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The Tate conjecture over finite fields

for projective schemes related to Coxeter orbits
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Abstract. Let G be a simple algebraic group, defined over a finite field F,, with
Frobenius map F. Let X; be the Hansen-Demazure-Deligne-Lusztig compactification
of the Deligne-Lusztig variety Xy of G associated with a Coxeter element in the Weyl
group Wg of G, and let X} ; be the Fgd-structure on X} over the finite extension
Fy8 of F, determined by F° : X$ — X7, where ¢ is the smallest positive integer such
that F° is the identity map on Wg. We shall give an affirmative answer to the Tate
conjecture over finite fields for algebraic cycles on X},o and related projective schemes.
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Introduction

Let ko be a finite field, k an algebraic closure of kg and I = Gal(k/ko).
Let X be an equidimensional smooth projective scheme of finite type over
ko, purely of dimension d. For an integer s, 0 < s < d, let Z%(Xj) be
the free abelian group generated by the closed integral subschemes of Xg of

codimension s. Let £ be a prime number different from the characteristic of
ko. Let X = X Xy, k. Let

cli, + Z5(Xo) — H**(X,Qq(s)"

be the cycle map, where (s) is the Tate twist and H2%(X,Qg(s))" is the
I-invariant part of H?*(X,Qq(s)). Let

A® = A%(Xp) = Q-Tmdly, (C H*(X,Qus)™)

and

N*=N*(Xo)={a€ A°|(a,a')x =0 foralla € A%},
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2 J. Ohmori

where ( , )x is the Poincaré duality pairing via cup product:

() )x - H?(X,Q(s) x B9 (X, Qu(d ~ 5))

TI‘X

— H*(X,Qu(d)) == Q.
The Tate conjecture over finite fields consists of the following two statements:
T : Q- A® = H*(X,Qq(s)"
and
E°:Ng=0.

(See Tate [Ta II]). Since ko is finite, the Tate conjecture over finite fields is
equivalent to the following statement:

The order of the pole of the zeta function Z(Xy,t) at t = ¢~ * is equal
to dimg(A®/N*®). (See [Ta II, Theorem (2.9)]). Here ¢ = |ko|.

The Tate conjecture over finite fields is the base of Grothendieck-Milne’s
theory of motives over finite fields (Milne [Mi II]).

In this paper, we give an affirmative answer to the Tate conjecture over
finite fields for very special projective schemes X;( no = X} (1) related to
the Deligne-Lusztig’s theory of representations of finite reductive groups G
over algebraically closed fields of characteristic 0 (Deligne and Lusztig [DL]).
Our main result is stated in the last paragraph of Section 3 (Theorem 1),
and is proved in Sections 4, 5.

The motivation of our study is the “fact” that the rationality of a
cuspidal unipotent representation of G¥" has a “motivic explanation” ([Oh]).

Our result relies on Lusztig’s calculation of the eigenvalues of Frobenius
on the étale cohomology groups H:(X s Q¢) with compact supports of the
Deligne-Lusztig variety X of G associated with a Coxeter element in the
Weyl group of G (Lusztig [Lu]). Here Q; is an algebraic closure of Q.

I wish to dedicate this paper to may daughter Chieko.

Preliminaries and convensions

Let K be an algebraically closed field. Let (X,0x) be a separated,
reduced scheme of finite type over K with structural sheaf Ox. Let X (K)
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be the set of K-rational points of X, and let Ox k) = Ox | X(K). Then
(X(K),Ox k) is a variety in the sense of Borel’s book [Bo, Ch. AG]. The
correspondence (X, Ox) — (X(K),Ox (k) gives an equivalence of the cat-
egory of separated, reduced schemes of finite type over K with morphisms
over K and the category of varieties.

Throughout the paper, p is a fixed prime number and k is an algebaric
closure of the prime field F, = Z/pZ. By a variety, we mean a separated,
reduced scheme X of finite type over k, and we shall identify X with X (k).
An algebraic group is the one in the sense of [Bo].

For an integral power p® of p, Fp,« is the subfield of k£ with p® elements.
ko is a finite subfield of k and IT = Gal(k/kg). ¢ is the arithmetic Frobenius
automorphism of k over ko, i.e., p(z) = zlkol ¢ c k.

A sheaf is an abelian étale sheaf on a scheme.

¢ is a fixed prime number different from p. Qy is an algebraic closure of
Q-

For a variety X, we write H'(X) and H!(X) instead of H'(X,Q,) and
Hi(X,Qy) respectively.

Foraset Sandamap f: S — S, S/ ={z eS| f(z) =2}, and if T is
aset of maps f: S — S, then ST ={z € S| f(x) = for all f € T}.

If V is a finite dimensional vector space over a field £ and f:V — V
is a linear map, then, for a € E*, we set

Vo={veV|(f—aly)"v=0 for some integer n > 1}.

1. The Poincaré duality theorem

Let X be a smooth equidimensional variety, purely of dimension d.
Then X is the disjoint union of its irreducible components X1, ..., X,,. For
an inteber u, 1 < u < m, let i,, : X;, — X be the inclusion morphism. Let
G be a sheaf on X. For 1 <u <m, let G, = 14+7,*G = i,11,*G. Then we
have G =", G, and

H'(X,G) =@ H(X,G.) = P H (X, iwin*G).
u=1 u=1

Let H be another sheaf on X. Then there are cup product homomor-
phisms
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U: H(X,G)x H(X,H) — H™(X,G® H) (i,j >0).
For 1 < wu # v < m, we have
rUy=0, z€H (X, i, G), y& H (X,,i,"H). (1.1)

Assume that X is a projective variety. Let n be a positive integer
coprime to p. Then, for 1 < uw < m, there is a canonical isomorphism
Trx, : H*¥(X,,Z/nZ(d)) = Z/nZ, where (d) denotes the Tate twist. Let

Trx = iTrXu - H?Y(X, Z/nZ(d))

u=1

= éH%(Xu, Z/nZ(d)) — Z/nZ.

Then, by the Poincaré duality theorem ([SGA 4, Ch. XVIII]), the pairing
(, Vxm: H(X,Z/nZ(a)) x H**(X,Z/nZ(d — a))
s HY(X,7/nZ(d)) =5 7/nZ (1.2)

is non-degenerate (a € Z). By replacing n by £™, on passing to the projective
limit on n and by tensoring with Q,, we get a non-degenerate pairing

(, )x : H'(X,Qe(a)) x H*'(X,Qe(d — a)) — Q.

Remark Deligne’s proof of non-degenerateness of the pairing in [SGA 4,
Ch. XVIII] is dificult to follow for the author. But, fortunately, we can
see its proof in Milne’s book [Mi I, Section 11] when X is irreducible. The
general case follows from this special case by using (1.1).

Assume that X is obtained by the extension of scalars from a scheme
X over ko : X = X X, k. Then the pairing ( , ) x is II-equivarinat, where
IT acts on Qg trivially.

Let Y = Y{ X, k be another smooth equidimensional projective variety,
purely of dimension e, let fo : Yy — X be a morphism over kg and let
f = foxkg kY — X. Then the inverse image homomorphism f* :
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HY(X,Qq(a)) — H (Y,Q(a)) and the direct image homomorphism f, :
H?*74(Y,Qu(e—a)) — H?*¥"(X,Q¢(d—a)) (the dual of f* via the Poincaré
duality theorem) are II-equivariant. Then f* and f, induce homomorphisms

fio H'Y(X, Q) — H'(Y, Qe(a)
and
fa s H**7HY, Qe — @)y — H*7'(X,Qu(d — a))1.
The pairings { , )x and {, )y induce non-degenerate pairings
(o )x s HY(X,Qe(a)r x H** (X, Qe(d — a))1 — Q
and
() v HU(Y,Qe(a))1 x H* (Y, Qe(e — a))1 — Q.

Thererore fi : H(X,Q(a))1 — H*(Y,Q¢(a)); induces its dual homomor-
phism

(f1)Y : H* 7Y, Qele — a)y — H*7(X,Qu(d — a))1.
We see that
(fi)" = for.
Therefore f+; is surjective if f{ is injective.

Let V be a finite dimensional vector space over Q; on which II acts
continuously. We note that

Thus V¥ = VI Thus, in particular, when ¢ acts semisimplly on Vi, we
have Vi = V¥ =VT,
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2. Tate conjecture

Let X( be a separated reduced smooth scheme of finite type over kg,
let X = X X g,k and let mx : X — X be the natural projection. Then X
is a smooth variety over k. Assume that X is purely of dimension d.

Let s be an integer, 0 < s < d. Let Z°(Xy) (resp. Z°(X)) be the free
abelian group which is generated by the integral closed subschemes of X
(resp. X) of codimension s. For a prime cycle Zy € Z°(Xy), let Z1,...,7Z;
be all the irreducible component of Zy X, k, and we put

TZo=Z1+ -+ Z € Z5(X)

(note that ko is perfect). Extending by additivity, we obtain a homomor-
phism

wx  Z°(Xo) — Z°(X).
Let
eI, : Z°(Xo) — H*(Xo,Qu(s))
and
ol Z5(X) — H*(X,Qq(s))
be cycle maps (Grothendieck-Deligne [SGA 4 1/2]). Then we have the fol-

lowing commutative diagram:

Z%(Xo) — H?* (X0, Qq(s))

* *

Z5(X) — H?*(X,Qq(s)).

El
clk

We see that the cycle map gl\s); coincides with the cycle map which is de-
fined in [MiI, Ch. VI, Section 9] and the map 7% : H?*(Xo,Qu(s)) —
H?%(X,Qu(s)) coincides with the edge homomorphism at position (0, 2s) in
the spectral sequence
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H' (L, H? (X, Qq(s))) = H' (X0, Qu(s)).

Thus 7% o (;@:) = gl\i om% factors through H?*(X,Q,(s))™. We denote this
map by

oI, 1 Z°5(Xo) — H?*(X,Qq(s)".
Assume that X is projective. For an integer s, 0 < s < d, let
A% = A%(X) = Q- Im(cl},) C H**(X,Qu(s)"
and
N* = N*(Xo) ={a€ A% | (a,a’)x =0 foralla’ € A%},

where ( , )x is the Poincaré duality pairing via cup product.
The Tate conjecture over finite fields consists of the following two state-
ments (see Tate [Ta I, I1)):

T°: Q- A® = H*(X,Qq(s))",
E®*:N°=0.

Remark (1) In [Ta I], Tate defines his cycle map as follows:
Let Z € Z°(X) be a prime cycle. We define ¢(Z) to be an element of
H?3(X,Qy(s)) characterized by the property

Trx(yUc(Z)) =Trz(y | Z)

for all y € H?(@=9) (X, Qy(d — s)). We see that

o(2) = i (2)

if Z is smooth (see [MiI, Ch. VI, Section 11, Remark 11.6(e), p.284]).
However I do not know whether this equality holds for singular Z.

(2) In [Ta II], Tate states his conjectures by using “the” cycle map
whose definition is unknown to the author. Here we adopt Grothendieck-
Deligne-Milne’s definition of cycle maps.
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Let Yy be a smooth equidimensional projective scheme over kg, purely of
dimension e, Let Y = Y X,k and let my : Y — Y, be the natural projection.
Let go : Yo — Xo be a morphism over ky and let g = go X, k : Y — X.
Let s be an integer, 0 < s < e. Let Wy € Z*(Y)) be a prime cycle. Then
the image Zy = go(Wp) has a structure of closed integral subscheme of Xj.
The function field ko(Zy) of Zy can be regarded as a subfield of the function
field ko(Wy) of Wy. Let m = [ko(Wy) : ko(Zp)]. Then we define go« Wy to
be mZy if m is finite and 0 otherwise. Extending by additivity, we obtain a
homomorphism

Gor + Z*(Yo) — 244 (X,).
Similarly, we can define a homomorphism
Ge 1 Z5(Y) — Z07eFs(X).

The diagram

is cartesian and wx is flat. Therefore
* *
9xTy = T x go*

(see Fulton [Fu, Ch. I, Section 1.7, Proposition 1.7, p.18]). Thus, if Yy is
the disjoint union ]_[;:1 Yp; of closed subschemes Yy; of Xy and g¢ is the
sum of the inclusion morphisms Yy; — Xo, then the following diagram is
commutative:

s
CIYO

Z*(Yo) H?(Y,Qu(s))
go*l \Lg* (0<s<e).

Zd_e+S(XO) cl‘;’{e+s H2(d_e+s) (X7 QZ (d —e+ 5))
0
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(Cf. [Mi I, Ch. VI, Section 9, Proposition 9.3, p.269]).

3. Reductive groups

In the rest of this paper, we shall use the following notations. Almost all
of them are extracted from Deligne and Lusztig’s paper [DL] and Lusztig’s
paper [Lu].

G is a connected, reductive linear algebraic group over k. F': G — G
is a surjective endomorphism of G such that some integral power F'¢ of F is
the Frobenius endomorphism of G relative to a rational structure on G over
a finite subfield &’ of k and ¢ is the positive real number such that ¢¢ = |¥’|
(uniquely determined by F'). We assume that d = 1 or that d = 2 and q is
an odd power of V2 or V3.

X is the set of Borel subgroups of G. G acts transitively on X by
conjugation: (g, B) — gBg~!, g € G, B € Xg. For each B € Xg, the
stabilizer Ng(B) of B is just B, so the mapping gB +— gBg~! defines a
bijection G/B = X¢. Therefore X has a structure of a projective variety.
F : Xg — X¢ is the map B +— F(B). This map is an endomorphism of X¢
with respect to the structure of the projective variety of X¢:

By Lang-Steinberg theorem, there is an F-stable Borel subgroup B of
G; for such B, the diagram

G/B ——= X¢g

G/B —— Xg

is commutative.

We let G act on Xg x X¢g by (g,(B,B’)) — (gBg~',gB’g™!). Then
the Weyl group W¢ of G can be identified with the set G \ (X¢ x X¢) of
orbits of G on X x X as follows:

Let (T, B) be a pair of a maximal torus 7' of G and a Borel subgroup B
of G containing T'. Then the composite o (T, B) of the following bijectioins
is an isomorphism of groups:
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Wa(T) = Ng(T)/T = B\ G/B = G\ (G/B xG/B) = G\ (X¢g x Xg)
- W
nT +—— BnB +— G - (B,nB) — G - (B,nBn™").

The law of compositioin in W¢ will be written as OoO’ for O, O’ € Wg.
The unit element is the diagonal A = {(B, B) | B € Xg}. The set

S:SG:{OEWG‘dimO:ding—l—l}

is the set of simple reflections in W¢g. We denote by £( ) the length function
on W¢ with respect to Sg. F : W — W is the map O — F(O). If (T, B)
is an F-stable pair, then the diagram

o(T,B
we(r) 222w,

Wa(T) o We

is commutative. We have F'(Sg) = Sg. Sr = (Sg)r is the set of orbits of
F on Sg. m: Sg — Sp is the natural map. r = |Sp| is the rank of G. § is
the minimal positive integer such that F? is the identity map on Weg. ¢° is
a power of p; we put kg = F s, and II = Gal(k/ko).

Let B € X} (the F-invariant part of Xg). Then, in view of the con-
struction of the structure of the projective variety on G/B = X (cf. Borel
[Bo, Ch. II, Section 6, (6.8), pp. 181-2; Ch. IV, Section 11, (11.1), pp.261—
2]), we see that there is a projective space PV over k with the “standard”
ko-structure with Frobenius map F?° such that X¢ is an F°-stable closed
subvariety of PN and that F? : Xg — X¢ is the restriction to Xg of
Fo.pN — pN,

The Coxeter graph I" of GG is the graph with one vertex for each element
of S¢ and such that the vertices corresponding to O, O’ € Sg (O # O')
are joined by 0, 1, 2 or 3 bonds according as O o O’ has order 2, 3, 4 or
6 respectively. F': Sg — Sg determines an automorphism F' of I'. When
' is connected the possible (I, F') is as follows (cf. Bourbaki [Bour, Ch. 6,
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Section 4, n°1, Théoreme 1], Steinberg [St, Section 11]; also see Carter [Ca,
pp. 37-8]);

A, (n>1) o o— - o o (n vertices, 6 = 1),
B, (n>2) o o— - —o0 o (n vertices, 0 = 1),
D >4 i =
n (n>4) . " (n vertices, 0 = 1),
\o
E6 o o (6 = 1)7

E; o o I o o o (6=1),
ES o O i o O O o (5 = 1)7
F, o o o o (6=1),
Gy o=—=o0 (6 =1),

(2n vertices, 6 = 2),

2A0p01 (n>1) o o— - o i N o

(2n + 1 vertices, 6 = 2),
2B, LN, (6=2 q= \/§2m+1)’
2Dy (n>4) o (n vertices, § = 2),

O O/ >
\o
"D ° (6=13),
o]
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We continue to eatablish notations.
Let O € Wg. We let

X(0)=Xg(0)={Be X¢|(B,F(B)) € O}.

X (0) is a smooth locally closed subvariety of X, purely of dimension ¢(O).
We call X(O) the Deligne-Lusztig variety of G associated with O.

Let O =010---00, (0Oy,...,0, € Sg) be a minimal expression for
0. We let

X(0)*=X(04,...,0,)
={(Bo,B1,....By) € XZ | (Bi_1,B;) € O, UA
for 1 <i<nand F(By) = B,}

and

X(01,...,0,) ={(Bo,Bi,...,B,) € X(0)* | Bi_1 # B;,1 <i <n}.

Then X (0)* is a smooth projective subvariety of X g“, purely of dimension
£(0), X(0q,...,0,) is an open dense subvariety of X(0O)® and the map-
ping (By, B1, ..., B,) — By gives an isomorphism from X (Oq,...,0,,) onto
X (0). We call X(O)*® the Hansen-Demazure-Deligne-Lusztig campactifica-
tion of X (O) (with respect to a reduced expression O = Oy 0---00,,).

X(0)* is an F°-stable subvariety of X3*'. Therefore F° : X(0)* —
X(0)* determines a ko-structure X (0)§ on X(0)®. X(0O)J is a smooth
projective scheme of finite type over kg, purely of dimension ¢(O).

In the following, if P is a parabolic subgroup of G, then Up is its
unipotent radical, Lp = P/Up and wp : P — Lp is the natural morphism.
Lp is a connected, reductive linear algebraic group over k.

f = (01,...,0;) is a sequence of elements of Sg such that
{7(O1),...,7(0,)} = Sp. We put
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szolo"'OOT GWg,
Xy =X (0y),
X3 = X(0y)* = X(O1,...,0,)

and
X370 =X(Of)5-

Oy is called a Coxeter orbit of G on X¢ x Xg. X is a smooth irreducible
affine variety of dimension r, X'} is a smooth irreducible projective variety of
dimension r, and X% ; is a smooth absolutely irreducible projective scheme
of finite type over kq.

Let I be any subset of Sg, and let n = |I|. f(I) = (O4,,...,0;,)
(1 <iy <--- < iy <r)is the subsequence of f = (Oq,...,0,) such that
{m(0i,),...,7(0;,)} = 1. We put

O =04 0---00;, € Wg,
Xy =X(Os)),
X3y =X(Opmn)*-

We put

X3(I)={(Bo,B1,...,B;) € X} | Bi_1 = B; ifw(0;) ¢ I}

and

X3(I)={(Bo,B,...,By) € X;(I) | Bi_1 # B; if n(0;) € I}.
X';(I) is isomorphic to X(Opp)® = X(Oi,...,0;,), so it is a
smooth projective variety, purely of dimension n = |I|. The mapping

(Bo, Bi, ..., By) = By gives an isomorphism from X %(I) onto X (). X3(I)
is an open dense subvariety of X?(I). X$(I)o denotes the ko-structure on
X$(I) determined by F° : X$(I) — X$(I). X$(I)o is a smooth projective
scheme of finite type over kg, purely of dimension n.

We give the irreducible decompositions of X?(I) (~ X)) and X’;(I )
(~ X3 = X(O51))*)-
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Let P; be the (F-stable) conjugacy class of parabolic subgoups of G
corresponding to 7w~ 1(I). More precisely, P; is constructed as follows:

We fix an F'-stable Borel subgroup B* of G and an F-stable maximal
torus T* of G contained in B*. Let W; = (= 1(I)) C Wg, and let W} =
o(T*,B*)" Y (W) C Wa(T™). Let P; = B*W;B*. Then

Pr={9Pig~"' |geG}.

Let P € Pf. Then the mapping B — w;l(B) defines an isomorphism
ip from Xp = X, onto the closed subvariety Xq p ={B € X¢ | B C P}
of Xg. ip Xip: Xp X Xp — Xg X X induces an isomorphism ¢p from
Wi, =Lp\ (Xp x Xp) onto the subgroup

Wi =W(Py)
= {O € Wg | for (B,B’) € O, there is P’ € Py such that B, B’ C P’}
of Wa. We have

’ip(SLP) =SeNWr=:5= S(P[)

The bijection ip : Sp, — S; determines a sequence f(P) = f(Lp) =
(O4,,-..,0;,) of elements of Sy, such that

Of(py=0i,0--00;, €Wy,

is a Coxeter orbit of Lp on Xp x Xp. ip: Xp — Xg,p induces an isomor-
phism from X py = Xf1,) = X1,.(Of(p)) onto the closed subvariety

Xyay,p=1{B€Xpun | BC P}

of Xf(]). And

X = [I Xrw.p
PePF

Thus
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X3 = Xy < T Xeeey, (3.1)
PePF

which is the irreducible decomposition of X}(I ). These isomorphisms are
FY_equivariant.
Similarly, the ip, P € P, induce an F°-equivariant isomorphisms

X35 X< I X (3.2)
PePf

(3.1) is proved in [Lu]. We give here a proof of (3.2).

Let R*, R*T and D* be respectively the root system of G with respect to
T™*, the set of positive roots determined by B* and the set of corresponding
simple roots. Put J = 7~ (I), and J* = o(T*, B*)"1(J) C Wg(T*). J*isa
subset of S* = o(T*, B*)~1(Sg) of simple reflections in W (T*) determined
by B*. Each a € D* determines a simple reflection s, € S* and the mapping
a — 84 gives a bijection a : D* 5 S*. Let D} = a~!(J*). For a root
a € R*, let UZ be the root subgroup of G associated with «. Then

P =(U*,,B* | a € D}).
Let
M; =(Ux,U*,,T* | a € D}).

Then My is an F-stable Levi subgroup of Py (P; = My x Ups). The
composite M} — Pf — Lp: induces and isomorphism b : My .y P

Let P € PF. Then P = goPI*gal for some go € G (the F-invariant
part of G). Let Mp = gOMI*go_l. Then the composite Mp — P — Lp
induces an isomorphism bp : Mp = Lp. The morphism ip : Xp — Xg is
given by

ZP(B) = b;l(B) -Up (B S Xp).

Recall that 1 <11 < --- < i, <r. Put ig =0. Then

XJ.C(P) = {(BimBil,...,B )eXIT;—H | (B

in 151

Bij) € Oij UAp

for 1 <j <n and F(Bio) =B, },
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where Ap = {(B,B) | B € Xp}. For (B, Bi,,...,B;,) € Xpt', put

ZP(Bioy-Bila"'aBin) = (ip(BiO),ip(Bil),...,iP(Bin)) S Xg+1.
Let

Xim.p = {(Bio, Bus--, Bi) € Xjy | Bigs By, Bi, C P},

and we define 7p : X;(I),P — X;(P) by

Wp(BiO,Bil,...,Bin) = (Wp(Bio),ﬂp(Bil),...,Wp(Bin)).

- +1 +1 - . .
Then ip X5 S X4 induces an isomorphism from X3 (py onto X% p p
whose inverse is 7p.

Thus

(ir)perr = [ Xip — I Xia.r € X5
pepF pPePF

Let (Bi,,Bi,,-..,Bi,) €
such that B;,, B;,,...,B;, C P.

It By = B;, =---= B,,, let P be a parabolic subgroup in P; contain-
ing Bio- Then F(Bzo) = Bin = Bio' So Bio C F(P) Since F(PI) = P[,
F(P) € Py and P and F(P) are conjegate. So we must have P = F(P).
Thus P € PF.

Otherwise, there is an integer j,1 < j < n, such that B;, , # B;,.
Let j be minimal having this property. Then, by the deﬁn1t1on of X

f(I) We show that there is some P € 731

1)
we must have (B;,_,,B;;) € O;;. So there is an element g € G such glait
Bi,_, = gB*g~! and Bi, = gs, B*sijg_l, where s;; is an element of Ng (7™)
such that o(T*, B*)(s;,T*) = O;,. Put P = gP;g~'. Then B;, , C P. As
g_lBijg =s;,B*si; C sy, Prsi; = Pf, Bi;, CgPryg -1=p.

If j is a unique integer such that sz71 # By, then (By,,...,B;,) =
(Bi;_ys---,Bi;_,,Bij,...,By;). Therefore, in this case, as B;, = B;, =
F(Bi,) = F(B;,_,), B;; C F(P). But P and F(P) are conjugate, so we
must have F(P) = P. Thus P € PF.

Otherwise let 5/ > j be the minimal integer such that Bl S F Bi_,.

Then (BZ ., ., B ) € O;,,. So there is an element g € G such that B

150 _q
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g'B*¢’~! and B, = g’sij,B*sij,g’_l. We have B;; = B;, , C P and
Bi, , C g'P;g'~!. But P and ¢’ P}g'~! are conjugate, so we must have P =
g Prg—t. As g’_lB,-j,g’ =si,B"s;, Cs;,P[si, =P;, B, C gPrgt =
P.

By continuing the similar considerations, we see that there is some
P € Py such that B;,,B;,,...,B;, C P. We have B; = F(B,;,) C F(P).
So B;, C P, F(P). But P and F(P) are conjugate, we must have F'(P) = P.
Thus P € PF.

Thus

X;n =TI X}a.r
pepf

and

(ip)perr = [T Xim) = Xi0)-
PePf

This isomorphism is F®-equivariant.
Forae Z,0<a<n=|I|, we put

D,(I)= |J X}(J) c X3(D);
7 <a

we put D,(I) = () for a < 0. Then Do(I) C D1(I) C -+ C Dp_1(I) are
closed subvarieties of D,,(I) = X’; (I) and

D)~ Du s (1) = ] X300).
g

Our main result is

Theorem 1 Assume that G is a simple algebraic group. Then, for any
I C Sr, we have

Qe A*(XF (1) 0) = H** (X3 (1), Qe(s))"

and



18 J. Ohmori

N*(X30) =0

for 0 <s<|I|.

Corollary Let G be a connected, reductive linear algebraic group, defined
and split over Fy (6 = 1). Then

Qo AN (X3,) = H2(X3,Q(1)",
Qc- ATN(X3,) = HXD (X5, Qu(r — 1),

N""1(X$,) =0.

4. Start of the proof

Lemma 1 (Lusztig [Lu, Section 6, Theorem 6.1(i), p. 135]) If G is a simple
algebraic group, then (F°)* acts semisimplly on H:(Xy), i > 0.

As Xy is an irreducible affine variety of dimension r, we have H!(X ) =
Ounless r <i¢ < 2r. Let i € Z, r <4 <2r. Let A\1,..., A\, be all the eigen-
values of (F°)* on H(Xy), and for each j € Z, 1 < j < n;, let HI(X[)a,
be the generalized \;-eigenspace of (F°)* on H.(X;). Then Lusztig proves
that the H'(X) A, are mutually non-isomorphic irreducible representations
of GI. For 1 < j < ny, let v; € H(Xy)\, be an eigenvector of (F°)*
associated with ;. Then Q[G*v; is a G¥-submodule of H!(Xy)»,. But,
as Hi(Xy), is irreducible, we must have Q/[G¥|v; = Hi(Xf)s,. There-
fore there are elements g1, ..., g of G such that the vectors g1v;,. .., g:v;
form a basis of the vector space Hé(Xf))\]. over (y. Since the action of
(F°)* and that of G¥' commute, we see that g1v;,...,g,v; are eigenvectors
of (F?)*. Therefore (F°)* acts semisimplly on H!(Xy),. This holds for all
j. Therefore (F°)* acts semisimplly on H(X}) = @;%:1 HY(Xy),-

Proposition 1 Let s € Z and let I C Sp. Then (F%)* acts semisimplly
on HA(X3(1))(s) = HA(X3(1) @ Q(s), i = 0.

Let (F°) be the action of (F?)* on Hg(X]?(I)) Then (F°)* acts on
Hé(XJ: (I))(s) by (F?)5®(¢°)~* (¢° = |ko|). Therefore we may assume that
s =0.

We recall that there is an F?-equivariant isomorphism
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X3(I) ]_[ Xi(p)-
pepf

Therefore there are (F?)*-equivariant isomorphisms:

mixs(n) < w1 1 X))
PePf

= D HiXpr)
PePF

= P H(Xi1,))-

PePF

Let P € PF. Let §p be the minimal positive integer such that FOF is
the identity map on Wr,. Then, as F? is the identity map on Wy, Py WE
have dp < §. Let § = 6pt + 0" with ¢, 6’ € Z,¢,8 > 0,0 < ¢ < dp. Let
w e Wr,. Then w = F¥(w) = FOP'*% (w) = F¥ (w). Since 0 < §' < dp, by
the minimality of dp, we must have 6’ = 0. Therefore dp divides §. Thus to
prove the assertion, it suffices to show that, for each P € PF, (F Or)* acts
on H:(X¢(r,,)) semisimplly. Thus we are reduced to the case where I = Sp.

But, by the argument in (1.18) of [Lu], we are reduced to the case
where G is a simple algebraic group of adjoint type. Thus the assertion
follows from Lemma 1.

In the rest of this paper, we shall assume that G is a simple algebraic
group.

We quote from [Lu, (7.3)] the following table on the eigenvalues of
(F°)* on Hi(X;), r < i < 2r. Each table consists of r + 1 colums. In the
first column (from the left) we record the eigenvalues of (F°)* occuring in
H!(Xy), in the second column we record the eigenvalues of (F°)* occuring
in H'1(Xs) and so on. 6,i,¢ will denote a primitive root of 1 in Q} of
order 3, 4, 5 respectively.

An (’I’LZ 1) 17 q, q27"'7qn7

B, (n>2): 1, q, TR e (o

—-q, 7q2’ 7q3a"° 77(]”71)
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D, (n>4): 1, q, A, g

_q2a _q37 _q47 ) _qn727

1, q, @, ¢, ¢ P,

_q27 _q3’ _q47

0q°,

02 3

1, q, @, ¢ P

_q27 _q37 _q47 _q57

0q°,  Oq*,

02 3’ 02 4’

iq"’?,

_iq7/27

1, q, @, @

—¢* -¢ -, —¢°, —¢°

q°, 0q*,  0¢°,

02q3’ 92q4’ 02 57

Z'q7/2, iq9/2,

—iq7/2, _Z'qg/Q7

gt

_9q4a

_02 47 (.7 - 1727374)7

1, R N/ L

—q, _q27 _q37

iq?,

_/L'q2a

042,

92q2

L, q &,

—-q,

fq,

2.2
0<q°,
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2A2n (n > 1) ]-a q27 (ERE q2n727 q%,
—q, _q37 ) _q2n717
2A2n+1 (n 2 2) 1) q27 ) qzn_4a q2n_27 q2n7 q2n+27
_q37 _q57 ) _q2n71’
Dp(n=3): 1, ¢ ' ..., ¢
3l)4 17 q37 q67
_q37
2E6 17 q27 q4> qﬁa q8>
_q37 _q57
0q*,
92 4
3
2B2: 1) q27
i—1
\/§ q,
—1—1
\/§ q,
2F4 1a q27 q47
i—1 i—1
q, q,
V2 V2
-1 -1,
q, q,
V2 V2
_q2>
iq?,
_iq2)
_9q23
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Tee following is the key lemma.

Lemma 2 Recall that G is a simple algebraic group. Let J C Sp be such
that 1 < |J| <r. Then, forie Z, 0 <1i <|J|—1, we have
HZ'(X3())

(qé)i - 0

(the subspace of HCQ’(X;(J)) on which (F°)* acts by multipication by (¢°)").

We first treat the cases 2By, 2Go, 2Fy.

The case 2By or Gy We have 7 = 1 and X3(J) = X$(Sr) ~ X;. X;
is an irreducible affine variety of dimension 1. Therefore H, S(X]‘c) =0.

The case 2F;. We have r = 2. Let J = Sp. Then X;(J) ~ Xy and
Xy is an irreducible affine variety of dimension 2. Therefore H)(X) = 0.
Let i = 1. Then the eigenvalues of (F?)* (§ = 2) on H2(X;) are # ¢*
Therefore H2(Xf) 2 = 0.

Let |J| = 1. We have an (F?)*-equivariant isomorphism

HY(X3(J)) < @ H)(Xtp))-
PePl

Let P € 775 . Then, the Coxeter graph of the adjoint group L% of Lp is
either

)

VRN

o) or o

O

Therefore Xyp) >~ Xy Lad) Is an irreducible affine variety of dimension 1.
Therefore H)(X t(p)) = 0. Therefore HS(X;(J)) =0.
Next we treat the case where G is defined and split over F, (§ = 1).
The case A, (n >1). Let 0 <i <|J|—1. We have an F*-equivariant
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isomorphism

21,
HX(XF()) =~ D HZ(Xsp)).
PepPt

Let P € P¥. Then L% is of the form Gy x -+ x Gy, Where, for 1 < j < m,
G, is a simple algebraic group of type A; with r; > 1 and 1+ - -+7,, = |J|.
Therefore there is F-equivariant isomorphisms

Xf(p) ZXf(Lan) ZXfl X oo X Xfm7

where, for 1 < j <m, Xy, is a variety for G; similar to Xy for G. Then, by
the Kiinneth formula, we have F*-equivariant isomorphisms

HZ' (X ypy) = HZ (Xp, x -+ x Xy,,)

P Hixp) e ©HM(XY,) (*)
T — V;

On each direct summand in the last term of (%), F* acts by the multiplication
by

il —T1 iz—Tz

' g L gimm = glitetim) (i)

=@Vl (cf. 0 <i<|J|—1).
Therefore
HZ (Xf(p))g =0
Therefore

HZ(X3())g ~ P HI(X4p))g = 0.
PePl

The case B, (n >2). Let P € P¥. Then L% is of the form Gy x - - - x
G, where either

(i) for 1 <j <m —1, G; is a simple algebraic group of type A, with
r; > 1 and Gy, is a simple algebraic group of type B, with r, > 2, and
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7'1+"'+7"m—1+rm:|‘]‘7
or

(ii) for 1 < j < m, Gj is a simple algebraic group of type A, with
ri>1,and ri + - 41y =|J|.

We have a similar decomposition as (x). In case (ii), F* acts each direct
summand by the multiplication by

qil—rl o qim—rm — q2i—|J| 7é qz
In case (i), F'* acts by the multiplication by

qi1*T1 - _qimfrm — q2if|J| 7& qi
or

q’il*Tl . 'qimflme71(_qim*?“m+1) — _q2i7|J|+1 + qz"
Therefore HY(X¢(py)qi = 0. Thus

PePl

The remaining cases D,,, Eg, E7, Eg, Iy and G5 can be treated similarly.
Thirdly we treat the non-split case.

The case *Dy.  We have r = 2. Let J = Sp. Then X3(J) ~ Xy and
X is an irreducible affine variety of dimension 2. Therefore H?(X;) = 0.
Let i = 1. Then the eigenvalues of (F3)* (§ = 3) on H?(Xy) are # ¢
Therefore H2(Xf), = 0.

Let |J| = 1. Let P € P¥. Then the Coxeter graph of L% is either

o
or Oo.
o o
S~ T

Therefore Xypy ~ Xy rad) Is an irreducible affine variety of dimension 1.
Therefore H)(X y(p)) = 0. Therefore
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HA(X3() ~ D H)(Xsp) =0.
PeP¥

The case 24y, (n >1). Let P € Pf. Then L‘}D‘i is of the form G; x
- X Gy, where either

(i) for 1 < j <m —1, (G4, F) is “isomorphic” to (A,,, F?) for r; > 1
and (G, F) is (2Ag,,, F) with r; > 1, and ri 4+ -+ + et + 7 = |J],

or

(ii) for 1 < j < m, (G;, F) is “isomorphic” to (A,,, F?) for r; > 1 and
ride = |J]

We have a similar decomposition as (). In case (ii), on each direct
summand, (F2)* acts by the multiplication by

(@) (@) = (@) £ ()
In case (i), (F?)* acts by the multiplication by
()7 gy T gy = (P ()
or
(q2)i1—r1 o (q2)im_1—rm_1 ( _ q2(im—rm)+1) 7& (C]Q)i-

Therefore H2 (X ¢(p))

(¢2): = 0. Therefore
pPepl

The case 245. This is the same as the case 2D3;. We have r = 2 and
the eigenvalues of (F?)* on HS(Xy) for 2 < s <4 are 1,¢%, ¢*, respectively.
Thus, if J = Sg, then X$(J) ~ Xy and HJ(Xy) = 0 and HZ(Xf)s = 0.
Let |[J| = 1. Let P € PY. Then (L%, F) is “isomorphic” to (A1, F?).
Therefore X (py is an irreducible affine variety of dimension 1. Therefore
Hg(Xf(p)) = 0, and

HA(X3() ~ @ H) (X)) =0.
PePl
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The case 245,11 (n > 2). The first row in the table of the eigenvalues
of (F?)* on Hi(Xy) is the same as that of (A,11,F?) and any eigenvalue
of (F?)* in the second row is empty or of the form (—1) x (power of q).
Therefore

HE (X3 (D) = D HE (Xp(p) g2y = 0.
pPepl

The remaining cases 2D,,, 2Eg can be treated similarly.
This completes the proof of Lemma 2.

Proposition 2  Recall that G is a simple algebraic group. Let J be a
subset of S such that 1 < |J| < r. Then, for an integer a, 0 < a < |J|,
and for any integer i, 0 < i < a, i < |J| — 1, (F°)* acts semisimplly on
H*(Da(J), Qe(i))1-

Proposition 3 Let J be any subset of Sp. Then, for any integer i, 0 <
i < |J|, (F°)* acts semisimplly on H%(X}(J),Qg(i))l. Thus H%(X;(J),
Qe(i))1 = H*(X3(J), Qi) = H*' (X}(J), Qi)™

Let 1 <|J| <randlet 0 <a <|J|. Then the inclusions

Do(J) = Da—a(J) = ] X;(J’)O;HDQ(J)C1<O—>SedDa_1(J)
J'cJ
[J/|=a

give (F)*-equivariant exact sequences:

HZ(X3(J), Qi)
— H*(Dy(J),Qe(i))1 — H* (D) 51-1(J), Qe(i))1,

P HEXHI), Qi)

— H*(Dyj1-1(J), Qe(i))1 — H* (D) )-2(J), Qe(i))1,

[T/ |=]T]=1

@ B (X))

— H*(Diy1(J), Qe(i))1 — H*(Di(J), Qe(i))1,

|J! | =i+1
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D HZ (X}, QD))

— H?(Di(J),Qe(i))1 — H*(Di—1(J), Qe(i))1 =

|7 =i

By Proposition 1, we see that (F°)* acts semisimplly on @ e

J =i

HZH(X$(J'),Qe(i))1. Therefore we see from the last exact sequence that
(F°)* acts semisimplly on H? (D ( ), Q¢(7))1. Since i < |J| — 1, by Lemma
2, we have H*(X3(J),Qe(i))1 = 0, @ rcs HZ(XP(J), Qi) =

JN=[J|-1
0,...,@‘ e HZH(X$(J),Qe(i)1 = 0. | T"hle‘refore, by the second ex-
act sequence from the bottom, we see that (F°)* acts semisimplly on
H*(D;41(J),Q¢(i))1. By the third exact sequence from the bottom, we
see that (F?)* acts semisimplly on H?(D; o(J),Q¢(7))1. ... By the last
exact sequence from the bottom, we see that (F°)* acts semisimplly on
H? (D) ;(J),Q¢(i))1. We note that H*(D;(J),Qe(i))y = 0 for i’ < i.

This proves Proposition 2.

Next we prove Proposition 3. Since Dj;(J) = X§(J), for 1 < |J| <
and for 1 <i < |J| — 1, the assertion follows from Proposition 2.
Let i = |J|. Then

H*(X3(1), Qi) —~ @ H¥(X}p), Qi) — P Q

pPeP¥ PePl

((F%)*-equivariant). Thus the assertion holds for 1 < |J| < 7 and for 0 <
i< JI. _ _
Finally, let |J| = 0. Then X$(J) = X3(0) = X3(0) = X¢, and

[ X3 ()]

H(X3(0),Q) = B @,

on which (F®)* acts trivially.

The final assertion follows from the fact that (F?)* = ¢! on the f-adic
cohomologies.

This proves Proposition 3.
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5. End of the proof

Recall that G is a simple algebraic group. For an integer t, 0 <t < r,
I, denotes a subset of Sg such that |I;| =7 —t.

There is a natural closed immersion X’; (I1)p — X’; (Io)o = X;(SF)O =
X},o' Therefore there is a natural morphism

91,0 * Zl,O = X_.(ll)o — 20,0 = X_}(lo)o-
f
I

For I, C Iy, there is a natural closed immersion X; (I2)p — X; (I1)o.
Therefore there is a natural morphism

92,0 : Z2,0 = H H X3 (I2)o — Z1o = HX}(Il)o-

Iy I.CI Iy

Similarly we obtain natural morphisms

g30: Zso= 1 11 ]I X;(Is)o — Z2.,

I, I2CIy I3Cl2

94,0 1 L4 = H H H H X5(Is)o — Zsy,

Iy IoCIy I3ClI2 14ClI3

For an integer j, j > 0, let

Zi=Zioxw k=1 T[] - I X3y

I, IoCIy I,CI; 1
and, for j > 1, let
g; = gj.0 Xko k- Zj — ijl-

Then, for an integer s, 0 < s < r, we obtain the following commutative
diagram:
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0
cly

Z2%(Zy) H(Z,, Q)"
(95,0) ) (gs)
ZN(Zy—1,0) T H?(Zy—1, Qe(1)"
(9s—1,0)= . (gs—1)«
D7 2) —— o (7, Q)
(9s—2,0)= (gs—2)«
(92,0) ) (92)«
21 (Zg) — 0 {2612, Qs — 1)
(91,0)= (91)«
2%(Zog) —— 0 p5( 2y Qu(s)).

Firstly, since
[ X — X5
PePf
is an F%-equivariant isomorphism, we have an isomorphism
[T XFm0 = X3(Lo,
PEPf
so we have isomorphisms

2Zso) =2 (1T 11+ 11 X30)

Iy I.CIh I,Cls_1

=P ... P 2°(X3))

I, I>ClIi I,CIs 1

PO O D7D O B

I, I.Cly I;CIs 1 PGP}‘; I IoCly I;CIs 1 PEP}‘;
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and

H(Z,Q)"=P P - @ D H (X}, Q)"

I, I.CIh I,CIs_1 Pe’Pfs

DD D Do

I, I.CIh I,CIs_1 PEP{‘;

Therefore, as clg(;(P) . is the natural inclusion Z — Q,, we see that CIOZS ,®Qy

is an isomorphism.

We show that (gs)«, (gs—1)«,--.,(g1)« are surjective, which will imply
that clz, @ Q= clj};)o ® Qy is surjective.

Let 1 <s<rand1l<j<s. Then the homomorphism

(95 : H*C7(Z5,Qu(s = )" — H*CI(Z; 0, Quls — j + 1)
is the dual map of the homomorphism
(95)" + H*N(Zj0, Qu(r = 8))" — HXU79(Z5,Qu(r — )"

(cf. Proposition 3). Therefore, to see that (g;). is surjective, it suffices to
show that (g;)* is injective. To see it, it suffices to show that, for any I;_,
the homomorphism

(g7)" + H*U =) (X3(Ij-1),Qe(r — s))"

— H2(’f'*3)( H X;(Ij),(@g(T — 8)>H
I;CIj—1

is injective (0 < j—1<s—1).
We have the following commutative diagram

I e i X*(I_),
Lel; f( ]) f( J 1)
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where i; is the closed immersion of Im g; into X; (Ij—1) and h; is the re-
striction of g; (h; = g; but the image is restricted). Therefore we obtain
the following commutative diagram:

II
H2= (] X3 Qur =) <9 20— (2 (1,_,), Qulr — )"

I_ CIJ 1
k /

H2(r— 5) (Img;, Qe(r — s)
Therefore it suffices to show that (i;)* and (h;)* are injective. We note that
Img; = Dr—j(Ij-1).

In fact, let (By,...,B,) € Img;. Then (By,...,B;) € X;(Ij) for some
Ij C Ij—l- Let J = {Oz | 1<i<nr,B;_4 7é Bz} Then a = ’J’ <r-—jy,
J CIj—1 and (By,...,By) € X}(J) C Do(J) C Dy—j(Ij—1). Conversely, let
(Bos ... By) € Dr—j(Ij—1). Then (By,...,B,) € X3(J) for some J C I;_4
with [J| <7 —j. We have X3(J) C X}(J) C Xf( ;) for some I; C I;_;.
Therefore (By, ..., B,) € Img;.

Thus the map (i;)* is the map

HQ(T_S)(X;“(IJ'A%@Z(T — )T — H*)(D, (I 1), Qu(r — s)™.
Since X}(ijl) = D,_(j—1)(Ij-1), (i;)* is a part of the exact sequence
HZ"™(XF(1j-1), Qe(r — 8))" — H*C=)(Dy o1y (L-1), Qe(r — 5))"
s H2=9(D, (1), Qq(r — 5))T
which is obtained from the inclusions

X5(Ij—1) = Dy—(j—1)(Lj—1) = Dr—j(I-1)
— Dy_(j—1y(Ij-1) < Dr—j(Ij-1).

But,asr—s<r—(j—1) (cf. 7—1 < s), we have HE) (XF(Lj=1)) g5y
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= 0 by lemma 2. Therefore HCZ(T_S)(X}(Ij_l),Qg(r — s = HA)
( X3(Lj-1),Qe(r — 8))1 = 0. Therefore (i;)* is injective.
Therefore it remains to show that the map

(hy)* : H*" =Dy 5(1i1), Q(r — 5))

I
—>H2(T_S)< H Xf Qg T—S))
I;CI;_
is injective.
Suppose that » = 1. Then s = 1 and j = 1 (recall that 1 < s < r and
1 <j <s). The map (h;)* = (h1)* is

HO(Do(10), @) — 1°( T] X30m).2:)"

I, ClIy

We have Do(Ip) = X$(0) and [];, o, X3(I1) = X3(0). Therefore (h1)* is
the identity map.
Suppose that r > 2. First, let j = s:

H X}(Is) I Dr—s(Is—l)'

Isclsfl

Put:

v.= [] X:a

IsCIs—1
vo= II x50 (¢ Yo,
I;CIs_1
W,=Y,-Us= [] (X}I)-X3U))= ][] Dr-sald
I,CIs 1 I,CIs 1

Then U isopen in D,._s(Is_1) and D,_s(Is_1)—Us = Dy_s_1(Is_1). There
is a commutative diagram
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Y, W

open closed

hsl ihS|W5 (5.1)
UsC——> Dr—s(Is—l) Dr—s—l(Is—l)-

open closed

Us©

We note that dim W, = dimD,_s_1([;_1) =r—s—1land 2(r —s—1) <
2(r —s) — 1 < 2(r — s). Therefore H2"=3)=Y(W,) = H*"=*)(W,) =
H2r=9)=YD,_, 1(I,_1)) = H?*")(D,_, 1(I,_1)) = 0. Put D =
D,_s(Is_1) and D' = D,_5_1(Is_1). Then we obtain from (5.1) the fol-
lowing commutative diagram whose rows are exact:

0= H>=) Wy, Qu(r = 5)) —= HZ" ™ (U, Qu(r — 5))

(hSIWs)*T

0= HXr==1(D' Qu(r — 5)) —= H2"")(U,,Qu(r — s))

= B2 (Y, Qu(r — ) ——= H2X=) (W, Qulr — ) = 0

h:T T(hsws)*

—— H?("=9)(D, Qu(r — 5)) —= H2"=5)(D', Qq(r — s)) = 0.
Therefore
(hs)* : H2/(D, Qe(r — 5)) — H*")(Yy, Qu(r — 5))
is an isomorphism. Therefore
(hs)* : H*"=*)(D, Qu(r — s))" — H*"9(Y;, Qu(r — 5))"

is injective.
Let 1 <5 <s—1. Put:
zO= 11 Xy = I Drs(Iy),
IjCijl IjCijl

720 = 11 Drjuly)  (t=1),
IjCijl
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U = 20 — 7050 = T (Dryolly) = Dys v a(Ly))

I;Clj—
= H H X3(J) (t>0) (open in Z®),
I;CIj_1 JCl;
|J|=r—j—t

DY =D, ; (1) (t>0),

v = p _ ptt+1) — H X3(J) (t>0) (open in D®),

JCIj_4
|J|=r—j—t

For t > 0, let A : Z® — D® be the natural morphism, and let u() =
RO | U® . U® — V®, Then we have the following commutative diagram
(t>0):

U« e AL D 7 (t+1)

closed

u(t)l hmi ihml)

C D)
v ® opert D) 1 D+1)

close

Therefore we obtain the following commutative diagram whose rows are
exact:

H2=)=1( 20D Qy(r — 5)) —= H" (U0, Qu(r — s))

h<t+l)*T Th(t)*

H=) 71 (DU, Qq(r — 5) —= H' ™ (VO Qu(r — )
(5.2)

—— (20, Qu(r — 5)) ——= H*"(Z0HD, Qu(r — 5))

h(t)*T Th(“rl)*

—— HX07(DW, Qu(r — ) ——= H*"=I(DHY, Qq(r — 5)).

Let 0 < t < s —j. We show, by descending induction on ¢, that
RO o H2r=) (DO Qu(r — s))T — H>=9)(Z®) Qu(r — 5)) is injective,
which will imply that (h;)* = h(O* is injective.
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In fact, let t = s—j. Then, as dim Z(#*Y = dim D¢+ = r—j—(t+1) =
r—s—1< (r—s)— 3, we have H2=9)=1(Z(t+D)) = [20r=9)(Z{t+1)) =
H20=9)=1(Dt+)y — [2(r=s)(Dt+1)) = 0. Moreover there is a morphism

el X3(J) — U® — Hljcljfl H\J\ifig—t X$(J) such
that uMv® = idy ). Therefore id HE=) (y0) = (idyw)* = (uDp®)*
v®*u (% and u®* is injective. Therefore h(Y* is injective.

Let 0 <t < s — 7. Then, by Lemma 2, we have Hf(r_s)(U(t),Qg(r -
sHT = ch(rfs)(V(t),Qg(r — 5))1 = 0. Therefore we obtain from (5.2) the
following commutative diagram whose rows are exact:

0 — H2(T_S)(Z(t),(@g(r _ S))H S H2(T_S)(Z(t+1),@g(7“ _ S))H

h(t)*T Th(t—o—l)*

0— HZ(T_S)(D(t),@g(T . 8))H . HQ(T_S)(D(t+1),Qg(T o 8))H.

By induction hypothesis, h(*t1* is injective. Therefore h(Y* is injective.
We see from the above proof that the map

(gj)*¢H2(S_”< 11 Xf ), Qe S—J))

LiCl,_
s H2<s—j+1>(X;(1j_1),@e(s — i)t

is surjective for 1 < s <r and 1 < j < s. Therefore the composite

mo=me (1 11~ 1 %)s—9)"

I;CIj—1 Ij41Cly IsCls—

\
H2(sf(sfl))( I II - 1II X}(IS_1)7@6(1))H

g I;CI; 1 I;11CI; I,_1CIs_2

|
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w1 11 X;(Ijﬂ),(@g(s—j—l))n

IjCIj_l Ij+1CIj

H2(sfj)< H Xf ), Qg S_j))n

I;CI;_
v

=H2CITD (X 8(1;21), Qu(s — j + 1))

is surjective. We have the following commutative diagram

22( I - IT X3ao) < o

IjCI]',1 I;CIs—1

QO*\L 9

Z5 It (X8 (Ijo1)0) ————H

cls—it+1

where gg. is the composite of

ZO( H H X}(Is)o) — Zl( H H X}(Is_l)o)
LCI_y  I.Cl.: I;CIi—1  I.1Clo_»
s 2 (X (0 ).

Clearly cl’° ® Qy is an isomorphism. Therefore
Bty o © Qe 277 (X} (L)) © Qe
— B2 (X315 1), Quls — 5 + 1))“

is surjective for 1 < s < r and 1 < j < s. Therefore, for any J C Sg with
1 <|J| <r, and for any integer ¢, 1 <t < |J|, the map

sy, ® Qe s Z'(X}(N)o) © Qe — H* (X)), Qu(t)"

is surjective. This is also true for 1 < |J| < r and for 0 < ¢ < |J|, and true
for J = () and for t = 0. Therefore, for any J C Sr and for any integer t,
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1 <t < |J|, we have
Qe - AYX3()o) = H* (X3(J), Qu(t)) "

In view of Propositiion 3, we see from the non-degenerateness of the pairing
(» )xs().1, that

for any J C Sp any for any integer ¢, 0 < ¢ < |J|.

This completes the proof of Theorem 1.

The corollary follows from Theorem 1 by [Ta II, Proposition (5.1), The-
orem (5.2)].
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