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Ideal-adic Semi-continuity of
Minimal Log Discrepancies on Surfaces

Masayuki Kawakita

Following Kollár [4], de Fernex, Ein, and Mustaţă [1] proved the ideal-adic semi-
continuity of log canonicity effectively, to obtain Shokurov’s [6] ACC conjecture
for log canonical thresholds on smooth varieties. Mustaţă formulated this semi-
continuity for minimal log discrepancies as follows.

Conjecture 1 (Mustaţă; see [3]). Let (X,�) be a pair, Z a closed subset of
X, and IZ the ideal sheaf of Z. Let a = ∏k

j=1 a
rj
j be a formal product of ideal

sheaves aj with positive real exponents rj . Then there exists an integer l such that
the following holds: if b = ∏k

j=1 b
rj
j satisfies aj + I l

Z = bj + I l
Z for all j, then

mldZ(X,�, a) = mldZ(X,�, b).

The case of minimal log discrepancy 0 is the semi-continuity of log canonicity.
Conjecture 1 is proved in the Kawamata log terminal (klt) case in [3, Thm. 2.6].
However, log canonical (lc) singularities are inevitably treated in the study of
limits of singularities in the ideal-adic topology because the limit of klt singulari-
ties is lc in general. For example, the limit of klt pairs (A2

x,y , (x, y n)OA2 ) indexed
by n ∈ N is the lc pair (A2, xOA2 ) in the (x, y)OA2 -adic topology. The purpose of
this paper is to settle Mustaţă’s conjecture for surfaces.

Theorem 2. Conjecture 1 holds when X is a surface.

We must handle a non-klt triple (X,�, a) that has positive minimal log discrep-
ancy; yet unlike in the klt case, the log canonicity is not retained when the exponent
of a is increased as a1+ε. For surfaces, however, we are reduced to the purely log
terminal (plt) case in which a has an expression a′OX(−C); then we can increase
only the exponent of the part a′ to apply the result on log canonicity.

We work over an algebraically closed field of characteristic 0. We use the nota-
tion described next for singularities in the minimal model program.

Notation 3. A pair (X,�) consists of a normal variety X and an effective R-
divisor � such that KX +� is an R-Cartier R-divisor. We treat a triple (X,�, a)
by attaching a formal product a = ∏

j a
rj
j of finitely many coherent ideal sheaves

aj with positive real exponents rj . A prime divisorE on a normal varietyX ′ with a
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proper birational morphism ϕ : X ′ → X is called a divisor over X, and the image
ϕ(E) on X is called the center of E on X and denoted by cX(E). We denote by
DX the set of divisors overX. The log discrepancy aE(X,�, a) of E is defined as
1+ordE(KX ′ −ϕ∗(KX+�))−ordE a. The triple (X,�, a) is said to be log canon-
ical (resp., Kawamata log terminal) if aE(X,�, a) is no less (resp., greater) than 0
for all E ∈ DX; this triple is said to be purely log terminal, canonical, or terminal
according as whether aE(X,�, a) is (respectively) greater than 0, no less than 1,
or greater than 1 for all exceptional E ∈ DX. A center cX(E) with aE(X,�, a) ≤
0 is called a non-klt center. Let Z be a closed subset of X. The minimal log dis-
crepancy mldZ(X,�, a) over Z is the infimum of aE(X,�, a) for allE ∈ DX with
center in Z. We say that E ∈ DX computes mldZ(X,�, a) if cX(E) ⊂ Z and
aE(X,�, a) = mldZ(X,�, a) (or is negative when mldZ(X,�, a) = −∞).

Prior to the proof of Theorem 2, we collect standard reductions and known results
on Conjecture 1.

Lemma 4 [3, Rem. 2.5.3, 2.5.4]. Conjecture 1 can be reduced to the case where
X has Q-factorial terminal singularities, � = 0, and Z is irreducible. It then
suffices to prove the inequality mldZ(X, a) ≤ mldZ(X, b).

Theorem 5. Conjecture 1 holds in each of the following cases:

(i) mldZ(X, a) = −∞;
(ii) mldZ(X, a) = 0 [1; 4];

(iii) (X, a) is klt about Z [3, Thm. 2.6].

Remark 6. In Theorem 5(ii), one can take as l any integer greater than the max-
imum of ordE aj/ordE IZ by fixing an E ∈ DX that computes mldZ(X, a). The
estimate of l in (iii) involves the log canonical threshold of a.

Conjecture 1 for surfaces is reduced to the plt case.

Lemma 7. With respect to Conjecture 1 for surfaces, one may assume the fol-
lowing:

(i) X is a smooth surface, � = 0, and Z is a closed point ;
(ii) (X, a) is plt with unique non-klt center C;

(iii) C is a smooth curve.

Proof. By Lemma 4 we may assume thatX is smooth with� = 0, and by parts (i)
and (ii) of Theorem 5 we may assume that mldZ(X, a) > 0. Let C be the non-klt
locus of (X, a). By Theorem 5(iii), we have only to work about Z ∩ C. The as-
sumption mldZ(X, a) > 0 means thatZ contains no non-klt center, whenceZ∩C
consists of finitely many closed points. By replacing Z with Z ∩ C and working
locally, we may assume that Z is a closed point x and that (X, a) has the non-klt
locus C, which is a curve. The exceptional divisor E of the blow-up of X at x
has positive log discrepancy aE(X, a), but it is at most aE(X,C) = 2 − multx C.
Hence C must be smooth at x.
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We work locally about the closed point x = Z under the assumptions given in
Lemma 7. We denote by m the maximal ideal sheaf at x and use notation similar
to that in [3, Def. 2.3].

Definition 8. For b = ∏
j b

rj
j and l ∈ N, we write a ≡l b if aj + ml = bj + ml

for all j.

Set c := mldx(X, a). The nontrivial locus of a (i.e., the locus where some aj is
nontrivial) is a divisor of the form C +D about x. Since (X, a) is plt, we can fix
s, t > 0 and t ′ ≥ 0 such that mldx(X, sD, amt ′) = mldx(X, amt ) = 0. We fix a
log resolution ϕ : X̄ → X of (X, am); that is,

∏
j ajmOX̄ defines a divisor with

simple normal crossing support. Let C̄ and D̄ denote the strict transforms of (re-
spectively)C andD. SinceC is smooth, it follows that C̄ intersects only one prime
divisor F in ϕ−1(x). This will play a crucial role in the proof. If D �= 0 then, by
blowing up X̄ further, we may assume that every divisor E in ϕ−1(x) intersecting
D̄ satisfies

ordE D ≥ s−1c − 1. (1)

We take an integer l such that

l > ordE aj/ordE m (2)

for all j andE ⊂ ϕ−1(x). The following lemma is an application of Theorem 5(ii)
and Remark 6 with the inequality (2).

Lemma 9. mldx(X, sD, bmt ′) = mldx(X, bmt ) = 0 for any b ≡l a.

We write
ajOX̄ = OX̄(−Hj −Vj )

with divisors Hj and Vj such that SuppHj ⊂ C̄ + D̄ and SuppVj ⊂ ϕ−1(x). Let
b ≡l a. For E ⊂ ϕ−1(x), we have ordE aj < ordE ml by (2) and have ordE aj =
ordE bj because aj + ml = bj + ml. Hence we can write

bjOX̄ = b′
jOX̄(−Vj ) and mlOX̄ = OX̄(−Mj −Vj )

with an ideal sheaf b′
j and an effective divisor Mj such that SuppMj = ϕ−1(x).

Then the equality aj + ml = bj + ml induces

OX̄(−Hj)+ OX̄(−Mj) = b′
j + OX̄(−Mj). (3)

The next lemma establishes that mldx(X, b) ≥ c; when combined with Lem-
ma 4, this completes the proof of Theorem 2.

Lemma 10. aG(X, b) ≥ c for any b ≡l a and G∈ DX with cX(G) = x.

Proof. We treat the three different cases corresponding to the possible positions
of cX̄(G):
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(i) cX̄(G) �⊂ C̄ + D̄;
(ii) cX̄(G) ⊂ D̄;

(iii) cX̄(G) ⊂ C̄.

(i) By equation (3) we have SuppHj ∩ SuppMj = Supp OX̄/b
′
j ∩ SuppMj ,

whence Supp OX̄/b
′
j ∩ ϕ−1(x) ⊂ C̄ + D̄. In particular, cX̄(G) �⊂ Supp OX̄/b

′
j .

This implies that ordG bj = ordGVj = ordG aj , so aG(X, b) = aG(X, a) ≥ c.

(ii) Take a prime divisor E in ϕ−1(x) such that cX̄(G) ⊂ E. By inequality (1),
we have ordG D = ordE D ·ordG E+ordG D̄ ≥ ordE D+1 ≥ s−1c. Lemma 9 for
(X, sD, bmt ′) implies that aG(X, b) ≥ s ordG D, and these two inequalities yield
aG(X, b) ≥ c.

(iii) We know that cX̄(G) is in the unique divisor F ⊂ ϕ−1(x) intersecting C̄.
There exists a divisor E in ϕ−1(x) with aE(X, amt ) = 0. Let L be the union of
all such E. Then L∪ C̄ is connected by the connectedness lemma [5, Thm. 17.4].
Hence F ⊂ L—that is, aF (X, amt ) = 0—and so ordF mt = aF (X, a) ≥ c (ac-
tually the equality holds by precise inversion of adjunction [2]). Lemma 9 for
(X, bmt ) now implies that aG(X, b) ≥ ordG mt. Given cX̄(G) ⊂ F, we obtain
aG(X, b) ≥ ordG mt ≥ ordF mt ≥ c.

Remark 11. The case division in the proof of Lemma 10 is in terms of the union
H of divisors E, with ordE a > 0 and with cX(E) �⊂ Z, on a suitable log resolu-
tion X̄. We writeH = H ′+H ′′ so thatH ′ is the union of thoseE with aE(X, a) =
0. Then the cases (i), (ii), (iii) in the proof of Lemma 10 correspond to these re-
spective conditions: cX̄(G) �⊂ H ; cX̄(G) ⊂ H ′′ and cX̄(G) �⊂ H ′; and cX̄(G) ⊂
H ′. The proof of (i) works in any dimension, and that of (ii) works provided (X, a)
is plt (or, more generally, dlt). However, the proof of (iii) does not work unless
H ′ intersects only one divisor in ϕ−1(Z).

Remark 12. In [3], Conjecture 1 is formulated for (X,�, a) with a an R-ideal
sheaf as an equivalence class of formal products of ideal sheaves. Our proof is
valid also for this formulation.

Acknowledgments. This paper was motivated by discussions during a work-
shop at the American Institute of Mathematics. I am grateful to Prof. T. de Fernex
for suggesting the connectedness lemma after increasing the boundary. I thank
Mr. Y. Nakamura for his interest in the surface case and Prof. M. Mustaţă for his
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