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Relative Tchebychev hypersurfaces

which are also translation hypersurfaces
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Abstract. The class of relative Tchebychev hypersurfaces extends the class of affine

hyperspheres in Blaschke geometry. This paper aims at finding examples for relative

Tchebychev hypersurfaces among the translation hypersurfaces. A complete local clas-

sification is given. Specializing from relative to centroaffine geometry, the list reduces

to paraboloids.
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1. Introduction

Measuring area in relative geometry is not straightforward due to the
existence of several volume forms. The two main notions of area relate to the
induced volume form ω and the volume form ω̂ of the relative metric. The
ω-area is meaningful in Euclidean and Blaschke geometry, with the classical
Euler-Lagrange equation H = 0 in both cases.

However, in centroaffine geometry, there are no hypersurfaces with ex-
tremal ω-area. Considering the ω̂-area instead yields a meaningful Euler-
Langrange equation, namely trace ∇̂cT c = 0, where ∇̂c and T c denote
the Levi-Civita connection of the centroaffine metric and the centroaffine
Tchebychev vector field, respectively. This result is due to Wang [16].

Thus, ∇̂cT c formally replaces the shape operator when comparing this
equation to Euclidean or Blaschke geometry, the main difference being the
different volume measure. Centroaffine hypersurfaces where ∇̂cT c is a mul-
tiple of the identity are called centroaffine Tchebychev hypersurfaces ([8],
[9]). This analogy was pursued further by a generalization to relative ge-
ometry: based on Codazzi relations, [7] introduces the concept of a relative
Tchebychev hypersurface. A global result was obtained in dimension n = 2
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98 T. Binder

in [10].
In the Blaschke geometry, the relative Tchebychev hypersurfaces are

exactly the affine hyperspheres. The latter class alone is so large that clas-
sifications succeed only under strong additional assumptions. We therefore
restrict the search to translation hypersurfaces. Translation hypersurfaces
provide a large class of examples which is easily accessible. Due to this fact,
they were studied intensively; see e.g. [2], [3], [4], [5], [13], [15].

Section 2 introduces terminology from relative geometry; for a detailed
introduction to the subject see [12] or [14]. Section 3 derives the Blaschke
invariants of a translation hypersurface. The last Section 4 gives a local
classification of relative Tchebychev hypersurfaces which are also translation
hypersurfaces. This result is contained in the author’s dissertation [1].

2. Relative geometry and Tchebychev hypersurfaces

Throughout this article we assume that n ≥ 2. A hypersurface immer-
sion x : M → Rn+1 of an n-dimensional manifold into real affine space is
called a relative hypersurface, if there is a transversal field y such that ∇py

has its image in dx(TpM), where ∇ is the canonical flat affine connection on
Rn+1. For any vector fields u and v tangent to M we have the decomposi-
tions

∇udx(v) = dx(∇uv) + h(u, v)y, dy(u) = −dx(Su).

Such an y is called a relative normal. The regularity of the symmetric tensor
field h is independent of the choice of y, it is a property of x only. In the
regular case, we call x a non-degenerate hypersurface and h the relative
metric induced by y. From now on we will always assume that x is non-
degenerate.

∇ is a torsion-free Ricci-symmetric affine connection called the induced
connection. S is called the shape operator. Its trace nH := trace S is the
mean curvature. A relative hypersphere is a hypersurface with S = H id
and is called proper if H 6= 0, and improper if H = 0.

Let ∇̂, Ĥess, ∆ denote the Levi-Civita connection, the Hessian and
the Laplacian regarding h, respectively. Define the difference tensor C by
C(u, v) := ∇uv − ∇̂uv. The Tchebychev vector field T is obtained from C

by
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nh(T, u) := trace{v 7→ C(v, u)}.

By [ we denote the operation of lowering an index with respect to h. The
conormal connection ∇∗ is given implicitly by

w(h(u, v)) = h(∇wu, v) + h(u,∇∗wv).

The conormal Y corresponding to y is the dual vector field satisfying

〈Y, dx〉 = 0 and 〈Y, y〉 = 1,

where 〈·, ·〉 denotes the canonical pairing of (Rn+1)∗ and Rn+1. Normals
and conormals are in a bijective correspondence for non-degenerate hyper-
surfaces; we talk about a relative normalization of x provided either one
is given. Any two relative normals y1, y2 of x are related by a function
ϕ ∈ C∞(M) such that Y1 = ±eϕY2 for the corresponding conormals.
Finally, the relative support function is defined by ρ := −〈Y, x〉.

The Blaschke normal ye is unique up to sign; it is characterized by T = 0
up to a constant factor. Relative hyperspheres with respect to the Blaschke
geometry are called affine hyperspheres.

On a non-degenerate hypersurface the position vector is transversal up
to a nowhere dense set. Hence, by continuity, one can define the centroaffine
normal yc := −x. It is characterized by S = id. A proper relative sphere is
the underlying hypersurface with its centroaffine normal up to a constant
factor. Henceforth Blaschke and centroaffine invariants will be marked by e

and c, respectively.
A hypersurface x with relative normal y is called a relative Tchebychev

hypersurface if the relative Tchebychev operator L := 1
2S − n

n+2∇̂T is a
multiple of the identity. We have the following characterization.

Lemma Let x : M → Rn+1 be a hypersurface with relative normal y.
The transition to the Blaschke normalization is given by Y = eϕYe, where
ϕ = log ρ

ρe , and Y is the relative conormal belonging to y. The following
statements are equivalent :
( i ) x is a relative Tchebychev hypersurface with respect to y,
( ii ) ∇̂C̃[ is totally symmetric, where

C̃(u, v) := C(u, v)− n

n + 2
(
T [(u)v + T [(v)u + h(u, v)T

)
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is the traceless part of C.
(iii) Ĥessϕ− 1

n (∆ϕ)h = −(S[−Hh) in terms of the relative geometry, and
(iv) S[e −Hehe = dϕ(Ce(·, ·)) in terms of the Blaschke geometry.

It is surprising that the order of the differential equation in terms of ϕ

reduces from two to one when reformulating the problem in the Blaschke
geometry.

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) was shown in [7]. The equivalence of (iii) and
(iv) can be deduced using change of relative normalization formulas

Ĥessϕ(u, v) = Ĥesseϕ(u, v)− dϕ(u)dϕ(v) +
1
2
‖gradeϕ‖2ehe(u, v),

∆ϕ = e−ϕ

(
∆eϕ +

n− 2
2

‖gradeϕ‖2e
)

,

S[(u, v) = S[e(u, v)− he(∇e
ugradeϕ, v) + dϕ(u)dϕ(v),

H = e−ϕ

(
He − 1

n
∆eϕ +

1
n
‖gradeϕ‖2e

)
,

where ‖·‖2e is taken with respect to he. Plugging these into (iii) and simpli-
fying we get

Ĥesseϕ(u, v) = −S[e(u, v) + he(∇e
ugradeϕ, v)−Hehe(u, v).

Rewrite the middle term on the right-hand side as

he(∇e
ugradeϕ, v) = u(he(gradeϕ, v))− he(gradeϕ,∇∗e

uv) = Hess∗eϕ(u, v),

where Hess∗ denotes the Hessian with respect to ∇∗. We conclude the proof
by

dϕ(Ce(u, v)) = dϕ(∇̂e
uv −∇∗e

uv) = (Ĥesse −Hess∗e)(u, v)

= −(S[e + Hehe)(u, v). ¤

Remark 1 ( i ) Any hyperquadric is relative Tchebychev with respect
to an arbitrary relative normal. Note that hyperquadrics are charac-
terized by Ce = 0, cf. [14].



Relative Tchebychev hypersurfaces which are also translation hypersurfaces 101

( ii ) In the Blaschke geometry, the Tchebychev hypersurfaces are exactly
the affine hyperspheres.

(iii) A hypersurface is centroaffine Tchebychev if and only if T c is a con-
formal vector field with respect to hc: In centroaffine geometry, the
definition translates to

∇̂c
uT c = λu for all u,

which characterizes T c as a closed conformal vector field on the Rie-
mannian manifold (M, hc). Note that T is always closed; in cen-
troaffine terms we have T c = n+2

2n gradc log |ρe|. We can rewrite the
PDE in (iii) of the Lemma as

Ĥessc log |ρe| − 1
n

(∆c log |ρe|)hc = 0, (1)

which is known from Riemannian geometry (see [6]). The PDE (1)
implies that locally strongly convex Tchebychev hypersurfaces with
complete centroaffine metric are conformally flat. Using results from
Riemannian geometry [8] gives a classification for this case, which
provides examples besides the ones studied here.

3. Translation hypersurfaces

The immersion x : M → Rn+1 is called a translation hypersurface if
it admits a decomposition into the sum of n planar curves. Precisely, any
translation hypersurface can be parametrized locally as

x : (u1, . . . , un) 7→
(

α1(u1), . . . , αn(un),
n∑

l=1

βl(ul)
)

,

where αi and βi are differentiable functions. Here and in the following, we
do not use the Einstein summation convention. We will now remove the
freedom in the parametrization. To calculate the Blaschke invariants we use
the fact that he = |detΛ|− 1

n+2 Λ where Λij := det(x1, . . . , xn, xij). We get

Λii = α′1α
′
2 · · ·α′i−1α

′
i+1 · · ·α′n(α′iβ

′′
i − β′iα

′′
i )
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for 1 ≤ i ≤ n and Λij = 0 for i 6= j. In order to obtain a conformal
parametrization of he we assume

α′iβ
′′
i − β′iα

′′
i = εiα

′
i or equivalently, β′′i − β′i

α′′i
α′i

= εi

for some εi = ±1 from now on. Define a function γ by

eγ := |α′1 . . . α′n|
2

n+2 .

To keep notation short, we write γi := ∂iγ from now on. Then

γi =
2

n + 2
α′′i
α′i

.

Note that all second order mixed partials of γ vanish. The Blaschke metric
can be written as

he = εeγ
n∑

l=1

εldul ⊗ dul.

The choice of ε = ±1 corresponds to fixing the orientation of the Blaschke
normal. Applying the conformal change formula for a Levi-Civita connection
we get ∇̂e:

∇̂e
i ∂i =

1
2
γi∂i − 1

2
εi

∑

l 6=i

εlγl∂l, ∇̂e
i ∂j =

1
2
(γi∂j + γj∂i),

where i 6= j. Using the identity nye = ∆ex we get that the Blaschke normal
is then given by

ye =
2ε

n + 2
e−γ

(
ε1α

′′
1 , . . . , εnα′′n,

n∑

l=1

εlβ
′′
l −

n− 2
2

)
. (2)

It is now easy to guess the Blaschke conormal and to compute the support
function:
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Ye = εeγ

(
− β′1

α′1
, . . . ,−β′n

α′n
, 1

)
,

ρe = −〈Ye, x〉 = εeγ
n∑

l=1

α′lβl − αlβ
′
l

α′l
.

(3)

Using (2) we can calculate the remaining invariants of the Blaschke geome-
try:

∇e
i ∂i =

n

2
γi∂i − εi

∑

l 6=i

εlγl∂l, ∇e
i ∂j = 0,

Se
ii = −

(
γ′i +

n

2
γ2

i

)
, Se

ij = γiγj ,

Ce(∂i, ∂i) =
n− 1

2
γi∂i − 1

2
εi

∑

l 6=i

εlγl∂l, Ce(∂i, ∂j) = −1
2
(γi∂j + γj∂i),

where 1 ≤ i, j ≤ n and i 6= j in all cases.

Remark 2 The Blaschke metric of a translation hypersurface is confor-
mally flat. What is the relative normal associated to the flat metric? Trans-
forming Y = e−γYe, a short calculation yields y = (0, . . . , 0, ε). Hence for
any translation hypersurface there exists a relative normal such that it is
an improper relative sphere with flat relative metric with respect to that
normal. Using this special relative normal for a graph hypersurface, the
relative metric is called Calabi metric.

Example 1 (Quadrics) The quadric condition Ce = 0 translates into
γ = const, i.e. γi = 0 for all 1 ≤ i ≤ n. Up to translation and affine
equivalences we get αi(ui) = ui and βi(ui) = 1

2εi(ui)2 for each i, which
leads to the paraboloids xn+1 =

∑n
l=1 εl(xl)2.

Example 2 Assume γ is a linear function but γ 6= const. Then there is
some index 1 ≤ i ≤ n such that γj = n+2

2 aj = const for all 1 ≤ j ≤ i and
aj ∈ R\{0} and γj = 0 for all i < j ≤ n. Up to translations and affine
equivalences we get αj(uj) = eajuj

and βj(uj) = dje
ajuj − εj

aj
uj for j ≤ i.

More affine transformations lead to
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ε1

a2
1

log x1 + · · ·+ εi

a2
i

log xi +
1
2
εi+1(xi+1)2 + · · ·+ 1

2
εn(xn)2 = xn+1.

We abbreviate this hypersurface by D1(a1, . . . , ai, 0, . . . , 0).

Example 3 Suppose γ is a quadratic function. Then for 1 ≤ i ≤ n we can
write γi(ui) = n+2

4 aiu
i with ai ∈ R after a translation in the parameters.

Since γ is quadratic, we may assume ai 6= 0 for a particular i in the following.
In this case, α′i(u

i) = eai(u
i)2 and β′′i −2aiu

iβ′i = εi. In the generic case, this
cannot be integrated elementarily; integration involves the error function∫

e−ξ2
dξ. We write D2(a1, . . . , an) for this hypersurface.

Example 4 (Affine hyperspheres) In this context, affine spheres were
studied by Manhart [11]. For a classification, we exclude quadrics (Ex-
ample 1). Then Se

ij = 0 for i 6= j demands that exactly one γi is non-
zero, let this be γ1. Hence Se = 0 and γ1 satisfies γ′1 + n

2 γ2
1 = 0 while

γ2 = · · · = γn = 0. Solving for γ1 and applying a parameter translation
we get γ1(u1) = 2

nu1 . Integrating further yields α1(u1) = (u1)
2n+2

n and
β1(u1) = c(u1)

2n+2
n − ε1

n
4 (u1)2, where c ∈ R and where we have omitted

translation constants. The result is the non-quadric improper affine hyper-
sphere

xn+1 = −ε1
n

4
(x1)

n
n+1 + cx1 +

1
2

n∑

l=2

εl(xl)2.

4. Classification

Theorem Let x : M → Rn+1 be a relative Tchebychev hypersurface with
respect to the conormal Y = eϕYe. Suppose x is also a translation hyper-
surface. Then x is affinely equivalent to an open part of one of the following
hypersurfaces:
( i ) The paraboloids from Example 1 with an arbitrary relative normal,
( ii ) D1(a1, . . . , an), where a1, . . . , an ∈ R and at least two ai are nonzero,

with the relative normal described in Remark 2,
(iii) D2(ε1a, . . . , εna), where n ≥ 3 and a ∈ R\{0}, with the relative nor-

mal described in Remark 2,
(iv) in dimension n ≥ 3 the hypersurfaces
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xn+1 = ε1 sgn(1− c)(x1)
2

1+c + ε2(x2)
2

1−c +
n∑

l=3

εl(xl)2, or

xn+1 = ε1|x1| log |x1|+ ε2e
x2

+
n∑

l=3

εl(xl)2,

where 1 6= c > 0 is a constant and where the relative normal is deter-
mined up to a constant factor,

( v ) in dimension n ≥ 2 the class of hypersurfaces xn+1 = f(x1) +∑n
l=2 εl(xl)2, where f is an arbitrary differentiable function on the

real line, with a relative normal which is determined by f up to a
constant factor,

(vi) the class of surfaces given by

γ′1
2 =

c

4
γ4
1 + c̃1γ

2
1 + c1 and γ′2

2 =
c

4
γ4
2 + c̃2γ

2
2 + c2,

where c, c̃i, ci ∈ R, i = 1, 2. Again, the relative normal is determined
up to a constant factor.

Proof. Rewriting the Tchebychev condition in (iv) of the Lemma in terms
of translation hypersurfaces gives

(1− n)εi

(
2
n

γ′i + γ2
i

)
+

∑

l 6=i

εl

(
2
n

γ′l + γ2
l

)

= (n− 1)εiγiϕi −
∑

l 6=i

εlγlϕl, (4)

− 2γiγj = γiϕj + γjϕi, (5)

where 1 ≤ i, j ≤ n and i 6= j. Based on dimension and on the number of
vanishing partials of γ we distinguish some cases.

Case A Suppose n ≥ 2 and γi = 0 for all 1 ≤ i ≤ n. Then we get Class
(i).

Case B Suppose that γ1 6= 0 whereas γ3, . . . , γn = 0 (γ2 is not yet re-
stricted). Then from (5) for 1 < i ≤ n we can express
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ϕi = −γi

(
2 +

ϕ1

γ1

)
. (6)

Obviously, ϕ = ϕ(u1, u2). For n ≥ 3 and j 6∈ {1, i}, by inserting (6) into (5)
we get γiγj(1+ ϕ1

γ1
) = 0, which is by assumption always true. The remaining

equations of (4) are

−(n− 1)ε1

(
2
n

γ′1 + γ2
1

)
+ ε2

(
2
n

γ′2 + γ2
2

)
= (n− 1)ε1γ1ϕ1 − ε2γ2ϕ2, (7)

−(n− 1)ε2

(
2
n

γ′2 + γ2
2

)
+ ε1

(
2
n

γ′1 + γ2
1

)
= (n− 1)ε2γ2ϕ2 − ε1γ1ϕ1, (8)

ε1

(
2
n

γ′1 + γ2
1

)
+ ε2

(
2
n

γ′2 + γ2
2

)
= −(ε1γ1ϕ1 + ε2γ2ϕ2), (9)

where we have set i = 1 and i = 2 in (7) and (8), respectively. For i ≥ 3,
Equation (4) always looks like (9).

Case B1 First suppose n ≥ 2 and γ2 = 0, then we obtain ϕ = ϕ(u1) and
ϕ1 = −( 2

nγ′1 + γ2
1)/γ1. Integration yields ϕ = − 2

n log |γ1| − γ + c. Setting
f := β1 ◦ α−1

1 we get Class (v). In this subcase any hypersurface is relative
Tchebychev with respect to a normalization which is unique up to scaling.

Case B2 If n ≥ 3 and γ2 6= 0, then the linear system (7)–(9) has the
unique solution ϕi = −( 2

nγ′i + γ2
i )/γi, i = 1, 2. Inserting this into (5) we see

this is only possible for a solution of

γ′1 = −c̃γ2
1 , γ′2 = c̃γ2

2 for some c̃ ∈ R. (10)

Without loss of generality assume c̃ ≥ 0. If c̃ = 0, we get Class (ii).
Otherwise, the solutions of (10) are γ1(u1) = 1/(c̃u1 + c̃1) and γ2(u2) =
−1/(c̃u2 + c̃2). By a parameter translation we may assume c̃1 = 0 = c̃2.
Setting c := n+2

2c̃ we get

for c 6= 1 α1 = |u1|1+c, β1 =
ε1

2(1− c)
(u1)2 +

c1

1 + c
|u1|1+c,

α2 = |u2|1−c, β2 =
ε2

2(1 + c)
(u2)2 +

c2

1− c
|u2|1−c,
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and for c = 1 α1 = |u1|1+c, β1 =
ε1

2
(u1)2 log |u1|+ 2c1 − ε1

4
(u1)2,

α2 = log |u2|, β2 =
ε2

4
(u2)2 + c2 log |u2|,

where c1, c2 ∈ R. After more affine transformations we arrive at the hyper-
surfaces in Class (iv).

Case C Let n ≥ 3 and without loss of generality γ1, γ2, γ3 6= 0. Setting
i = 2 and j = 3 in Case B it follows that ϕ1 = −γ1, hence ϕi = −γi for any
i. This implies ϕ = −γ + c for some c ∈ R. The remaining system (4) reads

(1− n)εiγ
′
i +

∑

l 6=i

εlγ
′
l = 0, 1 ≤ i ≤ n.

This is a linear system in the derivatives of γ, with zero determinant and
rank n− 1. The trivial solution gives Class (ii), while the non-zero constant
solutions for γ′i lead to Class (iii).

Case D Finally, assume n = 2 and both γ1, γ2 6= 0. We have the system
of PDEs

−ε1(γ′1 + γ2
1) + ε2(γ′2 + γ2

2) = ε1γ1ϕ1 − ε2γ2ϕ2,

−2γ1γ2 = γ1ϕ2 + γ2ϕ1.

Consider this as a linear system in the partials of ϕ. It has determinant
ε1γ

2
1 + ε2γ

2
2 . If this is zero, then we get γ1 = ±γ2 = const and ε1 = −ε2,

which leads to Class (ii). Suppose the determinant is not zero. Then we
obtain

ϕ1 = γ1

(
ε2γ

′
2 − ε1γ

′
1

ε1γ2
1 + ε2γ2

2

− 1
)

, (11)

ϕ2 = γ2

(
ε1γ

′
1 − ε2γ

′
2

ε1γ2
1 + ε2γ2

2

− 1
)

. (12)

Consequently, the Lie bracket for ϕ reads

(
ε1γ

′′
1 γ2 − ε2γ1γ

′′
2

)(
ε1γ

2
1 + ε2γ

2
2

)
= 2γ1γ2

(
γ′1

2 − γ′2
2
)
.
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Taking the second derivative ∂1∂2 we can separate variables; the result is

γ′′′i γi − γ′′i γ′i = cγ′iγ
3
i , c ∈ R, i = 1, 2.

We can integrate this once as

γ′′i =
c

2
γ3

i + c̃iγi, c̃i ∈ R, i = 1, 2.

By integrating the latter equation once more we obtain Class (vi). ¤

Note that the affine hyperspheres from Example 4 are contained in
Class (v) of the Theorem. Finally we will show that, except for the
paraboloids from Example 1, there are no other centroaffine Tchebychev
hypersurfaces contained in the list of the Theorem.

The centroaffine normalization is characterized by e−ϕ = |ρe|. By in-
serting (3) we observe that if ∂i(ϕ + γ) = 0 for some i, then also

0 = ∂i
α′iβi − αiβ

′
i

α′i
=

β2
i

α′i
∂i

αi

βi
. (13)

The latter would imply that αi = cβi, which is impossible. Thus, cen-
troaffine Tchebychev hypersurfaces are not contained in Cases B and C.
It remains to examine Case D. Assume there is a centroaffine Tchebychev
surface contained in Class (vi) of the Theorem. Taking derivatives ∂1∂2 in
e−ϕ = |ρe| we obtain ∂1∂2e

−(γ+ϕ) = 0, or equivalently,

(γ1 + ϕ1)(γ2 + ϕ2) = γ21 + ϕ21.

Eliminating the derivatives of γ + ϕ using (11) and (12) yields

−γ1γ2(ε1γ
′
1 − ε2γ

′
2)

2

(ε1γ2
1 + ε2γ2

2)2
= ∂2

γ1(ε1γ
′
1 − ε2γ

′
2)

ε1γ2
1 + ε2γ2

2

=
−ε2γ1γ2

(
2γ′2(ε2γ

′
2 − ε1γ

′
1)− γ′′2

γ2
(ε1γ

2
1 + ε2γ

2
2)

)

(ε1γ2
1 + ε2γ2

2)2
.

(14)

Taking derivatives ∂1∂2 of the latter equation we get that γ′1γ
′
2 = 0 is a

necessary condition. Without loss of generality we may assume γ2 = a =
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const 6= 0. Inserting this into (14) it follows that also γ1 = const. From
(11) and (12) it is now clear that ϕ+γ = const, which gives a contradiction
when applying the same argument as in (13) for i = 1 or 2.
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