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A conjugate system and tangential derivative norms

on parabolic Bergman spaces
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Abstract. The α-parabolic Bergman space bp
α(λ) is the Banach space of solutions of

the parabolic equation L(α) = ∂/∂t + (−∆x)α on the upper half space H which have

finite Lp(H, tλdV ) norms, where tλdV is the weighted Lebesgue volume measure on H.

It is known that bp
1/2(λ) coincide with the harmonic Bergman spaces. In this paper,

we introduce the extension of notion of conjugate functions of bp
α(λ)-functions and

study their properties. As an application, we give estimates of tangential derivative

norms on bp
α(λ).

Key words: conjugate function, tangential derivative, heat equation, parabolic opera-

tor of fractional order, Bergman space.

1. Introduction

Let H be the upper half space of Rn+1 (n ≥ 1), that is, H = {X =
(x, t);x ∈ Rn, t > 0}. For 0 < α ≤ 1, the parabolic operator L(α) is defined
by

L(α) :=
∂

∂t
+ (−∆x)α,

where ∆x := ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

is the Laplacian on the x-space Rn. A real-

valued continuous function u on H is said to be L(α)-harmonic if u satisfies
L(α)u = 0 in the sense of distributions. (The explicit definition of the L(α)-
harmonic function is described in Section 3.) For λ > −1 and 1 ≤ p < ∞, the
α-parabolic Bergman space bp

α(λ) is the set of all L(α)-harmonic functions
u on H with

‖u‖Lp(λ) :=
( ∫

H

|u(x, t)|ptλdV (x, t)
)1/p

< ∞,
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where dV is the Lebesgue volume measure on H and Lp(λ) := Lp(H, tλdV ).
In particular, we may write Lp = Lp(0) and bp

α = bp
α(0), respectively.

Our aim of this paper is to study conjugate systems on α-parabolic
Bergman spaces. The α-parabolic Bergman spaces bp

α were introduced and
studied by Nishio, Shimomura, and Suzuki [7]. It was shown in [7] that
bp
1/2 coincide with the usual harmonic Bergman spaces of Ramey and Yi

[11]. Accordingly, usual harmonic Bergman spaces are the classes of Lp-
solutions of the parabolic equation L(α)u = 0 with α = 1/2. In this paper,
we extend the notion of conjugacy of harmonic functions to α-parabolic
Bergman spaces. In [12], Stein and Weiss studied properties of systems
of conjugate harmonic functions on the harmonic Hardy spaces. In the
theory of the harmonic Bergman spaces, properties of conjugate functions
were also studied by Ramey and Yi [11], and as an application, estimates
of tangential derivative norms of harmonic Bergman functions were given.
However, the suitable notion of conjugacy are not extended to α-parabolic
Bergman spaces. (For instance, although Yamada [13] gave an extension
of the notion of conjugacy, it seems that the extension of Yamada is not
suitable.) In this paper, we introduce a suitable extension of conjugacy
to α-parabolic Bergman spaces and study their properties. We also give
estimates of tangential derivative norms of α-parabolic Bergman functions.

Now, we introduce the extension of conjugacy to α-parabolic Bergman
spaces. Let ∂j = ∂/∂xj (1 ≤ j ≤ n) and ∂t = ∂/∂t. Let C(Ω) be the set of
all real-valued continuous functions on a region Ω, and for a positive integer
k, Ck(Ω) ⊂ C(Ω) denotes the set of all k times continuously differentiable
functions on Ω, and put C∞(Ω) = ∩kCk(Ω). Furthermore, for a real num-
ber κ, let Dκ

t = (−∂t)κ be the fractional differential operator with respect
to t. (The definition of the fractional differential operator and the funda-
mental properties of fractional calculus for α-parabolic Bergman functions
are described in Section 2.)

Definition 1 For a function u ∈ bp
α(λ), we shall say that a vector-valued

function V = (v1, . . . , vn) on H is an α-parabolic conjugate function of u if
vj ∈ C1(H) and V satisfies the equations

∇xu = −DtV, ∇xvj = ∂jV (1 ≤ j ≤ n), (C.1)

and
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D
1
α−1
t u = ∇x · V, (C.2)

where ∇x = (∂1, . . . , ∂n) and ∇x · V is the divergence of V .

We remark that the fractional derivative D
1
α−1
t u is well defined when-

ever u ∈ bp
α(λ) with 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1 (see Section

2). Our formulation of the extension of conjugacy is based on the Cauchy-
Riemann equations ux = vt and −ut = vx on a region of the two-dimensional
Euclidean space. Evidently, when α = 1/2, the equations (C.1) and (C.2)
coincide with the generalized Cauchy-Riemann equations for harmonic func-
tions in [12];

∂ju = ∂tvj , ∂kvj = ∂jvk, 1 ≤ j, k ≤ n, (1.1)

and

∂tu +
n∑

j=1

∂jvj = 0. (1.2)

Particularly, an (n+1)-tuple (v1, . . . , vn, u) which satisfies (1.1) and (1.2) is
said to be a system of conjugate harmonic functions on H. We present re-
sults of Ramey and Yi [11] concerning with conjugate functions of harmonic
Bergman functions.

Theorem A (Theorem 6.1 of [11]) Let 1 ≤ p < ∞ and u ∈ bp
1/2. Then,

there exists a unique 1/2-parabolic conjugate function V = (v1, . . . , vn) of
u such that vj ∈ bp

1/2. Also, there exists a constant C = C(n, p) > 0
independent of u such that

C−1‖u‖Lp ≤ ‖|V |‖Lp ≤ C‖u‖Lp ,

where |V | := {v2
1 + · · ·+ v2

n}1/2.

For a multi-index γ = (γ1, . . . , γn) ∈ Nn
0 , let ∂γ

x := ∂γ1
1 . . . ∂γn

n , where
N0 := N∪{0}. The following theorem gives estimates of tangential derivative
norms of harmonic Bergman functions.

Theorem B (Theorem 6.2 of [11]) Let 1 ≤ p < ∞ and u ∈ bp
1/2. Then,

for each m ∈ N0, there exists a constant C = C(n, p, m) > 0 independent of
u such that
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C−1‖u‖Lp ≤
∑

|γ|=m

∥∥tm∂γ
xu

∥∥
Lp ≤ C‖u‖Lp .

We describe the main results of this paper. We remark that the condi-
tion p

(
1
2α − 1

)
+ λ > −1 in Theorem 1 below holds for all 1 ≤ p < ∞ and

λ > −1 whenever 0 < α ≤ 1/2.

Theorem 1 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ). If α, p,

and λ satisfy the condition η = p
(

1
2α−1

)
+λ > −1, then there exists a unique

α-parabolic conjugate function V = (v1, . . . , vn) of u such that vj ∈ bp
α(η).

Also, there exists a constant C = C(n, p, α, λ) > 0 independent of u such
that

C−1‖u‖Lp(λ) ≤ ‖|V |‖Lp(η) ≤ C‖u‖Lp(λ). (1.3)

In Section 4, we show that bp
α(λ) = {0} when λ ≤ −1. Therefore, similar

statements in Theorem 1 can not hold for the case η = p
(

1
2α − 1

)
+λ ≤ −1.

We do not know whether Theorem A is extended to the full range 0 < α ≤ 1,
1 ≤ p < ∞, and λ > −1. However, we can give estimates of tangential
derivative norms of bp

α(λ)-functions.

Theorem 2 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ).

Then, for each m ∈ N0, there exists a constant C = C(n, p, α, λ, m) > 0
independent of u such that

C−1‖u‖Lp(λ) ≤
∑

|γ|=m

∥∥t
m
2α ∂γ

xu
∥∥

Lp(λ)
≤ C‖u‖Lp(λ). (1.4)

We display the plan of this paper. In Section 2, we describe basic
properties of fractional calculus on bp

α(λ). In Section 3, we define integral
operators induced by the fundamental solution of the parabolic operator L(α)

and investigate their properties, which are useful for studying α-parabolic
conjugate functions. In Section 4, we give the proof of Theorem 1. Moreover,
we show a decomposition theorem for α-parabolic conjugate functions when
η = p

(
1
2α − 1

)
+ λ > −1. In Section 5, we give the proof of Theorem 2.

More properties of α-parabolic conjugate functions are studied in Section 6.
Throughout this paper, C will denote a positive constant whose value is

not necessary the same at each occurrence; it may vary even within a line.
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2. Fractional calculus on bp
α(λ)

In order to extend conjugacy to α-parabolic Bergman spaces, we need
fractional calculus on bp

α(λ). First, we describe fractional differential oper-
ators for functions on R+ = (0,∞). For a real number κ > 0, let

FC−κ :=
{
ϕ ∈ C(R+);∃ε > 0, ∃C > 0 s.t. |ϕ(t)| ≤ Ct−κ−ε, ∀t ∈ R+

}
.

(2.1)

For a function ϕ ∈ FC−κ, we can define the fractional integral D−κ
t ϕ of ϕ

by

D−κ
t ϕ(t) :=

1
Γ(κ)

∫ ∞

0

τκ−1ϕ(τ + t)dτ =
1

Γ(κ)

∫ ∞

t

(τ − t)κ−1ϕ(τ)dτ,

t ∈ R+, (2.2)

where Γ is the gamma function. Moreover, let

FCκ :=
{
ϕ; ddκet ϕ ∈ FC−(dκe−κ)

}
, (2.3)

where dt = d/dt, dκe is the smallest integer greater than or equal to κ, and
we will write FC0 := C(R+). We can also define the fractional derivative
Dκ

t ϕ of ϕ ∈ FCκ by

Dκ
t ϕ(t) := D−(dκe−κ)

t

(
(−dt)dκeϕ

)
(t), t ∈ R+. (2.4)

In particular, we will write D0
t ϕ = ϕ. For a real number κ, we may call both

(2.2) and (2.4) the fractional derivatives of ϕ with order κ. And, we call Dκ
t

the fractional differential operator with order κ. Some basic properties of
the fractional differential operators are the following.

Lemma 2.1 (Proposition 2.1 of [4]) For real numbers κ, ν > 0, the fol-
lowing statements hold.

(1) If ϕ ∈ FC−κ, then D−κ
t ϕ ∈ C(R+).

(2) If ϕ ∈ FC−κ−ν , then D−κ
t D−ν

t ϕ = D−κ−ν
t ϕ.

(3) If dk
t ϕ ∈ FC−ν for all integers 0 ≤ k ≤ dκe − 1 and d

dκe
t ϕ ∈

FC−(dκe−κ)−ν , then Dκ
t D−ν

t ϕ = D−ν
t Dκ

t ϕ = Dκ−ν
t ϕ.
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(4) If d
k+dνe
t ϕ ∈ FC−(dνe−ν) for all integers 0 ≤ k ≤ dκe − 1, d

dκe+`
t ϕ ∈

FC−(dκe−κ) for all integers 0 ≤ ` ≤ dνe − 1, and d
dκe+dνe
t ϕ ∈

FC−(dκe−κ)−(dνe−ν), then Dκ
t Dν

t ϕ = Dκ+ν
t ϕ.

Here, we give some examples of fractional derivatives of elementary func-
tions.

Example 2.2 Let κ > 0 and ν be real numbers. Then, we have the
following.

(1) Dν
t e−κt = κνe−κt.

(2) If −κ < ν, then Dν
t t−κ = Γ(κ+ν)

Γ(κ) t−κ−ν .

Next, we also describe some basic results concerning with the funda-
mental solution of L(α). For x ∈ Rn, let

W (α)(x, t) :=





1
(2π)n

∫
Rn exp(−t|ξ|2α + i x · ξ) dξ (t > 0)

0 (t ≤ 0),
(2.5)

where x ·ξ denotes the inner product on Rn and |ξ| = (ξ ·ξ)1/2. The function
W (α) is the fundamental solution of L(α) and it is L(α)-harmonic on H. We
note that W (α) ≥ 0 on H and

∫
Rn W (α)(x, t)dx = 1 for all 0 < t < ∞.

Furthermore, W (α) ∈ C∞(H). Let γ = (γ1, . . . , γn) ∈ Nn
0 be a multi-index

and k ∈ N0. The following estimate is Lemma 1 of [9]: there exists a constant
C = C(n, α, γ, k) > 0 such that

∣∣∂γ
x∂k

t W (α)(x, t)
∣∣ ≤ C(t + |x|2α)−

(
n+|γ|

2α +k
)

(2.6)

for all (x, t) ∈ H. In particular, by (2.6), we note that for each x ∈ Rn, the
function ϕ( · ) = W (α)(x, · ) belongs to FCκ for κ > − n

2α . The statements
in the following lemma are consequences of [4].

Lemma 2.3 (Theorem 3.1 of [4]) Let 0 < α ≤ 1, γ ∈ Nn
0 be a multi-index,

and κ be a real number such that κ > − n
2α . Then, the following statements

hold.

(1) The derivatives ∂γ
xDκ

t W (α)(x, t) and Dκ
t ∂γ

xW (α)(x, t) can be defined, and
the equation ∂γ

xDκ
t W (α)(x, t) = Dκ

t ∂γ
xW (α)(x, t) holds. Furthermore,
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there exists a constant C = C(n, α, γ, κ) > 0 such that

∣∣∂γ
xDκ

t W (α)(x, t)
∣∣ ≤ C(t + |x|2α)−

(
n+|γ|

2α +κ
)

for all (x, t) ∈ H.
(2) If a real number ν satisfies the condition ν+κ > − n

2α , then the derivative
Dν

t ∂γ
xDκ

t W (α)(x, t) is well defined, and

Dν
t ∂γ

xDκ
t W (α)(x, t) = ∂γ

xDν+κ
t W (α)(x, t)

for all (x, t) ∈ H.
(3) The derivative ∂γ

xDκ
t W (α)(x, t) is L(α)-harmonic on H.

We present basic properties of fractional derivatives of bp
α(λ)-functions.

We begin with describing estimates of ordinary derivatives of bp
α(λ)-

functions. Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, γ ∈ Nn
0 be a multi-index,

and k ∈ N0. Then, it is known that bp
α(λ) ⊂ C∞(H) (see [13]) and the

following estimate is given by Lemma 3.4 of [13]: there exists a constant
C = C(n, α, p, λ, γ, k) > 0 such that

∣∣∂γ
x∂k

t u(x, t)
∣∣ ≤ Ct−

(
|γ|
2α +k

)
−
(

n
2α +λ+1

)
1
p ‖u‖Lp(λ) (2.7)

for all u ∈ bp
α(λ) and (x, t) ∈ H. The estimate (2.7) implies that the

point evaluation is a bounded linear functional on bp
α(λ). Furthermore, the

estimate (2.7) also shows that a function ϕ( · ) = u(x, · ) belongs to FCκ for
u ∈ bp

α(λ) and κ > −(
n
2α +λ+1

)
1
p , so we can define fractional derivatives of

bp
α(λ)-functions. Some properties of fractional derivatives of bp

α(λ)-functions
are given in the following.

Lemma 2.4 (Proposition 4.1 of [4]) Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1,
γ ∈ Nn

0 be a multi-index, and κ be a real number such that κ > −(
n
2α + λ

+1
)

1
p . If u ∈ bp

α(λ), then the following statements hold.

(1) The derivatives ∂γ
xDκ

t u(x, t) and Dκ
t ∂γ

xu(x, t) can be defined, and the
equation ∂γ

xDκ
t u(x, t) = Dκ

t ∂γ
xu(x, t) holds. Furthermore, there exists a

constant C = C(n, α, p, λ, γ, κ) > 0 independent of u such that

∣∣∂γ
xDκ

t u(x, t)
∣∣ ≤ Ct−

(
|γ|
2α +κ

)
−
(

n
2α +λ+1

)
1
p ‖u‖Lp(λ)
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for all (x, t) ∈ H.
(2) If a real number ν satisfies the condition ν + κ > −(

n
2α + λ + 1

)
1
p , then

the derivative Dν
t ∂γ

xDκ
t u(x, t) is well defined, and

Dν
t ∂γ

xDκ
t u(x, t) = ∂γ

xDν+κ
t u(x, t)

for all (x, t) ∈ H.
(3) The derivative ∂γ

xDκ
t u(x, t) is L(α)-harmonic on H.

For a real number κ > 0, let Cκ = 2κ/Γ(κ). The following lemma is
also a consequence of [4], and (2.8) is the reproducing formula for bp

α(λ)-
functions.

Lemma 2.5 (Theorem 5.2 of [4]) Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1.
Suppose that ν and κ are real numbers such that ν > −λ+1

p and κ > λ+1
p .

Then,

u(x, t) = Cν+κ

∫

H

Dν
t u(y, s)Dκ

t W (α)(x− y, t + s)sν+κ−1dV (y, s) (2.8)

holds for all u ∈ bp
α(λ) and (x, t) ∈ H. Furthermore, (2.8) also holds for

κ = λ + 1 when p = 1.

In our later arguments, we use the following lemma frequently. By
(1) of Lemma 2.3 and the following lemma, if 1 < p ≤ ∞, then we have
Dλ+1

t W (α)(x− · , t + · ) ∈ Lp(λ) for each (x, t) ∈ H. Therefore, it follows
that Cλ+1Dλ+1

t W (α)(x− · , t+ · ) is the reproducing kernel for the Hilbert
space b2

α(λ).

Lemma 2.6 (Lemma 5 of [9]) Let θ, c ∈ R. If θ > −1 and n
2α+θ+1−c < 0,

then there exists a constant C = C(n, α, θ, c) > 0 such that

∫

H

sθ

(t + s + |x− y|2α)c
dV (y, s) = Ct

n
2α +θ+1−c

for all (x, t) ∈ H.
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3. Integral operators induced by the fundamental solution

In this section, we define integral operators induced by the fundamental
solution W (α) and investigate their properties. These investigations are
useful for studying α-parabolic conjugate functions of bp

α(λ)-functions in
Section 4.

First, we recall the definition of L(α)-harmonic functions. (For details,
see Section 2 of [7].) We describe the operator (−∆x)α. Since the case α = 1
is trivial, we only describe the case 0 < α < 1. Let C∞c (H) ⊂ C(H) be
the set of all infinitely differentiable functions on H with compact support.
Then, (−∆x)α is the convolution operator defined by

(−∆x)αψ(x, t) := −cn,α lim
δ↓0

∫

|y|>δ

(
ψ(x + y, t)− ψ(x, t)

)|y|−n−2αdy (3.1)

for all ψ ∈ C∞c (H) and (x, t) ∈ H, where cn,α = −4απ−n/2Γ
(
(n + 2α)/2

)

/Γ(−α) > 0. Let L̃(α) := −∂t + (−∆x)α be the adjoint operator of L(α).
Then, a function u ∈ C(H) is said to be L(α)-harmonic if u satisfies L(α)u =
0 in the sense of distributions, that is,

∫
H
|uL̃(α)ψ|dV < ∞ and

∫
H

uL̃(α)ψdV

= 0 for all ψ ∈ C∞c (H). By (3.1) and the compactness of supp(ψ) (the
support of ψ), there exist 0 < t1 < t2 < ∞ and a constant C > 0 such that

supp(L̃(α)ψ) ⊂ S = Rn × [t1, t2] and |L̃(α)ψ(x, t)| ≤ C(1 + |x|)−n−2α

for (x, t) ∈ S. (3.2)

Hence, the condition
∫

H
|uL̃(α)ψ|dV < ∞ for all ψ ∈ C∞c (H) is equivalent

to the following: for any 0 < t1 < t2 < ∞,

∫ t2

t1

∫

Rn

|u(x, t)|(1 + |x|)−n−2αdxdt < ∞.

Next, we define integral operators induced by the fundamental solution
W (α). Let γ ∈ Nn

0 be a multi-index and κ, ρ ∈ R with κ > − n
2α . Then, we

define the integral operator P γ,κ,ρ
α by

P γ,κ,ρ
α f(x, t) :=

∫

H

f(y, s)∂γ
xDκ

t W (α)(x− y, t + s)sρdV (y, s), (3.3)
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whenever the integral is well defined. Some properties of P γ,κ,ρ
α are given in

the following theorem.

Theorem 3.1 Let 0 < α ≤ 1, 1 ≤ p < ∞, and σ ∈ R. Suppose that a
multi-index γ ∈ Nn

0 and κ, ρ ∈ R with κ > − n
2α satisfy

σ − ρp < p− 1 <

( |γ|
2α

+ κ

)
p + σ − ρp. (3.4)

Then, for every f ∈ Lp(σ), the following assertions hold.

(1) The function P γ,κ,ρ
α f(x, t) is well defined for every (x, t) ∈ H and there

exists a constant C > 0 independent of f such that
∥∥P γ,κ,ρ

α f
∥∥

Lp(η)
≤ C‖f‖Lp(σ), (3.5)

where η =
( |γ|

2α + κ− ρ− 1
)
p + σ. Moreover, P γ,κ,ρ

α f is L(α)-harmonic
on H. Consequently, P γ,κ,ρ

α f ∈ bp
α(η).

(2) Furthermore, let β ∈ Nn
0 be a multi-index and ν ∈ R. If ν satisfies

ν + κ > − n

2α
and p− 1 <

( |γ|
2α

+ ν + κ

)
p + σ − ρp, (3.6)

then the derivative ∂β
xDν

t P γ,κ,ρ
α f(x, t) is well defined for every (x, t) ∈ H

and ∂β
xDν

t P γ,κ,ρ
α f = P β+γ,ν+κ,ρ

α f , that is,

∂β
xDν

t P γ,κ,ρ
α f(x, t) =

∫

H

f(y, s)∂β+γ
x Dν+κ

t W (α)(x− y, t + s)sρdV (y, s).

(3.7)

Consequently, put η =
( |β|+|γ|

2α + ν + κ− ρ− 1
)
p + σ, then there exists

a constant C > 0 independent of f such that

∥∥∂β
xDν

t P γ,κ,ρ
α f

∥∥
Lp(η)

≤ C‖f‖Lp(σ) (3.8)

and ∂β
xDν

t P γ,κ,ρ
α f ∈ bp

α(η).

Proof. Let f ∈ Lp(σ) and put
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Ψγ,κ,ρ
α f(x, t) :=

∫

H

|f(y, s)|bγ,κ
α (x, t; y, s)sρdV (y, s), (3.9)

where bγ,κ
α (x, t; y, s) := (t + s + |x − y|2α)−(

n+|γ|
2α +κ). We remark that

|P γ,κ,ρ
α f(x, t)| ≤ CΨγ,κ,ρ

α f(x, t) by (1) of Lemma 2.3. Suppose that p > 1
and let q be the exponent conjugate to p.

(1) Put m1 = −1, M1 = |γ|
2α + κ− 1, m2 = −( |γ|

2α + κ
)

1
p−1 − σ−ρp

p−1 , and
M2 = −σ−ρp

p−1 . Then, (3.4) implies that m1 < M2 and m2 < M1. Thus,
there exists a real number θ such that θ ∈ (m1,M1) ∩ (m2,M2). Therefore,
the Hölder inequality implies that

Ψγ,κ,ρ
α f(x, t) =

∫

H

|f(y, s)|sρ− θ
q s

θ
q bγ,κ

α (x, t; y, s)dV (y, s)

≤
( ∫

H

|f(y, s)|ps
(
ρ− θ

q

)
pbγ,κ

α (x, t; y, s)dV (y, s)
)1/p

×
( ∫

H

sθbγ,κ
α (x, t; y, s)dV (y, s)

)1/q

.

Since θ ∈ (m1,M1), Lemma 2.6 implies that

{
Ψγ,κ,ρ

α f(x, t)
}p

≤ Ct

(
θ+1− |γ|2α−κ

)
p
q

∫

H

|f(y, s)|ps
(
ρ− θ

q

)
pbγ,κ

α (x, t; y, s)dV (y, s). (3.10)

We show that the function P γ,κ,ρ
α f(x, t) is well defined for every (x, t) ∈ H.

Since θ ∈ (m2,M2), we have

σ −
(

ρ− θ

q

)
p = σ − ρp + (p− 1)θ = (p− 1)

(
σ − ρp

p− 1
+ θ

)
< 0

and

−
( |γ|

2α
+κ

)
−

{
σ−

(
ρ− θ

q

)
p

}
= −

( |γ|
2α

+κ

)
− (p− 1)

(
σ − ρp

p− 1
+ θ

)
< 0.

It follows from above inequalities that
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bγ,κ
α (x, t; y, s) ≤ C(t + s)−

(
n+|γ|

2α +κ
)
−
{

σ−
(
ρ− θ

q

)
p
}

+σ−
(
ρ− θ

q

)
p

≤ Ct−
(

n+|γ|
2α +κ

)
−
{

σ−
(
ρ− θ

q

)
p
}
sσ−

(
ρ− θ

q

)
p.

Therefore, (3.10) implies that

{
Ψγ,κ,ρ

α f(x, t)
}p ≤ Ct

(
θ+1− |γ|2α−κ

)
p
q−

(
n+|γ|

2α +κ
)
−
{

σ−
(
ρ− θ

q

)
p
}
‖f‖p

Lp(σ)

≤ Ct−
(

n
2α +σ+1

)
−
(
|γ|
2α +κ−ρ−1

)
p‖f‖p

Lp(σ) (3.11)

for all (x, t) ∈ H. Thus, P γ,κ,ρ
α f(x, t) is well defined for every (x, t) ∈ H.

We show the inequality (3.5). By (3.10) and the Fubini theorem, we have

∫

H

{
Ψγ,κ,ρ

α f(x, t)
}p

tηdV (x, t)

≤ C

∫

H

|f(y, s)|ps
(
ρ− θ

q

)
p

∫

H

t

(
θ+1− |γ|2α−κ

)
p
q +ηbγ,κ

α (x, t; y, s)dV (x, t)dV (y, s).

Since θ ∈ (m2,M2), we also have

(
θ + 1− |γ|

2α
− κ

)
p

q
+ η = (p− 1)θ +

|γ|
2α

+ κ + σ − ρp− 1 > −1

and
(

θ + 1− |γ|
2α

− κ

)
p

q
+ η + 1− |γ|

2α
− κ = (p− 1)θ + σ − ρp < 0.

Therefore, Lemma 2.6 implies that ‖P γ,κ,ρ
α f‖Lp(η) ≤ C‖Ψγ,κ,ρ

α f‖Lp(η) ≤
C‖f‖Lp(σ).

We show that P γ,κ,ρ
α f is L(α)-harmonic on H. First, we claim that

∫ t2

t1

∫

Rn

Ψγ,κ,ρ
α f(x, t)(1 + |x|)−n−2αdxdt < ∞ (3.12)

for all 0 < t1 < t2 < ∞. In fact, the Hölder inequality implies that
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∫ t2

t1

∫

Rn

Ψγ,κ,ρ
α f(x, t)(1 + |x|)−n−2αdxdt

≤
( ∫ t2

t1

∫

Rn

{
Ψγ,κ,ρ

α f(x, t)
}p

tηdxdt

)1/p( ∫ t2

t1

∫

Rn

t−
ηq
p (1 + |x|)−n−2αdxdt

)1/q

≤ C‖f‖Lp(σ)

( ∫

Rn

(1 + |x|)−n−2αdx

)1/q

< ∞.

Thus, (3.12) is obtained. Since ∂γ
xDκ

t W (α)(x−y, t+s) is L(α)-harmonic with
respect to (x, t), the Fubini theorem implies that P γ,κ,ρ

α f is L(α)-harmonic
on H.

(2) Suppose that a real number ν satisfies the conditions of (3.6). First,
we show that Dν

t P γ,κ,ρ
α f(x, t) = P γ,ν+κ,ρ

α f(x, t), that is,

Dν
t P γ,κ,ρ

α f(x, t) =
∫

H

f(y, s)∂γ
xDν+κ

t W (α)(x− y, t + s)sρdV (y, s). (3.13)

Let ν be a nonnegative integer. Then, as in the proof of (3.11), we have

Ψγ,ν+κ,ρ
α f(x, t) ≤ Ct−

(
n
2α +σ+1

)
1
p−

(
|γ|
2α +ν+κ−ρ−1

)
‖f‖Lp(σ) (3.14)

for all (x, t) ∈ H. Thus, we can differentiate through the integral (3.3) with
respect to t. Therefore, we obtain Dν

t P γ,κ,ρ
α f(x, t) = P γ,ν+κ,ρ

α f(x, t). Let ν

be a real number. Put

ω(ν) :=

{dνe ν ≥ 0

0 ν < 0.

We claim that
∫ ∞

0

τω(ν)−ν−1Ψγ,ω(ν)+κ,ρ
α f(x, τ + t)dτ < ∞ (3.15)

for all (x, t) ∈ H. Indeed, the second condition of (3.6) implies that
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(
n

2α
+ σ + 1

)
1
p

+
( |γ|

2α
+ ω(ν) + κ− ρ− 1

)

> ω(ν)− ν +
{

n

2α
+

( |γ|
2α

+ ν + κ

)
p + σ − ρp− p + 1

}
1
p

> ω(ν)− ν.

Therefore, by (3.14), we have Ψγ,ω(ν)+κ,ρ
α f(x, · ) ∈ FC−(ω(ν)−ν) for every

x ∈ Rn, so that (3.15) is obtained. Hence, the Fubini theorem and (2) of
Lemma 2.3 show that

Dν
t P γ,κ,ρ

α f(x, t) = D−(ω(ν)−ν)
t Dω(ν)

t P γ,κ,ρ
α f(x, t)

= D−(ω(ν)−ν)
t P γ,ω(ν)+κ,ρ

α f(x, t)

=
1

Γ(ω(ν)− ν)

∫ ∞

0

τω(ν)−ν−1

·
∫

H

f(y, s)∂γ
xDω(ν)+κ

t W (α)(x− y, τ + t + s)sρdV (y, s)dτ

=
∫

H

f(y, s)
1

Γ(ω(ν)− ν)

·
∫ ∞

0

τω(ν)−ν−1∂γ
xDω(ν)+κ

t W (α)(x− y, τ + t + s)dτ sρdV (y, s)

=
∫

H

f(y, s)D−(ω(ν)−ν)
t ∂γ

xDω(ν)+κ
t W (α)(x− y, t + s)sρdV (y, s)

=
∫

H

f(y, s)∂γ
xDν+κ

t W (α)(x− y, t + s)sρdV (y, s) = P γ,ν+κ,ρ
α f(x, t).

Let β ∈ Nn
0 be a multi-index and ν ∈ R. As in the proof of (3.11), (3.4)

and the second condition of (3.6) imply that

Ψβ+γ,ν+κ,ρ
α f(x, t) ≤ Ct−

(
n
2α +σ+1

)
1
p−

(
|β|+|γ|

2α +ν+κ−ρ−1
)
‖f‖Lp(σ)

for all (x, t) ∈ H. Therefore, we can differentiate through the inte-
gral (3.13) with respect to x. Hence, we obtain ∂β

xDν
t P γ,κ,ρ

α f(x, t) =
∂β

xP γ,ν+κ,ρ
α f(x, t) = P β+γ,ν+κ,ρ

α f(x, t).
Since the proofs of (1) and (2) for the case p = 1 are easier, we omit the

proofs. ¤
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We have the following corollary.

Corollary 3.2 Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ > −1. Then, the
following assertions hold.

(1) If a real number κ satisfies κ > λ+1
p , then the operator CκP 0,κ,κ−1

α is a
bounded projection from Lp(λ) onto bp

α(λ).
(2) Let 1 < p < ∞ and q be the exponent conjugate to p. Then, (bp

α(λ))∗ ∼=
bq

α(λ) under the pairing

〈u, v〉 =
∫

H

u(x, t)v(x, t)tλdV (x, t), u ∈ bp
α(λ), v ∈ bq

α(λ).

(3) For a real number ν > −λ+1
p , there exists a constant C =

C(n, p, α, λ, ν) > 0 such that

C−1‖u‖Lp(λ) ≤
∥∥tνDν

t u
∥∥

Lp(λ)
≤

∑

|γ|<ν+ λ+1
p

∥∥t
|γ|
2α +ν−|γ|∂γ

xDν−|γ|
t u

∥∥
Lp(λ)

≤ C‖u‖Lp(λ)

for all u ∈ bp
α(λ), where γ ∈ Nn

0 denotes a multi-index.

Proof. (1) Let κ be a real number such that κ > λ+1
p . Then, (1) of Theo-

rem 3.1 implies that P 0,κ,κ−1
α f ∈ bp

α(λ) and ‖P 0,κ,κ−1
α f‖Lp(λ) ≤ C‖f‖Lp(λ)

for all f ∈ Lp(λ). Also, by Lemma 2.5, we have CκP 0,κ,κ−1
α u = u for all

u ∈ bp
α(λ). Therefore, the operator CκP 0,κ,κ−1

α is a bounded projection from
Lp(λ) onto bp

α(λ).
(2) Since Dλ+1

t W (α) is symmetric, the Hahn-Banach theorem and (1)
of Corollary 3.2 with κ = λ + 1 imply that (bp

α(λ))∗ ∼= bq
α(λ). (The proof is

similar to that of Theorem 8.1 of [7].)
(3) Let ν be a real number such that ν > −λ+1

p . First, we show the last
inequality of (3). It suffices to show that for every γ ∈ Nn

0 with |γ| < ν+ λ+1
p ,

there exists a constant C > 0 such that

∥∥t
|γ|
2α +ν−|γ|∂γ

xDν−|γ|
t u

∥∥
Lp(λ)

≤ C‖u‖Lp(λ).

By Lemma 2.5, we have
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u(x, t) = Cλ+2

∫

H

u(y, s)Dλ+2
t W (α)(x− y, t + s)sλ+1dV (y, s)

= Cλ+2P
0,λ+2,λ+1
α u(x, t)

for all u ∈ bp
α(λ) and (x, t) ∈ H. Since ν > −λ+1

p , (2) of Theorem 3.1
implies that

∂γ
xDν−|γ|

t u(x, t) = Cλ+2∂
γ
xDν−|γ|

t P 0,λ+2,λ+1
α u(x, t)

= Cλ+2P
γ,ν−|γ|+λ+2,λ+1
α u(x, t),

and there exists a constant C > 0 such that

∥∥∂γ
xDν−|γ|

t u
∥∥

Lp(η)
= Cλ+2

∥∥P γ,ν−|γ|+λ+2,λ+1
α u

∥∥
Lp(η)

≤ C‖u‖Lp(λ),

where η =
( |γ|

2α + ν − |γ|)p + λ. Therefore, the last inequality of (3) is
obtained.

Since the second inequality of (3) is trivial, we show the first inequality
of (3). By the last inequality of (3), f = tνDν

t u belongs to Lp(λ). Therefore,
by Lemma 2.5, we have

u(x, t) = Cν+λ+2

∫

H

sνDν
t u(y, s)Dλ+2

t W (α)(x− y, t + s)sλ+1dV (y, s)

= Cν+λ+2

(
P 0,λ+2,λ+1

α (tνDν
t u)

)
(x, t)

for all u ∈ bp
α(λ) and (x, t) ∈ H. Hence, (1) of Theorem 3.1 implies that

‖u‖Lp(λ) = Cν+λ+2

∥∥P 0,λ+2,λ+1
α (tνDν

t u)
∥∥

Lp(λ)
≤ C

∥∥tνDν
t u

∥∥
Lp(λ)

.

Therefore, the first inequality of (3) is obtained. ¤

4. Uniqueness of α-parabolic conjugate functions

In this section, we give the proof of Theorem 1, and also give a decom-
position theorem for α-parabolic conjugate functions. First, we need the
following lemma.
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Lemma 4.1 Let 0 < α ≤ 1. Then,

(
D

1
α
t + ∆x

)
W (α)(x, t) = 0

for all (x, t) ∈ H.

Proof. Differentiating through the integral (2.5) with respect to x, we have

∆xW (α)(x, t) =
−1

(2π)n

∫

Rn

|ξ|2 exp(−t|ξ|2α + i x · ξ) dξ.

Also, since

∫ ∞

0

∫

Rn

τ d
1
α e− 1

α−1|ξ|2αd 1
α e exp

(− (τ + t)|ξ|2α
)

dξ dτ < ∞,

differentiating through the integral (2.5) with respect to t, the Fubini theo-
rem and (2) of Example 2.2 imply that

D
1
α
t W (α)(x, t) =

1
(2π)n

1
Γ
(⌈

1
α

⌉− 1
α

)
∫ ∞

0

τ d
1
α e− 1

α−1

·
∫

Rn

Dd
1
α e

t exp
(− (t + τ)|ξ|2α + i x · ξ)dξdτ

=
1

(2π)n

∫

Rn

1
Γ
(⌈

1
α

⌉− 1
α

)

·
∫ ∞

0

τ d
1
α e− 1

α−1Dd
1
α e

t exp
(− (t + τ)|ξ|2α + i x · ξ)dτdξ

=
1

(2π)n

∫

Rn

D
1
α
t exp(−t|ξ|2α + i x · ξ)dξ

=
1

(2π)n

∫

Rn

|ξ|2 exp(−t|ξ|2α + i x · ξ) dξ.

Hence, this completes the proof. ¤

Now, we give the proof of Theorem 1.

Proof of Theorem 1. We put η = p( 1
2α − 1)+λ, and suppose that η > −1.
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Then, for u ∈ bp
α(λ), we define a vector-valued function V on H by

V (x, t) := −Cλ+2

∫

H

u(y, s)∇xDλ+1
t W (α)(x− y, t + s)sλ+1dV (y, s), (4.1)

that is, vj(x, t) = −Cλ+2P
γ(j),λ+1,λ+1
α u(x, t) for each 1 ≤ j ≤ n and V =

(v1, . . . , vn), where γ(j) = (δj1, . . . , δjn) ∈ Nn
0 and δj` is the Kronecker δ.

By (1) of Theorem 3.1, each vj is L(α)-harmonic on H, and there exists a
constant C > 0 such that

‖vj‖Lp(η) = Cλ+2

∥∥P γ(j),λ+1,λ+1
α u

∥∥
Lp(η)

≤ C‖u‖Lp(λ), (4.2)

that is, |V | ∈ Lp(η).
We show that the functions u and V satisfy the equations (C.1) and

(C.2). By Lemma 2.5, (2) of Theorem 3.1, and (4.1), we have

∇xu = Cλ+2∇xP 0,λ+2,λ+1
α u

= Cλ+2

(
P γ(1),λ+2,λ+1

α u, . . . , P γ(n),λ+2,λ+1
α u

)
= −DtV

and

∇xvj = −Cλ+2∇xP γ(j),λ+1,λ+1
α u = ∂jV

for all 1 ≤ j ≤ n. Furthermore, by Lemma 2.5, (2) of Theorem 3.1, and (2)
of Lemma 2.3, we have

D
1
α−1
t u(x, t)−∇x · V (x, t)

= Cλ+2P
0,λ+1+ 1

α ,λ+1
α u(x, t) + Cλ+2

n∑

j=1

P 2γ(j),λ+1,λ+1
α u(x, t)

= Cλ+2

∫

H

u(y, s)Dλ+1
t

(
D

1
α
t + ∆x

)
W (α)(x− y, t + s)sλ+1dV (y, s).

Therefore, by Lemma 4.1, the functions u and V satisfy the equations (C.1)
and (C.2).

Since the second inequality of (1.3) has already obtained by (4.2), we
show the first inequality of (1.3). By the first inequality of (3) of Corollary
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3.2 and the equation (C.2), we have

‖u‖Lp(λ) ≤ C
∥∥t

1
α−1D

1
α−1
t u

∥∥
Lp(λ)

≤ C

n∑

j=1

∥∥t
1
α−1∂jvj

∥∥
Lp(λ)

.

Since vj belongs to bp
α(η), the last inequality of (3) of Corollary 3.2 with

ν = 1 > −η+1
p implies that

∥∥t
1
α−1∂jvj

∥∥
Lp(λ)

=
∥∥t

1
2α ∂jvj

∥∥
Lp(η)

≤ C‖vj‖Lp(η).

Hence, we obtain the inequalities of (1.3).
We suppose that U = (u1, . . . , un) is an α-parabolic conjugate function

of u such that uj ∈ bp
α(η). Then, we will show U = V . In fact, for each

1 ≤ j ≤ n, by the first inequality of (3) of Corollary 3.2 and the equation
(C.1), we have

‖vj − uj‖Lp(η) ≤ C
∥∥tDt(vj − uj)

∥∥
Lp(η)

= C‖t∂j(u− u)‖Lp(η) = 0.

Since uj and vj are continuous on H, we obtain uj(x, t) = vj(x, t) for all
(x, t) ∈ H. Hence, this completes the proof of Theorem 1. ¤

By Theorem 1, we can extend Theorem A to the case η = p( 1
2α−1)+λ >

−1. Here, as a remark, we show that bp
α(λ) = {0} whenever λ ≤ −1.

Lemma 4.2 Let 0 < α ≤ 1 and 1 ≤ p < ∞. If a function u is L(α)-
harmonic on H and

∫
S
|u|pdV < ∞ for each closed strip S = Rn× [t1, t2] ⊂

H, then the function Ip
u(t) =

∫
Rn |u(x, t)|pdx is decreasing on (0,∞).

Proof. By the proof of Theorem 4.1 of [7], if an L(α)-harmonic function u

satisfies
∫

S
|u|pdV < ∞ for each closed strip S = Rn × [t1, t2] ⊂ H, then u

holds the Huygens property, that is,

u(x, s + t) =
∫

Rn

u(y, s)W (α)(x− y, t)dy

for all x ∈ Rn, 0 < s < ∞ and 0 < t < ∞. Since W (α)(x − y, t) ≥ 0
and

∫
Rn W (α)(x− y, t)dy = 1, the Jensen inequality and the Fubini theorem

imply that
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∫

Rn

|u(x, s+t)|pdx ≤
∫

Rn

|u(y, s)|p
∫

Rn

W (α)(x−y, t)dxdy =
∫

Rn

|u(y, s)|pdy.

This completes the proof ¤

Proposition 4.3 Let 0 < α ≤ 1 and 1 ≤ p < ∞. If λ ≤ −1, then
bp

α(λ) = {0}.
Proof. Let u ∈ bp

α(λ). Then, u belongs to Lp(λ), and it follows that∫
S
|u|pdV < ∞ for each closed strip S = Rn × [t1, t2] ⊂ H. Thus, Lemma

4.2 implies that

∞ > ‖u‖p
Lp(λ) ≥

∫ s

0

tλ
∫

Rn

|u(x, t)|pdxdt ≥ Ip
u(s)

∫ s

0

tλdt

for all 0 < s < ∞. Hence, we have Ip
u(s) = 0 for all 0 < s < ∞, because

λ ≤ −1. Since u is continuous on H, we obtain u(x, t) = 0 for all (x, t) ∈ H.
¤

We can give a decomposition theorem for α-parabolic conjugate func-
tions. We begin with showing the following lemma. We can not prove
whether every u ∈ bp

α(η) satisfies the equation D−1
t Dtu = u. However, the

following lemma holds.

Lemma 4.4 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ). Suppose

α, p, and λ satisfy the condition η = p( 1
2α − 1) + λ > −1. Then, for every

α-parabolic conjugate function U = (u1, . . . , un) of u, the function D−1
t Dtuj

on H is well defined and belongs to bp
α(η) for all 1 ≤ j ≤ n.

Proof. Let U = (u1, . . . , un) be an α-parabolic conjugate function of u ∈
bp

α(λ). Then, by the equation (C.1) and (1) of Lemma 2.4, there exists a
constant C > 0 such that |Dtuj(x, t)| = |∂ju(x, t)| ≤ Ct−

1
2α−( n

2α +λ+1) 1
p for

all (x, t) ∈ H. Therefore, the hypothesis η = p( 1
2α − 1) + λ > −1 implies

that Dtuj(x, · ) ∈ FC−1 for every x ∈ Rn. Thus, we can define a function
D−1

t Dtuj on H.
We show that D−1

t Dtuj ∈ bp
α(η). By (3) of Lemma 2.4 and (3) of

Corollary 3.2, the derivative Dtuj = ∂ju is L(α)-harmonic and

‖Dtuj‖Lp(σ) =
∥∥t

1
2αDtuj

∥∥
Lp(λ)

=
∥∥t

1
2α ∂ju

∥∥
Lp(λ)

≤ C‖u‖Lp(λ) < ∞,
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where σ = p
2α + λ. Thus, we obtain Dtuj ∈ bp

α(σ). Again, by (3) of Lemma
2.4 and (3) of Corollary 3.2, the function D−1

t Dtuj = D−1
t (Dtuj) is also

L(α)-harmonic and
∥∥D−1

t (Dtuj)
∥∥

Lp(η)
=

∥∥t−1D−1
t (Dtuj)

∥∥
Lp(σ)

≤ C
∥∥Dtuj

∥∥
Lp(σ)

< ∞.

Hence, we get D−1
t Dtuj ∈ bp

α(η). ¤

Theorem 4.5 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ).

Suppose α, p, and λ satisfy the condition η = p( 1
2α − 1) + λ > −1. Then,

every α-parabolic conjugate function U = (u1, . . . , un) of u can be uniquely
expressed in the form

U(x, t) = V (x, t) + F (x), (x, t) ∈ H, (4.3)

where V = (v1, . . . , vn) is the unique α-parabolic conjugate function of u with
vj ∈ bp

α(η) in Theorem 1 and F = (f1, . . . , fn) is an n-tuple of harmonic
functions on Rn with ∂kfj = ∂jfk, 1 ≤ j, k ≤ n and

∑n
j=1 ∂jfj = 0 (that

is, F = (f1, . . . , fn) is a system of conjugate harmonic functions on Rn,
consequently each uj belongs to C∞(H)). Conversely, every function U of
the form (4.3) is an α-parabolic conjugate function of u.

Proof. Let U = (u1, . . . , un) be an α-parabolic conjugate function of u ∈
bp

α(λ). Then, by Lemma 4.4, we can define a function vj ∈ bp
α(η) by

vj(x, t) := D−1
t Dtuj(x, t) =

∫ ∞

0

Dtuj(x, τ + t)dτ, (x, t) ∈ H. (4.4)

Since uj ∈ C1(H) and the infinite integral (4.4) converges for every (x, t) ∈
H, the limit function fj(x) := lim

τ→∞
uj(x, τ) exists for every x ∈ Rn, and so

we have

vj(x, t) = uj(x, t)− fj(x), (x, t) ∈ H. (4.5)

We show that F = (f1, . . . , fn) is a system of conjugate harmonic func-
tions on Rn. Let x ∈ Rn be fixed. By (4.5), we have

∂kfj(x) = ∂kuj(x, τ)− ∂kvj(x, τ)
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for all τ ∈ R+ and fj belongs to C1(Rn). Since vj ∈ bp
α(η), (1) of Lemma

2.4 implies that

∂kfj(x) = lim
τ→∞

(∂kuj(x, τ)− ∂kvj(x, τ)) = lim
τ→∞

∂kuj(x, τ). (4.6)

Hence, (4.6) and the equation (C.1) show that

∂kfj(x) = lim
τ→∞

∂kuj(x, τ) = lim
τ→∞

∂juk(x, τ) = ∂jfk(x).

Also, (4.6), the equation (C.2), and (1) of Lemma 2.4 imply that

n∑

j=1

∂jfj(x) =
n∑

j=1

(
lim

τ→∞
∂juj(x, τ)

)
= lim

τ→∞

n∑

j=1

∂juj(x, τ)

= lim
τ→∞

D
1
α−1
t u(x, τ) = 0.

Therefore, F = (f1, . . . , fn) is a system of conjugate harmonic functions on
Rn, thus fj is harmonic on Rn and fj ∈ C∞(Rn).

Since we see that F = (f1, . . . , fn) is a system of conjugate harmonic
functions on Rn, we clearly have V = (v1, . . . , vn) is an α-parabolic conjugate
function of u. Hence, every α-parabolic conjugate function of u is expressed
in the form (4.3) and the expression is unique by Theorem 1. Conversely, it
is obvious that every function U of the form (4.3) is an α-parabolic conjugate
function of u. This completes the proof of theorem. ¤

5. Estimates of tangential derivative norms

In this section, we estimate tangential derivative norms of bp
α(λ)-

functions and give the proof of Theorem 2. By Lemma 4.1, we also have the
following lemma.

Lemma 5.1 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ). Then,

(
D

1
α
t + ∆x

)
u(x, t) = 0

for all (x, t) ∈ H.

Proof. By Lemma 2.5 with ν = 0 and κ = λ + 2, we have u(x, t) =
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Cλ+2P
0,λ+2,λ+1
α u(x, t). Therefore, (2) of Theorem 3.1 implies that

(
D

1
α
t + ∆x

)
u(x, t)

= Cλ+2

∫

H

u(y, s)Dλ+2
t

(
D

1
α
t + ∆x

)
W (α)(x− y, t + s)sλ+1dV (y, s).

Hence, Lemma 5.1 follows from Lemma 4.1. ¤

As an application of Theorem 1, we give the first inequality of (1.4) in
Theorem 2.

Proposition 5.2 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ).

Then, for each m ∈ N0, there exists a constant C = C(n, p, α, λ, m) > 0
independent of u such that

‖u‖Lp(λ) ≤ C
∑

|γ|=m

∥∥t
m
2α ∂γ

xu
∥∥

Lp(λ)
.

Proof. Let u ∈ bp
α(λ). Suppose that m is even, that is, there exists k ∈ N

such that m = 2k. Then, by (2) of Lemma 2.4 and Lemma 5.1, we have

D
m
2α
t u = D

k
α
t u =

(
D

1
α
t

)k

u = (−1)k∆k
xu = (−1)k

n∑

j1,...,jk=1

∂2
j1 . . . ∂2

jk
u. (5.1)

Therefore, (3) of Corollary 3.2 implies that

‖u‖Lp(λ) ≤ C
∥∥t

m
2αD

m
2α
t u

∥∥
Lp(λ)

≤ C

n∑

j1,...,jk=1

∥∥t
m
2α ∂2

j1 . . . ∂2
jk

u
∥∥

Lp(λ)

≤ C
∑

|γ|=m

∥∥t
m
2α ∂γ

xu
∥∥

Lp(λ)
.

Suppose that m is odd, that is, there exists k ∈ N0 such that m = 2k+1.
Put v = Dtu. Then, (3) of Lemma 2.4 and (3) of Corollary 3.2 imply that
v belongs to bp

α(η), where η = p + λ. Therefore, Theorem 1 implies that
there exists an α-parabolic conjugate function V = (v1, . . . , vn) of v such
that vj ∈ bp

α(σ), where σ = p( 1
2α − 1) + η = p

2α + λ > −1. Thus, by (2) of
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Lemma 2.4 and the equation (C.2), we have

D
m+1
2α −1

t v = D
k
α
t D

1
α−1
t v =

n∑

j=1

D
k
α
t ∂jvj .

Therefore, (3) of Corollary 3.2 implies that

‖v‖Lp(η) ≤ C
∥∥t

m+1
2α −1D

m+1
2α −1

t v
∥∥

Lp(η)
≤ C

n∑

j=1

∥∥t
m+1
2α −1D

k
α
t ∂jvj

∥∥
Lp(η)

= C
n∑

j=1

∥∥t
m
2αD

k
α
t ∂jvj

∥∥
Lp(σ)

≤ C
n∑

j=1

∥∥t
k
α +1D

k
α +1
t vj

∥∥
Lp(σ)

.

Since the equation (C.1) implies that Dtvj = −∂jv, (2) of Lemma 2.4 and
(5.1) show that

‖v‖Lp(η) ≤ C
n∑

j=1

∥∥t
k
α +1D

k
α
t ∂jv

∥∥
Lp(σ)

≤ C
n∑

j=1

n∑

j1,...,jk=1

∥∥t
k
α +1∂2

j1 . . . ∂2
jk

∂jv
∥∥

Lp(σ)

≤ C
∑

|γ|=m

∥∥t
k
α +1∂γ

xv
∥∥

Lp(σ)
≤ C

∑

|γ|=m

‖t∂γ
xv‖Lp(ρ),

where ρ = m
2αp+λ. Since ∂γ

xu with |γ| = m belongs to bp
α(ρ) by (3) of Lemma

2.4 and (3) of Corollary 3.2, thus (2) of Lemma 2.4 and (3) of Corollary 3.2
imply that

∥∥t∂γ
xv

∥∥
Lp(ρ)

=
∥∥tDt

(
∂γ

xu
)∥∥

Lp(ρ)
≤ C

∥∥∂γ
xu

∥∥
Lp(ρ)

= C
∥∥t

m
2α ∂γ

xu
∥∥

Lp(λ)
.

Also, by (3) of Corollary 3.2, we have ‖u‖Lp(λ) ≤ C‖tDtu‖Lp(λ) =
C‖v‖Lp(η). Hence, this completes the proof of Proposition 5.2. ¤

Proof of Theorem 2. Proposition 5.2 shows the first inequality of Theorem
2. By the last inequality of (3) of Corollary 3.2 with ν = m ∈ N0, we also
have the second inequality of Theorem 2. ¤
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6. More properties of α-parabolic conjugate functions

In this section, we study more properties of α-parabolic conjugate func-
tions. Given a harmonic function u on H, it is well known that a vector-
valued function V = (v1, . . . , vn) on H with vj ∈ C1(H) satisfies the equa-
tions (1.1) and (1.2) if and only if there exists a function g ∈ C2(H) such
that

g is harmonic on H and ∇(x,t)g = (v1, . . . , vn, u), (6.1)

where ∇(x,t) = (∂1, . . . , ∂n, ∂t). First, we give an analogous equivalence for
our case. We show the following lemma.

Lemma 6.1 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ). Suppose

that there exists a function g ∈ C1(H) such that Dtg = u. Then, for a real
number κ ≥ 0, the function g(x, · ) belongs to FCκ+1 for each x ∈ Rn and
Dκ+1

t g = Dκ
t u.

Proof. It suffices to show the case κ > 0, thus we let κ > 0. We remark
that the derivative Dκ

t u is well defined by (1) of Lemma 2.4. We show
g(x, · ) ∈ FCκ+1 for each x ∈ Rn. In fact, since κ > 0, there exists an integer
k ∈ N such that dκ + 1e = k + 1. Thus, we have Ddκ+1e

t g = Dk+1
t g = Dk

t u,
and so (1) of Lemma 2.4 implies that

∣∣Ddκ+1e
t g(x, t)

∣∣ =
∣∣Dk

t u(x, t)
∣∣ ≤ Ct−k−

(
n
2α +λ+1

)
1
p (6.2)

for all (x, t) ∈ H. Furthermore, since

k +
(

n

2α
+ λ + 1

)
1
p

> k = dκ + 1e − 1 > dκ + 1e − (κ + 1),

we have Ddκ+1e
t g(x, · ) ∈ FC−(dκ+1e−(κ+1)) for each x ∈ Rn.

Moreover, since dκ + 1e − (κ + 1) = dκe − κ and dκ + 1e = dκe+ 1, we
have

Dκ+1
t g = D−(dκ+1e−(κ+1))

t

(Ddκ+1e
t g

)
= D−(dκe−κ)

t

(Ddκet (Dtg)
)

= Dκ
t u

This completes the proof. ¤
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Theorem 6.2 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ). Then,

a vector-valued function V = (v1, . . . , vn) on H is an α-parabolic conjugate
function of u if and only if there exists a function g ∈ C2(H) such that
g(x, · ) ∈ FC

1
α for each x ∈ Rn and

(D
1
α
t + ∆x

)
g = 0 on H and ∇(x,t)g = (v1, . . . , vn, u). (6.3)

Proof. We show the “if ” part. Suppose that there exists a function g ∈
C2(H) such that g(x, · ) ∈ FC

1
α for each x ∈ Rn and g satisfies (6.3).

Then, since g ∈ C2(H), the function vj = ∂jg belongs to C1(H) and

∇xu = ∇x∂tg = ∂t∇xg = −DtV,

∇xvj = ∇x∂jg = ∂j∇xg = ∂jV (1 ≤ j ≤ n).

Furthermore, Lemma 6.1 with κ = 1
α − 1 ≥ 0 implies that

∇x · V = ∇x · ∇xg = ∆xg = −D
1
α
t g = −D( 1

α−1)+1
t g = D

1
α−1
t u.

We show the “only if ” part. Suppose that V = (v1, . . . , vn) is an α-
parabolic conjugate function of u. Let (x, t) = (x1, . . . , xn, t) ∈ H be fixed.
We put

g(x, t) :=
n∑

k=1

∫ xk

0

vk

(
ξk(τ), t

)
dτ +

∫ t

1

u(0, τ)dτ,

where ξ1(τ) = (τ, x2, . . . , xn) and ξk(τ) = (0, . . . , 0, τ, xk+1, . . . , xn) for 2 ≤
k ≤ n. Then, since vk ∈ C1(H), we have

∂jg(x, t) =
j−1∑

k=1

∂j

( ∫ xk

0

vk

(
ξk(τ), t

)
dτ

)
+ ∂j

( ∫ xj

0

vj

(
ξj(τ), t

)
dτ

)

=
j−1∑

k=1

∫ xk

0

∂jvk

(
ξk(τ), t

)
dτ + vj

(
ξj(xj), t

)
.

Also, since V satisfies the equation (C.1) and ξk(0) = ξk+1(xk+1), we obtain



A conjugate system 111

∂jg(x, t) =
j−1∑

k=1

∫ xk

0

∂kvj

(
ξk(τ), t

)
dτ + vj

(
ξj(xj), t

)

=
j−1∑

k=1

(
vj

(
ξk(xk), t

)− vj

(
ξk(0), t

))
+ vj

(
ξj(xj), t

)

= vj(x, t).

Similarly, we have ∂tg(x, t) = u(x, t). Therefore, ∇(x,t)g = (v1, . . . , vn, u)
and g ∈ C2(H). Furthermore, Lemma 6.1 with κ = 1

α − 1 and the equation
(C.2) imply that g(x, · ) ∈ FC

1
α for each x ∈ Rn and

(D
1
α
t + ∆x

)
g = D( 1

α−1)+1
t g +∇x · ∇xg = −D

1
α−1
t u +∇x · V = 0.

This completes the proof of theorem. ¤

We also have the following proposition.

Proposition 6.3 Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1, and u ∈ bp
α(λ). Let

1 ≤ j ≤ n be fixed. Suppose that a vector-valued function V = (v1, . . . , vn)
on H is an α-parabolic conjugate function of u. Then, vj(x, · ) ∈ FC

1
α

for each x ∈ Rn. Furthermore, if vk ∈ C2(H) for all 1 ≤ k ≤ n, then

(D
1
α
t + ∆x)vj = 0 on H.

Proof. Let 1 ≤ j ≤ n be fixed and put u′ = −∂ju. Then, (3) of Lemma
2.4 and (3) of Corollary 3.2 imply that u′ ∈ bp

α(σ), where σ = p
2α +λ. Since

Dtvj = −∂ju = u′, Lemma 6.1 with κ = 1
α − 1 shows that vj(x, · ) ∈ FC

1
α

for each x ∈ Rn and D
1
α
t vj = D

1
α−1
t u′. Furthermore, if vj ∈ C2(H) for all

1 ≤ j ≤ n, then the equations (C.1), (C.2), and (1) of Lemma 2.4 imply
that

∆xvj =
n∑

k=1

∂2
kvj =

n∑

k=1

∂k∂jvk = ∂j

( n∑

k=1

∂kvk

)

= ∂jD
1
α−1
t u = D

1
α−1
t ∂ju = −D

1
α−1
t u′.

Hence, we obtain ∆xvj = −D
1
α
t vj . ¤
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Finally, we give an inversion theorem, that is, for a vector-valued func-
tion V = (v1, . . . , vn) on H we construct a function u ∈ bp

α(λ) such that V

is an α-parabolic conjugate function of u.

Theorem 6.4 Let 0 < α ≤ 1, 1 ≤ p < ∞, and η > −1. Suppose
that a vector-valued function V = (v1, . . . , vn) on H satisfies vj ∈ bp

α(η)
and ∇xvj = ∂jV for all 1 ≤ j ≤ n. If α, p, and η satisfy the condition
λ = p(1 − 1

2α ) + η > −1, then there exists a unique function u on H such
that u ∈ bp

α(λ) and V is an α-parabolic conjugate function of u. Also, there
exists a constant C = C(n, p, α, η) > 0 independent of V such that

C−1‖|V |‖Lp(η) ≤ ‖u‖Lp(λ) ≤ C‖|V |‖Lp(η). (6.4)

Proof. We put λ = p(1− 1
2α ) + η and suppose that λ > −1. Then, we can

define a function u ∈ bp
α(λ) by

u(x, t) := D1− 1
α

t ∇x · V (x, t), (x, t) ∈ H. (6.5)

In fact, (3) of Lemma 2.4 and (3) of Corollary 3.2 imply that ∇x ·V ∈ bp
α(σ),

where σ = p
2α + η. Therefore, again (3) of Lemma 2.4 and (3) of Corollary

3.2 show that u is L(α)-harmonic on H and there exists a constant C =
C(n, p, α, η) > 0 independent of V such that

‖u‖Lp(λ) =
∥∥D1− 1

α
t ∇x · V

∥∥
Lp(λ)

≤ C‖∇x · V ‖Lp(σ) ≤ C‖|V |‖Lp(η).

Thus we obtain u ∈ bp
α(λ) and the second inequality of (6.4).

We show that the functions u and V satisfy the equations (C.1) and
(C.2). By (1) of Lemma 2.4, the hypothesis ∇xvj = ∂jV , and Lemma 5.1,
we have

∂ju = ∂jD1− 1
α

t ∇x · V = D1− 1
α

t ∂j∇x · V = D1− 1
α

t ∆xvj = −D1− 1
α

t D
1
α
t vj .

Hence, by (2) of Lemma 2.4, we obtain ∂ju = −Dtvj , so the equation
(C.1) is satisfied. Furthermore, (6.5) and (2) of Lemma 2.4 imply that

D
1
α−1
t u = ∇x ·V , and thus the equation (C.2) is also satisfied. Furthermore,

by (3) of Corollary 3.2 and the equation (C.1), we have
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‖vj‖Lp(η) ≤ C
∥∥tDtvj

∥∥
Lp(η)

= C
∥∥t∂ju

∥∥
Lp(η)

= C
∥∥t

1
2α ∂ju

∥∥
Lp(λ)

≤ C‖u‖Lp(λ),

thus we also obtain the first inequality of (6.4).
We suppose that a function v on H belongs to bp

α(λ) and V is an α-
parabolic conjugate function of v. Then, (3) of Corollary 3.2 and the equa-
tion (C.2) imply that

‖u− v‖Lp(λ) ≤ C
∥∥t

1
α−1D

1
α−1
t (u− v)

∥∥
Lp(λ)

= C‖∇x · V −∇x · V ‖Lp(σ) = 0.

Hence, we obtain u = v on H. This completes the proof. ¤
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