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The Tate conjecture over finite fields

for projective schemes related to Coxeter orbits

Joujuu Ohmori
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Abstract. Let G be a simple algebraic group, defined over a finite field Fq , with

Frobenius map F . Let X•
f be the Hansen-Demazure-Deligne-Lusztig compactification

of the Deligne-Lusztig variety Xf of G associated with a Coxeter element in the Weyl

group WG of G, and let X•
f,0 be the Fqδ-structure on X•

f over the finite extension

Fqδ of Fq determined by F δ : X•
f → X•

f , where δ is the smallest positive integer such

that F δ is the identity map on WG. We shall give an affirmative answer to the Tate

conjecture over finite fields for algebraic cycles on X•
f,0 and related projective schemes.
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Introduction

Let k0 be a finite field, k an algebraic closure of k0 and Π = Gal(k/k0).
Let X0 be an equidimensional smooth projective scheme of finite type over
k0, purely of dimension d. For an integer s, 0 ≤ s ≤ d, let Zs(X0) be
the free abelian group generated by the closed integral subschemes of X0 of
codimension s. Let ` be a prime number different from the characteristic of
k0. Let X = X ×k0 k. Let

clsX0
: Zs(X0) −→ H2s(X,Q`(s))Π

be the cycle map, where (s) is the Tate twist and H2s(X,Q`(s))Π is the
Π-invariant part of H2s(X,Q`(s)). Let

As = As(X0) = Q · Im clsX0
(⊂ H2s(X,Q`(s))Π)

and

Ns = Ns(X0) =
{
a ∈ As | 〈a, a′〉X = 0 for all a′ ∈ Ad−s

}
,
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where 〈 , 〉X is the Poincaré duality pairing via cup product:

〈 , 〉X : H2s(X,Q`(s))×H2(d−s)(X,Q`(d− s))

∪−→ H2d(X,Q`(d)) TrX−→ Q`.

The Tate conjecture over finite fields consists of the following two statements:

T s : Q` ·As = H2s(X,Q`(s))Π

and

Es : Ns = 0.

(See Tate [Ta II]). Since k0 is finite, the Tate conjecture over finite fields is
equivalent to the following statement:

The order of the pole of the zeta function Z(X0, t) at t = q−s is equal
to dimQ(As/Ns). (See [Ta II, Theorem (2.9)]). Here q = |k0|.

The Tate conjecture over finite fields is the base of Grothendieck-Milne’s
theory of motives over finite fields (Milne [Mi II]).

In this paper, we give an affirmative answer to the Tate conjecture over
finite fields for very special projective schemes X•

f(I),0 = X̄•
f (I)0 related to

the Deligne-Lusztig’s theory of representations of finite reductive groups GF

over algebraically closed fields of characteristic 0 (Deligne and Lusztig [DL]).
Our main result is stated in the last paragraph of Section 3 (Theorem 1),
and is proved in Sections 4, 5.

The motivation of our study is the “fact” that the rationality of a
cuspidal unipotent representation of GF has a “motivic explanation” ([Oh]).

Our result relies on Lusztig’s calculation of the eigenvalues of Frobenius
on the étale cohomology groups Hi

c(Xf , Q̄`) with compact supports of the
Deligne-Lusztig variety Xf of G associated with a Coxeter element in the
Weyl group of G (Lusztig [Lu]). Here Q̄` is an algebraic closure of Q`.

I wish to dedicate this paper to may daughter Chieko.

Preliminaries and convensions

Let K be an algebraically closed field. Let (X, OX) be a separated,
reduced scheme of finite type over K with structural sheaf OX . Let X(K)
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be the set of K-rational points of X, and let OX(K) = OX | X(K). Then
(X(K), OX(K)) is a variety in the sense of Borel’s book [Bo, Ch. AG]. The
correspondence (X, OX) 7→ (X(K), OX(K)) gives an equivalence of the cat-
egory of separated, reduced schemes of finite type over K with morphisms
over K and the category of varieties.

Throughout the paper, p is a fixed prime number and k is an algebaric
closure of the prime field Fp = Z/pZ. By a variety, we mean a separated,
reduced scheme X of finite type over k, and we shall identify X with X(k).
An algebraic group is the one in the sense of [Bo].

For an integral power pa of p, Fpa is the subfield of k with pa elements.
k0 is a finite subfield of k and Π = Gal(k/k0). ϕ is the arithmetic Frobenius
automorphism of k over k0, i.e., ϕ(x) = x|k0|, x ∈ k.

A sheaf is an abelian étale sheaf on a scheme.
` is a fixed prime number different from p. Q̄` is an algebraic closure of

Q`.
For a variety X, we write Hi(X) and Hi

c(X) instead of Hi(X, Q̄`) and
Hi

c(X, Q̄`) respectively.
For a set S and a map f : S → S, Sf = {x ∈ S | f(x) = x}, and if T is

a set of maps f : S → S, then ST = {x ∈ S | f(x) = x for all f ∈ T}.
If V is a finite dimensional vector space over a field E and f : V → V

is a linear map, then, for a ∈ E∗, we set

Va =
{
v ∈ V | (f − aIV )nv = 0 for some integer n ≥ 1

}
.

1. The Poincaré duality theorem

Let X be a smooth equidimensional variety, purely of dimension d.
Then X is the disjoint union of its irreducible components X1, . . . , Xm. For
an inteber u, 1 ≤ u ≤ m, let iu : Xu ↪→ X be the inclusion morphism. Let
G be a sheaf on X. For 1 ≤ u ≤ m, let Gu = iu∗iu

∗G = iu!iu
∗G. Then we

have G =
⊕m

u=1 Gu and

Hi(X, G) =
m⊕

u=1

Hi(X, Gu) =
m⊕

u=1

Hi(X, iu∗iu
∗G).

Let H be another sheaf on X. Then there are cup product homomor-
phisms
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∪ : Hi(X, G)×Hj(X, H) −→ Hi+j(X, G⊗H) (i, j ≥ 0).

For 1 ≤ u 6= v ≤ m, we have

x ∪ y = 0, x ∈ Hi(Xu, iu
∗G), y ∈ Hj(Xv, iv

∗H). (1.1)

Assume that X is a projective variety. Let n be a positive integer
coprime to p. Then, for 1 ≤ u ≤ m, there is a canonical isomorphism
TrXu

: H2d(Xu,Z/nZ(d)) ∼→ Z/nZ, where (d) denotes the Tate twist. Let

TrX =
m∑

u=1

TrXu : H2d(X,Z/nZ(d))

=
m⊕

u=1

H2d(Xu,Z/nZ(d)) −→ Z/nZ.

Then, by the Poincaré duality theorem ([SGA 4, Ch. XVIII]), the pairing

〈 , 〉X,n : Hi(X,Z/nZ(a))×H2d−i(X,Z/nZ(d− a))

∪−→ H2d(X,Z/nZ(d)) TrX−→ Z/nZ (1.2)

is non-degenerate (a ∈ Z). By replacing n by `n, on passing to the projective
limit on n and by tensoring with Q`, we get a non-degenerate pairing

〈 , 〉X : Hi(X,Q`(a))×H2d−i(X,Q`(d− a)) −→ Q`.

Remark Deligne’s proof of non-degenerateness of the pairing in [SGA 4,
Ch. XVIII] is dificult to follow for the author. But, fortunately, we can
see its proof in Milne’s book [Mi I, Section 11] when X is irreducible. The
general case follows from this special case by using (1.1).

Assume that X is obtained by the extension of scalars from a scheme
X0 over k0 : X = X0×k0 k. Then the pairing 〈 , 〉X is Π-equivarinat, where
Π acts on Q` trivially.

Let Y = Y0×k0 k be another smooth equidimensional projective variety,
purely of dimension e, let f0 : Y0 → X0 be a morphism over k0 and let
f = f0 ×k0 k : Y → X. Then the inverse image homomorphism f∗ :
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Hi(X,Q`(a)) → Hi(Y,Q`(a)) and the direct image homomorphism f∗ :
H2e−i(Y,Q`(e−a)) → H2d−i(X,Q`(d−a)) (the dual of f∗ via the Poincaré
duality theorem) are Π-equivariant. Then f∗ and f∗ induce homomorphisms

f∗1 : Hi(X,Q`(a))1 −→ Hi(Y,Q`(a))1

and

f∗1 : H2e−i(Y,Q`(e− a))1 −→ H2d−i(X,Q`(d− a))1.

The pairings 〈 , 〉X and 〈 , 〉Y induce non-degenerate pairings

〈 , 〉X,1 : Hi(X,Q`(a))1 ×H2d−i(X,Q`(d− a))1 −→ Q`

and

〈 , 〉Y,1 : Hi(Y,Q`(a))1 ×H2e−i(Y,Q`(e− a))1 −→ Q`.

Thererore f∗1 : Hi(X,Q`(a))1 → Hi(Y,Q`(a))1 induces its dual homomor-
phism

(f∗1 )∨ : H2e−i(Y,Q`(e− a))1 −→ H2d−i(X,Q`(d− a))1.

We see that

(f∗1 )∨ = f∗1.

Therefore f∗1 is surjective if f∗1 is injective.
Let V be a finite dimensional vector space over Q` on which Π acts

continuously. We note that

〈ϕ〉 = Π.

Thus V ϕ = V Π. Thus, in particular, when ϕ acts semisimplly on V1, we
have V1 = V ϕ = V π.
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2. Tate conjecture

Let X0 be a separated reduced smooth scheme of finite type over k0,
let X = X0 × k0k and let πX : X → X0 be the natural projection. Then X

is a smooth variety over k. Assume that X0 is purely of dimension d.
Let s be an integer, 0 ≤ s ≤ d. Let Zs(X0) (resp. Zs(X)) be the free

abelian group which is generated by the integral closed subschemes of X0

(resp. X) of codimension s. For a prime cycle Z0 ∈ Zs(X0), let Z1, . . . , Zt

be all the irreducible component of Z0 ×k0 k, and we put

π∗XZ0 = Z1 + · · ·+ Zt ∈ Zs(X)

(note that k0 is perfect). Extending by additivity, we obtain a homomor-
phism

π∗X : Zs(X0) −→ Zs(X).

Let

c̃lsX0
: Zs(X0) −→ H2s(X0,Q`(s))

and

c̃lsX : Zs(X) −→ H2s(X,Q`(s))

be cycle maps (Grothendieck-Deligne [SGA 4 1/2]). Then we have the fol-
lowing commutative diagram:

Zs(X0)
gclsX0 //

π∗X
²²

H2s(X0,Q`(s))

π∗X
²²

Zs(X) gclsX
// H2s(X,Q`(s)).

We see that the cycle map c̃lsX coincides with the cycle map which is de-
fined in [Mi I, Ch. VI, Section 9] and the map π∗X : H2s(X0,Q`(s)) →
H2s(X,Q`(s)) coincides with the edge homomorphism at position (0, 2s) in
the spectral sequence
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Hi
(
Π,Hj(X,Q`(s))

)
=⇒ Hi+j(X0,Q`(s)).

Thus π∗X ◦ c̃lsX0
= c̃lsX ◦π∗X factors through H2s(X,Q`(s))Π. We denote this

map by

clsX0
: Zs(X0) −→ H2s(X,Q`(s))Π.

Assume that X is projective. For an integer s, 0 ≤ s ≤ d, let

As = As(X0) = Q · Im(
clsX0

) ⊂ H2s(X,Q`(s))Π

and

Ns = Ns(X0) =
{
a ∈ As | 〈a, a′〉X = 0 for all a′ ∈ Ad−s

}
,

where 〈 , 〉X is the Poincaré duality pairing via cup product.
The Tate conjecture over finite fields consists of the following two state-

ments (see Tate [Ta I, II]):

T s : Q` ·As = H2s(X,Q`(s))Π,

Es : Ns = 0.

Remark (1) In [Ta I], Tate defines his cycle map as follows:
Let Z ∈ Zs(X) be a prime cycle. We define c(Z) to be an element of

H2s(X,Q`(s)) characterized by the property

TrX(y ∪ c(Z)) = TrZ(y | Z)

for all y ∈ H2(d−s)(X,Q`(d− s)). We see that

c(Z) = c̃lsX(Z)

if Z is smooth (see [Mi I, Ch. VI, Section 11, Remark 11.6(e), p. 284]).
However I do not know whether this equality holds for singular Z.

(2) In [Ta II], Tate states his conjectures by using “the” cycle map
whose definition is unknown to the author. Here we adopt Grothendieck-
Deligne-Milne’s definition of cycle maps.
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Let Y0 be a smooth equidimensional projective scheme over k0, purely of
dimension e, Let Y = Y0×k0k and let πY : Y → Y0 be the natural projection.
Let g0 : Y0 → X0 be a morphism over k0 and let g = g0 ×k0 k : Y → X.
Let s be an integer, 0 ≤ s ≤ e. Let W0 ∈ Zs(Y0) be a prime cycle. Then
the image Z0 = g0(W0) has a structure of closed integral subscheme of X0.
The function field k0(Z0) of Z0 can be regarded as a subfield of the function
field k0(W0) of W0. Let m = [k0(W0) : k0(Z0)]. Then we define g0∗W0 to
be mZ0 if m is finite and 0 otherwise. Extending by additivity, we obtain a
homomorphism

g0∗ : Zs(Y0) −→ Zd−e+s(X0).

Similarly, we can define a homomorphism

g∗ : Zs(Y ) −→ Zd−e+s(X).

The diagram

Y
πY //

g

²²

Y0

g0

²²
X πX

// X0

is cartesian and πX is flat. Therefore

g∗π∗Y = π∗Xg0∗

(see Fulton [Fu, Ch. I, Section 1.7, Proposition 1.7, p. 18]). Thus, if Y0 is
the disjoint union

∐t
j=1 Y0j of closed subschemes Y0j of X0 and g0 is the

sum of the inclusion morphisms Y0j ↪→ X0, then the following diagram is
commutative:

Zs(Y0)
clsY0 //

g0∗

²²

H2s(Y,Q`(s))

g∗
²²

Zd−e+s(X0)
cld−e+s

X0

// H2(d−e+s)(X,Q`(d− e + s)).

(0 ≤ s ≤ e).
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(Cf. [Mi I, Ch. VI, Section 9, Proposition 9.3, p. 269]).

3. Reductive groups

In the rest of this paper, we shall use the following notations. Almost all
of them are extracted from Deligne and Lusztig’s paper [DL] and Lusztig’s
paper [Lu].

G is a connected, reductive linear algebraic group over k. F : G → G

is a surjective endomorphism of G such that some integral power F d of F is
the Frobenius endomorphism of G relative to a rational structure on G over
a finite subfield k′ of k and q is the positive real number such that qd = |k′|
(uniquely determined by F ). We assume that d = 1 or that d = 2 and q is
an odd power of

√
2 or

√
3.

XG is the set of Borel subgroups of G. G acts transitively on XG by
conjugation: (g, B) 7→ gBg−1, g ∈ G, B ∈ XG. For each B ∈ XG, the
stabilizer NG(B) of B is just B, so the mapping gB 7→ gBg−1 defines a
bijection G/B

∼→ XG. Therefore XG has a structure of a projective variety.
F : XG → XG is the map B 7→ F (B). This map is an endomorphism of XG

with respect to the structure of the projective variety of XG:
By Lang-Steinberg theorem, there is an F -stable Borel subgroup B of

G; for such B, the diagram

G/B
∼ //

F

²²

XG

F

²²
G/B

∼ // XG

is commutative.
We let G act on XG × XG by (g, (B,B′)) 7→ (gBg−1, gB′g−1). Then

the Weyl group WG of G can be identified with the set G \ (XG ×XG) of
orbits of G on XG ×XG as follows:

Let (T, B) be a pair of a maximal torus T of G and a Borel subgroup B

of G containing T . Then the composite σ(T, B) of the following bijectioins
is an isomorphism of groups:
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WG(T ) = NG(T )/T
∼→ B \G/B

∼→ G \ (G/B ×G/B) ∼→ G \ (XG ×XG)

= WG

nT 7−→ BnB 7−→ G · (B,nB) 7−→ G · (B,nBn−1).

The law of compositioin in WG will be written as O◦O′ for O, O′ ∈ WG.
The unit element is the diagonal ∆ = {(B,B) | B ∈ XG}. The set

S = SG = {O ∈ WG | dimO = dim XG + 1}

is the set of simple reflections in WG. We denote by `( ) the length function
on WG with respect to SG. F : WG → WG is the map O 7→ F (O). If (T,B)
is an F -stable pair, then the diagram

WG(T )
σ(T,B)

∼ //

F

²²

WG

F

²²
WG(T )

σ(T,B)

∼ // WG

is commutative. We have F (SG) = SG. SF = (SG)F is the set of orbits of
F on SG. π : SG → SF is the natural map. r = |SF | is the rank of G. δ is
the minimal positive integer such that F δ is the identity map on WG. qδ is
a power of p; we put k0 = Fqδ , and Π = Gal(k/k0).

Let B ∈ XF
G (the F -invariant part of XG). Then, in view of the con-

struction of the structure of the projective variety on G/B
∼→ XG (cf. Borel

[Bo, Ch. II, Section 6, (6.8), pp. 181–2; Ch. IV, Section 11, (11.1), pp. 261–
2]), we see that there is a projective space PN over k with the “standard”
k0-structure with Frobenius map F δ such that XG is an F δ-stable closed
subvariety of PN and that F δ : XG → XG is the restriction to XG of
F δ : PN → PN .

The Coxeter graph Γ of G is the graph with one vertex for each element
of SG and such that the vertices corresponding to O, O′ ∈ SG (O 6= O′)
are joined by 0, 1, 2 or 3 bonds according as O ◦ O′ has order 2, 3, 4 or
6 respectively. F : SG → SG determines an automorphism F of Γ. When
Γ is connected the possible (Γ, F ) is as follows (cf. Bourbaki [Bour, Ch. 6,
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Section 4, n01, Théoremè 1], Steinberg [St, Section 11]; also see Carter [Ca,
pp. 37–8]);

An (n ≥ 1) ◦ ◦ · · · ◦ ◦ (n vertices, δ = 1),

Bn (n ≥ 2) ◦ ◦ · · · ◦ ◦ (n vertices, δ = 1),

Dn (n ≥ 4) ◦◦ ◦ · · · ◦
hhhhh
VVVVV
◦

(n vertices, δ = 1),

E6 ◦ ◦ ◦ ◦ ◦
◦

(δ = 1),

E7 ◦ ◦ ◦ ◦ ◦ ◦
◦

(δ = 1),

E8 ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

(δ = 1),

F4 ◦ ◦ ◦ ◦ (δ = 1),

G2 ◦ ◦ (δ = 1),

2A2n (n ≥ 1) ◦ss ++◦ · · · ◦zz $$◦ · · · ◦ ◦
(2n vertices, δ = 2),

2A2n+1 (n ≥ 1) ◦rr ,,◦ · · · ◦ uu ))◦ ◦ · · · ◦ ◦
(2n + 1 vertices, δ = 2),

2B2 ◦~~ ÃÃ◦ (δ = 2, q =
√

2
2m+1

),
2Dn (n ≥ 4) ◦[[

¤¤
◦ ◦ · · · ◦

oooooo
OOOOOO

◦

(n vertices, δ = 2),

3D4 ◦
¡¡◦

44
◦

oooooo
OOOOOO

◦

[[ (δ = 3),

2E6 ◦uu ))◦ ◦ ◦ ◦
◦

(δ = 2),
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2F4 ◦ ww ''◦ ◦ ◦ (δ = 2, q =
√

2
2m+1

),

2G2 ◦~~ ÃÃ◦ (δ = 2, q =
√

3
2m+1

).

We continue to eatablish notations.
Let O ∈ WG. We let

X(O) = XG(O) =
{
B ∈ XG | (B,F (B)) ∈ O

}
.

X(O) is a smooth locally closed subvariety of XG, purely of dimension `(O).
We call X(O) the Deligne-Lusztig variety of G associated with O.

Let O = O1 ◦ · · · ◦ On (O1, . . . , On ∈ SG) be a minimal expression for
O. We let

X(O)• = X̄(O1, . . . , On)

=
{
(B0, B1, . . . , Bn) ∈ Xn+1

G | (Bi−1, Bi) ∈ Oi ∪∆

for 1 ≤ i ≤ n and F (B0) = Bn

}

and

X(O1, . . . , On) =
{
(B0, B1, . . . , Bn) ∈ X(O)• | Bi−1 6= Bi, 1 ≤ i ≤ n

}
.

Then X(O)• is a smooth projective subvariety of Xn+1
G , purely of dimension

`(O), X(O1, . . . , On) is an open dense subvariety of X(O)• and the map-
ping (B0, B1, . . . , Bn) 7→ B0 gives an isomorphism from X(O1, . . . , On) onto
X(O). We call X(O)• the Hansen-Demazure-Deligne-Lusztig campactifica-
tion of X(O) (with respect to a reduced expression O = O1 ◦ · · · ◦On).

X(O)• is an F δ-stable subvariety of Xn+1
G . Therefore F δ : X(O)• →

X(O)• determines a k0-structure X(O)•0 on X(O)•. X(O)•0 is a smooth
projective scheme of finite type over k0, purely of dimension `(O).

In the following, if P is a parabolic subgroup of G, then UP is its
unipotent radical, LP = P/UP and πP : P → LP is the natural morphism.
LP is a connected, reductive linear algebraic group over k.

f = (O1, . . . , Or) is a sequence of elements of SG such that
{π(O1), . . . , π(Or)} = SF . We put
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Of = O1 ◦ · · · ◦Or ∈ WG,

Xf = X(Of ),

X•
f = X(Of )• = X̄(O1, . . . , Or)

and

X•
f,0 = X(Of )•0.

Of is called a Coxeter orbit of G on XG ×XG. Xf is a smooth irreducible
affine variety of dimension r, X•

f is a smooth irreducible projective variety of
dimension r, and X•

f,0 is a smooth absolutely irreducible projective scheme
of finite type over k0.

Let I be any subset of SF , and let n = |I|. f(I) = (Oi1 , . . . , Oin
)

(1 ≤ i1 < · · · < in ≤ r) is the subsequence of f = (O1, . . . , Or) such that
{π(Oi1), . . . , π(Oin)} = I. We put

Of(I) = Oi1 ◦ · · · ◦Oin ∈ WG,

Xf(I) = X(Of(I)),

X•
f(I) = X(Of(I))•.

We put

X̄•
f (I) =

{
(B0, B1, . . . , Br) ∈ X•

f | Bi−1 = Bi if π(Oi) /∈ I
}

and

X•
f (I) =

{
(B0, B1, . . . , Br) ∈ X̄•

f (I) | Bi−1 6= Bi if π(Oi) ∈ I
}
.

X̄•
f (I) is isomorphic to X(Of(I))• = X̄(Oi1 , . . . , Oin), so it is a

smooth projective variety, purely of dimension n = |I|. The mapping
(B0, B1, . . . , Br) 7→ B0 gives an isomorphism from X•

f (I) onto Xf(I). X•
f (I)

is an open dense subvariety of X̄•
f (I). X̄•

f (I)0 denotes the k0-structure on
X̄•

f (I) determined by F δ : X̄•
f (I) → X̄•

f (I). X̄•
f (I)0 is a smooth projective

scheme of finite type over k0, purely of dimension n.
We give the irreducible decompositions of X•

f (I) (' Xf(I)) and X̄•
f (I)

(' X•
f(I) = X(Of(I))•).
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Let PI be the (F -stable) conjugacy class of parabolic subgoups of G

corresponding to π−1(I). More precisely, PI is constructed as follows:
We fix an F -stable Borel subgroup B∗ of G and an F -stable maximal

torus T ∗ of G contained in B∗. Let WI = 〈π−1(I)〉 ⊂ WG, and let W ∗
I =

σ(T ∗, B∗)−1(WI) ⊂ WG(T ∗). Let P ∗I = B∗W ∗
I B∗. Then

PI =
{
gP ∗I g−1 | g ∈ G

}
.

Let P ∈ PF
I . Then the mapping B̄ 7→ π−1

P (B̄) defines an isomorphism
iP from XP = XLP

onto the closed subvariety XG,P = {B ∈ XG | B ⊂ P}
of XG. iP × iP : XP × XP → XG × XG induces an isomorphism iP from
WLP

= LP \ (XP ×XP ) onto the subgroup

WI = W (PI)

=
{
O ∈ WG | for (B,B′) ∈ O, there is P ′ ∈ PI such that B, B′ ⊂ P ′

}

of WG. We have

iP (SLP
) = SG ∩WI =: SI = S(PI).

The bijection iP : SLP

∼→ SI determines a sequence f(P ) = f(LP ) =
(Ōi1 , . . . , Ōin

) of elements of SLP
such that

Ōf(P ) = Ōi1 ◦ · · · ◦ Ōin ∈ WLP

is a Coxeter orbit of LP on XP ×XP . iP : XP
∼→ XG,P induces an isomor-

phism from Xf(P ) = Xf(LP ) = XLP
(Ōf(P )) onto the closed subvariety

Xf(I),P =
{
B ∈ Xf(I) | B ⊂ P

}

of Xf(I). And

Xf(I) =
∐

P∈PF
I

Xf(I),P .

Thus



Tate conjectures over finite fields 15

X•
f (I) ∼→ Xf(I)

∼←
∐

P∈PF
I

Xf(P ), (3.1)

which is the irreducible decomposition of X•
f (I). These isomorphisms are

F δ-equivariant.
Similarly, the iP , P ∈ PF

I , induce an F δ-equivariant isomorphisms

X̄•
f (I) ∼→ X•

f(I)
∼←

∐

P∈PF
I

X•
f(P ). (3.2)

(3.1) is proved in [Lu]. We give here a proof of (3.2).
Let R∗, R∗+ and D∗ be respectively the root system of G with respect to

T ∗, the set of positive roots determined by B∗ and the set of corresponding
simple roots. Put J = π−1(I), and J∗ = σ(T ∗, B∗)−1(J) ⊂ WG(T ∗). J∗ is a
subset of S∗ = σ(T ∗, B∗)−1(SG) of simple reflections in WG(T ∗) determined
by B∗. Each α ∈ D∗ determines a simple reflection sα ∈ S∗ and the mapping
α 7→ sα gives a bijection a : D∗ ∼→ S∗. Let D∗

I = a−1(J∗). For a root
α ∈ R∗, let U∗

α be the root subgroup of G associated with α. Then

P ∗I =
〈
U∗
−α, B∗ | α ∈ D∗

I

〉
.

Let

M∗
I =

〈
U∗

α, U∗
−α, T ∗ | α ∈ D∗

I

〉
.

Then M∗
I is an F -stable Levi subgroup of P ∗I (P ∗I = M∗

I n UP∗I ). The
composite M∗

I ↪→ P ∗I → LP∗I induces and isomorphism b : M∗
I
∼→ LP∗I .

Let P ∈ PF
I . Then P = g0P

∗
I g−1

0 for some g0 ∈ GF (the F -invariant
part of G). Let MP = g0M

∗
I g−1

0 . Then the composite MP ↪→ P → LP

induces an isomorphism bP : MP
∼→ LP . The morphism iP : XP → XG is

given by

iP (B̄) = b−1
P (B̄) · UP (B̄ ∈ XP ).

Recall that 1 ≤ i1 < · · · < in ≤ r. Put i0 = 0. Then

X•
f(P ) =

{(
B̄i0 , B̄i1 , . . . , B̄in

) ∈ Xn+1
P | (B̄ij−1 , B̄ij

) ∈ Ōij
∪∆P

for 1 ≤ j ≤ n and F
(
B̄i0

)
= B̄in

}
,
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where ∆P = {(B̄, B̄) | B̄ ∈ XP }. For (B̄i0 , B̄i1 , . . . , B̄in
) ∈ Xn+1

P , put

iP
(
B̄i0 , B̄i1 , . . . , B̄in

)
=

(
iP

(
B̄i0

)
, iP

(
B̄i1

)
, . . . , iP

(
B̄in

)) ∈ Xn+1
G .

Let

X•
f(I),P =

{(
Bi0 , Bi1 , . . . , Bin

) ∈ X•
f(I) | Bi0 , Bi1 , . . . , Bin

⊂ P
}
,

and we define πP : X•
f(I),P → X•

f(P ) by

πP

(
Bi0 , Bi1 , . . . , Bin

)
=

(
πP

(
Bi0

)
, πP

(
Bi1

)
, . . . , πP

(
Bin

))
.

Then iP : Xn+1
P → Xn+1

G induces an isomorphism from X•
f(P ) onto X•

f(I),P

whose inverse is πP .
Thus

(iP )P∈PF
I

:
∐

P∈PF
I

X•
f(P )

∼−→
∐

P∈PF
I

X•
f(I),P ⊂ X•

f(I).

Let (Bi0 , Bi1 , . . . , Bin
) ∈ X•

f(I). We show that there is some P ∈ PF
I

such that Bi0 , Bi1 , . . . , Bin
⊂ P .

If Bi0 = Bi1 = · · · = Bin , let P be a parabolic subgroup in PI contain-
ing Bi0 . Then F (Bi0) = Bin

= Bi0 . So Bi0 ⊂ F (P ). Since F (PI) = PI ,
F (P ) ∈ PI and P and F (P ) are conjegate. So we must have P = F (P ).
Thus P ∈ PF

I .
Otherwise, there is an integer j, 1 ≤ j ≤ n, such that Bij−1 6= Bij .

Let j be minimal having this property. Then, by the definition of X•
f(I),

we must have (Bij−1 , Bij ) ∈ Oij . So there is an element g ∈ G such that
Bij−1 = gB∗g−1 and Bij = gsij B

∗sij g
−1, where sij is an element of NG(T ∗)

such that σ(T ∗, B∗)(sij
T ∗) = Oij

. Put P = gP ∗I g−1. Then Bij−1 ⊂ P . As
g−1Bij

g = sij
B∗sij

⊂ sij
P ∗I sij

= P ∗I , Bij
⊂ gP ∗I g−1 = P .

If j is a unique integer such that Bij−1 6= Bij , then (Bi0 , . . . , Bin) =
(Bij−1 , . . . , Bij−1 , Bij , . . . , Bij ). Therefore, in this case, as Bij = Bin =
F (Bi0) = F (Bij−1), Bij

⊂ F (P ). But P and F (P ) are conjugate, so we
must have F (P ) = P . Thus P ∈ PF

I .
Otherwise, let j′ > j be the minimal integer such that Bij′−1

6= Bij′ .
Then (Bij′−1

, Bij′ ) ∈ Oij′ . So there is an element g′ ∈ G such that Bij′−1
=
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g′B∗g′−1 and Bij′ = g′sij′B
∗sij′ g

′−1. We have Bij
= Bij′−1

⊂ P and
Bij′−1

⊂ g′P ∗I g′−1. But P and g′P ∗I g′−1 are conjugate, so we must have P =
g′P ∗I g′−1. As g′−1Bij′ g

′ = sij′B
∗sij′ ⊂ sij′P

∗
I sij′ = P ∗I , Bij′ ⊂ g′P ∗I g′−1 =

P .
By continuing the similar considerations, we see that there is some

P ∈ PI such that Bi0 , Bi1 , . . . , Bin ⊂ P . We have Bin = F (Bi0) ⊂ F (P ).
So Bi0 ⊂ P , F (P ). But P and F (P ) are conjugate, we must have F (P ) = P .
Thus P ∈ PF

I .
Thus

X•
f(I) =

∐

P∈PF
I

X•
f(I),P ,

and

(iP )P∈PF
I

:
∐

P∈PF
I

X•
f(P )

∼−→ X•
f(I).

This isomorphism is F δ-equivariant.
For a ∈ Z, 0 ≤ a ≤ n = |I|, we put

Da(I) =
⋃
J⊂I
|J|≤a

X•
f (J) ⊂ X̄•

f (I);

we put Da(I) = ∅ for a < 0. Then D0(I) ⊂ D1(I) ⊂ · · · ⊂ Dn−1(I) are
closed subvarieties of Dn(I) = X̄•

f (I) and

Da(I)−Da−1(I) =
∐
J⊂I
|J|=a

X•
f (I).

Our main result is

Theorem 1 Assume that G is a simple algebraic group. Then, for any
I ⊂ SF , we have

Q` ·As(X•
f(I),0) = H2s(X•

f(I),Q`(s))Π

and
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Ns(X•
f(I),0) = 0

for 0 ≤ s ≤ |I|.
Corollary Let G be a connected, reductive linear algebraic group, defined
and split over Fq (δ = 1). Then

Q` ·A1(X•
f,0) = H2

(
X•

f ,Q`(1)
)Π

,

Q` ·Ar−1(X•
f,0) = H2(r−1)

(
X•

f ,Q`(r − 1)
)Π

,

Nr−1(X•
f,0) = 0.

4. Start of the proof

Lemma 1 (Lusztig [Lu, Section 6, Theorem 6.1(i), p. 135]) If G is a simple
algebraic group, then (F δ)∗ acts semisimplly on Hi

c(Xf ), i ≥ 0.

As Xf is an irreducible affine variety of dimension r, we have Hi
c(Xf ) =

0 unless r ≤ i ≤ 2r. Let i ∈ Z, r ≤ i ≤ 2r. Let λ1, . . . , λni be all the eigen-
values of (F δ)∗ on Hi

c(Xf ), and for each j ∈ Z, 1 ≤ j ≤ ni, let Hi
c(Xf )λj

be the generalized λj-eigenspace of (F δ)∗ on Hi
c(Xf ). Then Lusztig proves

that the Hi
c(Xf )λj

are mutually non-isomorphic irreducible representations
of GF . For 1 ≤ j ≤ ni, let vj ∈ Hi

c(Xf )λj be an eigenvector of (F δ)∗

associated with λj . Then Q̄`[GF ]vj is a GF -submodule of Hi
c(Xf )λj

. But,
as Hi

c(Xf )λj
is irreducible, we must have Q̄`[GF ]vj = Hi

c(Xf )λj
. There-

fore there are elements g1, . . . , gt of GF such that the vectors g1vj , . . . , gtvj

form a basis of the vector space Hi
c(Xf )λj

over Q̄`. Since the action of
(F δ)∗ and that of GF commute, we see that g1vj , . . . , gtvj are eigenvectors
of (F δ)∗. Therefore (F δ)∗ acts semisimplly on Hi

c(Xf )λj
. This holds for all

j. Therefore (F δ)∗ acts semisimplly on Hi
c(Xf ) =

⊕ni

j=1 Hi
c(Xf )λj .

Proposition 1 Let s ∈ Z and let I ⊂ SF . Then (F δ)∗ acts semisimplly
on Hi

c(X
•
f (I))(s) = Hi

c(X
•
f (I))⊗ Q̄(s), i ≥ 0.

Let (F δ)∗0 be the action of (F δ)∗ on Hi
c(X

•
f (I)). Then (F δ)∗ acts on

Hi
c(X

•
f (I))(s) by (F δ)∗0⊗ (qδ)−s (qδ = |k0|). Therefore we may assume that

s = 0.
We recall that there is an F δ-equivariant isomorphism
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X•
f (I) ∼←−

∐

P∈PF
I

Xf(P ).

Therefore there are (F δ)∗-equivariant isomorphisms:

Hi
c(X

•
f (I)) ∼←− Hi

c

( ∐

P∈PF
I

Xf(P )

)

∼−→
⊕

P∈PF
I

Hi
c(Xf(P ))

=
⊕

P∈PF
I

Hi
c

(
Xf(LP )

)
.

Let P ∈ PF
I . Let δP be the minimal positive integer such that F δP is

the identity map on WLP
. Then, as F δ is the identity map on WLP

, we
have δP ≤ δ. Let δ = δP t + δ′ with t, δ′ ∈ Z, t, δ′ ≥ 0, 0 ≤ δ′ < δP . Let
w ∈ WLP

. Then w = F δ(w) = F δP t+δ′(w) = F δ′(w). Since 0 ≤ δ′ < δP , by
the minimality of δP , we must have δ′ = 0. Therefore δP divides δ. Thus to
prove the assertion, it suffices to show that, for each P ∈ PF

I , (F δP )∗ acts
on Hi

c(Xf(LP )) semisimplly. Thus we are reduced to the case where I = SF .
But, by the argument in (1.18) of [Lu], we are reduced to the case

where G is a simple algebraic group of adjoint type. Thus the assertion
follows from Lemma 1.

In the rest of this paper, we shall assume that G is a simple algebraic
group.

We quote from [Lu, (7.3)] the following table on the eigenvalues of
(F δ)∗ on Hi

c(Xf ), r ≤ i ≤ 2r. Each table consists of r + 1 colums. In the
first column (from the left) we record the eigenvalues of (F δ)∗ occuring in
Hr

c (Xf ), in the second column we record the eigenvalues of (F δ)∗ occuring
in Hr+1

c (Xf ) and so on. θ, i, ζ will denote a primitive root of 1 in Q̄∗` of
order 3, 4, 5 respectively.

An (n ≥ 1): 1, q, q2, . . . , qn,

Bn (n ≥ 2): 1, q, q2, . . . , qn−2, qn−1, qn,
−q, −q2, −q3, . . . ,−qn−1,
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Dn (n ≥ 4): 1, q, q2, . . . , qn−4, qn−3, qn−2, qn−1, qn,
−q2, −q3, −q4, . . . ,−qn−2,

E6: 1, q, q2, q3, q4, q5, q6,
−q2, −q3, −q4,
θq3,
θ2q3,

E7: 1, q, q2, q3, q4, q5, q6, q7,
−q2, −q3, −q4, −q5,
θq3, θq4,
θ2q3, θ2q4,
iq7/2,
−iq7/2,

E8: 1, q, q2, q3, q4, q5, q6, q7, q8,
−q2, −q3, −q4, −q5, −q6,
θq3, θq4, θq5,
θ2q3, θ2q4, θ2q5,
iq7/2, iq9/2,
−iq7/2, −iq9/2,
ζjq4,
−θq4,
−θ2q4, (j = 1, 2, 3, 4),

F4: 1, q, q2, q3, q4,
−q, −q2, −q3,
iq2,
−iq2,
θq2,
θ2q2,

G5: 1, q, q2,
−q,
θq,

θ2q2,
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2A2n (n ≥ 1): 1, q2, . . . , q2n−2, q2n,
−q, −q3, . . . , −q2n−1,

2A2n+1 (n ≥ 2): 1, q2, . . . , q2n−4, q2n−2, q2n, q2n+2,
−q3, −q5, . . . , −q2n−1,

2Dn (n ≥ 3): 1, q2, q4, . . . , q2n−2,

3D4: 1, q3, q6,
−q3,

2E6: 1, q2, q4, q6, q8,
−q3, −q5,
θq4,
θ2q4,

2B2: 1, q2,
i− 1√

2
q,

−i− 1√
2

q,

2F4: 1, q2, q4,
i− 1√

2
q,

i− 1√
2

q3,

−i− 1√
2

q,
−i− 1√

2
q3,

−q2,
iq2,
−iq2,
−θq2,
−θ2q2,
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2G2: 1, q2,
iq,
−iq,

i−√3
2

q,

−i−√3
2

q,

Tee following is the key lemma.

Lemma 2 Recall that G is a simple algebraic group. Let J ⊂ SF be such
that 1 ≤ |J | ≤ r. Then, for i ∈ Z, 0 ≤ i ≤ |J | − 1, we have

H2i
c (X•

f (J))(qδ)i = 0

(the subspace of H2i
c (X•

f (J)) on which (F δ)∗ acts by multipication by (qδ)i).

We first treat the cases 2B2, 2G2, 2F4.
The case 2B2 or 2G2. We have r = 1 and X•

f (J) = X•
f (SF ) ' Xf . Xf

is an irreducible affine variety of dimension 1. Therefore H0
c (X•

f ) = 0.
The case 2F4. We have r = 2. Let J = SF . Then X•

f (J) ' Xf and
Xf is an irreducible affine variety of dimension 2. Therefore H0

c (Xf ) = 0.
Let i = 1. Then the eigenvalues of (F 2)∗ (δ = 2) on H2

c (Xf ) are 6= q2.
Therefore H2

c (Xf )q2 = 0.
Let |J | = 1. We have an (F 2)∗-equivariant isomorphism

H0
c (X•

f (J)) ∼←−
⊕

P∈PF
J

H0
c (Xf(P )).

Let P ∈ PF
J . Then, the Coxeter graph of the adjoint group Lad

P of LP is
either

◦xx &&◦ or ◦~~ ÃÃ◦.

Therefore Xf(P ) ' Xf(Lad
P ) is an irreducible affine variety of dimension 1.

Therefore H0
c (Xf(P )) = 0. Therefore H0

c (X•
f (J)) = 0.

Next we treat the case where G is defined and split over Fq (δ = 1).
The case An (n ≥ 1). Let 0 ≤ i ≤ |J | − 1. We have an F ∗-equivariant
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isomorphism

H2i
c (X•

f (J)) '
⊕

P∈PF
J

H2i
c (Xf(P )).

Let P ∈ PF
J . Then Lad

P is of the form G1 × · · · ×Gm, where, for 1 ≤ j ≤ m,
Gj is a simple algebraic group of type Aj with rj ≥ 1 and r1+· · ·+rm = |J |.
Therefore there is F -equivariant isomorphisms

Xf(P ) ' Xf(Lad
P ) ' Xf1 × · · · ×Xfm

,

where, for 1 ≤ j ≤ m, Xfj is a variety for Gj similar to Xf for G. Then, by
the Künneth formula, we have F ∗-equivariant isomorphisms

H2i
c (Xf(P )) ' H2i

c

(
Xf1 × · · · ×Xfm

)
⊕

i1+···+im=2i

Hi1
c

(
Xf1

)⊗ · · · ⊗Him
c

(
Xfm

)
. (∗)

On each direct summand in the last term of (∗), F ∗ acts by the multiplication
by

qi1−r1qi2−r2 . . . qim−rm = q(i1+···+im)−(r1+···+rm)

= q2i−|J| 6= qi (cf. 0 ≤ i ≤ |J | − 1).

Therefore

H2i
c (Xf(P ))qi = 0.

Therefore

H2i
c (X•

f (J))qi '
⊕

P∈PF
J

H2i
c (Xf(P ))qi = 0.

The case Bn (n ≥ 2). Let P ∈ PF
J . Then Lad

P is of the form G1×· · ·×
Gm, where either

(i) for 1 ≤ j ≤ m − 1, Gi is a simple algebraic group of type Arj
with

rj ≥ 1 and Gm is a simple algebraic group of type Brm
with rm ≥ 2, and
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r1 + · · ·+ rm−1 + rm = |J |,
or

(ii) for 1 ≤ j ≤ m, Gj is a simple algebraic group of type Arj with
rj ≥ 1, and r1 + · · ·+ rm = |J |.
We have a similar decomposition as (∗). In case (ii), F ∗ acts each direct
summand by the multiplication by

qi1−r1 . . . qim−rm = q2i−|J| 6= qi.

In case (i), F ∗ acts by the multiplication by

qi1−r1 . . . qim−rm = q2i−|J| 6= qi

or

qi1−r1 . . . qim−1−rm−1(−qim−rm+1) = −q2i−|J|+1 6= qi.

Therefore H2i
c (Xf(P ))qi = 0. Thus

H2i
c (X•

f (J))qi '
⊕

P∈PF
J

H2i
c (Xf(P ))qi = 0.

The remaining cases Dn, E6, E7, E8, F4 and G2 can be treated similarly.
Thirdly we treat the non-split case.

The case 3D4. We have r = 2. Let J = SF . Then X•
f (J) ' Xf and

Xf is an irreducible affine variety of dimension 2. Therefore H0
c (Xf ) = 0.

Let i = 1. Then the eigenvalues of (F 3)∗ (δ = 3) on H2
c (Xf ) are 6= q3.

Therefore H2
c (Xf )q3 = 0.

Let |J | = 1. Let P ∈ PF
J . Then the Coxeter graph of Lad

P is either

◦

²²◦ 88 ◦

ii

or

ª

◦ .

Therefore Xf(P ) ' Xf(Lad
P ) is an irreducible affine variety of dimension 1.

Therefore H0
c (Xf(P )) = 0. Therefore
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H0
c (X•

f (J)) '
⊕

P∈PF
J

H0
c (Xf(P )) = 0.

The case 2A2n (n ≥ 1). Let P ∈ PF
J . Then Lad

P is of the form G1 ×
· · · ×Gm, where either

(i) for 1 ≤ j ≤ m − 1, (Gi, F ) is “isomorphic” to (Arj
, F 2) for rj ≥ 1

and (Gm, F ) is (2A2rm
, F ) with rj ≥ 1, and r1 + · · ·+ rm−1 + rm = |J |,

or

(ii) for 1 ≤ j ≤ m, (Gj , F ) is “isomorphic” to (Arj , F
2) for rj ≥ 1 and

r1 + · · ·+ rm = |J |.
We have a similar decomposition as (∗). In case (ii), on each direct

summand, (F 2)∗ acts by the multiplication by

(q2)i1−r1 . . . (q2)im−rm = (q2)2i−|J| 6= (q2)i.

In case (i), (F 2)∗ acts by the multiplication by

(q2)i1−r1 . . . (q2)im−1−rm−1(q2)im−rm = (q2)2i−|J| 6= (q2)i.

or

(q2)i1−r1 . . . (q2)im−1−rm−1
(− q2(im−rm)+1

) 6= (q2)i.

Therefore H2i
c (Xf(P ))(q2)i = 0. Therefore

H2i
c (X•

f (J))(q2)i '
⊕

P∈PF
J

H2i
c (Xf(P ))(q2)i = 0.

The case 2A3. This is the same as the case 2D3. We have r = 2 and
the eigenvalues of (F 2)∗ on Hs

c (Xf ) for 2 ≤ s ≤ 4 are 1, q2, q4, respectively.
Thus, if J = SF , then X•

f (J) ' Xf and H0
c (Xf ) = 0 and H2

c (Xf )q2 = 0.
Let |J | = 1. Let P ∈ PF

J . Then (Lad
P , F ) is “isomorphic” to (A1, F

2).
Therefore Xf(P ) is an irreducible affine variety of dimension 1. Therefore
H0

c (Xf(P )) = 0, and

H0
c (X•

f (J)) '
⊕

P∈PF
J

H0
c (Xf(P )) = 0.
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The case 2A2n+1 (n ≥ 2). The first row in the table of the eigenvalues
of (F 2)∗ on Hs

c (Xf ) is the same as that of (An+1, F
2) and any eigenvalue

of (F 2)∗ in the second row is empty or of the form (−1) × (power of q).
Therefore

H2i
c (X•

f (J))(q2)i '
⊕

P∈PF
J

H2i
c (Xf(P ))(q2)i = 0.

The remaining cases 2Dn, 2E6 can be treated similarly.
This completes the proof of Lemma 2.

Proposition 2 Recall that G is a simple algebraic group. Let J be a
subset of SF such that 1 ≤ |J | ≤ r. Then, for an integer a, 0 ≤ a ≤ |J |,
and for any integer i, 0 ≤ i ≤ a, i ≤ |J | − 1, (F δ)∗ acts semisimplly on
H2i(Da(J),Q`(i))1.

Proposition 3 Let J be any subset of SF . Then, for any integer i, 0 ≤
i ≤ |J |, (F δ)∗ acts semisimplly on H2i(X̄•

f (J),Q`(i))1. Thus H2i(X̄•
f (J),

Q`(i))1 = H2i(X̄•
f (J),Q`(i))ϕ = H2i(X̄•

f (J),Q`(i))Π.

Let 1 ≤ |J | ≤ r and let 0 ≤ a ≤ |J |. Then the inclusions

Da(J)−Da−1(J) =
∐

J′⊂J
|J′|=a

X•
f (J ′) ↪→

open
Da(J) ←↩

closed
Da−1(J)

give (F δ)∗-equivariant exact sequences:

H2i
c (X•

f (J),Q`(i))1
−→ H2i(D|J|(J),Q`(i))1 −→ H2i(D|J|−1(J),Q`(i))1,

⊕
J′⊂J

|J′|=|J|−1

H2i
c (X•

f (J ′),Q`(i))1

−→ H2i(D|J|−1(J),Q`(i))1 −→ H2i(D|J|−2(J),Q`(i))1,
...⊕

J′⊂J
|J′|=i+1

H2i
c (X•

f (J ′),Q`(i))1

−→ H2i(Di+1(J),Q`(i))1 −→ H2i(Di(J),Q`(i))1,
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⊕
J′⊂J
|J′|=i

H2i
c (X•

f (J ′),Q`(i))1

−→ H2i(Di(J),Q`(i))1 −→ H2i(Di−1(J),Q`(i))1 = 0.

By Proposition 1, we see that (F δ)∗ acts semisimplly on
⊕

J′⊂J
|J′|=i

H2i
c (X•

f (J ′),Q`(i))1. Therefore we see from the last exact sequence that
(F δ)∗ acts semisimplly on H2i(Di(J),Q`(i))1. Since i ≤ |J | − 1, by Lemma
2, we have H2i(X•

f (J),Q`(i))1 = 0,
⊕

J′⊂J
|J′|=|J|−1

H2i
c (X•

f (J ′),Q`(i))1 =

0, . . . ,
⊕

J′⊂J
|J′|=i+1

H2i
c (X•

f (J ′),Q`(i))1 = 0. Therefore, by the second ex-

act sequence from the bottom, we see that (F δ)∗ acts semisimplly on
H2i(Di+1(J),Q`(i))1. By the third exact sequence from the bottom, we
see that (F δ)∗ acts semisimplly on H2i(Di+2(J),Q`(i))1. . . . By the last
exact sequence from the bottom, we see that (F δ)∗ acts semisimplly on
H2i(D|J|(J),Q`(i))1. We note that H2i(Di′(J),Q`(i))1 = 0 for i′ < i.

This proves Proposition 2.

Next we prove Proposition 3. Since D|J|(J) = X̄•
f (J), for 1 ≤ |J | ≤ r

and for 1 ≤ i ≤ |J | − 1, the assertion follows from Proposition 2.
Let i = |J |. Then

H2i(X̄•
f (J),Q`(i))

∼−→
⊕

P∈PF
J

H2i(X•
f(P ),Q`(i))

∼−→
⊕

P∈PF
J

Q`

((F δ)∗-equivariant). Thus the assertion holds for 1 ≤ |J | ≤ r and for 0 ≤
i ≤ |J |.

Finally, let |J | = 0. Then X̄•
f (J) = X̄•

f (∅) = X•
f (∅) = XF

G , and

H0
(
X̄•

f (∅),Q`

)
=
|X•

f (∅)|⊕
Q`,

on which (F δ)∗ acts trivially.
The final assertion follows from the fact that (F δ)∗ = ϕ−1 on the `-adic

cohomologies.
This proves Proposition 3.
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5. End of the proof

Recall that G is a simple algebraic group. For an integer t, 0 ≤ t ≤ r,
It denotes a subset of SF such that |It| = r − t.

There is a natural closed immersion X̄•
f (I1)0 ↪→ X̄•

f (I0)0 = X̄•
f (SF )0 =

X•
f,0. Therefore there is a natural morphism

g1,0 : Z1,0 =
∐

I1

X̄•
f (I1)0 −→ Z0,0 = X̄•

f (I0)0.

For I2 ⊂ I1, there is a natural closed immersion X̄•
f (I2)0 ↪→ X̄•

f (I1)0.
Therefore there is a natural morphism

g2,0 : Z2,0 =
∐

I1

∐

I2⊂I1

X̄•
f (I2)0 −→ Z1,0 =

∐

I1

X̄•
f (I1)0.

Similarly we obtain natural morphisms

g3,0 : Z3,0 =
∐

I1

∐

I2⊂I1

∐

I3⊂I2

X̄•
f (I3)0 −→ Z2,0,

g4,0 : Z4,0 =
∐

I1

∐

I2⊂I1

∐

I3⊂I2

∐

I4⊂I3

X̄•
f (I4)0 −→ Z3,0,

... .

For an integer j, j ≥ 0, let

Zj = Zj,0 ×k0 k =
∐

I1

∐

I2⊂I1

· · ·
∐

Ij⊂Ij−1

X̄•
f (Ij)

and, for j ≥ 1, let

gj = gj,0 ×k0 k : Zj −→ Zj−1.

Then, for an integer s, 0 ≤ s ≤ r, we obtain the following commutative
diagram:
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Z0(Zs,0)
cl0Zs,0 //

(gs,0)∗
²²

H0(Zs,Q`)Π

(gs)∗
²²

Z1(Zs−1,0)
cl1Zs−1,0 //

(gs−1,0)∗
²²

H2(Zs−1,Q`(1))Π

(gs−1)∗
²²

Z2(Zs−2,0)
cl2Zs−2,0 //

(gs−2,0)∗
²²

H4(Zs−2,Q`(2))Π

(gs−2)∗
²²

...

(g2,0)∗
²²

...

(g2)∗
²²

Zs−1(Z1,0)
cls−1

Z1,0 //

(g1,0)∗
²²

H2(s−1)(Z1,Q`(s− 1))Π

(g1)∗
²²

Zs(Z0,0)
clsZ0,0 // H2s(Z0,Q`(s))Π.

Firstly, since
∐

P∈PF
Is

X•
f(P )

∼−→ X̄•
f (Is)

is an F δ-equivariant isomorphism, we have an isomorphism
∐

P∈PF
Is

X•
f(P ),0

∼−→ X̄•
f (Is)0,

so we have isomorphisms

Z0(Zs,0) = Z0
( ∐

I1

∐

I2⊂I1

· · ·
∐

Is⊂Is−1

X̄•
f (Is)0

)

=
⊕

I1

⊕

I2⊂I1

. . .
⊕

Is⊂Is−1

Z0
(
X̄•

f (Is)0
)

∼=
⊕

I1

⊕

I2⊂I1

. . .
⊕

Is⊂Is−1

⊕

P∈PF
Is

Z0(X•
f(P )) ∼=

⊕

I1

⊕

I2⊂I1

. . .
⊕

Is⊂Is−1

⊕

P∈PF
Is

Z
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and

H0(Zs, Q`)Π ∼=
⊕

I1

⊕

I2⊂I1

· · ·
⊕

Is⊂Is−1

⊕

P∈PF
Is

H0(X•
f(P ),Q`)Π

∼=
⊕

I1

⊕

I2⊂I1

· · ·
⊕

Is⊂Is−1

⊕

P∈PF
Is

Q`.

Therefore, as cl0X•
f(P ),0

is the natural inclusion Z ↪→ Q`, we see that cl0Zs,0
⊗Q`

is an isomorphism.
We show that (gs)∗, (gs−1)∗, . . . , (g1)∗ are surjective, which will imply

that clsZ0,0
⊗Q` = clsX•

f,0
⊗Q` is surjective.

Let 1 ≤ s ≤ r and 1 ≤ j ≤ s. Then the homomorphism

(gj)∗ : H2(s−j)(Zj ,Q`(s− j))Π −→ H2(s−j+1)(Zj−1,Q`(s− j + 1))Π

is the dual map of the homomorphism

(gj)∗ : H2(r−s)(Zj−1,Q`(r − s))Π −→ H2(r−s)(Zj ,Q`(r − s))Π

(cf. Proposition 3). Therefore, to see that (gj)∗ is surjective, it suffices to
show that (gj)∗ is injective. To see it, it suffices to show that, for any Ij−1,
the homomorphism

(gj)∗ : H2(r−s)(X̄•
f (Ij−1),Q`(r − s))Π

−→ H2(r−s)
( ∐

Ij⊂Ij−1

X̄•
f (Ij),Q`(r − s)

)Π

is injective (0 ≤ j − 1 ≤ s− 1).
We have the following commutative diagram

∐

Ij⊂Ij−1

X̄•
f (Ij)

gj //

hj

$$JJJJJJJJJ

X̄•
f (Ij−1),

Im gj

- 

ij

;;wwwwwwwwwww
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where ij is the closed immersion of Im gj into X̄•
f (Ij−1) and hj is the re-

striction of gj (hj = gj but the image is restricted). Therefore we obtain
the following commutative diagram:

H2(r−s)
( ∐

Ij⊂Ij−1

X̄•
f (Ij),Q`(r − s)

)Π

H2(r−s)(X̄•
f (Ij−1),Q`(r − s))Π

(gj)
∗

oo

(ij)
∗

xxrrrrrrrrrrrrr

H2(r−s)(Im gj ,Q`(r − s))Π
(hj)

∗

ggNNNNNNNNNNN

Therefore it suffices to show that (ij)∗ and (hj)∗ are injective. We note that

Im gj = Dr−j(Ij−1).

In fact, let (B0, . . . , Br) ∈ Im gj . Then (B0, . . . , Br) ∈ X̄•
f (Ij) for some

Ij ⊂ Ij−1. Let J = {Oi | 1 ≤ i ≤ r,Bi−1 6= Bi}. Then a = |J | ≤ r − j,
J ⊂ Ij−1 and (B0, . . . , Br) ∈ X•

f (J) ⊂ Da(J) ⊂ Dr−j(Ij−1). Conversely, let
(B0, . . . , Br) ∈ Dr−j(Ij−1). Then (B0, . . . , Br) ∈ X•

f (J) for some J ⊂ Ij−1

with |J | ≤ r − j. We have X•
f (J) ⊂ X̄•

f (J) ⊂ X̄•
f (Ij) for some Ij ⊂ Ij−1.

Therefore (B0, . . . , Br) ∈ Im gj .
Thus the map (ij)∗ is the map

H2(r−s)(X̄•
f (Ij−1),Q`(r − s))Π −→ H2(r−s)(Dr−j(Ij−1),Q`(r − s))Π.

Since X̄•
f (Ij−1) = Dr−(j−1)(Ij−1), (ij)∗ is a part of the exact sequence

H2(r−s)
c (X•

f (Ij−1),Q`(r − s))Π −→ H2(r−s)(Dr−(j−1)(Ij−1),Q`(r − s))Π

−→ H2(r−s)(Dr−j(Ij−1),Q`(r − s))Π

which is obtained from the inclusions

X•
f (Ij−1) = Dr−(j−1)(Ij−1)−Dr−j(Ij−1)

↪→ Dr−(j−1)(Ij−1) ←↩ Dr−j(Ij−1).

But, as r− s < r− (j− 1) (cf. j− 1 < s), we have H
2(r−s)
c (X•

f (Ij−1))(qδ)r−s
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= 0 by lemma 2. Therefore H
2(r−s)
c (X•

f (Ij−1),Q`(r − s))Π = H
2(r−s)
c

(X•
f (Ij−1),Q`(r − s))1 = 0. Therefore (ij)∗ is injective.

Therefore it remains to show that the map

(hj)∗ : H2(r−s)(Dr−j(Ij−1),Q`(r − s))Π

−→ H2(r−s)
( ∐

Ij⊂Ij−1

X̄•
f (Ij),Q`(r − s)

)Π

is injective.
Suppose that r = 1. Then s = 1 and j = 1 (recall that 1 ≤ s ≤ r and

1 ≤ j ≤ s). The map (hj)∗ = (h1)∗ is

H0(D0(I0),Q`)Π −→ H0
( ∐

I1⊂I0

X̄•
f (I1),Q`

)Π

.

We have D0(I0) = X•
f (∅) and

∐
I1⊂I0

X̄•
f (I1) = X•

f (∅). Therefore (h1)∗ is
the identity map.

Suppose that r ≥ 2. First, let j = s:

hs :
∐

Is⊂Is−1

X̄•
f (Is) −→ Dr−s(Is−1).

Put:

Ys =
∐

Is⊂Is−1

X̄•
f (Is),

Us =
∐

Is⊂Is−1

X•
f (Is) ( ⊂

open
Ys),

Ws = Ys − Us =
∐

Is⊂Is−1

(
X̄•

f (Is)−X•
f (Is)

)
=

∐

Is⊂Is−1

Dr−s−1(Is).

Then Us is open in Dr−s(Is−1) and Dr−s(Is−1)−Us = Dr−s−1(Is−1). There
is a commutative diagram
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Us
� �

open
// Ys

hs

²²

Ws
? _

closed
oo

hs|Ws

²²
Us

� �

open
// Dr−s(Is−1) Dr−s−1(Is−1).? _

closed
oo

(5.1)

We note that dim Ws = dimDr−s−1(Is−1) = r − s − 1 and 2(r − s − 1) <

2(r − s) − 1 < 2(r − s). Therefore H2(r−s)−1(Ws) = H2(r−s)(Ws) =
H2(r−s)−1(Dr−s−1(Is−1)) = H2(r−s)(Dr−s−1(Is−1)) = 0. Put D =
Dr−s(Is−1) and D′ = Dr−s−1(Is−1). Then we obtain from (5.1) the fol-
lowing commutative diagram whose rows are exact:

0 = H2(r−s)−1(Ws,Q`(r − s)) // H2(r−s)
c (Us,Q`(r − s))

0 = H2(r−s)−1(D′,Q`(r − s)) //

(hs|Ws)∗

OO

H
2(r−s)
c (Us,Q`(r − s))

// H2(r−s)(Ys,Q`(r − s)) // H2(r−s)(Ws,Q`(r − s)) = 0

// H2(r−s)(D,Q`(r − s)) //

h∗s

OO

H2(r−s)(D′,Q`(r − s)) = 0.

(hs|Ws)∗

OO

Therefore

(hs)∗ : H2(r−s)(D,Q`(r − s)) −→ H2(r−s)(Ys,Q`(r − s))

is an isomorphism. Therefore

(hs)∗ : H2(r−s)(D,Q`(r − s))Π −→ H2(r−s)(Ys,Q`(r − s))Π

is injective.
Let 1 ≤ j ≤ s− 1. Put:

Z(0) =
∐

Ij⊂Ij−1

X̄•
f (Ij) =

∐

Ij⊂Ij−1

Dr−j(Ij),

Z(t) =
∐

Ij⊂Ij−1

Dr−j−t(Ij) (t ≥ 1),



34 J. Ohmori

U (t) = Z(t) − Z(t+1) =
∐

Ij⊂Ij−1

(Dr−j−t(Ij)−Dr−j−t−1(Ij))

=
∐

Ij⊂Ij−1

∐
J⊂Ij

|J|=r−j−t

X•
f (J) (t ≥ 0) (open in Z(t)),

D(t) = Dr−j−t(Ij−1) (t ≥ 0),

V (t) = D(t) −D(t+1) =
∐

J⊂Ij−1
|J|=r−j−t

X•
f (J) (t ≥ 0) (open in D(t)).

For t ≥ 0, let h(t) : Z(t) → D(t) be the natural morphism, and let u(t) =
h(t) | U (t) : U (t) → V (t). Then we have the following commutative diagram
(t ≥ 0):

U (t) � �

open
//

u(t)

²²

Z(t)

h(t)

²²

Z(t+1)? _

closed
oo

h(t+1)

²²
V (t) � �

open
// D(t) D(t+1).? _

closed
oo

Therefore we obtain the following commutative diagram whose rows are
exact:

H2(r−s)−1(Z(t+1),Q`(r − s)) // H2(r−s)
c (U (t),Q`(r − s))

H2(r−s)−1(D(t+1),Q`(r − s)) //

h(t+1)∗

OO

H
2(r−s)
c (V (t),Q`(r − s))

h(t)∗

OO

(5.2)
// H2(r−s)(Z(t),Q`(r − s)) // H2(r−s)(Z(t+1),Q`(r − s))

// H2(r−s)(D(t),Q`(r − s)) //

h(t)∗

OO

H2(r−s)(D(t+1),Q`(r − s)).

h(t+1)∗

OO

Let 0 ≤ t ≤ s − j. We show, by descending induction on t, that
h(t)∗ : H2(r−s)(D(t),Q`(r − s))Π → H2(r−s)(Z(t),Q`(r − s))Π is injective,
which will imply that (hj)∗ = h(0)∗ is injective.
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In fact, let t = s−j. Then, as dim Z(t+1) = dim D(t+1) = r−j−(t+1) =
r − s − 1 < (r − s) − 1

2 , we have H2(r−s)−1(Z(t+1)) = H2(r−s)(Z(t+1)) =
H2(r−s)−1(D(t+1)) = H2(r−s)(D(t+1)) = 0. Moreover there is a morphism
v(t) : V (t) =

∐
J⊂Ij−1
|J|=r−j−t

X•
f (J) −→ U (t) =

∐
Ij⊂Ij−1

∐
J⊂Ij

|J|=r−j−t

X•
f (J) such

that u(t)v(t) = idV (t) . Therefore id
H

2(r−s)
c (V (t))

= (idV (t))∗ = (u(t)v(t))∗ =

v(t)∗u(t)∗, and u(t)∗ is injective. Therefore h(t)∗ is injective.
Let 0 ≤ t < s − j. Then, by Lemma 2, we have H

2(r−s)
c (U (t),Q`(r −

s))Π = H
2(r−s)
c (V (t),Q`(r − s))Π = 0. Therefore we obtain from (5.2) the

following commutative diagram whose rows are exact:

0 → H2(r−s)(Z(t),Q`(r − s))Π // H2(r−s)(Z(t+1),Q`(r − s))Π

0 → H2(r−s)(D(t),Q`(r − s))Π //

h(t)∗

OO

H2(r−s)(D(t+1),Q`(r − s))Π.

h(t+1)∗

OO

By induction hypothesis, h(t+1)∗ is injective. Therefore h(t)∗ is injective.
We see from the above proof that the map

(gj)∗ : H2(s−j)
( ∐

Ij⊂Ij−1

X̄•
f (Ij),Q`(s− j)

)Π

−→ H2(s−j+1)
(
X̄•

f (Ij−1),Q`(s− j + 1)
)Π

is surjective for 1 ≤ s ≤ r and 1 ≤ j ≤ s. Therefore the composite

H0

g∗

²²

=H2(s−s)
( ∐

Ij⊂Ij−1

∐

Ij+1⊂Ij

· · ·
∐

Is⊂Is−1

X̄•
f (Is),Q`(s− s)

)Π

²²

H2(s−(s−1))
( ∐

Ij⊂Ij−1

∐

Ij+1⊂Ij

· · ·
∐

Is−1⊂Is−2

X̄•
f (Is−1),Q`(1)

)Π

²²
...
²²
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²²

H2(s−j−1)
( ∐

Ij⊂Ij−1

∐

Ij+1⊂Ij

X̄•
f (Ij+1),Q`(s− j − 1)

)Π

²²

H2(s−j)
( ∐

Ij⊂Ij−1

X̄•
f (Ij),Q`(s− j)

)Π

²²
H =H2(s−j+1)

(
X̄•

f (Ij−1),Q`(s− j + 1)
)Π

is surjective. We have the following commutative diagram

Z0
( ∐

Ij⊂Ij−1

· · ·
∐

Is⊂Is−1

X̄•
f (Is)0

)
cl0 //

g0∗

²²

H0

g∗

²²
Zs−j+1

(
X̄•

f (Ij−1)0
)

cls−j+1
// H

where g0∗ is the composite of

Z0
( ∐

Ij⊂Ij−1

· · ·
∐

Is⊂Is−1

X̄•
f (Is)0

)
−→ Z1

( ∐

Ij⊂Ij−1

· · ·
∐

Is−1⊂Is−2

X̄•
f (Is−1)0

)

−→ · · · −→ Zs−j+1
(
X̄•

f (Ij−1)0
)
.

Clearly cl0 ⊗Q` is an isomorphism. Therefore

cls−j+1
X•

f (Ij−1)0
⊗Q` : Zs−j+1

(
X̄•

f (Ij−1)0
)⊗Q`

−→ H2(s−j+1)
(
X̄•

f (Ij−1),Q`(s− j + 1)
)Π

is surjective for 1 ≤ s ≤ r and 1 ≤ j ≤ s. Therefore, for any J ⊂ SF with
1 ≤ |J | ≤ r, and for any integer t, 1 ≤ t ≤ |J |, the map

cltX̄•
f (J)0

⊗Q` : Zt
(
X̄•

f (J)0
)⊗Q` −→ H2t

(
X̄•

f (J),Q`(t)
)Π

is surjective. This is also true for 1 ≤ |J | ≤ r and for 0 ≤ t ≤ |J |, and true
for J = ∅ and for t = 0. Therefore, for any J ⊂ SF and for any integer t,
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1 ≤ t ≤ |J |, we have

Q` ·At
(
X̄•

f (J)0
)

= H2t
(
X̄•

f (J),Q`(t)
)Π

.

In view of Propositiion 3, we see from the non-degenerateness of the pairing
〈 , 〉X̄•

f (J),1, that

N t
(
X̄•

f (J)0
)

= 0

for any J ⊂ SF any for any integer t, 0 ≤ t ≤ |J |.
This completes the proof of Theorem 1.
The corollary follows from Theorem 1 by [Ta II, Proposition (5.1), The-

orem (5.2)].
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