K] — 1, dtMH‘p €
Fe[r1=r) for all integers 0 < ¢ < [v] — 1, and d[*ﬂ‘*‘ﬁ’]@ <
FCTKI=R=(1=) e DEDY = Dt ep.

Here, we give some examples of fractional derivatives of elementary func-
tions.

Example 2.2 Let x > 0 and v be real numbers. Then, we have the
following.

(1) DYe rt = Ve ",

(2) If —k < v, then Dyt~ " = F(F'{(:)'j)t’“”’.

Next, we also describe some basic results concerning with the funda-
mental solution of L(®). For z € R, let

1 20 4
W (44 = @) Jrn exp(=t[E[** + §) d¢ (t>0) (2.5)

0 (t <0),

where z-¢ denotes the inner product on R™ and [¢| = (¢-£)'/2. The function
W(®) is the fundamental solution of L(®) and it is L(®)-harmonic on H. We
note that W(® > 0 on H and [;, W@ (z,t)dz = 1 for all 0 < t < oo.
Furthermore, W(® € C®(H). Let v = (y1,---,7v,) € NI be a multi-index
and k € Ny. The following estimate is Lemma 1 of [9]: there exists a constant
C =C(n,a,v,k) > 0 such that

O2OEW @ (@,1)] < C(t + [af2)~ (52 4) (2.6)

for all (z,t) € H. In particular, by (2.6), we note that for each = € R™, the
function ¢( - ) = W) (z, - ) belongs to FC" for x > —5&- The statements
in the following lemma are consequences of [4].

Lemma 2.3 (Theorem 3.1 of [4]) Let0 < o <1,y € N be a multi-indez,
and k be a real number such that k > —5=. Then, the following statements
hold.

(1) The derivatives Oy DEW (@) (x,t) and DFOIW @) (x,t) can be defined, and
the equation OJDFW (@) (x,t) = DFOYW () (x,t) holds. Furthermore,
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there exists a constant C = C(n,a, 7y, k) > 0 such that
Yy (o) 2a f(ern)
‘8thW (%,t)‘ < C(t+ |z|**) T2

for all (x,t) € H.
(2) If a real number v satisfies the condition v+k > —5=, then the derivative
DYOIDEW () (1) is well defined, and

DYOIDIW ) (z,¢) = YDV W (2, 1)

for all (x,t) € H.
(3) The derivative dJDEW (@) (x,t) is L™ -harmonic on H.

We present basic properties of fractional derivatives of b (\)-functions.
We begin with describing estimates of ordinary derivatives of b (\)-
functions. Let 0 < o < 1,1 <p <00, A > —1, v € Nj be a multi-index,
and k € Ny. Then, it is known that b2 (\) € C*°(H) (see [13]) and the
following estimate is given by Lemma 3.4 of [13]: there exists a constant
C =C(n,a,p,\,7v,k) > 0 such that

010k u(e, 1)] < co (BHR) = (GEonn) b ) (2.7)

for all w € b2 (X\) and (x,t) € H. The estimate (2.7) implies that the
point evaluation is a bounded linear functional on b® (\). Furthermore, the
estimate (2.7) also shows that a function ¢( - ) = u(x, - ) belongs to FC" for
uebl(N)and k> — (7= +A+1) %, so we can define fractional derivatives of
b (M\)-functions. Some properties of fractional derivatives of bt (\)-functions
are given in the following.

Lemma 2.4 (Proposition 4.1 of [4]) Let0<a<1,1<p<oo, A > —1,
v € Ny be a multi-index, and k be a real number such that k > —(% + A
—i—l)%. If u € bE (N), then the following statements hold.

(1) The derivatives 0] Dju(x,t) and Dyfolu(z,t) can be defined, and the
equation OYDfu(x,t) = DfoJu(x,t) holds. Furthermore, there exists a
constant C = C(n,a, p, \,7, k) > 0 independent of u such that

|03 D u(z, t)] < Ct*(%“)*(%“*l)%HUHLP(A)
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for all (x,t) € H.
(2) If a real number v satisfies the condition v+ K > — (4% + A+ 1)%, then
the derivative Dy 0)Diu(z,t) is well defined, and

Dy 0y Dru(x,t) = 07Dy " u(x, 1)

for all (x,t) € H.
(3) The derivative 0 Dfu(z,t) is L' -harmonic on H.

For a real number x > 0, let C, = 2%/I'(k). The following lemma is
also a consequence of [4], and (2.8) is the reproducing formula for b (\)-
functions.

Lemma 2.5 (Theorem 5.2 of [4]) Let0<a<1,1<p<oo, and A > —1.
Suppose that v and k are real numbers such that v > —% and K > %.

Then,
u(w,t) = e [ DYuly, DFW (@ gt )51V () (2:8)
H

holds for all u € bt (X\) and (x,t) € H. Furthermore, (2.8) also holds for
kK=A+1 whenp=1.

In our later arguments, we use the following lemma frequently. By
(1) of Lemma 2.3 and the following lemma, if 1 < p < oo, then we have
DMW()(z — - t4 - ) e LP(N) for each (z,t) € H. Therefore, it follows
that Cy D} W (@) (2 — - [ t4 - ) is the reproducing kernel for the Hilbert
space b2 (\).

Lemma 2.6 (Lemma 5 of [9]) Let0,c € R. If0 > —1 and 5=~ +0+1—c <0,
then there exists a constant C = C(n,«,0,c) > 0 such that

0
S n
dV(y,s) = Ctzatoti=c
/H(t+s+\x—y2a>c ®9)

for all (x,t) € H.
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3. Integral operators induced by the fundamental solution

In this section, we define integral operators induced by the fundamental
solution W(®) and investigate their properties. These investigations are
useful for studying a-parabolic conjugate functions of b’ (\)-functions in
Section 4.

First, we recall the definition of L(®-harmonic functions. (For details,
see Section 2 of [7].) We describe the operator (—A;)“. Since the case a = 1
is trivial, we only describe the case 0 < a < 1. Let C*(H) C C(H) be
the set of all infinitely differentiable functions on H with compact support.
Then, (—A,)“ is the convolution operator defined by

(=20)%(2,1) := —Cn,0 lim (Y@ +y. 1) — () [y 7"y (3.1)
L0 J1y|>6

for all 1y € C°(H) and (z,t) € H, where ¢, o = —4%7~"/?T'((n + 2a)/2)
JT(=a) > 0. Let L(® := —9t + (—A,)* be the adjoint operator of L(*).
Then, a function u € C(H) is said to be L(®)-harmonic if u satisfies L(®)y =
0 in the sense of distributions, that is, [}, [uL(®|dV < oo and [y uL @ ypadv
= 0 for all ¢y € C°(H). By (3.1) and the compactness of supp(y) (the
support of 1), there exist 0 < t; < t2 < oo and a constant C' > 0 such that

supp(L(¢) € § = R" x [t1,t2] and [L(a, 1) < O(1 + [af) 7>
for (z,t) € S. (3.2)

Hence, the condition [, [uL(®y|dV < oo for all ¢ € C°(H) is equivalent
to the following: for any 0 < t; < t5 < oo,

ta
/ / lu(z,t)|(1 + |z|) " 2*dzdt < co.
t1 JR7

Next, we define integral operators induced by the fundamental solution
W, Let v € N{ be a multi-index and &, p € R with £ > —5=. Then, we
define the integral operator P} by

P10 f (2, 1) = / P $)OUDEW ) (@ — gt + )P dV (g 5),  (3.3)
H
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whenever the integral is well defined. Some properties of P} are given in
the following theorem.

Theorem 3.1 Let0 < a<1,1<p<oo, and o € R. Suppose that a

multi-indexr v € N and k, p € R with k > —35= satisfy
_ _ bl _
c—pp<p-—-1< 2a+ﬁ p+ o — pp. (3.4)

Then, for every f € LP(0), the following assertions hold.

(1) The function PY"P f(x,t) is well defined for every (z,t) € H and there
exists a constant C' > 0 independent of f such that

HP&Y:"%PfHLPUD < CHfHLP(G)v (35)

where n = (% +K—p— l)p + 0. Moreover, P)"™Pf is L) -harmonic
on H. Consequently, P) " f € bk (n).
(2) Furthermore, let § € Nij be a multi-index and v € R. If v satisfies

VK> - and p—1< m4—1/4—/{ p+o— pp, (3.6)
2ce 2c

then the derivative 02DY P15 f(z,t) is well defined for every (z,t) € H
and OPDY PYrP f = PBHYvEae £ that is,

O) Dy P f(x,t) = / Fy, )05 Dy W (@ — y,t + 5)sdV (y, 5).
H
(3.7)

Consequently, put n = (W +v4+Kr—p— 1)p + o, then there exists
a constant C' > 0 independent of f such that

102D P2 £]] 1y < CU oo (3.5)

and °DY PP f € bE ().

Proof. Let f € LP(0) and put
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WL f (2, ) = /H P )L @ by, 8)sPdV (y,5), (3.9)

where 00" (x,t;y,s) = (t+ s+ |z — y\m)_(n;ljl*"‘). We remark that
|PY:5 f(z,t)] < CULRP f(x,t) by (1) of Lemma 2.3. Suppose that p > 1
and let ¢ be the exponent conjugate to p.

(1) Put mqy = -1, M; = %—‘r,‘i—l, mo = —(%—i—/ﬁ)p%l — "p__plp, and

My = —”I;”lp. Then, (3.4) implies that my; < Ms and me < Mj. Thus,

there exists a real number 6 such that 0 € (mq, M1) N (ma, M3). Therefore,
the Holder inequality implies that

WL f (2, ) = / £y, 8)|s"~ 3 53625 (@, b5, 5)AV (3, 8)
H
0 1/p
< ( [ 15 s>rps(P—q)szv“<x,t;y,s>dV<y,s>)
H

1/q
<[ [ S savis)
H
Since 0 € (mq, M;), Lemma 2.6 implies that
{03 f(, 1)}

< oploni-fl-n)t / £y, )P P65 (@ 4y, $)dV (g, 5). (3.10)
H

We show that the function PJ"? f(x,t) is well defined for every (z,t) € H.
Since 0 € (mg, Ms), we have

- <p—Z>p:o——pp+(p—1)9:(p—1)<c;__’1p+e) <0

and

S R R I RICE SO

It follows from above inequalities that
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(o5, 8) < Ot 4 5)- (52 00) (o= (-4} 20~ (-2}

< o (5 m) ~{o=(o=4)p} o= (- 4)p,

Therefore, (3.10) implies that

[ f(a, )} < cr(0r1-5on) i (50he) o= (- 2)n}

p
LP(o)

ol

< th(%+a+1)f(ﬁJr/f*p*l)PHinzp(g) (3.11)

for all (z,t) € H. Thus, P)"° f(x,t) is well defined for every (z,t) € H.
We show the inequality (3.5). By (3.10) and the Fubini theorem, we have

/{\I/Z;mpf(a:,t)}pt”d\/(x,t)

H

<O f sl [ (0B e, )V 0V (),
H H

Since 0 € (mg, Ms), we also have

0+1—m—/€ g~|—77:(p—1)«94—m+/€+0—pp—1>—1
2« q 2c
and

9+1—m—/<; ]3+77+1—m—/1:(p—1)¢9+0—pp<0.
2a q 2ce
Therefore, Lemma 2.6 implies that ||[P) ™" f[|1o) < CI[WL™P fllLe@y) <

CllfllLr(o)-
We show that P) ™" f is L(®)_harmonic on H. First, we claim that

to
/ / UL fa, ) (1 + |z]) 7" ¥ dadt < 0o (3.12)
t1 n

for all 0 < t; <ty < co. In fact, the Holder inequality implies that
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12
[ v la)edsar
t1 u

to to 1/q
< (/ / {\Ilg’“’pf(x,t)}pt"dxdt) (/ / (1 + |z "_Md:cdt)
t1 n t1 n

< Cllfllze(o) </Rn(1 + \xl)_”_zadx> < .

Thus, (3.12) is obtained. Since 9} DFW () (z—y, t+5) is L(®)-harmonic with
respect to (z,t), the Fubini theorem implies that P)"? f is L(®)_harmonic
on H.

(2) Suppose that a real number v satisfies the conditions of (3.6). First,
we show that DY PY%F f(x,t) = PYV TP f(x,t), that is,

DRI f(at) = [ )00 W (@ gt )5V (). (313)
H
Let v be a nonnegative integer. Then, as in the proof of (3.11), we have

Wyt g, 1) < o (Fere ) 5= (Bt g 0 (304

for all (z,t) € H. Thus, we can differentiate through the integral (3.3) with
respect to t. Therefore, we obtain DY P57 f(x,t) = PYY 5P f(z,t). Let v

be a real number. Put
[v] v>0
w(v) =
0 v <0.

We claim that
/ PO =v=Lg e FRp £ 4 )T < 00 (3.15)
0

for all (z,t) € H. Indeed, the second condition of (3.6) implies that
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n L. (hi
<2+0+1>+<2a+w(u)+/€—p—1>

o p

n il 1
>wv)—v+ + +v+k|pto—pp—p+1p->w(v) -
2c 2c p

Therefore, by (3.14), we have \Ill’w(u)—i_ﬁ’pf(x, ) e FC@WY) for every
x € R", so that (3.15) is obtained. Hence, the Fubini theorem and (2) of
Lemma 2.3 show that

Dy Py~ f(w,t) = Dy WD P fa b)

_ D;(w(l/)*u)Pg,w(u)—i—/-c,pf(:v’ t)

_ 1 OoTw(u)fufl
Iw(v) —v) /0

. / fy, s)@lDf(VHRW(O‘)(x —y, T+t + s)sPdV (y, s)dr
H

1
- [ 109

. / T‘”(”)_”_lang(VHHW(“) (x —y, 7+t + s)dr s*dV (y,s)
0

- / Fly,5)D; COTI DI (@ —y 1+ 5)sPdV (y, 5)
H

_ / Fly, $)O0D W@ (5 — y £+ 8)sPdV (y, 8) = PV (1),
H

Let 3 € Nfj be a multi-index and v € R. As in the proof of (3.11), (3.4)
and the second condition of (3.6) imply that

Wit f(p gy < op (g rert) - (B dn—p1) 1fllze o)

for all (z,t) € H. Therefore, we can differentiate through the inte-
gral (3.13) with respect to x. Hence, we obtain 9°DYPY*P f(x,t) =
OF PR+ (i, 8) = PRV HR0 f(z, 1),

Since the proofs of (1) and (2) for the case p = 1 are easier, we omit the
proofs. O
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We have the following corollary.

Corollary 3.2 Let0 < a < 1,1 <p < o0, and A > —1. Then, the
following assertions hold.

(1) If a real number k satisfies k > %, then the operator C,, PY*"~1 is q
bounded projection from LP(X) onto bP(\).

(2) Let1l < p < oo and q be the exponent conjugate to p. Then, (bE(\))* =
bl (X\) under the pairing

(u,v) = /Hu(a:,t)v(x,t)t)‘dV(x,t), u e bl (M), vebl(N).

(3) For a real number v > —2fL  there exists a constant C =

P 7
C(n,p,a, A\, v) > 0 such that

S |eE gy

A+1
ly|<v+25=

C_luu”LP()\) < Htl/,DlltjuHLp()\) < UHLP()\)

< Cllullzeea

for all w € b (), where v € Ny denotes a multi-indez.

Proof. (1) Let k be a real number such that k > )‘H . Then, (1) of Theo-
rem 3.1 implies that PO**~1f € bP()\) and || PO"r~~ 1f||Lp(>\) < C|flleen
for all f € LP(\). Also, by Lemma 2.5, we have C,,P%** 1y = 4 for all
u € b2 (X\). Therefore, the operator C,, P2+~ is a bounded projection from
LP(\) onto bE ().

(2) Since D} W (@) is symmetric, the Hahn-Banach theorem and (1)
of Corollary 3.2 with xk = A+ 1 imply that (b5 (\))* = b% (). (The proof is
similar to that of Theorem 8.1 of [7].)

(3) Let v be a real number such that v > — p . First, we show the last
inequality of (3). It suffices to show that for every v € N with || < v+ >‘+1
there exists a constant C' > 0 such that

e

Ht2a +Vf\’y\8;D;/—"Y|uHLp(A) < CH'LLHLP()\)

By Lemma 2.5, we have
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u(z,t) = C)\+2/ u(y, s)DPT2W ) (2 — y, t + 5)s LAV (y, s)
H

= Cop2 PP 22 (1)

for all w € b2(\) and (z,t) € H. Since v > —%, (2) of Theorem 3.1
implies that

81Dy Mu(x, ) = Cr o0y DY N POA2AH Ly (4 1)

= O PPV A2y (4 1),
and there exists a constant C > 0 such that

oy Dy~ = CA+2HPg’y_hHAH’AH“HLP(n) < Cllullr oy,

Loy
where 1 = (% + v — |y)p + A\. Therefore, the last inequality of (3) is
obtained.

Since the second inequality of (3) is trivial, we show the first inequality

of (3). By the last inequality of (3), f = "Dy u belongs to LP()). Therefore,
by Lemma 2.5, we have

U(.%', t) = Cl/+>\+2 / SVDgu(ya S)Dt)\-i_zw(a) (1’ -y t+ S)SA+1dV(y7 3)
H

= Cuprsz (P2 (DY w)) (2, 1)
for all u € bE(\) and (z,t) € H. Hence, (1) of Theorem 3.1 implies that

lullzroy = Coaxsa|| P> E DY W) o ) < Ol DYl -

Therefore, the first inequality of (3) is obtained. O

4. Uniqueness of a-parabolic conjugate functions

In this section, we give the proof of Theorem 1, and also give a decom-
position theorem for a-parabolic conjugate functions. First, we need the
following lemma.
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Lemma 4.1 Let0<a < 1. Then,
1
(D; + Ax>W(°‘)(x, =0

for all (z,t) € H.
Proof.  Differentiating through the integral (2.5) with respect to x, we have

~1
(2m)"

ALV (1, 1) = /R € exp(—tg* + i w-€) de.

Also, since
/ / T’—é]_é_1|§|2al—é-‘ exp ( — (T + t)|§\2°‘) d¢ dr < oo,
O n

differentiating through the integral (2.5) with respect to ¢, the Fubini theo-
rem and (2) of Example 2.2 imply that

1o 1 1 I
D W )(x7t)—(2ﬂ_)nr(|,1_‘_1)/0 AEl-5-1

/ thﬂ exp (— (t+7)[¢]** +1i z - &)dédr

1 1
~ @) /Rn r([i7-9)

/ A2 exp (= (b4 7)€ +i @ - €)drde
0

1
(2m)"

1

— 2 _ 2c . L
= g L P el i) de

|| P ool +ia- )i

Hence, this completes the proof. O

Now, we give the proof of Theorem 1.

Proof of Theorem 1. We put n = p(% — 1)+ A, and suppose that n > —1.
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Then, for u € b? (\), we define a vector-valued function V' on H by

V(.I‘, t) = _C)\JrQ/ ’U,(y7 S)vxpi\+1w(a) (JZ‘ -y, t+ S)S)\+1dV(y, 8)7 (41)
H

that is, v;(x,t) = —C>\+2Pg(j)’/\+1’>‘+1u(m,t) foreach1 < j<nandV =

(v1,...,vy), where v(j) = (6;1,...,0;,) € Nij and 6, is the Kronecker 4.

By (1) of Theorem 3.1, each v; is L{®)_harmonic on H, and there exists a

constant C' > 0 such that

PN < Oy, (42)

[0l Lo () = Casal] “HLP(n)

that is, |V| € LP(n).
We show that the functions v and V satisfy the equations (C.1) and
(C.2). By Lemma 2.5, (2) of Theorem 3.1, and (4.1), we have

Vot = Crga Vo PoAT2AT Ly

— C)\+2 (Po’ly(l),A-‘rQ,)\—‘rlu’ o aPo’[Y(n)7>\+2’/\+1u) — —Dtv

and

Vv = —Cr2oV,PYUALATL, — 5.y

for all 1 < j < n. Furthermore, by Lemma 2.5, (2) of Theorem 3.1, and (2)
of Lemma 2.3, we have

D7 Ml t) — Yy - Ve, t)

n
by 1 A .
= Crp2 P T () + O E PIDATIAT (g 1)
Jj=1

— Chis / uly, )DI(DF + A )W (a — 1+ 5) AV (y,5).
H

Therefore, by Lemma 4.1, the functions v and V satisfy the equations (C.1)
and (C.2).

Since the second inequality of (1.3) has already obtained by (4.2), we
show the first inequality of (1.3). By the first inequality of (3) of Corollary
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3.2 and the equation (C.2), we have

[ullzeery < CHté_lpz‘%_IUHLP(A) < CZ Hté_lajUjHLp(A)'
j=1

Since v; belongs to b% (), the last inequality of (3) of Corollary 3.2 with

v=1> —% implies that

670503y = 11750525l 0y < Clegllzecy

Hence, we obtain the inequalities of (1.3).

We suppose that U = (uq, ..., u,) is an a-parabolic conjugate function
of w such that u; € b%(n). Then, we will show U = V. In fact, for each
1 < 7 < n, by the first inequality of (3) of Corollary 3.2 and the equation
(C.1), we have

lv; = uill oy < C||tDe(v; — = C[t0;(u — u)||Lr(m) = 0.

i) oy
Since u; and v; are continuous on H, we obtain u;(z,t) = v;(z,t) for all
(z,t) € H. Hence, this completes the proof of Theorem 1. O

By Theorem 1, we can extend Theorem A to the case n = p(5= —1)+\ >
—1. Here, as a remark, we show that b2 (\) = {0} whenever A\ < —1.

Lemma 4.2 Let0 < a <1 and1 < p < oco. If a function u is L(®)-
harmonic on H and [ |u[PdV < oo for each closed strip S = R™ x [t1,t5] C
H, then the function IF(t) = [g, |u(z,t)[Pdz is decreasing on (0, 00).

Proof. By the proof of Theorem 4.1 of [7], if an L(®)-harmonic function u
satisfies [q [u[PdV < oo for each closed strip S = R™ x [t1,t5] C H, then u
holds the Huygens property, that is,

u(z,s+1t) = / u(y, s)W' (z — y, t)dy

forallz € R", 0 < s < co and 0 < t < co. Since W (z —y,t) > 0
and fRn W) (2 —y,t)dy = 1, the Jensen inequality and the Fubini theorem
imply that
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/ U(%SH)Ipdﬂ:S/ lu(y, )P W(“)(x—yi)dwdy:/ u(y, s)[Pdy.

Rn

Rn
This completes the proof O

Proposition 4.3 Let 0 < a < 1l and 1 < p < oco. If A < —1, then
by, (A) = {0}.

Proof. Let w € b2(A). Then, u belongs to LP()\), and it follows that
fs |ulPdV < oo for each closed strip S = R™ X [t1,t2] C H. Thus, Lemma
4.2 implies that

o> il > [ [ lutelPdede > 126 [
0 R7 0

for all 0 < s < oco. Hence, we have IP(s) = 0 for all 0 < s < oo, because
A < —1. Since u is continuous on H, we obtain u(z,t) = 0 for all (x,t) € H.
O

We can give a decomposition theorem for a-parabolic conjugate func-
tions. We begin with showing the following lemma. We can not prove
whether every u € b’.(n) satisfies the equation D; 'Dyu = u. However, the
following lemma holds.

Lemma 4.4 LetO<a<1,1<p<oo, A>—1, andu € bt (\). Suppose
a, p, and \ satisfy the condition n = p(i — 1)+ A > —1. Then, for every
a-parabolic conjugate function U = (uq,...,uy) of u, the function ’Dt_lptuj
on H is well defined and belongs to bE (n) for all 1 < j <n.

Proof. Let U = (uy,...,u,) be an a-parabolic conjugate function of u €
b? (A). Then, by the equation (C.1) and (1) of Lemma 2.4, there exists a
constant C' > 0 such that |Dyu;(z,t)| = |0ju(z,t)] < Ct™ 2~ Ga D3 for
all (z,t) € H. Therefore, the hypothesis n = p(% — 1)+ A > —1 implies
that Dyuj(z, - ) € FC! for every 2 € R™. Thus, we can define a function
D; 'Dyuj on H.

We show that D; 'Dyu; € bE(n). By (3) of Lemma 2.4 and (3) of
Corollary 3.2, the derivative Dyu; = 0ju is L(®)_harmonic and

1DeujllLe(o) = Htipt“jum(x) - Ht%ajuum(x) < Cllullery < oo,
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where 0 = = + \. Thus, we obtain Dyu; € b, (o). Again, by (3) of Lemma
2.4 and (3) of Corollary 3.2, the function D; 'Dyu; = D; '(Dyuy) is also
L{®)_-harmonic and

Dy (Dru; = |[t7'Dy (D < CHDt“J’HLp(U) < 0.

)HLP(n) )HLP(U)

Hence, we get D, 'D;u; € b2 (n). O

Theorem 4.5 Let 0 < a < 1,1 <p <oo, A > —1, and u € bE(N).
Suppose «, p, and X\ satisfy the condition n = p(i —1)4+ A > —1. Then,
every a-parabolic conjugate function U = (uq,...,u,) of u can be uniquely
expressed in the form

U(z,t) =V(z,t)+ F(z), (x,t)€H, (4.3)

where V= (vy,...,vy,) is the unique a-parabolic conjugate function of u with
v; € bl (n) in Theorem 1 and F = (f1,..., fn) is an n-tuple of harmonic
functions on R™ with Orf; = 0jfr, 1 < j, k <n and 2?21 0;f; = 0 (that
is, ' = (f1,...,fn) is a system of conjugate harmonic functions on R",
consequently each u; belongs to C*°(H)). Conwversely, every function U of
the form (4.3) is an a-parabolic conjugate function of u.

Proof. Let U = (uq,...,u,) be an a-parabolic conjugate function of u €
bL (A). Then, by Lemma 4.4, we can define a function v; € bt (n) by

v;(x,t) := Dy ' Dy (a,t) = /0 Diuj(z, 7+ t)dr, (x,t) € H. (4.4)

Since u; € C'(H) and the infinite integral (4.4) converges for every (z,t) €
H, the limit function f;(z) := lim wu;(x,7) exists for every z € R", and so

we have
vj(z,t) = u;(x,t) — fi(x), (x,t)€ H. (4.5)

We show that F' = (f1,..., fn) is a system of conjugate harmonic func-
tions on R™. Let x € R™ be fixed. By (4.5), we have

O fj(2) = Opuj(x, ) — Opvj(z,7)
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for all 7 € Ry and f; belongs to C'(R™). Since v; € b%(n), (1) of Lemma
2.4 implies that

Ocfj(x) = lim (Opu;(x, 7) — Opvj(z, 7)) = lim Opu;(x,T). (4.6)
Hence, (4.6) and the equation (C.1) show that
Ocfi(x) = lim Oguj(z,7) = lim Ojuk(z,7) = 0; fr(x).

Also, (4.6), the equation (C.2), and (1) of Lemma 2.4 imply that

Zajfj(x) = Z <Tli_>rglo Oju;j (.CC,T)) = Tan;O Zajuj (x,7)
=1 '

=1 j=1

= lim Dté_lu(I,T) =0.
T—00
Therefore, F' = (f1,..., fn) is a system of conjugate harmonic functions on
R™, thus f; is harmonic on R™ and f; € C>(R").

Since we see that F' = (f1,..., fn) is a system of conjugate harmonic
functions on R™, we clearly have V' = (vy,...,v,) is an a-parabolic conjugate
function of u. Hence, every a-parabolic conjugate function of u is expressed
in the form (4.3) and the expression is unique by Theorem 1. Conversely, it
is obvious that every function U of the form (4.3) is an a-parabolic conjugate
function of u. This completes the proof of theorem. O

5. Estimates of tangential derivative norms

In this section, we estimate tangential derivative norms of b%()\)-
functions and give the proof of Theorem 2. By Lemma 4.1, we also have the
following lemma.

Lemma 5.1 Let0<a<1,1<p<oo, A>—1, and u € b2(\). Then,
(Dﬁ + A, Julz,t) =0

for all (z,t) € H.

Proof. By Lemma 2.5 with v = 0 and k = X 4+ 2, we have u(x,t) =
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C o POAM2A+ 1y (1 1), Therefore, (2) of Theorem 3.1 implies that
1
(Dta + Az>u(x,t)
1
= C)\+2 / u(?/? S)Di\+2 (Dta + Al‘) W(a) (CL’ - Y, t+ S)S/\+1dV(y, S)'
H

Hence, Lemma 5.1 follows from Lemma 4.1. O

As an application of Theorem 1, we give the first inequality of (1.4) in
Theorem 2.

Proposition 5.2 Let0 < a<1,1<p<oo, A>—1, and u € bt,(A).
Then, for each m € Ny, there exists a constant C = C(n,p,a, \,m) > 0
independent of u such that

lullLoy <C Y Ht%@u}lm(A)-

[y|=m

Proof. Let u € b?()\). Suppose that m is even, that is, there exists k € N
such that m = 2k. Then, by (2) of Lemma 2.4 and Lemma 5.1, we have

Sy

)ku:(—nmgu:(—nk Zn: 92 ... 2% u. (5.1)

Jiseje=1

DEu=Dfu— (p
Therefore, (3) of Corollary 3.2 implies that

n
[ulle oy < CHt%DtTa“HLP(A) <C Z [£5% 85, "'ajgkuHLP(/\)

Jiyeesge=1

<C Z Ht%a;uHLp(A)'

[y|=m

Suppose that m is odd, that is, there exists k € Ny such that m = 2k+1.
Put v = Dyu. Then, (3) of Lemma 2.4 and (3) of Corollary 3.2 imply that
v belongs to bE(n), where n = p + A. Therefore, Theorem 1 implies that
there exists an a-parabolic conjugate function V' = (vy,...,v,) of v such
that v; € b (o), where 0 = p(5= — 1) + 7= £ + A > —1. Thus, by (2) of
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Lemma 2.4 and the equation (C.2), we have
m4l k1 _ n k
D, w=DyDi v=Y Df ;.
j=1

Therefore, (3) of Corollary 3.2 implies that

m—+1

n
m m+1 k
[0l < ClIEH D5 ], < O R D Sy,
i=1

(m)

- m k n k
=CY [t Dg 0504,y <C D HtéﬂDtaHWHm(a)'

j=1 j=1

Since the equation (C.1) implies that Div; = —0;v, (2) of Lemma 2.4 and
(5.1) show that

lellzoy < C3 5 DE 00,
j=1

n

< CZ ‘ Z Htg-‘rlai o '8]2k8jUHLP(J)

J=1j1,..,jk=1

<C Y O] iy SC D 070l o ),

[v|=m [v|=m

where p = F2p+\. Since 9u with |y| = m belongs to bf,(p) by (3) of Lemma
2.4 and (3) of Corollary 3.2, thus (2) of Lemma 2.4 and (3) of Corollary 3.2
imply that

18020l ) = [[EP(O20) | o, < €102 = Cl[t5=03ull 1y -

HLP(p) uHLp(p)

Also, by (3) of Corollary 3.2, we have |[[ullzr(x) < Cl[tDiullrrny =
C||v||Le(y)- Hence, this completes the proof of Proposition 5.2. O

Proof of Theorem 2. Proposition 5.2 shows the first inequality of Theorem
2. By the last inequality of (3) of Corollary 3.2 with v = m € Ny, we also
have the second inequality of Theorem 2. O
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6. More properties of a-parabolic conjugate functions

In this section, we study more properties of a-parabolic conjugate func-
tions. Given a harmonic function u on H, it is well known that a vector-
valued function V = (v1,...,v,) on H with v; € C'(H) satisfies the equa-
tions (1.1) and (1.2) if and only if there exists a function g € C?(H) such
that

g is harmonic on H and V(, g = (v1,...,Vn,u), (6.1)

where V(, ) = (01,...,0,,0;). First, we give an analogous equivalence for
our case. We show the following lemma.

Lemma 6.1 Let0<a<1,1<p<oo, A\>—1, andu € b’ ()\). Suppose
that there exists a function g € C*(H) such that Dig = u. Then, for a real
number k > 0, the function g(z, - ) belongs to FC*' for each x € R™ and
Ditlg = Db

Proof. 1t suffices to show the case K > 0, thus we let £k > 0. We remark
that the derivative Dfu is well defined by (1) of Lemma 2.4. We show
g(z, -) € FC* for each z € R™. In fact, since x > 0, there exists an integer
k € N such that [k + 1] = k + 1. Thus, we have Dt['{ﬂ]g = Dty = DFu,
and so (1) of Lemma 2.4 implies that

DI gz, 1) = |Dhula, 1)| < o= (F+3+1)3 (6.2)

for all (z,t) € H. Furthermore, since

1
k:+(27:l+/\+1>p>k:fﬁ+ﬂ—1>[FH—H—(FH—l),

we have D{”H]g(w, ) e Fe~ s =(40) for each z € R™.
Moreover, since [k + 1] — (k+ 1) = [k] —k and [k + 1] = [k] + 1, we
have

Derlg _ D;(f'“rﬂ*(f%”rl)) (thﬂ+ﬂg) _ ID;([@*N) (/DI@ (Dtg)) = Dru

This completes the proof. O
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Theorem 6.2 Let0<a<1,1<p<oo, A>—1, andu € bE(\). Then,
a vector-valued function V.= (v1,...,v,) on H is an a-parabolic conjugate
function of u if and only if there exists a function g € C*(H) such that
gz, - )€ FC= for each x € R™ and

1
(Df +A2)g=0o0nH and V(; g = (v1,...,vn,u). (6.3)

Proof. We show the “if” part. Suppose that there exists a function g €
C?(H) such that g(x, - ) € FC= for each z € R™ and g satisfies (6.3).
Then, since g € C?(H), the function v; = d;g belongs to C'(H) and

Vv =V30;9 =0;Veg =0,V (1<j<n).
Furthermore, Lemma 6.1 with « = é — 1> 0 implies that

ES L_1)+1 L1
Ve V=V, Vig=2g=-Dig=-D;" o=y .

We show the “only if” part. Suppose that V = (v1,...,v,) is an a-

parabolic conjugate function of u. Let (z,t) = (z1,...,2,,t) € H be fixed.
We put

glx,t) Z/ dT+/1tu(O,7')dT,

where &1(7) = (1,22,...,25) and & (7) = (0,...,0, 7, Tp11,...,x,) for 2 <
k < n. Then, since v, € C*(H), we have

9j9(z,t) iz:iaj(/ (T),t)dr> +aj</0wj vj(gj(r),t)ch)

j—1 Tk
- / vk (§r(7),t)dT +v;(&5(5) ).

k=170

Also, since V satisfies the equation (C.1) and & (0) = &x+1(xk+1), we obtain
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@)=Y [ ks 6.+ vy, 0)
k=170

j—1

(v (& (zr),t) — 05 (€(0),1)) +v; (& (25), 1)

Similarly, we have Oig(z,t) = u(x,t). Therefore, Vi, ng = (vi,...,vn,u)
and g € C?(H). Furthermore, Lemma 6.1 with x = 2 — 1 and the equation
(C.2) imply that g(z, - ) € FC= for each x € R" and

1 1_ 1_
(l)t(1 + Am)g = Dia 1)+1g +V,-Veg=-D¢ lu + V- V=0

This completes the proof of theorem. O
We also have the following proposition.

Proposition 6.3 Let0<a<1,1<p<oo, A>—1, andu € b5 (\). Let
1 < j < mn be fired. Suppose that a vector-valued function V- = (v1,...,v,)
on H is an a-parabolic conjugate function of u. Then, vj(z, - ) € FCw
for each x € R™. Furthermore, if vi, € C*(H) for all 1 < k < n, then
(Dté +Ag)v; =0 on H.

Proof. Let 1 < j < n be fixed and put ' = —0d;u. Then, (3) of Lemma

2.4 and (3) of Corollary 3.2 imply that u’ € b}, (c), where o = &~ + A. Since

Dyvj = —9;u = v/, Lemma 6.1 with k = 1 — 1 shows that v;(z, - ) € FC=
1 1

for each x € R™ and Dy v; = Dy R Furthermore, if v; € C?(H) for all

1 < j < n, then the equations (C.1), (C.2), and (1) of Lemma 2.4 imply

that

Avj =Y Ofv; =Y kv, =0, (Z akvk>
k=1 k=1 k=1

1 L,

1 1
=0;Dy u=D¢ laju =-Dp u.

1
Hence, we obtain Ayjv; = =Dy vj. O
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Finally, we give an inversion theorem, that is, for a vector-valued func-
tion V = (v1,...,v,) on H we construct a function u € b% (\) such that V
is an a-parabolic conjugate function of u.

Theorem 6.4 Let0 < o < 1,1 < p < oo, and n > —1. Suppose
that a vector-valued function V- = (vq,...,v,) on H satisfies v; € b (n)
and Vyv; = 0;V for all 1 < j < n. If o, p, and 1 satisfy the condition
A=p(l-— i) +n > —1, then there exists a unique function u on H such
that uw € b2 (X) and V' is an a-parabolic conjugate function of u. Also, there

exists a constant C = C(n,p,a,n) > 0 independent of V such that
CTHVNzomy < lulleny < CNVIHHLe - (6.4)

Proof. We put A = p(1— i) + n and suppose that A > —1. Then, we can
define a function u € bf (\) by

1—

w(@,t) =Dy *V, V(zt), (a1t e H. (6.5)

In fact, (3) of Lemma 2.4 and (3) of Corollary 3.2 imply that V.-V € bf (o),
where o = $~ + 1. Therefore, again (3) of Lemma 2.4 and (3) of Corollary
3.2 show that u is L(®-harmonic on H and there exists a constant C' =
C(n,p,a,n) > 0 independent of V' such that

1—1
lullexy = || Py * Ve - VHLP(,\) < OIVe Ve < CllIVIIILr -

Thus we obtain u € b? (A) and the second inequality of (6.4).

We show that the functions v and V satisfy the equations (C.1) and
(C.2). By (1) of Lemma 2.4, the hypothesis V,v; = 0;V, and Lemma 5.1,
we have

Ou=08;D, “V,-V =Dy =9;V, V=D, “Ayv; =-D; “Djv,.

Hence, by (2) of Lemma 2.4, we obtain 0ju = —D.v;, so the equation
(C.1) is satisfied. Furthermore, (6.5) and (2) of Lemma 2.4 imply that
Dté_lu = V.-V, and thus the equation (C.2) is also satisfied. Furthermore,
by (3) of Corollary 3.2 and the equation (C.1), we have
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[vjll ey < CHtDtUjHLP(n) = CHtaj“HLp(n) = CHtiajuHLP(,\)

< Cllullzr(ays

thus we also obtain the first inequality of (6.4).

We suppose that a function v on H belongs to bf () and V is an a-

parabolic conjugate function of v. Then, (3) of Corollary 3.2 and the equa-
tion (C.2) imply that

1_ S
lu=vllzoery < Clft= "D (u = 0)|[ Ly 5y = ClIVa -V = Vi - Vifioo) = 0.
Hence, we obtain «w = v on H. This completes the proof. O
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